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ON THE COMPLEX OSCILLATION THEORY OF f(k)+Af=F

by CHEN ZONG-XUAN

(Received 9th December 1991)

In this paper, we investigate the complex oscillation theory of

where A,F^O are entire functions, and obtain general estimates of the exponent of convergence of the
zero-sequence and of the order of growth of solutions for the above equation.

1991 Mathematics subject classification: 34A20, 30D35.

1. Introduction and results

For convenience in our statement, we first explain the notation used in this paper. We
will use respectively the notation A(/) and X(/) to denote the exponent of convergence
of the zero-sequence and of the sequences of distinct zeros of /(z), a{f) to denote the
order of growth of f(z), vf(r) to denote the central index of the entire function /(z). By
the Wiman-Valiron theory, we have

In addition, other notation of the Nevanlinna theory is standard (e.g. see [4,5]).
Other notation will be shown when it appears.

In 1982, S. Bank and I. Laine investigated the complex oscillation theory of
homogeneous linear differential equation, and proved in [1]:

Theorem A. Let A(z) be a nonconstant polynomial of degree n, and let /(z) ^ 0 be a
solution of the equation

f" + A(z)f = 0. (1.1)

Then

(a) the order of growth of f is (n + 2)/2,

(b) if n is odd, the exponent of convergence of the zero-sequence of f is (n + 2)/2,

(c) if n is even, and if fl and f2 are two linearly independent solutions o/( l . l) , then at
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least one of fx, f2, has the property that the exponent of convergence of its zero-sequence
is{n + 2)/2.

Afterwards, I. Laine showed in [6].

Theorem B. Let a0, Po, Pt^0 be polynomials such that deg ao = n, degpo<l+n/fe.
Consider the equation

fk) + aof=P1e
p° (k^2). (1.2)

(a) / / degPj <n, then all solutions of (1.2) satisfy

1 + ^ . (1.3)

(b) 7 /degPj^n, then, apart from one possible exception, all solutions satisfy (1.3). The
possible exceptional solution is of the form f0 = QePo, where Q is a polynomial of
degree degQ = degPi—n.

Gao Shi-an [3] had earlier addressed the case when n = 2 in Theorem B.
In this paper, we consider the differential equation (DE)

f*> + Af = F(z), (1.4)

where A(z) and F(z) are both entire functions of finite order, and where A(z) is
transcendental, or A(z) is a polynomial, F(z) ̂  0 is an entire function of finite order with
infinitely many zeroes.

We will prove the following theorems in this paper.

Theorem 1. Let A and F(z)^0 be both entire functions of finite order, where A is
transcendental. Then:

(a) AH solutions f o/(1.4) satisfy

= oo, (1.5)

except for at most one possible exceptional solution f0 of finite order.

(b) The exceptional solution f0 satisfies

Furthermore, if o(A)%<j(F), X(/o) < <7(/o)> then <r(/0) = max (or(/4), <x(F)}-

Remark. If a(A) = co, or CT(F) = OO, then Theorem 1 does not hold.
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Example 1. f=esinz solves

/ " + s i n z / = cos2zesinr,

and

there A ( / ) = 0,CT(/) = oo.

Theorem 2. Let A(z) be a transcendental entire function with cr(A)%l, a(A)<oo, let
F(z)^O be an entire function with a(F)<oo, and a(>0), a constant, and let f(z) be a
solution of the DE

F(z). (1.6)

Then:

(a) all solutions f of (1.6) satisfy (1.5), except for at most one possible exceptional
solution f0 of finite order,

(b) the exceptional solution f0 satisfies

Furthermore, if <r(A)*a(F), X ( / O ) « T ( / O ) , then <x(fo) = max{a(A),a(F), 1}.

Theorem 3. Let A(z) be a polynomial with deg/4 = « ^ l , let F(z)%0 be an entire
function with infinitely many zeros, and let f(z) be a solution of the DE (1.4). / / (n + k)/

f}<co, then

(a) o(f) = 0,
(b) if k(F) = P, then every solution satisfies A(/) = /?,

(c) if A(F)</3, then all solutions f of (1.4) satisfy

except for at most one exceptional one f0 with A(/o) = A(F)-

Theorem 4. Let A(z) be a nonconstant polynomial of degree n, and let F(z) ^ 0 be an
entire function with infinitely many zeros and a(F) = /?. Then:

(a) if P<(n + k)/k, then all solutions f o/(1.4) satis/}'
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except for at most one exceptional one f0 with ff(/o) = /?,

(b) if p = (n + k)/k, then all solutions f of (I A) satisfy a(f) = (n + k)/k,

2. Lemmas

Lemma 1. Let A(z) be a transcendental entire function of finite order, Then every
solution g^O to the DE

gik)+Ag = 0 (2.1)

satisfies a(g) = oo.

Proof. If o(g) < oo, then by A = —g{k)/g, we have

m(r,A) = m | r , — ) = O(logr),

and this contradicts the hypothesis that A(z) is transcendental.

Lemma 2. Let A(z) be a transcendental entire function with 1 ^ a(A) < oo and let
a(>0) be a constant. Then every solution g^O to the DE

g = O (2.2)

satisfies a(g) = oo.

Proof. Using the same proof as in the proof of Theorem 1 in [2], we have o(g) = oo.

Lemma 3 (Wiman-Valiron). Let g(z) be a transcendental entire function and let z be a
point with \z\=r at which \g{z)\ = M(r,g). