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Abstract. In this paper, the theoretical foundation of a compact scalar potential
method in three-dimensional classical elastodynamics is substantiated. Beginning with
a derivation of two basic lemmas on the decomposition and integration of wave solutions
and vector fields which are apt to be of interest to general mechanics and analysis, the
treatment proceeds to a proof of the completeness of the proposed representation as well
as its extension to non-zero body forces.

1. Introduction. In the classical three-dimensional theory of elasticity, the method
of potentials has played a major role in the solution of many complex initial-boundary
value problems (e.g., Love [1]; Fung [2]; Pao and Mow [3]; Achenbach [4]; Miklowitz [5]).
Some of the most noteworthy potential functions include the Papkovich-Neuber solu-
tion and Somigliana-Galerkin vector for elastostatics, and Lamé’s representation and the
Kovalevshi-Iacovache-Somigliana solution for elastodynamics (see Truesdell [6]; Gurtin
[7]). For many mechanics problems with x3-convex domains, the more compact non-
axisymmetric augmented Love and Burgatti solutions for Navier’s equations of equi-
librium (e.g., see Tran-Cong [8]) and the scalar wave function approach in Pao and
Mow [3] and Pak [9] for the equations of motion have been of comparable, if not even
greater, practical interest. On the theoretical side, a fundamental question for all po-
tential representations is their completeness (Sternberg [10]; Stippes [11]). In the case
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of the Papkovich-Neuber solution and Galerkin vector for elastostatics, the issue has
been critically explored and established as in Mindlin [12], Sternberg and Gurtin [13]
and Gurtin [14] for elastostatic problems (see also Freiberger [15]; Millar [16]; Tran-Cong
[17]). On the more compact non-axisymmetric augmented Love and Burgatti solutions,
their generality has also been validated as in Youngdahl [18] and Tran-Cong [8]. In
classical elastodynamics, however, past attention has been focused mostly on Lamé and
Kovalevshi-Iacovache-Somigliana solutions (see Sternberg [10]; Sternberg and Eubanks
[19]; Sternberg and Gurtin [12]), leaving the completeness issue theoretically unsettled
for some very potent wave functions.

To substantiate firmly the theoretical foundation for one such method of potentials for
elastodynamics, a generalization to include body forces and the issue of completeness of
the displacement potential representation employed in Pak [9] is addressed in this paper.
With the aid of two basic lemmas on the decomposition and integration of wave solutions
and vector fields whose relevance may go beyond this exploration, it will be shown that
the proposed representation is indeed general for the solution of Navier’s displacement
equations of motion in suitably convex three-dimensional domains.

2. Notation and definitions. Consider a three-dimensional body B to be regular in
the sense of Kellogg [20], and let (x1, x2, x3) be the Cartesian coordinates for a material
point x ∈ B.

Notation. A vector field u(x, t) is considered to be of class CM,N on B ×(0, t0) if it
is continuous on B ×(0, t0) and its spatial derivatives up to the M th order and its time
derivatives up to the N th order are Hölder continuous on B at any time t ∈ (0, t0).

Differential operators.
• ∇2 = ∂2

∂x2
1

+ ∂2

∂x2
2

+ ∂2

∂x2
3
;

• = ∇2 − 1
c2

∂2

∂t2 ;

• 3 = ∂2

∂x2
3
− 1

c2
∂2

∂t2 ;

• ∇2
12 = ∂2

∂x2
1

+ ∂2

∂x2
2
.

Definition 2.1. The domain B is called x3-convex if every line segment parallel to
the x3-axis lies entirely in B whenever its end points belong to B.

Definition 2.2. The region S(x3) = {(x1, x2) : (x1, x2, x3) ∈ B} is referred to as the
cross section of B at x3.

Definition 2.3. If a vector field u(x, t) of class C2,2 on B×(0, t0) satisfies the Navier
equation of motion with a body-force density b(x, t)

(λ + 2µ)∇(∇u) − µ∇× (∇× u) + b = ρü (2.1a)

or

c2
1∇(∇u) − c2

2∇× (∇× u) +
b
ρ

= ü (2.1b)

where

c2
1 =

λ + 2µ

ρ
, c2

2 =
µ

ρ
(2.2)
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with ρ being the density, λ and µ the Lamé constants of the homogeneous, isotropic,
linearly elastic solid occupying B, then u(x, t) is called an elastic motion corresponding
to b.

