
On the Competitive Ratio of Evaluating Priced Functions

(Extended Abstract)

Ferdinando Cicalese∗

Institut für Bioinformatik,
Universität Bielefeld, Germany

e-mail: nando@cebitec.uni-bielefeld.de

Eduardo Sany Laber†

Department of Informatics, PUC
Rio de Janeiro, Brasil

e-mail: laber@inf.puc-rio.br

Abstract

Let f be a function on a set of variables V. For each
x ∈ V , let c(x) be the cost of reading the value of x. An
algorithm for evaluating f is a strategy for adaptively
identifying and reading a set of variables U ⊆ V whose
values uniquely determine the value of f . We are
interested in finding algorithms which minimize the cost
incurred to evaluate f in the above sense. Competitive
analysis is employed to measure the performance of
the algorithms. We study two variants of the above
problem. First we consider the classical setting in which
one assumes that the algorithm knows the cost c(x),
for each x ∈ V. For the case where f is a monotone
boolean function which is representable by a threshold
tree, we provide a polynomial time algorithm with the
best possible competitive ratio γf

c for each fixed cost
function c(·). Remarkably, the best known result for the
same class of functions is a pseudo-polynomial algorithm
with competitiveness 2γf

c . For the class of game tree
functions our polynomial time algorithm attains, for
each fixed cost function, the same competitiveness as
the best known algorithm for the same class of functions,
which instead runs in pseudo-polynomial time.

In the second part of the paper, we study a novel
variant of the problem. Here, we assume that the cost
function is not known in advance and some preemption
is allowed in the reading operations. This model
has applications, e.g., when reading a variable coincides
with obtaining the output of a job on a CPU and the
cost is the CPU time. In such a case, it is reasonable to
assume that no exact knowledge of the cost is available.
We define a new algorithm for this problem based

∗Supported by the Sofja Kovalevskaja Award 2004 of the
Alexander von Humboldt Foundation and the Bundesministerium

für Bildung und Forschung.
†This research was partially supported by CNPQ under the

Grant 300968/2003-5 and the Grant 476323/2004-5

on the solution of a Linear Program. We show the
optimality of our algorithm for the class of monotone
boolean functions representable by AND-OR-trees. We
also show a sub-optimal implementation for general
monotone boolean functions.

1 Introduction

In [1], Charikar et al. introduced the following basic
model of function evaluation in the context of comput-
ing with priced information:

Function Evaluation with Priced Information
(FEPI). A function f(x1, . . . , xn) has to be evaluated
for a fixed but unknown assignment σ, i.e., a choice of
the values for the set of variables V = {x1, x2, . . . , xn}.
Each variable xi has an associated non-negative cost
c(xi) which is the cost incurred to probe xi, i.e., to
read its value xi(σ). For each i = 1, . . . , n, the cost
c(xi) is fixed and known beforehand. The goal is to
adaptively identify and probe a minimum cost set of
variables U ⊆ V whose values uniquely determine the
value of f for the given assignment, regardless of the
value of the variables not probed. The cost of U is
the sum of the costs of the variables it contains, i.e.,
c(U) =

∑
x∈U c(x). We use f(σ) to denote the value of

f w.r.t. σ, i.e., f(σ) = f(x1(σ), . . . , xn(σ)).
A set of variables U ⊆ V is sufficient with respect to

a given assignment σ of V if the value of f is determined
by the restriction σ|U of σ to U. A set of variables which
is sufficient is also called a proof of the value of f for
the given assignment σ.

An evaluation algorithm A for f under an assign-
ment σ is a rule to adaptively read the variables in V
until the set of variables read so far is sufficient with
respect to σ. The cost of the algorithm A for an as-
signment σ is the total cost incurred by A to evaluate f
under the assignment σ. Given a cost function c(·), we
let cf

A(σ) denote the cost of the algorithm A for an as-

signment σ and cf (σ) the cost of the cheapest proof for f
under the assignment σ. We say that A is ρ-competitive
if cf

A(σ) ≤ ρcf (σ), for every possible assignment σ. We
use γA

c (f) to denote the competitive ratio of A, that
is, the minimum ρ for which A is ρ-competitive. The
best possible competitive ratio for any deterministic al-
gorithm, then, is γf

c = minA γA
c (f), where the minimum

is computed over all possible deterministic algorithms
A.

In order to clarify some of the above definitions, let
us consider the boolean function

f = (x1 AND x2) OR (x2 AND x3) OR (x3 AND x4)
(1.1)
together with the costs c(x1) = 3, c(x2) = 5, c(x3) =
4 and c(x4) = 1. For the assignment σR = (1, 0, 1, 1),
we have f(σR) = 1 and U = {x3, x4} as the only proof
of minimum cost. Therefore, cf (σR) = 4 + 1. On the
other hand, for the assignment σS = (1, 0, 0, 0), we have
f(σS) = 0 and the cheapest proof is {x2, x4}. Thus,
cf (σS) = 5 + 1. Let now A be an algorithm that reads
first x1, then x2, and so on, just skipping a variable xi

if, due to the values read so far, the value of xi cannot
affect the value of f . Thus, it is not hard to verify that
cf

A(σR) = 13, since A reads the variables x1, x2, x3, x4.
Furthermore, cf

A(σS) = 12, since in this case, A reads
x1, x2 and x3.

The model described above has applications in sev-
eral situations, e.g., gathering information from priced
sources on the Internet [5], evaluation of complex pred-
icates in databases [10], learning theory [7], and com-
putational geometry [11]. In general, it covers several
situations where the completion of a given task is re-
quired, for which information can be collected from
many sources at different cost. Different subsets of the
information available at the different sources are suffi-
cient to accomplish the desired task, and the problem is
how to choose the information sources which together
can provide a sufficient amount of data without incur-
ring too high a cost.

FEPI with Unknown Costs (FEPI-UC). Assume
now that the information sources are jobs in a computer
system, i.e., the values of the variables in the above
model are the outputs of computer programs. The cost
of obtaining such information is the CPU time necessary
to run the corresponding job. Then, it is reasonable to
assume that the cost for obtaining the value of a variable
is unknown beforehand.

