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ON THE COMPLEX OSCILLATION THEORY OF f™®+A4f =F

by CHEN ZONG-XUAN
(Received 9th December 1991)

In this paper, we investigate the complex oscillation theory of
fO+Af=F(@), k21

where A,F%0 are entire functions, and obtain general estimates of the exponent of convergence of the
zero-sequence and of the order of growth of solutions for the above equation.

1991 Mathematics subject classification: 34A20, 30D35.

1. Introduction and results

For convenience in our statement, we first explain the notation used in this paper. We
will use respectively the notation A(f) and A(f) to denote the exponent of convergence
of the zero-sequence and of the sequences of distinct zeros of f(z), o(f) to denote the
order of growth of f(z), v/(r) to denote the central index of the entire function f(z). By
the Wiman—Valiron theory, we have

o(f)= Tim logv,(r)
rew logr

In addition, other notation of the Nevanlinna theory is standard (e.g. see [4,5]).
Other notation will be shown when it appears.

In 1982, S. Bank and I. Laine investigated the complex oscillation theory of
homogeneous linear differential equation, and proved in [1]:

Theorem A. Let A(z) be a nonconstant polynomial of degree n, and let f(z)x0 be a
solution of the equation

[+ A(z) f=0. (1.1)
Then

(a) the order of growth of f is (n+2)/2,
(b) if n is odd, the exponent of convergence of the zero-sequence of f is (n+2)/2,
(c) if nis even, and if f, and f, are two linearly independent solutions of (1.1), then at
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least one of f,, f,, has the property that the exponent of convergence of its zero-sequence
is (n+2)/2.

Afterwards, 1. Laine showed in [6].

Theorem B. Let a,, Py, P,%0 be polynomials such that degayo=n, degp,<1+n/k.
Consider the equation

f®4agf=Pe (k=2). 1.2

(a) If deg P, <n, then all solutions of (1.2) satisfy
AN =Af)=a(f)=1+7. (13)

(b) If deg P, =n, then, apart from one possible exception, all solutions satisfy (1.3). The
possible exceptional solution is of the form f,=Qe"°, where Q is a polynomial of
degree degQ=deg P, —n.

Gao Shi-an [3] had earlier addressed the case when n=2 in Theorem B.
In this paper, we consider the differential equation (DE)

O+ Af=F(z), (1.4)
where A(z) and F(z) are both entire functions of finite order, and where A(z) is
transcendental, or A(z) is a polynomial, F(z) %0 is an entire function of finite order with
infinitely many zeroes.

We will prove the following theorems in this paper.

Theorem 1. Let A and F(z)%0 be both entire functions of finite order, where A is
transcendental. Then:

(a) All solutions f of (1.4) satisfy

AN)=Uf)=0(f)= oo, (L3)

except for at most one possible exceptional solution f of finite order.
(b) The exceptional solution f, satisfies

a(fo) Smax {a(4), o(F), A o)}
Furthermore, if o(A)Xxa(F), X fo) <o(fo), then a(f,)=max {a(A), o(F)}.

Remark. If 6(A)= o0, or a(F)= oo, then Theorem 1 does not hold.
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Example 1. f=¢""" solves
f"+sinz f =cos?z "7,
and

f"+(sinz—cos?z+e%"2*7) f—¢?,

there A(f)=0, o(f) = c0.

Theorem 2. Let A(z) be a transcendental entire function with 6(A)%1, o(A4) <o, let
F(z) %0 be an entire function with o(F)< oo, and a(>0), a constant, and let f(z) be a
solution of the DE

fOref' + Af =F(z). (1.6)
Then:

(a) all solutions f of (1.6) satisfy (1.5), except for at most one possible exceptional
solution f of finite order,

(b) the exceptional solution f, satisfies
o(fo) S max {a(A), o(F), X(fo), 1},
Furthermore, if 6(A) % o(F), 2(f,) <o(fo), then o(f,) =max {a(A4), a(F), 1}.