3. Mathematical preliminaries.

Lemma 3.1. Existence of Solution of a Constrained 3D Wave Equation.
Suppose a function f(x1, x2, x3, t) is of class CM,N on B × (0, t0), M, N ≥ 2 and
f = 0, there exists a scalar field Ω(x1, x2, x3, t) of class CM+2,N on B × (0, t0) such

that Ω = 0 on B × (0, t0) and ∇2
12Ω = f on any cross section S(x3) of a x3-convex

domain B.

Proof. With the condition of

∇2
12Ω = (

∂2

∂x2
1

+
∂2

∂x2
2

)Ω = f(x1, x2, x3, t), (3.1)

the stipulation that

Ω =
∂2Ω
∂x2

1

+
∂2Ω
∂x2

2

+
∂2Ω
∂x2

3

− 1
c2

∂2Ω
∂t2

= 0 (3.2)

can be translated to the requirement of

3Ω = −f. (3.3)

For a given f(x1, x2, x3, t) and (x1, x2) in the domain, a particular solution Ω′(x1, x2, x3, t)
for the foregoing inhomogeneous one-dimensional wave equation in x3 and t can be ob-
tained by D’Alembert’s double integration method (e.g., Weinberger [21]) so that

3 Ω′ = −f. (3.4)

Likewise, because f = 0 ,

( 3 Ω′) = 3( Ω′) = − f = 0, (3.5)

i.e., Ω′ is a homogeneous solution of a one-dimensional wave equation in x3 and t, and
can be cast as

Ω′ = ∇2
12Ω

′ + 3 Ω′ = H(x1, x2, x3 − ct) + G(x1, x2, x3 + ct) (3.6)

where H and G are arbitrary functions or series of functions. Denoting

g(x1, x2, x3, t) = H(x1, x2, x3 − ct) + G(x1, x2, x3 + ct), (3.7)

it is evident from (3.3) and (3.6) that

∇2
12Ω

′ = g + f (3.8)

with

3g = 0. (3.9)

With the definition of Ω(x1, x2, x3, t) = Ω′(x1, x2, x3, t) + Ω′′(x1, x2, x3, t) and the condi-
tion of (3.2), Ω′′ must satisfy

Ω′′ = − Ω′ = −g(x1, x2, x3, t). (3.10)
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To be consistent with (3.1) and (3.6), one must also demand that

∇2
12Ω

′′ = −g. (3.11)

On account of the characteristics of g in (3.9), a particular solution to (3.11) can be given
in the form of the logarithmic potential (Kellogg [20])

Ω′′(x1, x2, x3, t) =
1
2π

∫∫
S

g(ξ1, ξ2, x3, t) log

(
1√

(x1 − ξ1)2 + (x2 − ξ2)2

)
dξ1dξ2 (3.12)

with the property that

3Ω′′ = 0. (3.13)

By virtue of (3.6), (3.10), (3.8), (3.11), and (3.13), the existence of a scalar field Ω that
satisfies

∇2
12Ω = ∇2

12(Ω
′ + Ω′′) = f

and
Ω = (Ω′ + Ω′′) = 0

should thus be clear, completing the proof. �

Lemma 3.2. Reduction of Solenoidal Vector Fields.
Suppose a vector field u of class CN,M , M, N ≥ 2 is generated as the curl of an

arbitrary vector function Ψ of class CN+1,M on B×(0, t0) with components (Ψ1, Ψ2, Ψ3)
through

u(x1, x2, x3, t) = ∇× Ψ (3.14)

in a simply-connected region. Then there exist two scalar fields χ of class CN+1,M and
η of class CN+2,M such that u can be produced as

u(x1, x2, x3, t) = ∇× Ψ̂ (3.15)

where
Ψ̂ = (χe3) + ∇× (ηe3). (3.16)

Furthermore, if Ψ = 0, then the two scalar fields χ and η will also satisfy the wave
equations

χ(x1, x2, x3, t) = 0, η(x1, x2, x3, t) = 0. (3.17)

Proof. Equating the components of (3.14) and (3.15), one may seek to write

Ψ1 =
∂η

∂x2

, Ψ2 = − ∂η

∂x1

, Ψ3 = χ (3.18)

for a given Ψ. To ensure that Ψ1 and Ψ2 can be integrated for η, the necessary and
sufficient condition of

−∂Ψ2

∂x2
=

∂Ψ1

∂x1
(3.19)

must be observed (see, e.g., Apostol [22]). For an arbitrary vector field Ψ, such a
requirement will generally not be satisfied. The incompatibility can, however, be removed
in an equivalent representation by noting that the gradient of a sufficiently smooth scalar
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field α can always be added to Ψ without affecting (3.14) by virtue of the identity
∇×∇α = 0. Accordingly, one may take

Ψ̂ = Ψ + ∇α (3.20)

and define

Ψ̂1 = Ψ1 +
∂α

∂x1

=
∂η

∂x2

, Ψ̂2 = Ψ2 +
∂α

∂x2
= − ∂η

∂x1
, Ψ̂3 = Ψ3 +

∂α

∂x3
= χ. (3.21)

For the determination of η in terms of Ψ̂, the compatibility condition of

∂2η

∂x1∂x2
=

∂2η

∂x2∂x1
(3.22)

translates to

− ∂

∂x2
(Ψ2 +

∂α

∂x2
) =

∂

∂x1
(Ψ1 +

∂α

∂x1
)

or

∇2
12α = −(

∂Ψ1

∂x1
+

∂Ψ2

∂x2
). (3.23)

The existence of a scalar field α that satisfies (3.23) is assured by the theory of logarithmic
potentials. This, in turn, confirms that η and χ in (3.21) can be determined for a given
Ψ.

For a vector potential Ψ that satisfies Ψ = 0, the field generated by the curl of Ψ̂
can be ensured to be identical to the one by Ψ with

Ψ̂(x1, x2, x3, t) = 0 (3.24)

if

(∇α) = ∇( α) = 0. (3.25)

By virtue of Ψ = 0 and the smoothness hypotheses, it should be evident that the
inhomogeneous term of (3.23) satisfies the wave equation. Sufficient as a solution to
(3.25), the existence of a scalar field α which satisfies α = 0 and (3.23) is thus assured
by Lemma 3.1 which, in turn, affirms the existence of η that satisfies (3.22). Noting
that Ψ̂1 = Ψ̂2 = 0, it also follows that ∂

∂x1
η = ∂

∂x2
η = 0 , i.e., η is at

least independent of x1 and x2. Allowing η = k(x3, t) in general, it is easy to see as
in the case of (3.4) that one can add to η a complementary function ηc(x3, t) such that

ηc = −k and ∂
∂x1

ηc = ∂
∂x2

ηc = 0, thereby assuring the existence of a scalar field η

which satisfies η = 0 and the first two relations in (3.21). With the explicit relation
between χ and Ψ3 in the last of (3.21) and Ψ = 0, it is evident that χ = 0, which
completes the proof. �

With the aid of the foregoing two lemmas, a complete theoretical foundation for the
displacement potential representation in Pak [9] can be established as shown in the next
section.
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4. A method of displacement potentials in classical elastodynamics.

Theorem 4.1 (A general solution for classical elastodynamics with zero body forces).
Let

u(x1, x2, x3, t) = ∇φ + ∇× (χe3) + ∇×∇× (ηe3) (4.1)

where φ, χ are of class C3,2 and η of class C4,2 on B × (0, t0) that satisfy

1φ(x1, x2, x3, t) = 0, 2χ(x1, x2, x3, t) = 0, 2η(x1, x2, x3, t) = 0, (4.2)

where

α = ∇2 − 1
c2
α

∂2

∂t2
. (4.3)

Then (4.1) is an elastic motion for b = 0.

Proof. By direct substitution of (4.1) into (2.1) with b = 0 and the stipulations in
(4.2) (see also Pak [9]). �

Theorem 4.2 (Completeness of the elastodynamic solution (4.1) for zero body forces).
Let u be an elastic motion of class C2,2 on B×(0, t0) corresponding to zero body forces in
a simply-connected, x3-convex domain, and suppose that u(·, τ ) and u̇(·,τ ) are continuous
on B̄ at some τ ∈ (0, t0). Then there exist scalar fields φ, χ of class C3,2 and η of class
C4,2 on B × (0, t0) such that (4.1) and (4.2) hold.

Proof. Note that Lamé’s solution in the form of a Helmholtz decomposition of

u(x1, x2, x3, t) = ∇Φ + ∇× Ψ (4.4)

is complete (e.g., Gurtin [7]) for elastodynamic states with zero body forces, with the
scalar and vector potentials Φ and Ψ satisfying the homogeneous wave equations

1Φ(x1, x2, x3, t) = 0, (4.5)

2Ψ(x1, x2, x3, t) = 0, (4.6)

with
∇.Ψ(x1, x2, x3, t) = 0. (4.7)

To show the completeness of the representation (4.1), it thus suffices to show that for
every pair of Lamé potentials Φ and Ψ, one can find three scalar potentials φ, χ, and
η such that (4.1) generates the same solution. To produce the gradient component of u
with the foregoing objective, it is natural to take

Φ = φ (4.8)

so that 1φ(x1, x2, x3, t) = 0. Coupling it with Lemma 3.2, one is thus assured of the
possibility of writing (4.4) as

u(x1, x2, x3, t) = ∇φ + ∇× Ψ̂ (4.9)

where

Ψ̂ = (χe3) + ∇× (ηe3) (4.10)

Ψ̂1 =
∂η

∂x2

, Ψ̂2 = − ∂η

∂x1

, Ψ̂3 = χ (4.11)
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with

−∂Ψ̂2

∂x2
=

∂Ψ̂1

∂x1
(4.12)

and the existence of η and χ as a function of Ψ with 2χ = 0 and 2η = 0 as a result. �
The foregoing results can be readily generalized to encompass the case of a non-zero

body-force field b, as described in the following theorems.

Theorem 4.3 (A general solution for classical elastodynamics with non-zero body forces).
Let u be generated by (4.1) with φ, χ of class C3,2 and η of class C4,2 on B× (0, t0) that
satisfy

1φ(x1, x2, x3, t) =
φb

ρc2
1

, (4.13a)

2χ(x1, x2, x3, t) =
χb

ρc2
2

, (4.13b)

2η(x1, x2, x3, t) =
ηb

ρc2
2

, (4.13c)

with a body-force field of

b(x1, x2, x3, t) = −∇φb −∇× (χbe3) −∇×∇× (ηbe3), (4.14)

where φb, χb are of class C2,2 and ηb is of class C3,2 on B × (0, t0). Then u is an elastic
motion corresponding to b.

Proof. By direct substitution of (4.1) into (2.1) with (4.13) and (4.14). �

Theorem 4.4 (Completeness of the elastodynamic solution (4.1) for non-zero body
forces). Let u be an elastic motion of class C2,2 on B × (0, t0) corresponding to a body-
force field b which admits the Helmholtz decomposition as

b(x1, x2, x3, t) = ∇Φb + ∇× Ψb (4.15)

where Φb and Ψb are of class C2,2 in a simply-connected, x3-convex domain, and suppose
that u(·, τ ) and u̇(·,τ ) are continuous on B̄ at some τ ∈ (0, t0). Then there exist scalar
fields φ, χ of class C3,2 and η of class C4,2 on B × (0, t0) such that (4.1), (4.13), and
(4.14) hold.

Proof. On the basis of the first part of Lemma 3.2, it should be evident that the body-
force field b(x, t) of the form (4.15) can be expressed alternatively as (4.14). By virtue
of the completeness of Lamé’s solution for the case of non-zero body forces (Gurtin [7])
with its scalar and vector potentials satisfying

1 Φ =
Φb

ρc2
1

, (4.16)

2 Ψ =
Ψb

ρc2
2

, (4.17)

one may define and obtain φ, χ, and η in terms of Φ and Ψ by means of (4.8) and (4.11).
Owing to their direct relations to Φ and Ψ3, φ and χ will satisfy the inhomogeneous wave
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equations (4.13a) and (4.13b), respectively. As

2(
∂η

∂x1
) = − 2Ψ2 = −Ψb

2

ρc2
2

=
1

ρc2
2

∂ηb

∂x1
, (4.18)

2(
∂η

∂x2
) = 2Ψ1 = − Ψb

1

ρc2
2

=
1

ρc2
2

∂ηb

∂x2
, (4.19)

it follows that
∂

∂x1
( 2η − 1

ρc2
2

ηb) =
∂

∂x2
( 2η − 1

ρc2
2

ηb) = 0. (4.20)

By means of a deduction similar to the last part of the proof of Lemma 3.2, one can thus
take without loss of generality that there exists a scalar field η such that (4.13c) and
(4.11) hold. �

5. Conclusion. In this paper, a proof of the completeness and generalization of a
method of displacement potentials to include body forces in classical elastodynamics
is presented. By virtue of two fundamental lemmas which should be of relevance to
general mechanics analysis and theoretical formulations, the possibility of reducing the
four scalar functions in the Helmholtz-Lamé vector decomposition explicitly to three is
also illuminated. The versatility and convenience of the proposed displacement functions
and related representations in conjunction with orthogonal curvilinear coordinates and
integral transform methods has been well illustrated in a number of fundamental as well
as advanced boundary value problems (e.g., see Pao and Mow [3], Miklowitz [5], Pak and
Guzina [23]).
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