These arguments motivate us to extend the FEPI
model to consider the case where the costs are not
known in advance. Algorithms for this new model
are allowed to use preemption: In the original FEPI
model, at each step the algorithm chooses an unread

variable and pays the cost associated with it to read
its value. In the FEPI-UC, the process of reading a
variable resembles the execution of a job that can be
stopped and resumed several times before producing
the desired output. More formally, an algorithm for
the FEPI-UC with unknown costs probes the variables
by using the operation Read(x, t), where x ∈ V and
t is a real number. Executing such an operation, the
algorithm pays an amount of at most t. This is like an
installment for covering the unknown cost c(x) of x. Let
δ(x) be the total amount spent by the algorithm in Read
operations on x before executing the present Read(x, t).
If δ(x)+t ≥ c(x), i.e., by paying t the algorithm finishes
covering the cost of x, then only c(x)−δ(x) is charged for
the operation Read(x, t) and the value of x is released.
Conversely, if δ(x) + t < c(x), i.e., including the last t
paid, the total cost spent on x is still insufficient for the
evaluation of x, the algorithm pays t but it does not get
the value of x. At any later step the process of reading
x can be resumed or the algorithm can decide to ignore
x and concentrate only on other variables. Note that
when the value of x is finally obtained, the total cost
incurred by the algorithm is c(x).

As an obvious adaptation of the notion of compet-
itiveness given in the basic model, here, we define the
competitive ratio of an algorithm A as the minimum ρ
for which cf

A(σ) ≤ ρcf (σ) for every assignment σ and for
every feasible cost function c(·). For sake of definiteness,
a cost function is feasible if it satisfies c(x) ≥M , for ev-
ery x ∈ V , where M is a positive constant known to the
algorithm. Moreover, we remark that if preemption is
not allowed, there is no hope of finding efficient strate-
gies. In fact, as opposed to the classical FEPI, here, the
algorithm is evaluated against an adversary that can
set both the costs and the values of the variables adap-
tively. Therefore, if the algorithm was not allowed to
read a variable one bit at a time, the adversary could
force it to pay an arbitrarily high cost for getting one
value, precluding any possibility of being competitive.

Our Contributions. We study the two variants of
the problem described above. For the FEPI model in
which the costs are known in advance, we study the
γf

c competitiveness for the class of monotone boolean
functions representable by threshold trees and for the
class of the game tree functions.

Our main contribution consists of a simple greedy
strategy that achieves the best known competitive ratio
both for threshold tree and game tree functions. More
specifically, we show a polynomial time algorithm with
the best possible competitive ratio γf

c for threshold
tree functions (and a fortiori for the particular case
of AND/OR tree functions). Then, we show that a
variant of this algorithm achieves competitive ratio 4γf

c

for game tree functions, in time polynomial only in the
size of the tree. It turns out (see Related Work below)
that in terms of competitive ratio, this algorithm is not
worse than the best known algorithm to date for game
trees [1], which, however, has a running time that is
polynomial in the size of the tree and the magnitude of
the costs, i.e., the algorithm is pseudo-polynomial.

It is indeed remarkable that ours are the first algo-
rithms for function evaluation with priced information
which are both fully polynomial time and competitive
with respect to the γf

c metric.
For the FEPI-UC we design a new strategy based on

the solution of a Linear Program and show an optimal
implementation for the class of AND/OR trees. A
suboptimal implementation of our strategy is also given
for general monotone boolean functions. We remark
that an analogous approach based on the same linear
program can be used to design very efficient algorithms
for the classical FEPI model.

Related Work. The seminal paper for the study
of the effect that priced information has on basic
algorithmic problems is due to Charikar et al. [1].
Among others, the function evaluation problem for the
classes of AND-OR trees, threshold trees, and game
trees, is addressed there. For the subclass of the
monotone boolean functions that are representable by
AND/OR trees, a γf

c -competitive pseudo-polynomial
algorithm is provided. A variant of this algorithm
is shown to achieve 2γf

c -competitiveness, in pseudo-
polynomial time, for the class of threshold trees. Note
that as opposed to the one in [1], the new algorithm
we present here for evaluating threshold trees does not
lose the factor of 2 and, more importantly, runs in
polynomial time.

For the class of functions that are representable by
game trees, a pseudo-polynomial algorithm is presented
in [1] which is claimed to be 2γf

c -competitive. Here, we
show that, in actual fact, the lower bound employed in
[1] is not sufficient to guarantee this result. We present
a “corrected” version of such a lower bound, which,
however, allows us only to show that the algorithm of
[1] is 4γf

c competitive. Thus, it appears to be no better
than the algorithm we propose here for evaluating game
trees, which is also a 4γf

c -competitive algorithm, but it
is a fully polynomial time one.

After [1], a number of papers on this topic have
appeared in the literature [4, 8, 6, 11, 9, 3, 7, 2]. In
particular, in [3, 2], we studied the extremal competitive
ratio, defined by γ(f) = minA maxc γA

c (f), where the
max is computed over all cost functions c and the min
over all algorithms A. We provided polynomial time
algorithms with extremal competitive ratio, γ(f) (or
K × γ(f), for a small constant K), for several classes of

functions.
As opposed to our previous work, in the present pa-

per, we achieve optimal competitive ratio rather than
optimal extremal competitive ratio. Importantly, we
achieve optimality in terms of the stronger measure,
at no expense in terms of running time of the algo-
rithms which are still polynomial time. Obviously,
γf

c -competitiveness implies γ(f)-competitiveness, whilst
γ(f)-competitive algorithms could perform poorly for
some cost functions.

2 The FEPI model with known costs

In this section we shall consider the original FEPI
model, in which, in particular, the algorithm has com-
plete access to the costs of the variables. We shall
present algorithms that are competitive with respect to
γf

c for the classes of threshold trees and game trees func-
tions.

We shall start with some basic concepts and no-
tations, introduced for the case when f is a mono-
tone boolean function over the set of variable V =
{x1, . . . , xn}. A fortiori, everything we state here will
directly apply to the class of threshold trees, which are
in fact monotone boolean functions. Moreover, most ba-
sic definitions given here for boolean functions will be
extended or generalized to the case of game tree func-
tions, with which we shall deal later.

Let Y ⊆ V and let σY be an assignment for the
variables of Y . We use fY to denote the restriction of
f obtained by fixing the values of the variables in Y as
given by σY . Consider, e.g., the function f in (1.1). Let
Y = {x2, x4} and σY = (x2 = 1, x4 = 1). Then, we
have fY = x1 OR x3.

A minterm for f is a minimal set of variables
C− ⊆ V such that if x(σ) = 1 for every x ∈ C−, then f
evaluates to 1, no matter how are assigned the values for
the remaining variables. A maxterm for f is a minimal
set of variable C+ ⊆ V such that if x(σ) = 0 for every
x ∈ C+, then f evaluates to 0. As an example, in the
function presented in (1.1), {x1, x2} is a minterm and
{x2, x4} is a maxterm. We use the term certificate to
either refer to a minterm or to a maxterm. Obviously,
every proof for f contains a certificate.

An immediate property of the certificates of a
function f is that for each minterm C− and each
maxterm C+ of f it holds that C− ∩ C+ 6= ∅.

2.1 Threshold Trees A threshold tree over a set
of boolean variables V is a rooted tree T , where each
internal node is associated with an integer number and
each leaf is associated with a distinct variable of V . The
value of a leaf is the value of its associated variable.
The value of a node whose associated integer is t (a t-

node) is 1 if at least t of its children have value 1 and
it is 0, otherwise. The boolean function computed by a
threshold tree T is the one mapping the values of the
leaves of T to the value of the root of T.

Given a threshold tree T, we use leaves(T) to
denote its set of leaves. Abusing notation, we use T
to denote also the function, say f, computed by the tree
T . Accordingly, for every Y ⊂ V , TY will denote both
the threshold tree computing fY and the function fY

itself.

The certificates of a threshold tree. Let T be a
threshold tree rooted on a t-node r and let T1, . . . , Tp

be the subtrees of T rooted at the children of r. Then,
C is a minterm for T if and only if there exists a
subset R ⊆ {1, . . . , p}, with |R| = t, such that: (i)
C ∩ leaves(Ti) is a minterm for Ti, for each i ∈ R; (ii)
C ∩ leaves(Ti) = ∅ for each i /∈ R.

Analogously, C is a maxterm for T if and only
if there exists a subset S ⊆ {1, . . . , p}, with |S| =
p − t + 1, such that: (i) C ∩ leaves(Tj) is a maxterm
for Tj , for j ∈ S; (ii) C ∩ leaves(Tj) = ∅ for j /∈ S.
This characterization allows us to easily compute the
cheapest minterm (maxterm) recursively in polynomial
time.

The Lower Bound. We shall now recall a lower bound
on the competitive ratio of any deterministic algorithm
which evaluates threshold trees proved in [1]. In the
proposition below [p] denotes the set {1, 2, . . . , p}.

Proposition 2.1. [1] Let T be a threshold tree and r
denote the root of T . Let c(·) be the cost function on the
leaves of T . For each leaf ` of T , define θ`

0(y) = θ`
1(y) =

0 if y < c(`) and θ`
0(y) = θ`

1(y) = c(`), otherwise.
For a t-node ν of T with children ν1, . . . , νp define 1,

θν
1 (y) = max

I⊆[p]
|I|=t

 max
{y1,...,yt}∑t

i=1 yi=y

∑
i∈I

θνi
1 (yi) +

∑
i6∈I

θνi
1 (

t
max
j=1

yj)

 .

Define θν
0 (y) to be the function obtained by replacing

in the definition of θν
1 () every occurrence of t with

p − t + 1. Finally, define θT
1 (y) = θr

1(y) and θT
0 (y) =

θr
0(y).

Then, θT
1 (y) (resp. θT

0 (y)) is a lower bound on the cost
that any algorithm must incur in the worst case in order
to determine the value of a 1-witness (resp. a 0-witness)

1In the definition of θν
1 () the second max operator is taken

only over choices y1, . . . , yt such that there can exist minterms

for the trees rooted at νi1 , . . . , νit with costs at most y1, . . . , yt,

respectively. If no such y1, . . . , yp exist for a particular y then the
value of max is 0.

of cost at most y. Hence,

γT
c ≥ max

{
max

σ : f(σ)=0

θT
0 (cT (σ))
cT (σ)

, max
σ : f(σ)=1

θT
1 (cT (σ))
cT (σ)

}
The Algorithm Greedy-MIN. Let F denote the
family of minterms of f . We shall now define a total
order χ on F that induces a sorting of the minterms of
f in order of non-decreasing cost.

DEFINITION 1. (Ranks) Let f = f(x1, x2, . . . , xn)
be a boolean function and let c(·) be a cost function
on the variables of f . Let π be the total order on
the variables of f defined by stipulating that, for each
i = 1, 2, . . . , n − 1, xi precedes xi+1 in the order π.
Therefore, c and π induce a total order χ on the
minterms of f as follows. In χ a minterm C precedes a
minterm D if and only if one of the following conditions
holds: (a) c(C) < c(D); (b) c(C) = c(D) and the list
of variables in C (listed according to π) precedes in the
lexicographical order the list of variables in D (listed
according to π).
For each minterm C of f we define rankf (C) as the
ordinal position of C in χ (i.e., the number of minterms
that precede C in χ, plus 1). When the function f is
clear from the context we shall write rank(C) instead of
rankf (C).

The algorithm Greedy-MIN below examines the
minterms of F in order of increasing rank.

By the value of a minterm we shall mean the AND
of the values of its variables. Therefore, the value of a
minterm C is determined by Greedy-MIN as soon as
either one of the variables in C is found to have value
0, or all the variables in C are found to have value 1.

We shall say that a minterm C is active for
Greedy-MIN as long as the value of C is not deter-
mined. Given an active minterm C, we shall say that
U ⊆ C is strongly active iff : (i) U is the set of un-
read variables of some active minterm of f and (ii) U is
minimal, i.e., no proper subset of U satisfies condition
(i). Note that such a strongly active set U is always a
minterm for fY , where Y is the set of variables read so
far.

Algorithm Greedy-MIN(f, V, c)
While the value of f is unknown

C ← active minterm of f with minimum rank
U ← a strongly active subset of C
Read a variable of U

End While

We shall say that a minterm C is evaluated by
Greedy-MIN if and only if C is one of the minterms

selected by Greedy-MIN during the main loop. Note
that, according to this definition, it may happen that C
is not evaluated although some of its variables are read.
The algorithm Greedy-MIN does not specify which
strongly active set U is selected nor the variable of U
that is read.

An implementation for the algorithm Greedy-
MIN is a rule that defines both the strongly active set
U contained in C and the variable of U to be selected.

Let I be an implementation for the algorithm
Greedy-MIN. For each function f and for each assign-
ment σ, the execution I(f, σ) of the implementation I of
Greedy-MIN on the function f with assignment σ is
the sequence of pairs (xi, C(xi)), i = 1,2,. . . , where xi is
the i-th variable that I reads and C(xi) is the minterm
of f that is being evaluated when xi is probed.

The following lemma originally presented in [2] will
be useful in the recursive analysis of the cost incurred
by Greedy-MIN on a threshold tree.

Lemma 2.1. [2] Let I be an arbitrary implementation
of Greedy-MIN. Let Tm be a subtree of T , rooted at
one of the children of r. Let x1, x2, . . . , xq be the leaves
of Tm listed in the order that they appear in I(T, σ).
Then, there exists an implementation Im for Greedy-
MIN that satisfies

(i) The q first variables of Im(Tm, σ|Tm
) are

x1, x2, . . . , xq

For i = 1, 2, . . . , q let C(xi) (respectively Cm(xi))
denote the minterm of T (resp. Tm) that is evaluated
in I(T, σ) (resp. Im(Tm, σ|Tm

)) when xi is probed.

(ii) Then, for i = 1, 2, . . . , q, we have Cm(xi) =
C(xi) ∩ Tm.

Theorem 2.1. Let I be an arbitrary implementation of
Greedy-MIN. If f can be represented by a threshold
tree, then for every assignment σ such that f(σ) = 1,
we have cf

I (σ) ≤ θf
1 (cf (σ)).

Proof. Recall the definition of the functions θf
0 and θf

1

given in Proposition 2.1. We shall prove, by induction
on the height of the tree, that for every assignment σ′,
the cost incurred by I before determining the value of
a minterm C is at most θf

1 (c(C)). This will suffice
to establish the theorem since we can consider the
particular case where σ′ is an assignment for which f
evaluates to 1 and C is the cheapest proof for f under
the assignment σ′.

For the basis we assume that T has height 0, that
is T is a single leaf l. In this case, the result trivially
holds since the unique minterm is l and θ`

1(c(l)) = c(l).
Let us assume that the claim holds for every thresh-

old tree of height at most h. Let T be a tree with height

h + 1 rooted at a t-node r. In addition, let T1, . . . , Tp

be the subtrees rooted at the children of r. We assume
w.l.g. that C ∩Ti 6= ∅ for i = 1, . . . , t. This implies that
C ∩ Ti = ∅ for i = t + 1, . . . , p.
Claim Let C ′ be a minterm of T such that rank(C ′) <
rank(C). If C ′ is evaluated before the value of C is
determined we must have

(i) c(C ′ ∩ Ti) ≤ c(C ∩ Ti) for i = 1, . . . , t
(ii) c(C ′ ∩ Tj) ≤ maxi=1,...,t{c(C ∩ Ti)}, for j > t.

Proof of the Claim. (i) For the sake of contradiction,
we assume that c(C ′ ∩ Ti) > c(C ∩ Ti) for some
i ∈ {1, . . . , t}. Let C∗ = (C ′ \ Ti) ∪ (C ∩ Ti). Since
c(C∗) < c(C ′) then rank(C∗) < rank(C ′).

Let D be the last minterm evaluated in the ex-
ecution I. If rank(D) ≤ rank(C∗) we have that C ′

is not evaluated. On the other hand, if rank(D) ≥
rank(C∗) + 1, then at the time when I evaluates for
the first time a minterm of rank ≥ rank(C∗) + 1, some
variable x ∈ C∗ with value 0 must have been read. If
x ∈ Ti then C evaluates to 0. Otherwise, if x /∈ Ti,
then C ′ is not evaluated because after reading x also
the minterm C ′ becomes non-active. In both cases, C ′

is not evaluated before the value of C is determined.
(ii) Let cmax = maxt

i=1{c(C ∩ Ti)}. For the sake
of contradiction, we assume that c(C ′ ∩ Tj) > cmax for
some j > t. Let Ti, with i ≤ t, be a subtree such that
C ′ ∩ Ti = ∅ and define C∗ = (C ′ \ Tj) ∪ (C ∩ Ti). The
same arguments employed in the case (i) allow us to
obtain a contradiction.

Let Xi be the sequence of leaves of Ti that are read
in the execution I(T, σ) before determining the value of
C, listed in the order in which they are read by I. In
order to bound the sum of the costs of these variables,
we use the fact, assured by Lemma 2.1, that there is an
implementation Ii such that the sequence of variables in
the execution Ii(Ti, σ|Ti

) coincides exactly with Xi.
In fact, the second statement in Lemma 2.1 together

with the previous claim guarantees that, for each i ≤
t (respectively i > t), Ii only evaluates minterms
of cost not larger than c(C ∩ Ti) (respectively cmax)
while reading the variables in Xi. Thus, by induction
hypothesis we have that the cost incurred due to the
variables of Ti is at most θTi

1 (c(C ∩ Ti)) (respectively
θTi
1 (cmax)).

Therefore, the cost spent by I before determining
the value of C is at most

t∑
i=1

θTi
1 (c(C ∩ Ti)) +

p∑
i=t+1

θTi
1 (cmax) ≤ θT

1 (c(C)),

where the inequality directly follows from the definition
of θν

0 (y) Thus, our induction is completed.

The Algorithm Greedy-MAX. Let Greedy-MAX
be the variant of Greedy-MIN that evaluates the
maxterms of f instead of the minterms. Proceeding
as before and using the dualities between minterms and
maxterms, and between θ0 and θ1, one can easily prove
the following dual result.

Theorem 2.2. Let I be an arbitrary implementation of
Greedy-MAX. If f can be represented by a threshold
tree, then for every assignment σ such that f(σ) = 0,
we have cf

I (σ) ≤ θf
0 (cf (σ)).

The Optimal Algorithm for Threshold Tree. We
now present an algorithm that combines the “optimal”
features of Greedy-MAX and Greedy-MIN. It ex-
ploits the structure of the strongly active subsets of
minterms and maxterms to attain γf

c -competitiveness,
as it is proved in the next theorem.

Algorithm Greedy*(f, V, c)
Fix an arbitrary order on the variables of V .
While the value of f is unknown

Let U1 be a strong active subset of the active
minterm of minimum rank
Let U0 be a strong active subset of the active
maxterm of minimum rank
Read a variable of U1 ∩ U0

End While

Theorem 2.3. Let A be an implementation of
Greedy*. Then, for every monotone boolean func-
tion f represented by a threshold tree and for every
cost function c(·) on the leaves of f , we have that
γA

c (f) = γf
c .

Proof. First we notice that U0 ∩ U1 6= ∅. In fact, by
the definition of strongly active sets, U0 and U1 are,
respectively, a maxterm and a minterm of fY , whence
their intersection cannot be empty.

Therefore, Greedy* is simultaneously an im-
plementation of Greedy-MIN and Greedy-MAX.
whence, putting together Theorems 2.1 and 2.2 and
Proposition 2.1 we have

γA
c (f) = max

σ

cf
A(σ)

cf (σ)
≤

max

{
max

σ : f(σ)=0

θf
0 (cf (σ))
cf (σ)

, max
σ : f(σ)=1

θf
1 (cf (σ))
cf (σ)

}
≤ γf

c

For the polynomial implementation of A for a
threshold tree functions f , the only point that must

be clarified is how to select the active minterm and
maxterm of f with minimum rank.

We shall limit ourselves to describe the procedure
for the case of a minterm, since the case of a maxterm
can be treated analogously.

First, we note that the minterm with minimum rank
in a threshold tree can be easily found by using the given
recursive characterization of minterms for threshold
trees. Then, we observe that the active minterm of f of
minimum rank is exactly the one with minimum rank
in the tree T ′ obtained from T through the removal of
all the leaves that have already been read and found to
have value 0 assigned.

2.2 Game Trees A game tree T is a rooted tree such
that every internal node has either a MIN or a MAX
label and the parent of every MIN (MAX) node is a
MAX (MIN) node. Let V be the set of leaves of T .
Every leaf of V is associated with a real number, its
value. The value of a MIN (MAX) node is the minimum
(maximum) of the values of its children. The function
computed by T (the value of T) is the value of its root.
Like in the previous section we shall identify T with
the function it computes. Thus, if f is the function
computed by the game tree T , we shall also write T for
f and TY for fY .

By a minterm (maxterm) of a game tree we shall
understand a minimal set of leaves whose values allow
to state a lower (upper) bound on the value of the game
tree. More precisely, a minterm (maxterm) for a game
tree T rooted at r is a minimal set C of leaves of T
such that if x(σ) ≥ ` (x(σ) ≤ `,) for each x ∈ C then
r(σ) ≥ ` (r(σ) ≤ `) regardless of the values of the leaves
y 6∈ C. As with monotone boolean function, we shall
use the more general term certificate to either refer to
a minterm or to a maxterm.
The certificates of a game tree. Let T1, . . . , Tp

be the subtrees of T rooted at the children of r. If
r is a MAX node then CL is a minterm for T if and
only if CL is also a minterm for some subtree Ti, with
i ∈ {1, . . . , p}. Furthermore, CU is a maxterm for T if
and only if CU ∩ Ti is a maxterm of Ti, for i = 1, . . . , p.

If r is a MIN node, then CL is a minterm for T if
and only CL ∩ Ti is a minterm of Ti, for i = 1, . . . , p;
and CU is a maxterm for T if and only if CU is also a
maxterm for some subtree Ti, with i ∈ {1, . . . , p}.

For the game tree function

T = max{min{x1, x2},min{x3,max{x4, x5}}},

the family of maxterms is
{{x1, x3}, {x1, x4, x5}, {x2, x3}, {x2, x4, x5}} and
the family of minterms is {{x1, x2}, {x3, x4}, {x3, x5}}.

We define the value C(σ) of a minterm (maxterm)

C w.r.t. assignment σ as the minimum (maximum) of
the values of its leaves. We note that a proof for T ,
under an assignment σ, contains a minterm CL and a
maxterm CU such that CU (σ) = CL(σ) = T (σ).

Lower Bound. We start by presenting a lower bound
on the competitive ratio of any deterministic algorithm
for evaluating game trees. Our lower bound resembles
the one proposed in [1]. However, we believe that such
a lower bound includes a technical problem. Due to
space constraints, the detailed discussion of this point
is deferred to the extended version of this paper. The
new lower bound presented here only allows to prove
that the algorithm BALANCE from [1] has competitive
ratio 4γf

c in contrast to the 2γf
c -competitiveness claimed

in [1]. Note that rather than stating that BALANCE is
not 2γf

c -competitive, we are here only claiming that the
proof of this fact, as given in [1] is arguable, and our
attempt to adjust it results in an additional 2 factor on
the competitiveness.

Our lower bound makes use of the functions τT
L (·)

and τT
U (·) presented below. In [1], it is shown that τT

L (y)
(τT

U (y)) is a lower bound on the minimum cost incurred
by any deterministic algorithm, in the worst case, to
determine a lower (upper) bound on the value of T when
the cheapest lower (upper) bound witness costs at most
y.

DEFINITION 2. [1] Let T be a game tree and c(·)
be the cost function on the leaves of T . For each leaf
` of T define τ `

U (y) = τ `
L(y) = 0, if y < c(`) and

τ `
U (y) = τ `

L(y) = c(l), otherwise.
Let ν be an internal node of T . Let p = pν be

the number of children of ν and let us denote them by
ν1, . . . , νp. If ν is a MIN node 2, then

τν
U (y) =

p∑
i=1

τνi

U (y)

and

τν
L(y) = max

{y1,...,yp}:
∑

i yi=y

(
p∑

i=1

τνi

L (yi)

)
(2.2)

If ν is a MAX node the definition of τν
U (y) and τν

L(y)
can be obtained replacing in the two equations above
every occurrence of U by L and every occurrence of L
by U .

Finally, define τT
L (y) = τ r

L(y) and τT
U (y) = τ r

U (y),
where r denote the root of T .

2In (2.2) the max operator is taken only over those yi such

that there can exist a minterm for the tree rooted at νi with cost
at most yi. If no such y1, . . . , yp exist then τν

U (y) = 0.

The next theorem, whose proof is deferred for the
extended version of this paper, gives a lower bound on
the competitive ratio of any deterministic algorithm for
evaluating game trees.

Theorem 2.4. Let T be a game tree T . Then, for
each minterm CL and maxterm CU of T, we have that
γT

c ≥
max{τT

L (c(CL)),τT
U (c(CU))}

c(CL)+c(CU)

The Algorithm Greedy-MIN for Game Trees.
Consider a run of an algorithm for evaluating a game
tree. Let Y be the set of leaves that have already
been read. Let UB(LB) be the minimum (maximum)
among the values of the maxterms (minterms) that have
been fully read. Otherwise, if none of the maxterms
(minterms) has been completely read then UB = ∞
(LB = −∞). Then, we know the value of T is in
the interval [LB, UB], with LB < UB. We say that a
maxterm (minterm) C is active if for each leaf x ∈ C∩Y ,
we have x(σ) < UB (x(σ) > LB). In words, a
maxterm (minterm) C is active if the evaluation of its
unevaluated leaves can still lead to an improvement
of the upper bound UB (lower bound LB), i.e., can
provide additional information on the value of the game
tree.

The algorithm Greedy-MIN (Greedy-MAX) can
be easily applied to Game Trees since, with the gen-
eralized notion of minterms (maxterms) and active
minterms (maxterms) stated above, the definitions of
ranks and strongly active sets naturally extend to Game
Trees.

Lemma 2.2 gives an upper bound on the cost
spent by Greedy-MIN (Greedy-MAX) to prove that
f(σ) ≥ B (f(σ) ≤ B), for each assignment σ and for
each lower (upper) bound B. Its proof has the same
flavor of that of Theorem 2.1. Due to space constraints
we omit it.

Lemma 2.2. Let f be a function that can be represented
by a game tree.

Let I be an arbitrary implementation of Greedy-
MIN. Then, for every assignment σ and for every B
such that f(σ) ≥ B, we have

cf,B
I (σ) ≤ τL(cf

B(σ))

where cf,B
I (σ) denotes the cost spent by I to find a

certificate that f(σ) ≥ B and cf
B(σ) denotes the cost

of the cheapest certificate that allows to proving that
f(σ) ≥ B.

Similarly, let I+ be an arbitrary implementation of
Greedy-MAX. Then for every assignment σ and for
every B such that f(σ) ≤ B, we have

cf,B
I+ (σ) ≤ τU (cf

B(σ))

where cf,B
I+ (σ) denotes the cost spent by I+ to find a

certificate that f(σ) ≤ B and cf
B(σ) denotes the cost

of the cheapest certificate that allows to proving that
f(σ) ≤ B.

To evaluate a game tree we can run Greedy-MIN
and Greedy-MAX in ‘parallel’, that is, at each step the
next variable to be read is either the next variable to be
read in Greedy-MIN’s execution or the next variable
to be read in Greedy-MAX’s execution. The decision
will be to read the variable picked up by Greedy-MIN
(Greedy-MAX) if, including the last variables chosen
by the two algorithm the cost incurred by Greedy-
MIN (Greedy-MAX) is smaller than the cost incurred
by Greedy-MAX (Greedy-MIN) . The algorithm
stops when the lower bound found by Greedy-MIN
and the upper bound found by Greedy-MAX match.
We use PAR to denote this parallel algorithm.

Let σ be the assignment for PAR which maximizes
cT

PAR(σ)/cT (σ) and let CL and CU be respectively the
minterm and the maxterm contained in the cheapest
proof for the value of the game tree T w.r.t. σ. Assume,
without loss of generality, that τT

L (c(CL)) ≤ τT
U (c(CU)).

Therefore, the competitive ratio of PAR is at most

2τT
U (c(CU))

c(CL ∪ CU)
≤ 4τT

U (c(CU))
c(CL) + c(CU)

,(2.3)

where the last inequality follows from c(CL ∪ CU) ≥
(c(CL) + c(CU))/2.

Putting together Theorem 2.4 and (2.3), we can
state the following theorem.

Theorem 2.5. If the function f can be represented by
a game tree, then γPAR

c (f) ≤ 4γf
c .

We conclude this section by noticing that there
exists a polynomial implementation of Greedy-MIN
(Greedy-MAX) for game trees. In order to efficiently
determine the active minterm (maxterm) C of minimum
rank, such implementation relies on the removal of all
leaves of the tree whose value is known to be not greater
than the best lower bound so far LB (not smaller than
the best upper bound so far, UB). A more detailed
explanation is deferred to the extended version of this
paper.

3 FEPI with Unknown Costs

In this section, we study the new model of Func-
tion Evaluation with Priced Information and Unknown
Costs (FEPI-UC). Recall that since the costs are un-
known, in the FEPI-UC we allow the evaluation strate-
gies to be preemptive, i.e., the process of paying for
reading the value of a variable can be stopped before the

full cost has been paid. We also assume that the cost
of reading a variable is lower bounded by some known
value M . The formal definition of the allowed opera-
tions and their semantics are given in the introduction.
A Liner-Programming based algorithm. Let f be
the function to evaluate and V its set of variables. Let
P denote the set of all minimal proofs for f . We define
the following linear program LPf where we have one
non-negative real variable s(x) for each variable x ∈ V
and one constraint for each minimal proof P ∈ P.

LPf : Minimize
∑
x∈V

s(x)

∑
x∈P

s(x) ≥ 1, for every P ∈ P

s(x) ≥ 0, for every x ∈ V

The procedure below uses the set Y to keep track
of the variables whose values have already been deter-
mined. At each iteration of the most external loop, the
algorithm finds a feasible solution s of LPfY

. This solu-
tion is then used to fix the relative speed at which each
variable is read, i.e., for each variable x ∈ V \Y , the al-
gorithm iteratively increases the amount spent on x by
t×s(x) (for some suitable t) until for some variable y the
cost c(y) has been completely paid. Then, the value of
y is read, the set Y is updated and, if necessary, the al-
gorithm starts a new loop by solving the linear program
for fY .

We call the internal For loop a phase of the algo-
rithm LINPR. In each phase, for each variable x whose
value is unknown, the amount t× s(x) is read. A phase
can be interrupted if the value of some variable, say y,
becomes determined during its execution. The instruc-
tion Break in the pseudo-code below forces the end of a
phase.

Since the algorithm terminates when it determines
the value of f , and each time a phase is interrupted a
new variable is read, we can have at most n interrupted
phases.

Algorithm LINPR(f, V, t)
Y ← ∅;
While f is unknown

Let sY be a feasible solution for LPfY .

Repeat
For every variable x ∈ V \ Y do

Read(x, t× sY (x))
If the value of x becomes known

Y ← Y ∪ x ;
Break

Until the value of a new variable is found

We now provide an upper bound on the competitive
ratio of the algorithm LINPR.

Theorem 3.1. Let s∗ = maxY ⊂V

∑
x∈V −Y sY (x).

Then, LINPR is s∗ + n×t×s∗

M -competitive. In particu-
lar, when t tends to 0, LINPR becomes s∗-competitive.

Proof. In each phase, the algorithm spends at most
t × s∗. Thus, the cost spent due to the interrupted
phases is at most n× t× s∗. The cost spent due to the
non-interrupted phases is at most p × t × s∗, where p
is the total number of non-interrupted phases. In total
LINPR spends at most (n + p)× t× s∗

Now, let P be the cheapest proof for the value of
f . We have that for every subset of variables Y read by
LINPR, P \ Y is a minimal proof for fY . Since sY is a
feasible solution for LPfY

, then
∑

x∈P\Y sY (x) ≥ 1. As
a consequence, we can charge to the cheapest proof,
t units from every non-interrupted phase. Since the
minimum amount spent for reading one variable is M ,
we have that, the cheapest proof costs at least c(P) ≥
max{M,p× t}.

Dividing the upper bound on the cost spent by
LINPR by the lower bound on c(P) we have the result

Note that, in this model, we neglect the cost of starting
a Read operation. Alternatively, one could also try
to keep the number of such operations small. If
this is the case, the choice of a very small value for
t is not acceptable. On the other hand, standard
techniques can be employed to tune the parameter t
to reduce the number of operation, e.g., doubling. In
the absence of any additional modification, this would
imply an additional factor 2 in the estimate of the
competitiveness. We shall discuss this issue at greater
length in the extended version of the paper.

Now we shall show that the LINPR is a useful
tool for designing algorithms in the FEPI-UC model for
monotone boolean functions. In fact, it can be adapted
to deal with the classical FEPI model as we shall discuss
in the extended version of this paper.
Implementations for Monotone Boolean Func-
tions. For a monotone boolean function f over the set
of variables V = {x1, x2, . . . , xn}, we shall use k(f) and
l(f) to denote the size of the largest minterm and the
largest maxterm of f , respectively. The next theorem
presents a lower bound on the competitiveness of any
algorithm for the FEPI-UC model, when the function
to evaluate is a monotone boolean function.

Theorem 3.2. For every monotone boolean function f
and for every ε > 0, max{k(f), l(f)}−ε is a lower bound

on the competitive ratio of any deterministic algorithm
A that computes f in the FEPI-UC model.

Proof. The adversary constructs an assignment σA and
a vector of costs c as follows. Let C be the largest
minterm of f . If x /∈ C, then x(σ) is set to 0 and
c(x) = M . On the other hand, for every variable
x ∈ C, the adversary sets c(x) = h. Finally, all the
variables in C are assigned value 1 but the last one
read by A. Let P be the cheapest proof for f , w.r.t.
σA. We have that |P | ≤ l(f) and that P contains
a variable of cost h. Thus, c(P) ≥ h + (l(f) − 1) ×
M . Therefore, k(f)h

h+(l(f)−1)×M is a lower bound on the
competitive ratio of any deterministic algorithm. Since
this expression goes to k(f) as h goes to ∞, we have
that k(f)− ε is a lower bound on the competitive ratio
of any deterministic algorithm, for every ε > 0.

A similar argument shows that l(f) − ε is also a
lower bound. The proof is complete.

In general, a reasonable implementation of LINPR
must find a good feasible solution for LPf in polynomial
time. By good we mean that the objective value
associated with such a solution should not be far from
that associated with the optimal one. Although there
are polynomial time algorithms for solving the linear
program problem, their application is limited since the
number of equations of the linear program (number
of certificates) may be exponential on the size of the
function representation and, even worse, the separation
problem may be NP-Complete.

In the following we show that we can obtain good
solutions for LPf without solving it. Let us assume that
the access to our monotone boolean function f is given
by an oracle that for every input x ∈ {0, 1}n responds
whether f(x) = 0 or f(x) = 1. The next theorem shows
that one can find in polynomial time (on the number
of calls to the oracle) a feasible solution s for LPf such
that

∑
x∈V s(x) ≤ k(f) + l(f)− 1 ≤ 2 max{k(f), l(f)}.

Theorem 3.3. If f is a monotone boolean function,
then there is a polynomial time (k(f) + l(f) − 1)-
competitive implementation for LINPR.

Proof. Let CL and CU be, respectively, arbitrary
minterms and maxterms for f . We construct the speeds
s(x) by setting s(x) = 1 if x ∈ CL ∪ CU and s(x) = 0,
otherwise. Recall that every certificate has a non-
empty intersection with CL ∪ CU . Thus, the above
s(x)’s define a feasible solution for LPf . Moreover,∑

x∈V s(x) ≤ k(f) + l(f)− 1.

For a polynomial time implementation it suffices to
show how to find a minterm (maxterm) in polytime.

We only present the procedure for finding a minterm.
An analogous procedure can be easily constructed for
finding a maxterm.

Note that it is possible to verify in polynomial time
whether a given set S is a 1-witness by evaluating f on
the assignment σS where every variable of S is set to
1 and the remaining ones are set to 0. If f(σS) = 0
then S is not a 1-witness and, as a consequence, it
does not contain a minterm. If f(σS) = 1 then, due to
the monotonicity of f , S is 1-witness and it contains a
minterm. This observation leads to the procedure below
which finds a minterm in f by calling the oracle at most
|V |2 times.

S ← V .
While there is v ∈ S such that S\{v} is a 1-witness

S ← S \ {v}
Return S

This completes our proof.

Finally we show that if our monotone boolean
function f can be represented by an AND/OR tree (a
restriction of game trees where every leaf is associated
with a boolean value), the situation is even better since
we can always find in polynomial time a feasible solution
s for LPf such that

∑
x∈V s(x) ≤ max{k(f), l(f)}.

Theorem 3.4. If f can be represented by an AND/OR
tree then there is a max{k(f), l(f)}-competitive polyno-
mial time implementation for LINPR

Proof. In [1], Charikar et. al. show how to con-
struct in O(n2) time a vector of positive reals p =<
p(x1), . . . , p(xn) >, called ultra-uniform price vector,
that has the following properties: there exists positive
numbers c1 and c2 such that

∑
x∈CL

p(x) = c1 for ev-
ery minterm CL of f and

∑
x∈CU

p(x) = c0 for every
maxterm CU of f .

Now, we give an indirect argument to show that∑
x∈V p(x) ≤ min{c1, c2}max{k(f), l(f)}. Let us con-

sider an instance of FEPI with known costs, where the
input is given by the function f and the costs of the vari-
ables are given by p. Since every function represented
by an AND/OR tree is evasive then every deterministic
algorithm for evaluating f is forced to spend

∑
x∈V p(x)

before determining the value of f in the worst case.
Hence,

∑
x∈V p(x)/ min{c1, c2} is a lower bound on the

competitive ratio of any deterministic algorithm.
On the other hand, there is a max{k(f), l(f)}-

competitive algorithm for evaluating AND/OR trees in
the FEPI model with known costs [1, 2]. Thus, we have
that

∑
x∈V p(x) ≤ min{c1, c2}max{k(f), l(f)}.

Now, let us assume w.l.g that c1 ≤ c2. For
each x ∈ V , we define the speed s(x) as follows,

s(x) = p(x)/c1. It is straightforward to check that
this constitutes a feasible solution for LPf and that∑

x∈V s(x) ≤ max{k(f), l(f)}.

References

[1] M. Charikar, R. Fagin, V. Guruswami, J. Kleinberg,
P. Raghavan, and A. Sahai. Query strategies for priced
information. JCSS: Journal of Computer and System
Sciences, 64:785–819, 2002.

[2] F. Cicalese and E. Laber. An optimal algorithm
for querying priced information: Monotone boolean
functions and game trees. In ESA: Annual European
Symposium on Algorithms, 2005. To appear.

[3] F. Cicalese and E. S. Laber. A new strategy for
querying priced information. In Proceedings of the 37th
ACM Symposium on Theory of Computing, pages 674–
683, Baltimore, 2005. ACM Press.

[4] A. Gupta and A. Kumar. Sorting and selection with
structured costs. In IEEE, editor, 42nd IEEE Sympo-
sium on Foundations of Computer Science, pages 416–
425, 2001.

[5] A. Gupta, D. O. Stahl, and A. B. Whinston. Pricing
of services on the internet. In IMPACT: How IC2
Research Affects Public Policy and Business Markets.
Quorum Books, forthcoming.

[6] S. Kannan and S. Khanna. Selection with monotone
comparison costs. In Proceedings of the fourteenth An-
nual ACM-SIAM Symposium on Discrete Algorithms
(SODA-03), pages 10–17, 2003.

[7] H. Kaplan, E. Kushilevitz, and Y. Mansour. Learning
with attribute costs. In Proceedings of the 37th ACM
Symposium on Theory of Computing, pages 356–365,
Baltimore, 2005. ACM Press.

[8] S. Khanna and W. Tan. On computing functions with
uncertainty. In Symposium on Principles of Database
Systems, pages 171–182, 2001.

[9] E. Laber. A randomized competitive algorithm for
evaluating priced AND/OR trees. In STACS: Annual
Symposium on Theoretical Aspects of Computer Sci-
ence, pages 501–512, 2004.

[10] E. Laber, R. Carmo, and Y. Kohayakawa. Querying
priced information in databases: The conjunctive case:
Extended abstract. In LATIN: Latin American Sym-
posium on Theoretical Informatics, pages 6–15, 2004.

[11] Maheshwari and Smid. A dynamic dictionary for
priced information with application. In 14th Inter-
national Symposium on Algorithms and Computation
(ISAAC 2003), volume 2906 of Lecture Notes in Com-
puter Science, pages 16–25. Springer, 2003.