Theorem 3. Let A(z) be a polynomial with degA=nz=1, let F(z)5%0 be an entire
Sunction with infinitely many zeros, and let f(z) be a solution of the DE (1.4). If (n+k)/
k<o(F)=B<o00, then

(@ a(f)=8,
(b) if AF)=p, then every solution satisfies A(f)=p,
(c) if AF)<p, then all solutions f of (1.4) satisfy
AN =Uf)=0a(f)=8,

except for at most one exceptional one f, with A fo)= A(F).

Theorem 4. Let A(z) be a nonconstant polynomial of degree n, and let F(z)%0 be an
entire function with infinitely many zeros and o(F)=p. Then:

(@) if B<(n+k)/k, then all solutions f of (1.4) satisfy

IN=iN=o(n)="2%,
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except for at most one exceptional one f, with o(f,)=p,

(b) if B=(n+k)/k, then all solutions f of (1.4) satisfy o(f)=(n+k)/k, J(f)=AF).

2. Lemmas

Lemma 1. Let A(z) be a transcendental entire function of finite order, Then every
solution g %0 to the DE

g¥+A4g=0 (2.1)
satisfies o(g)= 0.

Proof. If 6(g) < o, then by A= —g¥/g, we have

)
m(r,A)=m (r, g?> =0(logr),

and this contradicts the hypothesis that A(z) is transcendental.

Lemma 2. Let A(z) be a transcendental entire function with 1xo(A)<oco and let
o >0) be a constant. Then every solution gx0 to the DE

g¥+e" g + A(2)g=0 (2.2)
satisfies 6(g) = o0.
Proof. Using the same proof as in the proof of Theorem 1 in {2], we have a(g)= 0.
Lemma 3 (Wiman—Valiron). Let g(z) be a transcendental entire function and let z be a

point with |z|=r at which |g(z)|=M(r,g). Then for all |z| outside a set E of r of finite
logarithmic measure, we have

(k) k
() ng(_S) = (.‘:a@) (140(1)) (k is an integer, r & E), (2.3)
z
by Tim [08%()_ [ losvy(r)
e lOgT rew  lOgr
re[0, o) re{0,0)—E

where v,(r) is the central index of g(2) (see (5,7, 8]).

Proof. (a) This is the Wiman—Valiron theory (see [5, 7, 8]).
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(b) We clearly have

Tm log v(r) > Tm log v!(y).
row logr r— o logr
re(0, ) rel0,w)-E

On the other hand, from v,(r) is the central index of g(z), we have that v (r)>0 and
v,(r) is a nondecreasing function on [0, + o). Setting Jzdr/r=logd <o for a given {r,},
r,e[0, + o0), r, — 00, there exists a point r,e[r,,(6+ 1)r,] — E. From

log v,(r,) < logv,(r,) < logv,(r) _ logv,(r)
logr, = logr, = 1 logr,-(1+0(1)’
n n 1 l n
Ogr.+log 6+1

it follows that

Tim lﬁg_vv(_,r"_)g Tim Mé Tim o V() 2.4

s w lOgr, oo 10T, oo logr
re[0,0)—E

Since {r,} is arbitrary, we have

fm 08v%() . logvln)
rew lOBT r-o  logr
re[0, o) re{0,o)—E

This proves Lemma 3(b).
From Lemma 3, we can deduce the following:

Lemma 4. Let A(z) be a nonconstant polynomial with deg A=n. Then every solution
f%0to the DE

SO+ A2 =0 (2.5)
satisfies o(f)=(n+k)/k.

Lemma 5. Let A(z2) be a polynomial with degA=nz1, F(z)%0 be an entire function
with a(F)=p < co. Let f be a solution of the DE

fO+ Af=F(z). (2.6)
Then
(@) if B=(n+k)/k, then o(f)=B,
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(b) if B<(n+k)/k, then all solutions f of (2.6) satisfy o f)=(n+Kk)/k, except for at most
one possible exceptional one f, with o(f,)=8.

Proof. It is easy to see that o(f)=o(F)=p from (2.6). On the other hand we assume
that {fy,...,fi} is a fundamental solution set of (2.5) that is the corresponding
homogeneous differential equation of (2.6). By Lemma 4, we have o(f;)=
(n+k)k(j=1,...,k).

By variation of parameters, we can write

f=By@2)fi+ " +Bu2) fis
where B,(z),...,B,(z) are determined by

[ Bifi+ +Bify=0
i+ +Bifi=0

[Bif¢ 0+ + Bif ™ V=F.

Noting that the Wronskian W(f,..., f,) is a differential polynomial in f,,...,f, with
constant coefficients, it is easy to deduce that (W) <o(f;) =(n+k)/k. Set

0)
W= | T Ol pg =1k,

SEVLLF Y
where g; are differential polynomials in f,,..., f, with constant coefficients. So

n+k

W, F- i
ole) Solf) ="~ Bi=3 =27

W I

and
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o(B) = o{ B Smax {om "*"}

o(f) Smax {ﬂ, ":"}.
Therefore,
(@) if 2", then o )=,
(b) lfﬂ<n *k then < (f)<%k

We affirm that the DE (2.6) can only possess at most one exceptional solution f,
with B<o(fo)<(n+k)/k. In fact, if f* is a second solution with f<a(f*)<(n+k)/k,
then o(fo— f*)<(n+k)/k. But fo—f* is a solution of the corresponding homogeneous
equation (2.5) of (2.6). This contradicts Lemma 4.

Now we prove that the exceptional solution f, satisfies o(f,)=h. We assume
B<o(fo)<(n+k)/k. Let z be a point with |z|=r at which |f(2)|=M(r,f,). From
Lemma 3(a)

o Az) _ M)“
o ( ) (1+o(1))  rEE. @7

holds for all |z| outside a set E of r of finite logarithmic measure. For sufficiently large
|z|, we have 4=az"(1+0(1)) (a%0 is constant). Substituting (2.7) into (2.6), we have

F(2)

o TEE (2.8)

( (r))(1+o(1))+az"(1+o(1))—

Now for a given ¢ (0<3e<oa(f,)—f), there exists {7,}(F,— o) such that M(7,, fo)>
exp {Fo/9 72}, Setting (; dr/r=logd< oo, there exists a point r,e[7,,(6+ 1)7,]—E. At
such points r,, we have

M(ry,, f0)Z M(Fy, fo) > exp {777~}
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S rolfo—e o -2 re

2eXpL = d=eXprodo T m

=P (5410 p{ m T l)a(fo)}
Zexp {roUo -2,

In addition for sufficiently large r,,, we have

|F(2)| < M(r,, F) <exp {rh**}.
So

F(2)
fo(2)

__|Fa)|

= <exp{rf*c—rifo-2e - ((r,,— o).
M(rmsfo) { " }

Therefore, at such points |z,,| =7 (rm& E, | fo(Zm)| = M(r, o)), from (2.8) we have

(M’Z‘y—m))k(1+o(1»+az;(1+o(1))=o(1): 29)

m

From the Wiman—Valiron theory, we obtain

Tm logvfo(rm)=n+k'
rm—wo 1087 k

This contradicts that a(f,) <(n+k)/k. Hence o(fg)=p.
Lemma 6. Let A,_; (j=1,...,k), Bx0 be entire functions. If f is a solution of the DE
SO+A_ f* V4 +A,f=B, (2.10)
and max {a(B), a(Ay);...,0(Ax_,)} =B <a(f), then X f)=Af)=0a(f).

Proof. We can write from (2.10)

-}-=%(%”+Ak-1 f(lcf-1)+,..+,40>_ (2.11)

If £ has a zero at z, of order a(>k), then B must have a zero at z, of order o—k.

Hence,
n <r, }—) <kn (r, %) +n (r, 113)
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N(r, }>§k1\7 (r, }>+N(r, l%) (2.12)

and

From (2.11), we have

m <r, }) <m <r, zl;)J“ S mir, Ay )+0(og T(r, f)+logr)  r¥E  (2.13)

Jj=1

holds for all r outside a set E of r of finite linear measure (if o(f) < oo, then E=¢).
(2.12) and (2.13) give

T(r,f)=T< >+0(1)

1
f

1A

kN (r, %) +T (r, %) + ‘i T(r, Ax- ;) +O(log T(r, f)+1logr)

kN (r, %) + T(r; B)+ zk: T(r, Ax—;) +O(log T(r, f) +logr) (r §E) (2.14)

j=1
and there exists {r,} (r, — c0) such that

i 108 T )
rm— o lOg r;l

=o(f).
Setting mE =0 < oo, then there exists a point r,e[r,,r,+ 6+ 1]—E. For such r,, we have

log T(r,, f) ., _log T(ry, f) log T(r., /)

logr, log(r +d+ 1)
logr, +log<1+5+1)

So
tim 108 T0wS) S 0 log T(ry, f)

fn— logr,, _ri.*ao
logr, +log(1+5:-1>

=o(f)  (r.&E)

and

lim log T(r,, f)
mow lOgr,

N o).
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For a given ¢ such that f<c<a(f), we have

T(r. f)

1\

ra
for sufficiently large r,. On the other hand, for a given ¢ (0 <¢<c— ff), we have
T(r,, BYy<rf ™", T(ro, Au-j)<rd*®  (j=1,...,k).

Therefore

T B)S s TOw ), | @15)

T, A.‘.,-)gk—jr3 T f)  (G=1,....k) (2.16)

hold for sufficiently large r,. Since

O{log T(r,, ) +logr,} =o{T(r.. f)},
for sufficiently large r,

0{log T(r,, f)+logr, gk—i—3 (r,, f) (2.17)

holds. (2.14) and (2.15), (2.16), (2.17) give

T(r,, f)<(k+3)KN (r,,, —}-)

So
logN|{r 1
o(f)= lim Ws fim L),

m— l n —r,.—'uo ]ogr"

Therefore A(f)=A(f)=0o(f).

Lemma 7. Let F be the same as in Theorem 3, let Q be the canonical product formed
with the nonzero zeros of F, with o(Q)<f=0(F), let m(20) be an integer, and let
bi—,,...,bo be polynomials with degb, _;=i (8—1). Then the DE

g9+ by g% V4 +bog=2"Q (2.18)
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may have at most one exceptional solution go with A(gy)=0(ge)=0(Q)=A(Q), and all the
other solutions g of (2.18) satisfy

Hg)=AMg)=0(g)=B.

Proof. It is not difficult to see that all solutions of (2.18) and its corresponding
homogeneous equation

g(k)+bk_1g(k‘1)+...+bog=0 N (2,19)

are entire functions. For the DE (2.19), from Lemma 3(a), we have basic formulas

s@=(ﬁ@>j(1+o(1)) r&E, (j=1,...,k) (220)
&(2) z

where |z|=r, |g(z)|=M(r,g), [gdr/r<oo, v,(r) denotes the central index of g. As r— oo
set by_;=d,_;z* V(1 +0(1)) dy_,,...,d, are nonzero constants). Substituting them and
(2.20) into (2.19), we have

<X’9>k“+o(l))+d““zﬂ_l(Eéﬁ)““*"“”*"'+doZ““’“’(1+o(1))=o (r§E).
2.21)

By the reasoning in [7, pp. 106-108] for sufficiently large r, we have v, (r)~cz"
(|z|=rlsE, ¢ %0 a constant), substituting it into (2.21), it is easy to see that the degrees
of all terms of (2.21) are respectively

k(a—1), j(B—1D+k—j(a—1) (G=1,...,k—=1), k(p—1).

From the Wiman-Valiron theory (see [5, pp. 227-229], [7, 8]), we see that a=f is the
only possible value. Therefore, all solutions of (2.19) satisfy a(g) = .

Using the same proof (variation of parameters) as in the proof of Lemma 5, we have
that all solution g of the DE (2.18) satisfy a(g) < 8.

Using the same proof as in the proof of Lemma 5, it is easy to see that the DE (2.18)
may have at most one exceptional solution g, with a(g,) <.

Next we are going to work out the order of the exceptional solution g,. By the above
proof and (2.18), we have a(Q) < a(g,) <. We will now prove that a(Q) <o(g,) < p fails.

Suppose that o(Q)<oa(go)<pB. From the Wiman—Valiron theory, we have basic
formulas

gg)(z)=<ﬁyoﬂ)j(1+o(1)) r5E, j=1,...,k (222)
8o(2) z
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where |z|=r, |go(2)|=M(r,g), [edr/r<oo. As r—ow, we set b=
d,_;z**~Y(1 +0(1)) (d,—; X0 are constants). Substituting them and (2.22) into (2.18), and
using the same proof as in the proof of Lemma 5(b), we can obtain a sequence {z,}. The
sequence {z,} satisfies |z,|=r,% E, |go(z,)|=M(r,, o) and for sufficiently large r,

(Kv*’z(—’"))k(1+o(1))+dk_,z5‘l(!mz(’—"))k_l(l+o(1))+--~+d0z';<f’-”(1+o(1))=o(1). (2.23)

n n

Setting a(go) =8 <pf, by the reasoning in [7, pp. 106-108], for sufficiently larger r,, we
have vgo(r,,)~c,z:’, (|z,,|=r,,&E, ¢, %0 a constant). It is easy to see that the degrees of all
terms of (2.23) are respectively

k(6—1), (B—D+(k—NE-1)(j=1,....,k—-1), k(B—-1).

Then there is only one term doz“#~1(d,%0) with the degree k(8 —1) being the highest
one in (2.23). This is impossible. Therefore, the order of g, can only be a(g,) =0(Q).
As 0(go) =0(Q), by [3], we have A(go) 2 A(z"Q)=0(Q). Hence

Mgo) =0(g0) = a(Q) = AQ).

As o(g)=p>0(Q), by Lemma 6, we have

Mg)=Ag)=0(g)=B.

3. Proof of theorems

Proof of Theorem 1. (a) Now assume f, is a solution of (1.4) with o(fy)<co. If f* is
a second solution with o(f*)< oo, then a(f*—f,)<co. And f*—f, is a solution of
(2.1), that is the corresponding homogeneous differential equation of (1.4). But by
Lemma 1, we have o(f* — )= c0.

Now assume f is a solution of (1.4) with o(f)=co0. Then max {6(A), o(F)} <o(f). By
Lemma 6, we have A(f)=A(f)=0a(f) = .

(b) Assume f is an exceptional solution of (1.4) with a(f,) < co. Using the same proof
as in the proof of Lemma 6, we have

T(r, fo) kN (r, %) + T(r, F)+ T(r, A) + O(logr). (3.1)
0
Now set max {o,(A), 6(F)} =4a. Then for sufficiently large r, we have
T(r,F)<r®*e, T(r, A)<r®*e

By (3.1) we have
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T(r, fo)<kN (r, %)+2r"“+0(log r).
o]
Therefore
o(fo) Smax {X(fo), &} =max {I(f,), 6(4), o(F)}. (3.2)
If 6(A) % o(F), A f,) <o(f,), then from (3.2), we get
o(fo) Smax {a(4), o(F)},
and by (1,4), we have o(f,) =max {o(A), 6(F)}. Therefore,
a(fo)=max(o(4), o(F)}.

Proof of Theorem 2. By Lemma 2, every solution g=x0 of (2.2), that is the
corresponding homogeneous equation of (1.6), satisfies a(g)=oco. Using the analogous
proof to that in Theorem 1, we can prove that Theorem 2 holds.

Proof of Theorem 3. (a) By Lemma 5, we have a(f)=§.
(b) If A(F)= B, then by [3] we have A(f)= A(F). Hence A(f)=a(f)=8.
(c) If A(F)<$B, set F=2Z™Qe", (Q is the canonical product formed with the nonzero

zeros of F,P is a polynomial with deg P=p). Set f=ge’, then Ag)=A(f), Hg)=A(f).
Substituting f=ge’ into (1.4), we have

g®+d_ g% V4 +dog=2"Q. 3.3

To work out the degrees of d,_; for j=1,...,k, we need d,_; (j=1,...,k) in more
detailed form. It is easy to check by induction that we have for k22 (see [6])
k . »
R R A C O ) 4

i=2
where H;_(p) are differential polynomials in p’ and its derivatives of total degree j—1
with constant coefficients. It is easy to see that the derivatives of H;_;(p’) as to z are of
the same form H;_,(p). Cj is the usual notation for the binomial coefficients. (1.4) and
(3.4) give
dk—l=kp19 dk—1=ci(p’)J+HJ—l(p,) j=2"",k_ 17
do=(p)+H,_(p)+A.

So degd,_;=j(B—1)(j=1,...,k—1). Since B>(n+k)/k, we have degdo=k(f—1). By
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Lemma 7, the DE (3.3) may have at most one exceptional solution g, with A(gy)=
6(g0)=0(Q)=A(Q), and all the other solutions g of (3.3) satisfy (g)=A(g) =o(g)=pB.

Therefore, the DE (1.4) may have at most one exceptional solution f,=gqe? with
Mfo)=A(F), and all the other solutions f=ge” of (1.4) satisfy

Af)=Mf)=0a(f)=8.

Proof of Theorem 4. (a) If f<(n+k)/k, then by Lemma 5, the DE(1.4) may have at
most one exceptional solution f,, with a(f;)=p, and all the other solutions f of (1.4)
satisfy o(f)=(n+k)/k. By Lemma 6, all the other solutions f of (1.4) satisfy

n+k

P

(b) If f=(n+k)/k, then by Lemma 5, all solutions f of (1.4) satisfy a(f)=(n+ k)/k.
From [3], we have A(f) = A(F).

AN)=uf)=0o(f)=

4. Examples of the exceptional solution

Example 2 (concerning the exceptional solution in Theorem 1). f,=e¢*" solves
f"+(sinz—4z2—-2)f=e*’sinz,
there a(A4) <a(F), o(fo) =0(F), A(f,) =0<0(fo).

Example 3 (concerning the exceptional solution in Theorem 2). Let G be a given
transcendental entire function with ¢(G) % 1, 6(G) < o0, Then f,=e3* solves

[ +e i f'—Gf=e**(9+3e *—G),
there o(fy)=1, A(fy)=0.
Example 4 (concerning the exceptional solution in Theorem 3). The DE
f"+(1—6z2)f =32*(2cos z+ 322 sin z)e*’

has exceptional solution fy=sinz-e*’, there o(F)=3>(n+k)/k, and a(fy)=3, A(fo)=1.
Now we prove that A(F)=1. For the real function 2cosx+3x2sinx, sinmn=0 and
2cosmn+3(mn)?-sinmax0 (m=+1,+2,...), the zeros of 2cos x+ 3x2sinx are zeros of
ctgx+3x2.  ctgx+3x? has zeros x,e(mm,(m+1Dn)(m=+1,+2,...). Hence 1

(2 cos x + 3x?sin x) = 1. Therefore A(F)=1.

Example 5 (concerning the exceptional solution in Theorem 4). f,=sinz solves
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f"+@EZ*+1)f=z%sinz,
there (n+k)/k=2>da(F)=1, o(f,) = o(F).
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