
On the Completeness of Bounded Model

Checking for Threshold-Based

Distributed Algorithms: Reachability

Igor Konnov, Helmut Veith, and Josef Widder ⋆

Vienna University of Technology (TU Wien)

Abstract. Counter abstraction is a powerful tool for parameterized
model checking, if the number of local states of the concurrent processes
is relatively small. In recent work, we introduced parametric interval
counter abstraction that allowed us to verify the safety and liveness of
threshold-based fault-tolerant distributed algorithms (FTDA). Due to
state space explosion, applying this technique to distributed algorithms
with hundreds of local states is challenging for state-of-the-art model
checkers. In this paper, we demonstrate that reachability properties of
FTDAs can be verified by bounded model checking. To ensure complete-
ness, we need an upper bound on the diameter, i.e., on the longest dis-
tance between states. We show that the diameters of accelerated counter
systems of FTDAs, and of their counter abstractions, have a quadratic
upper bound in the number of local transitions. Our experiments show
that the resulting bounds are sufficiently small to use bounded model
checking for parameterized verification of reachability properties of sev-
eral FTDAs, some of which have not been automatically verified before.

1 Introduction

A system that consists of concurrent anonymous (identical) processes can be
modeled as a counter system: Instead of recording which process is in which
local state, we record for each local state, how many processes are in this state.
We have one counter per local state ℓ, denoted by κ[ℓ]. Each counter is bounded
by the number of processes. A step by a process that goes from local state ℓ to
local state ℓ′ is modeled by decrementing κ[ℓ] and incrementing κ[ℓ′].

We consider a specific class of counter systems, namely those that are de-
fined by threshold automata. The technical motivation to introduce threshold
automata is to capture the relevant properties of fault-tolerant distributed algo-
rithms (FTDAs). FTDAs are an important class of distributed algorithms that
work even if a subset of the processes fail [26]. Typically, they are parameter-
ized in the number of processes and the number of tolerated faulty processes.
These numbers of processes are parameters of the verification problem. We show

⋆ Supported in part by the Austrian National Research Network S11403-N23 (RiSE)
of the Austrian Science Fund (FWF), and by the Vienna Science and Technology
Fund (WWTF) grant PROSEED.

that accelerated counter systems defined by threshold automata have a diameter
whose bound is independent of the bound on the counters, but depends only on
characteristics of the threshold automaton. This bound can be used for param-
eterized model checking of FTDAs, as we confirm by experimental evaluation.

Modeling FTDAs as counter systems defined by threshold automata. A threshold
automaton consists of rules that define the conditions and effects of changes to
the local state of a process of a distributed algorithm. Conditions are threshold
guards that compare the value of a shared integer variable to a linear combination
of parameters, e.g., x ≥ n − t, where x is a shared variable and n and t are
parameters. This captures counting arguments which are used in FTDAs, e.g., a
process takes a certain step only if it has received a message from a majority of
processes. To model this, we use the shared variable x as the number of processes
that have sent a message, n as the number of processes in the system, and t as
the assumed number of faulty processes. The condition x ≥ n− t then captures
a majority under the resilience condition that n > 2t. Resilience conditions are
standard assumptions for the correctness of an FTDA. Apart from changing
the local state, applying a rule can increase a shared variable, which naturally
captures that a process has sent a message. Thus we consider threshold automata
where shared variables are never decreased and where rules that form cycles do
not modify shared variables, which is natural for modeling FTDAs.

Bounding the Diameter. For reachability it is not relevant whether we “move”
processes one by one from state ℓ to ℓ′. If several processes perform the same
transition one after the other, we can model this as a single update on the
counters: The sequence where b processes one after the other move from ℓ to ℓ′

can be encoded as a transition where κ[ℓ] is decreased by b and κ[ℓ′] is increased
by b. Value b is called the acceleration factor and may vary in a run depending
on how many repetitions of the same transition should be captured. We call
such runs of a counter system accelerated. The lengths of accelerated runs are
the ones relevant for the diameter of the counter system.

The main technical challenge comes from the interactions of shared variables
and threshold guards. We address it with the following three ideas: (i) Accelera-
tion as discussed above. (ii) Sorting, that is, given an arbitrary run of a counter
system, we can shorten it by changing the order of transitions such that there
are possibly many consecutive transitions that can be merged according to (i).
However, as we have arithmetic threshold conditions, not all changes of the or-
der result in allowed runs. (iii) Segmentation, that is, we partition a run into
segments, inside of which we can reorder the transitions; cf. (ii). In combina-
tion, these three ideas enable us to prove the main theorem: The diameter of a
counter system is at most quadratic in the number of rules; more precisely, it is
bounded by the product of the number of rules and the number of distinct thresh-
old conditions. In particular, the diameter is independent of the parameters.

Using the Bound for Parameterized Model Checking. Parameterized model
checking is concerned with the verification of concurrent or distributed systems,

2

where the number of processes is not a priori fixed, that is, a system is verified
for all sizes. In our case, the counter systems for all values of n and t that satisfy
the resilience condition should be verified. A well-known parameterized model
checking technique is to map all these counter systems to a counter abstraction,
where the counter values are not natural numbers, but range over an abstract
finite domain, e.g. [29]. In [16] we developed a more general form of counter
abstraction for expressions used in threshold guards, which leads, e.g., to the
abstract domain of four values that capture the parametric intervals [0, 1) and
[1, t + 1) and [t + 1, n − t) and [n − t,∞). It is easy to see [16] that a counter
abstraction simulates all counter systems for all parameter values that satisfy
the resilience condition. The bound d on the diameter of counter systems implies
a bound d̂ on the diameter of the counter abstraction. From this and simulation
follows that if an abstract state is not reachable in the counter abstraction within
d̂ steps, no concretization of this state is reachable in any of the concrete counter
systems. This allows us to efficiently combine counter abstraction with bounded
model checking [6]. Typically, bounded model checking is restricted to finding
bugs that occur after a bounded number of steps of the systems. However, if one
can show that within this bound every state is reachable from an initial state,
bounded model checking is a complete method for verifying reachability.

2 Our approach at a glance

Figure 1 represents a threshold automaton: The circles depict the local states,
and the arrows represent rules (r1 to r5) that define how the automaton makes
transitions. Rounded corner labels correspond to conditional rules, so that the
rule can only be executed if the threshold guard evaluates to true. In our exam-
ple, x and y are shared variables, and n, t, and f are parameters that are assumed
to satisfy the resilience condition n ≥ 2t∧ f ≤ t. The number of processes (that
each execute the automaton) depends on the parameters, in this example we
assume that n processes run concurrently. Finally, rectangular labels on arrows
correspond to rules that increment a shared variable. The transitions of the
counter system are then defined using the rules, e.g., when rule r2 is executed,
then variable y is incremented and the counters κ[ℓ3] and κ[ℓ2] are updated.

Consider a counter system in which the parameter values are n = 3, and
t = f = 1. Let σ0 be the configuration where x = y = 0 and all counters
are set to 0 except κ[ℓ1] = 3. This configuration corresponds to a concurrent
system where all three processes are in ℓ1. For illustration, we assume that
in this concurrent system processes have the identifiers 1, 2, and 3, and we
denote by ri(j) that process j executes rule ri. Recall that we have anonymous
(symmetric) systems, so we use the identifiers only for illustration: the transition
of the counter system is solely defined by the rule being executed.

As we are interested in the diameter, we have to consider the distance be-
tween configurations in terms of length of runs. In this example, we consider
the distance of σ0 to a configuration where κ[ℓ5] = 3, that is, all three processes
are in local state ℓ5. First, observe that the rule r5 is locked in σ0 as y = 0

3

ℓ1 ℓ2 ℓ4 ℓ5

ℓ3

r3 : true

r1 : x ≥ n− f r2 : inc y

r4 : inc x r5 : y ≥ t

Fig. 1. Example of a Threshold Automaton

and t = 1. Hence, we require that rule r2 is executed at least once so that the
value of y increases. However, due to the precedence relation on the rules, before
that, r1 must be executed, which is also locked in σ0. The sequence of tran-
sitions τ1 = r3(1), r4(1), r3(2), r4(2) leads from σ0 to the configuration where
κ[ℓ1] = 1, κ[ℓ4] = 2, and x = 2; we denote it by σ1. In σ1, rule r1 is unlocked,
so we may apply τ2 = r1(3), r2(3), to arrive at σ2, where y = 1, and thus r5
is unlocked. To σ2 we may apply τ3 = r5(1), r5(2), r4(3), r5(3) to arrive at the
required configuration σ3 with κ[ℓ5] = 3.

In order to exploit acceleration as much as possible, we would like to group
together occurrences of the same rule. In τ1, we can actually swap r4(1) and r3(2)
as locally the precedence relation of each process is maintained, and both rules
are unconditional. Similarly, in τ3, we can move r4(3) to the beginning of the se-
quence τ3. Concatenating these altered sequences, the resulting complete sched-
ule is τ = r3(1), r3(2), r4(1), r4(2), r1(3), r2(3), r4(3), r5(1), r5(2), r5(3). We can
group together the consecutive occurrences for the same rules ri, and write the
schedule using pairs consisting of rules and acceleration factors, that is, (r3, 2),
(r4, 2), (r1, 1), (r2, 1), (r4, 1), (r5, 3).

In schedule τ , the occurrences of all rules are grouped together except for r4.
That is, in the accelerated schedule we have two occurrences for r4, while for the
other rules one occurrence is sufficient. Actually, there is no way around this:
We cannot swap r2(3) with r4(3), as we have to maintain the local precedence
relation of process 3. More precisely, in the counter system, r4 would require
us to decrease the counter κ[ℓ2] at a point in the schedule where κ[ℓ2] = 0.
We first have to increase the counter value by executing a transition according
to rule r2, before we can apply r4. Moreover, we cannot move the subsequence
r1(3), r2(3), r4(3) to the left, as r1(3) is locked in the prefix.

In this paper we characterize such cases. The issue here is that r4 can un-
lock r1 (we use the notation r4 ≺U r1), while r1 precedes r4 in the control flow
of the processes (r1 ≺P r4). We coin the term milestone for transitions like r1(3)
that cannot be moved, and show that the same issue arises if a rule r locks a
threshold guard of rule r′, where r precedes r′ in the control flow. As processes
do not decrease shared variables, we have at most one milestone per threshold
guard. The sequence of transitions between milestones is called a segment. We
prove that transitions inside a segment can be swapped, so that one can group
transitions for the same rule in so-called batches. Each of these batches can then
be replaced by a single accelerated transition that leads to the same configura-
tion as the original batch. Hence, any segment can be replaced by an accelerated

4

one whose length is at most the number of rules of a process. This and the num-
ber of milestones gives us the required bound on the diameter. This bound is
independent of the parameters, and only depends on the number of threshold
guards and the precedence relation between the rules of the processes.

Our main result is that the bound on the diameter is independent of the
parameter values. In contrast, reachability of a specific local state depends on
the parameter values: for a process to reach ℓ5, at least n − f processes must
execute r4 before at least t other processes must execute r2. That is, the system
must contain at least (n−f)+t processes. In case of t > f , we obtain (n−f)+t >
n, which is a contradiction, and ℓ5 cannot be reached for such parameter values.
The model checking problem we are interested in is whether a given state is
unreachable for all parameter values that satisfy the resilience condition.

3 Parameterized Counter Systems

3.1 Threshold Automata

A threshold automaton describes a process in a concurrent system. It is defined
by its local states, the shared variables, the parameters, and by rules that define
the state changes and their conditions and effects on shared variables. Formally,
a threshold automaton is a tuple TA = (L, I, Γ,Π,R,RC) defined below.

States. The set L is the finite set of local states, and I ⊆ L is the set of initial
local states. The set Γ is the finite set of shared variables that range over N0.

To simplify the presentation, we view the variables as vectors in N
|Γ |
0 . The finite

set Π is a set of parameter variables that range over N0, and the resilience
condition RC is a formula over parameter variables in linear integer arithmetic,
e.g., n > 3t ∧ t ≥ f . Then, we denote the set of admissible parameters by

PRC = {p ∈ N
|Π|
0 : p |= RC}.

Rules. A rule defines a conditional transition between local states that may
update the shared variables. Here we define the syntax and give only informal
explanations of the semantics, which is defined via counter systems in Section 3.2.

Formally, a rule is a tuple (from, to, ϕ≤, ϕ>,u): The local states from and to
are from L. Intuitively, they capture from which local state to which a process
moves, or, in terms of counter systems, which counters decrease and increase,
respectively. A rule is only executed if the conditions ϕ≤ and ϕ> evaluate to true.
Each condition consists of multiple guards. Each guard is defined using some
shared variable x ∈ Γ , coefficients a0, . . . , a|Π| ∈ Z, and parameter variables
p1, . . . , p|Π| ∈ Π so that

a0 +
∑|Π|

i=1
ai · pi ≤ x and a0 +

∑|Π|

i=1
ai · pi > x

are a lower guard and upper guard, respectively (both, variables and coefficients,
may differ for different guards). The condition ϕ≤ is a conjunction of lower

5

guards, and the condition ϕ> is a conjunction of upper guards. Rules may in-

crease shared variables. We model this using an update vector u ∈ N
|Γ |
0 , which

is added to the vector of shared variables, when the rule is executed. Then R is
the finite set of rules.

Definition 1. Given a threshold automaton (L, I, Γ,Π,R,RC), we define the
precedence relation ≺P , the unlock relation ≺U , and the lock relation ≺L as
subsets of R×R as follows:
1. r1 ≺P r2 iff r1.to = r2.from. We denote by ≺+

P
the transitive closure of ≺P .

If r1 ≺P r2 ∧ r2 ≺P r1, or if r1 = r2, we write r1 ∼P r2.

2. r1 ≺U r2 iff there is a g ∈ N
|Γ |
0 and p ∈ PRC satisfying (g,p) |= r1.ϕ

≤∧r1.ϕ
>

and (g,p) 6|= r2.ϕ
≤ ∧ r2.ϕ

> and (g + r1.u,p) |= r2.ϕ
≤ ∧ r2.ϕ

>.

3. r1 ≺L r2 iff there is a g ∈ N
|Γ |
0 and p ∈ PRC satisfying (g,p) |= r1.ϕ

≤∧r1.ϕ
>

and (g,p) |= r2.ϕ
≤ ∧ r2.ϕ

> and (g + r1.u,p) 6|= r2.ϕ
≤ ∧ r2.ϕ

>.

Definition 2. Given a threshold automaton (L, I, Γ,Π,R,RC), we define the
following quantities: C≤ = |{r.ϕ≤ : r ∈ R, ∃r′ ∈ R. r′ 6≺+

P
r ∧ r′ ≺U r}|,

C> = |{r.ϕ> : r ∈ R, ∃r′′ ∈ R. r 6≺+
P
r′′ ∧ r′′ ≺L r}|. Finally, C = C≤ + C>.

We consider specific threshold automata, namely those that naturally capture
FTDAs, where rules that form cycles do not increase shared variables.

Definition 3 (Canonical Threshold Automaton). A threshold automaton
(L, I, Γ,Π,R,RC) is canonical, if r.u = 0 for all rules r ∈ R that satisfy r ≺+

P
r.

Order on rules. The relation ∼P defines equivalence classes of rules. For a given
set of rules R let R/∼ be the set of equivalence classes defined by ∼P . We denote
by [r] the equivalence class of rule r. For two classes c1 and c2 from R/∼ we write
c1 ≺C c2 iff there are two rules r1 and r2 in R satisfying [r1] = c1 and [r2] = c2
and r1 ≺+

P
r2 and r1 6∼P r2. Observe that the relation ≺C is a strict partial order

(irreflexive and transitive). Hence, there are linear extensions of ≺C . Below, we
fix an arbitrary of these linear extensions to sort transitions in a schedule:

Notation. We denote by ≺lin
C

a linear extension of ≺C .

3.2 Counter Systems

Given a threshold automaton TA = (L, I, Γ,Π,R,RC), a function N : PRC →
N0 that formalizes the number of processes to be modeled (e.g., n), and admissi-
ble parameter values p ∈ PRC , we define a counter system as a transition system
(Σ, I,R), that consists of the set of configurations Σ, which contain the counters
and variables, the set of initial configurations I, and the transition relation R:

Configurations. A configuration σ = (κ,g,p) consists of a vector of counter

values σ.κ ∈ N
|L|
0 ,1 a vector of shared variable values σ.g ∈ N

|Γ |
0 , and a vector

of parameter values σ.p = p. The set Σ is the set of all configurations. The
set of initial configurations I contains the configurations that satisfy σ.g = 0,∑

i∈I σ.κ[i] = N(p), and
∑

i 6∈I σ.κ[i] = 0.

1 For simplicity we use the convention that L = {1, . . . , |L|}.

6

Transition relation. A transition is a pair t = (rule, factor) of a rule of the
threshold automaton and a non-negative integer called the acceleration factor,
or just factor for short. For a transition t = (rule, factor) we refer by t.u to rule.u,
by t.ϕ> to rule.ϕ>, etc. We say a transition t is unlocked in configuration σ if
∀k ∈ {0, . . . , t.factor − 1}. (σ.κ, σ.g+ k · t.u, σ.p) |= t.ϕ≤ ∧ t.ϕ>. For transitions
t1 and t2 we say that the two transitions are related iff t1.rule and t2.rule are
related, e.g., for ≺P we write t1 ≺P t2 iff t1.rule ≺P t2.rule.

A transition t is applicable (or enabled) in configuration σ, if it is unlocked,
and if σ.κ[t.from] ≥ t.factor . We say that σ′ is the result of applying the (en-
abled) transition t to σ, and use the notation σ′ = t(σ), if
– t is enabled in σ
– σ′.g = σ.g + t.factor · t.u
– σ′.p = σ.p
– if t.from 6= t.to then σ′.κ[t.from] = σ.κ[t.from] − t.factor and σ′.κ[t.to] =

σ.κ[t.to] + t.factor and ∀ℓ ∈ L \ {t.from, t.to}. σ′.κ[ℓ] = σ.κ[ℓ]
– if t.from = t.to then σ′.κ = σ.κ

The transition relation R ⊆ Σ×Σ of the counter system is defined as follows:
(σ, σ′) ∈ R iff there is a r ∈ R and a k ∈ N0 such that σ′ = t(σ) for t = (r, k).
As updates to shared variables do not decrease their values, we obtain:

Proposition 1. For all configurations σ, all rules r, and all transitions t appli-
cable to σ, the following holds:
1. If σ |= r.ϕ≤ then t(σ) |= r.ϕ≤ 3. If σ 6|= r.ϕ> then t(σ) 6|= r.ϕ>

2. If t(σ) 6|= r.ϕ≤ then σ 6|= r.ϕ≤ 4. If t(σ) |= r.ϕ> then σ |= r.ϕ>

Schedules. A schedule is a sequence of transitions. A schedule τ = t1, . . . , tm
is called applicable to configuration σ0, if there is a sequence of configurations
σ1, . . . , σm such that σi = ti(σi−1) for all i, 0 < i ≤ m. A schedule t1, . . . , tm
where ti.factor = 1 for 0 < i ≤ m is a conventional schedule. If there is a
ti.factor > 1, then a schedule is called accelerated.

We write τ · τ ′ to denote the concatenation of two schedules τ and τ ′, and
treat a transition t as schedule. If τ = τ1 · t · τ2 · t

′ · τ3, for some τ1, τ2, and τ3,
we say that transition t precedes transition t′ in τ , and denote this by t →τ t′.

4 Diameter of Counter Systems

In this section, we will present the outline of the proof of our main theorem:

Theorem 1. Given a canonical threshold automaton TA and a size function N ,
for each p in PRC the diameter of the counter system is less than or equal to
d(TA) = (C + 1) · |R|+ C, and thus independent of p.

From the theorem it follows that for all parameter values, reachability in
the counter system can be verified by exploring runs of length at most d(TA).
However, the theorem alone is not sufficient to solve the parameterized model
checking problem. For this, we combine the bound with the abstraction method

7

in [16]. More precisely, the counter abstraction in [16] simulates the counter sys-
tems for all parameter values that satisfy the resilience condition. Consequently,
the bound on the length of the run of the counter systems entails a bound for
the counter abstraction. We exploit this in the experiments in Section 5.

4.1 Proof Idea

Given a rule r, a schedule τ and two transitions ti and tj , with ti →τ tj , the
subschedule ti · . . . · tj of τ is a batch of rule r if tℓ.rule = r for i ≤ ℓ ≤ j, and
if the subschedule is maximal, that is, i = 1 ∨ ti−1 6= r and j = m ∨ tj+1 6= r.
Similarly, we define a batch of a class c as a subschedule ti · . . . · tj where [rℓ] = c
for i ≤ ℓ ≤ j, and where the subschedule is maximal as before.

Definition 4 (Sorted schedule). Given a schedule τ , and the relation ≺lin
C

,
we define sort(τ) as the schedule that satisfies:
1. sort(τ) is a permutation of schedule τ .
2. two transitions from the same equivalence class maintain their relative order,

that is, if t →τ t′ and t ∼P t′, then t →sort(τ) t
′.

3. for each equivalence class defined by ∼P there is at most one batch in sort(τ).
4. if t →sort(τ) t

′, then t ∼P t′ or [t] ≺lin
C

[t′].

The crucial observation is that if we have a schedule τ1 = t · t′ applicable to
configuration σ with t.rule = t′.rule, we can replace it with another applicable
(one-transition) schedule τ2 = t′′, with t′′.rule = t.rule and t′′.factor = t.factor+
t′.factor , such that τ1(σ) = τ2(σ). Thus, we can reach the same configuration
with a shorter schedule. More generally, we may replace a batch of a rule by a
single accelerated transition whose factor is the sum of all factors in the batch.

In this section we give a bound on the diameter, i.e., the length of the shortest
path between any two configurations σ and σ′ for which there is a schedule τ
applicable to σ satisfying σ′ = τ(σ). A simple case is if sort(τ) is applicable to σ
and each equivalence class defined by the precedence relation consists of a single
rule (e.g., the control flow is a directed acyclic graph). Then by Definition 4 we
have at most |R| batches in sort(τ), that is, one per rule. By the reasoning of
above we can replace each batch by a single accelerated transition.

In general sort(τ) may not be applicable to σ, or there are equivalence classes
containing multiple rules, i.e., rules form cycles in the precedence relation. The
first issue comes from locking and unlocking. We identify milestone transitions,
and show that two neighboring non-milestone transitions can be swapped accord-
ing to sort in Section 4.3. We also deal with the issue of cycles in the precedence
relation. It is ensured by sort that within a segment, all transitions that belong
to a cycle form a batch. In Section 4.2, we replace such a batch by a batch
where the remaining rules do not form a cycle. Removing cycles requires the
assumption that shared variables are not incremented in cycles.

4.2 Removing Cycles

We consider the distance between two configurations σ and σ′ that satisfy σ.g =
σ′.g, i.e., along any schedule connecting these configurations, the values of shared

8

variables are unchanged, and thus the evaluations of guards are also unchanged.
By Definition 3, we can apply this section’s result to batches of a class.

Definition 5. Given a schedule τ = t1, t2, . . . , we denote by |τ | the length of
the schedule. Further, we define the following vectors

in(τ)[ℓ] =
∑

1≤i≤|τ |
ti.to=ℓ

ti.factor , out(τ)[ℓ] =
∑

1≤i≤|τ |
ti.from=ℓ

ti.factor , up(τ) =
∑

1≤i≤|τ |

ti.u.

From the definition of a counter system, we directly obtain:

Proposition 2. For all configurations σ, and all schedules τ applicable to σ, if
σ′ = τ(σ), then σ′.κ = σ.κ+ in(τ)− out(τ), and σ′.g = σ.g + up(τ).

Proposition 3. For all configurations σ, and all schedules τ and τ ′ applicable to
σ, if in(τ) = in(τ ′), out(τ) = out(τ ′), and up(τ) = up(τ ′), then τ(σ) = τ ′(σ).

Given a schedule τ = t1, t2, . . . we say that the index set I = {i1, . . . , ij}
forms a cycle in τ , if for all b, 1 ≤ b < j, it holds that tib .to = tib+1

.from, and
tij .to = ti1 .from. Let R(τ) = {r : ti ∈ τ ∧ ti.rule = r}.

Proposition 4. For all schedules τ , if τ contains a cycle, then there is a sched-
ule τ ′ satisfying |τ ′| < |τ |, in(τ) = in(τ ′), out(τ) = out(τ ′), and R(τ ′) ⊆ R(τ).

Repeated application of the proposition leads to a cycle-free schedule (pos-
sibly the empty schedule), and we obtain:

Theorem 2. For all schedules τ , there is a schedule τ ′ that contains no cycles,
in(τ) = in(τ ′), out(τ) = out(τ ′), and R(τ ′) ⊆ R(τ).

The issue with this theorem is that τ ′ is not necessarily applicable to the
same configurations as τ . In the following theorem, we prove that if a schedule
satisfies a specific condition on the order of transitions, then it is applicable.

Theorem 3. Let σ and σ′ be two configurations with σ.g = σ′.g, and let τ be
a schedule with up(τ) = 0, all transitions unlocked in σ, and where if ti →τ tj,
then tj 6≺P ti. If σ

′.κ− σ.κ = in(τ)− out(τ), then τ is applicable to σ.

Corollary 1. For all configurations σ, and all schedules τ applicable to σ, with
up(τ) = 0, there is a schedule with at most one batch per rule applicable to σ
satisfying that τ ′ contains no cycles, τ ′(σ) = τ(σ), and R(τ ′) ⊆ R(τ).

4.3 Identifying Milestones and Swapping Transitions

In this section we deal with locking and unlocking. To this end, we start by
defining milestones. Then the central Theorem 4 establishes that two conse-
quent non-milestone transitions can be swapped, if needed to sort the segment
according to ≺lin

C
: the resulting schedule is still applicable, and leads to the same

configuration as the original one.

9

Definition 6 (Left Milestone). Given a configuration σ and a schedule τ =
τ ′ · t · τ ′′ applicable to σ, the transition t is a left milestone for σ and τ , if
1. there is a transition t′ in τ ′ satisfying t′ 6≺+

P
t ∧ t′ ≺U t,

2. t.ϕ≤ is locked in σ, and
3. for all t′ in τ ′, t′.ϕ≤ 6= t.ϕ≤.

Definition 7 (Right Milestone). Given a configuration σ and a schedule τ =
τ ′ · t · τ ′′ applicable to σ, the transition t is a right milestone for σ and τ , if
1. there is a transition t′′ in τ ′′ satisfying t 6≺+

P
t′′ ∧ t′′ ≺L t,

2. t.ϕ> is locked in τ(σ), and
3. for all t′′ in τ ′′, t′′.ϕ> 6= t.ϕ>.

Definition 8 (Segment). Given a schedule τ and configuration σ, τ ′ is a seg-
ment if it is a subschedule of τ , and does not contain a milestone for σ and τ .

Having defined milestones and segments, we arrive at our central result.

Theorem 4. Let σ be a configuration, τ a schedule applicable to σ, and τ =
τ1 · t1 · t2 · τ2. If transitions t1 and t2 are not milestones for σ and τ , and satisfy
[t2] ≺

lin
C

[t1], then
i. schedule τ ′ = τ1 · t2 · t1 · τ2 is applicable to σ,
ii. τ ′(σ) = τ(σ), and

Repeated application of the theorem leads to a schedule where milestones
and sorted schedules alternate. By the definition of a milestone, there is at most
one milestone per condition. Thus, the number of milestones is bounded by C
(Definition 2). Together with Corollary 1, this is used to establish Theorem 1.

5 Experimental Evaluation

We have implemented the techniques in our tool ByMC [1]. Technical details
about our approach to abstraction and refinement can be found in [13]. The input
are the descriptions of our benchmarks in parametric Promela [17], which de-
scribe parameterized processes. Hence, as preliminary step ByMC computes the
PIA data abstraction [16] to obtain finite state processes. Based on this, ByMC

does preprocessing to compute threshold automata, the locking and unlocking
relations, and to generate the inputs for our model checking back-ends.

Preprocessing. First, we compute the set of rules R: Recall that a rule is a
tuple (from, to, ϕ≤, ϕ>,u). ByMC calls NuSMV to explore a single process sys-
tem with unrestricted shared variables, in order to compute the (from, to) pairs.
From this, ByMC computes the reachable local states. In the case of our bench-
mark CBC, e.g., that cuts the local states we have to consider from 2000 to 100,
approximately. All our experiments— including the ones with FASTer [3]—are
based on the reduced local state space. Then, for each pair (from, to), ByMC

explores symbolic path to compute the guards and update vectors for the pair.
This gives us the set of rules R. Then, ByMC encodes Definition 1 in Yices,

10

to construct the lock ≺L and unlock ≺U relations. Then, ByMC computes the
relations {(r, r′) : r′ 6≺+

P
r ∧ r′ ≺U r} and {(r, r′′) : r 6≺+

P
r′′ ∧ r′′ ≺L r} as

required by Definition 2. This provides the bounds.

Back-ends. ByMC generates the PIA counter abstraction [16] to be used by
the following back-end model checkers. We have also implemented an automatic
abstraction refinement loop for the counterexamples provided by NuSMV.
BMC. NuSMV 2.5.4 [10] (using MiniSAT) performs incremental bounded model

checking with the bound d̂. If a counterexample is reported, ByMC refines the
system as explained in [16], if the counterexample is spurious.
BMCL. We combine NuSMV with the multi-core SAT solver Plingeling [5]:
NuSMV does bounded model checking for 30 steps. Spurious counterexample are
refined by ByMC. If there is no counterexample, NuSMV produces a single CNF
formula with the bound d̂, whose satisfiability is then checked with Plingeling.
BDD. NuSMV 2.5.4 performs BDD-based symbolic checking.
FAST. FASTer 2.1 [3] performs reachability analysis using plugin Mona-1.3.

5.1 Benchmarks

We encoded several asynchronous FTDAs in our parametric Promela, follow-
ing the technique in [17]; they can be obtained from [1]. All models contain
transitions with lower threshold guards. The benchmarks CBC also contain up-
per threshold guards. If we ignore self-loops, the precedence relation of all but
NBAC and NBACC, which have non-trivial cycles, are partial orders.
Folklore reliable broadcast (FRB) [9]. In this algorithm, n processes have
to agree on whether a process has broadcast a message, in the presence of f ≤ n
crashes. Our model of FRB has one shared variable and the abstract domain of
two intervals [0, 1) and [1,∞). In this paper, we are concerned with the safety
property unforgeability : If no process is initialized with value 1 (message from
the broadcaster), then no correct process ever accepts.
Consistent broadcast (STRB) [31]. Here, we have n − f correct processes
and f ≥ 0 Byzantine faulty ones. The resilience condition is n > 3t ∧ t ≥ f .
There is one shared variable and the abstract domain of four intervals [0, 1),
[1, t + 1), [t + 1, n − t), and [n − t,∞). Here, we check only unforgeability (see
FRB), whereas in [16] we checked also liveness properties.
Byzantine agreement (ABA) [8]. There are n > 3t processes, f ≤ t of them
Byzantine faulty. The model has two shared variables. We have to consider two
different cases for the abstract domain, namely, case ABA0 with the domain
[0, 1), [1, t+ 1), [t+ 1, ⌈n+t

2 ⌉), and [⌈n+t
2 ⌉,∞) and case ABA1 with the domain

[0, 1), [1, t + 1), [t + 1, 2t + 1), [2t + 1, ⌈n+t
2 ⌉), and [⌈n+t

2 ⌉,∞). As for FRB, we
check unforgeability. This case study, and all below, run out of memory when
using Spin for model checking the counter abstraction [16].
Condition-based consensus (CBC) [27]. This is a restricted form of con-
sensus solvable in asynchronous systems. We consider binary condition-based
consensus in the presence of clean crashes, which requires four shared variables.

11

Table 1. Summary of experiments on AMD Opteron R©Processor 6272 with 192 GB
RAM and 32 CPU cores. Plingeling used up to 16 cores. “TO” denotes timeout of
24 hours; “OOM” denotes memory overrun of 64 GB; “ERR” denotes runtime error;
“RTO” denotes that the refinement loop timed out.

Input Threshold A. Bounds Time, [HH:]MM:SS Memory, GB

FTDA |L| |R| C≤ C> d d⋆ d̂ BMCL BMC BDD FAST BMCL BMC BDD FAST

Fig. 1 5 5 1 0 11 9 27 00:00:03 00:00:04 00:01 00:00:08 0.01 0.02 0.02 0.06

FRB 6 8 1 0 17 10 10 00:00:13 00:00:13 00:06 00:00:08 0.01 0.02 0.02 0.01

STRB 7 15 3 0 63 30 90 00:00:09 00:00:06 00:04 00:00:07 0.02 0.03 0.02 0.07

ABA0 37 180 6 0 1266 586 1758 00:21:26 02:20:10 00:15 00:08:40 6.37 1.49 0.07 3.56

ABA1 61 392 8 0 3536 1655 6620 TO 25% TO 12% 00:33 02:36:25 TO TO 0.08 15.65

CBC0 43 204 0 0 204 204 612 01:38:54 TO 57% OOM ERR 1.28 TO OOM ERR

CBC1 115 896 1 1 2690 2180 8720 TO 05% TO 11% TO TO TO TO TO TO

NBACC 109 1724 6 0 12074 5500 16500 RTO RTO TO TO RTO RTO TO TO

NBAC 77 1356 6 0 9498 4340 13020 RTO RTO TO TO RTO RTO TO TO

When a Bug is Introduced

ABA0 32 139 6 0 979 469 1407 00:00:16 00:00:18 TO 00:05:57 0.04 0.04 TO 2.70

ABA1 54 299 8 0 2699 1305 5220 00:00:22 00:00:21 TO ERR 0.06 0.06 TO ERR

Under the resilience condition n > 2t ∧ f ≥ 0, we have to consider two differ-
ent cases depending on f : If f = 0 we have case CBC0 with the domain [0, 1),
[1, ⌈n

2 ⌉), [⌈
n
2 ⌉, n− t), and [n− t,∞). If f 6= 0, case CBC1 has the domain: [0, 1),

[1, f), [f, ⌈n
2 ⌉), [⌈

n
2 ⌉, n− t), and [n− t,∞). We verified several properties, all of

which resulted in experiments with similar characteristics. We only give validity0

in the table, i.e., no process accepts value 0, if all processes initially have value 1.
Non-blocking atomic commitment (NBAC and NBACC) [30,15]. Here,
n processes are initialized with Yes or No and decide on whether to commit a
transaction. The transaction must be aborted if at least one process is initialized
to No. We consider the cases NBACC and NBAC of clean crashes and crashes,
respectively. Both models contain four shared variables, and the abstract domain
is [0, 1) and [1, n) and [n−1, n), and [n,∞). The algorithm uses a failure detector,
which is modeled as local variable that changes its value non-deterministically.

5.2 Evaluation

Table 1 summarizes the experiments. For the threshold automata, we give the
number of local states |L|, rules |R|, and conditions according to Definition 2,
i.e., C≤ and C>. The column d provides the bound on the diameter as in The-
orem 1, whereas the column d

⋆ provides an improved diameter: In the proof of
Theorem 1, we bound the length of all segments by |R|. However, by Definition 6,
segments to the left of a left milestone cannot contain transitions for rules with
the same condition as the milestone. The same is true for segments to the right
of right milestones. ByMC explores all orders of milestones, an uses this obser-
vation about milestones to compute a more precise bound d

⋆ for the diameter.
Our encoding of the counter abstraction only increments and decrements coun-
ters. If |D̂| is the size of the abstract domain, a transition in a counter system is

12

simulated by at most |D̂| − 1 steps in the counter abstraction; this leads to the
diameter d̂ for counter abstractions, which we use in our experiments.

As the experiments show, all techniques rapidly verify FRB, STRB, and
Fig. 1. FRB and STRB had already been verified before using Spin [16]. The
more challenging examples are ABA0 and ABA1, where BDD clearly outper-
forms the other techniques. Bounded model checking is slower here, because the
diameter bound does not exploit knowledge on the specification. FAST performs
well on these benchmarks. We believe this is because many rules are always dis-
abled, due to the initial states as given in the specification. To confirm this
intuition, we introduced a bug into ABA0 and ABA1, which allows the pro-
cesses to non-deterministically change their value to 1. This led to a dramatic
slowdown of BDD and FAST, as reflected in the last two lines.

Using the bounds of this paper, BMCL verified CBC0, whereas all other
techniques failed. BMCL did not reach the bounds for CBC1 with our exper-
imental setup, but we believe that the bound is within the reach with a better
hardware or an improved implementation. In this case, we report the percentages
of the bounds we reached with bounded model checking.

In the experiments withNBAC andNBACC, the refinement loop timed out.
We are convinced that we can address this issue by integrating the refinement
loop with an incremental bounded model checker.

6 Related Work and Discussions

Specific forms of counter systems can be used to model parameterized systems of
concurrent processes. Lubachevsky [25] discusses compact programs that reach
each state in a bounded number of steps, where the bound is independent of
the number of processes. In [25] he gives examples of compact programs, and
in [24] he proves that specific semaphore programs are compact. We not only
show compactness, but give a bound on the diameter. In our case, communi-
cation is not restricted to semaphores, but we have threshold guards. Counter
abstraction [29] follows this line of research, but as discussed in [4], does not
scale well for large numbers of local states.

Acceleration in infinite state systems (e.g., in flat counter automata [22])
is a technique that computes the transitive closure of a transition relation and
applies it to the set of states. The tool FAST [2] uses acceleration to compute
the set of reachable states in a symbolic procedure. This appears closely related
to our acceleration factors. However, in [2] a transition is chosen and accelerated
dynamically in the course of symbolic state space exploration, while we statically
use acceleration factors and reordering of transitions.

One achieves completeness for reachability in bounded model checking by
exploring all runs that are not longer than the diameter of the system [6]. The
notion of completeness threshold [11] generalizes this idea to safety and liveness
properties. As in general, computing the diameter is believed to be as hard
as the model checking problem, one can use a coarser bound provided by the

13

reoccurrence diameter [19]. In practice, the reoccurrence diameter of counter
abstraction is prohibitively large, so that we give bounds on the diameter.

Partial orders are a useful concept for reasoning about distributed systems [20].
In model checking, partial order reduction [14,32,28] is used to reduce the search
space. It is based on the idea that changing the order of steps of concurrent pro-
cesses leads to “equivalent” behavior with respect to the specification. Typically,
partial order reduction is used on-the-fly to prune runs that are equivalent to
representative ones. In contrast, we bound the length of representative runs of-
fline in order to ensure completeness of bounded model checking. A partial order
reduction for threshold-guarded FTDAs was introduced in [7]. It can be used for
model checking small instances, while we focus on parameterized model checking.

Our technique of determining which transitions can be swapped in a run
reminds of movers as discussed by Lipton [23], or more generally the idea to
show that certain actions can be grouped into larger atomic blocks to simplify
proofs [12,21]. Movers address the issue of grouping many local transitions of
a process together. In contrast, we conceptually group transitions of different
processes together into one accelerated transition. Moreover, the definition of a
mover by Lipton is independent of a specific run: a left mover (e.g., a “release”
operation) is a transition that in all runs can “move to the left” with respect
to transitions of other processes. In our work, we look at individual runs and
identify which transitions (milestones) must not move in this run.

As next steps we will focus on liveness of fault-tolerant distributed algo-
rithms. In fact the liveness specifications are in the fragment of linear temporal
logic for which it is proven [18] that a formula can be translated into a cliquey
Büchi automaton. For such automata, [18] provides a completeness threshold.
Still, there are open questions related to applying our results to the idea of [18].

References

1. ByMC: Byzantine model checker (2013), http://forsyte.tuwien.ac.at/

software/bymc/, accessed: June, 2014
2. Bardin, S., Finkel, A., Leroux, J., Petrucci, L.: Fast: acceleration from theory to

practice. STTT 10(5), 401–424 (2008)
3. Bardin, S., Leroux, J., Point, G.: Fast extended release. In: Computer Aided Ver-

ification. pp. 63–66. Springer (2006)
4. Basler, G., Mazzucchi, M., Wahl, T., Kroening, D.: Symbolic counter abstraction

for concurrent software. In: CAV. LNCS, vol. 5643, pp. 64–78 (2009)
5. Biere, A.: Lingeling, Plingeling and Treengeling entering the SAT competition 2013.

Proceedings of SAT Competition 2013; Solver and p. 51 (2013)
6. Biere, A., Cimatti, A., Clarke, E.M., Zhu, Y.: Symbolic model checking without

bdds. In: TACAS. LNCS, vol. 1579, pp. 193–207 (1999)
7. Bokor, P., Kinder, J., Serafini, M., Suri, N.: Efficient model checking of fault-

tolerant distributed protocols. In: DSN. pp. 73–84 (2011)
8. Bracha, G., Toueg, S.: Asynchronous consensus and broadcast protocols. J. ACM

32(4), 824–840 (1985)
9. Chandra, T.D., Toueg, S.: Unreliable failure detectors for reliable distributed sys-

tems. JACM 43(2), 225–267 (March 1996)

14

http://forsyte.tuwien.ac.at/software/bymc/
http://forsyte.tuwien.ac.at/software/bymc/

10. Cimatti, A., Clarke, E.M., Giunchiglia, E., Giunchiglia, F., Pistore, M., Roveri,
M., Sebastiani, R., Tacchella, A.: Nusmv 2: An opensource tool for symbolic model
checking. In: CAV. LNCS, vol. 2404, pp. 359–364 (2002)

11. Clarke, E.M., Kroening, D., Ouaknine, J., Strichman, O.: Completeness and com-
plexity of bounded model checking. In: VMCAI. LNCS, vol. 2937, pp. 85–96 (2004)

12. Doeppner, T.W.: Parallel program correctness through refinement. In: POPL. pp.
155–169 (1977)

13. Gmeiner, A., Konnov, I., Schmid, U., Veith, H., Widder, J.: Tutorial on parameter-
ized model checking of fault-tolerant distributed algorithms. In: Formal Methods
for Executable Software Models. pp. 122–171. LNCS, Springer (2014)

14. Godefroid, P.: Using partial orders to improve automatic verification methods. In:
CAV. LNCS, vol. 531, pp. 176–185 (1990)

15. Guerraoui, R.: Non-blocking atomic commit in asynchronous distributed systems
with failure detectors. Distributed Computing 15(1), 17–25 (2002)

16. John, A., Konnov, I., Schmid, U., Veith, H., Widder, J.: Parameterized model
checking of fault-tolerant distributed algorithms by abstraction. In: FMCAD. pp.
201–209 (2013)

17. John, A., Konnov, I., Schmid, U., Veith, H., Widder, J.: Towards modeling and
model checking fault-tolerant distributed algorithms. In: SPIN. LNCS, vol. 7976,
pp. 209–226 (2013)

18. Kroening, D., Ouaknine, J., Strichman, O., Wahl, T., Worrell, J.: Linear com-
pleteness thresholds for bounded model checking. In: CAV. LNCS, vol. 6806, pp.
557–572 (2011)

19. Kroening, D., Strichman, O.: Efficient computation of recurrence diameters. In:
VMCAI. LNCS, vol. 2575, pp. 298–309 (2003)

20. Lamport, L.: Time, clocks, and the ordering of events in a distributed system.
Commun. ACM 21(7), 558–565 (1978)

21. Lamport, L., Schneider, F.B.: Pretending atomicity. Tech. Rep. 44, SRC (1989)
22. Leroux, J., Sutre, G.: Flat counter automata almost everywhere! In: ATVA. LNCS,

vol. 3707, pp. 489–503 (2005)
23. Lipton, R.J.: Reduction: A method of proving properties of parallel programs.

Commun. ACM 18(12), 717–721 (1975)
24. Lubachevsky, B.D.: An approach to automating the verification of compact parallel

coordination programs. II. Tech. Rep. 64, New York University. Computer Science
Department (1983)

25. Lubachevsky, B.D.: An approach to automating the verification of compact parallel
coordination programs. I. Acta Informatica 21(2), 125–169 (1984)

26. Lynch, N.: Distributed Algorithms. Morgan Kaufman (1996)
27. Mostéfaoui, A., Mourgaya, E., Parvédy, P.R., Raynal, M.: Evaluating the condition-

based approach to solve consensus. In: DSN. pp. 541–550 (2003)
28. Peled, D.: All from one, one for all: on model checking using representatives. In:

CAV. LNCS, vol. 697, pp. 409–423 (1993)
29. Pnueli, A., Xu, J., Zuck, L.: Liveness with (0,1,∞)- counter abstraction. In: CAV,

LNCS, vol. 2404, pp. 93–111. Springer (2002)
30. Raynal, M.: A case study of agreement problems in distributed systems: Non-

blocking atomic commitment. In: HASE. pp. 209–214 (1997)
31. Srikanth, T., Toueg, S.: Simulating authenticated broadcasts to derive simple fault-

tolerant algorithms. Dist. Comp. 2, 80–94 (1987)
32. Valmari, A.: Stubborn sets for reduced state space generation. In: Advances in

Petri Nets 1990, LNCS, vol. 483, pp. 491–515. Springer (1991)

15

	On the Completeness of Bounded Model Checking for Threshold-Based Distributed Algorithms: Reachability

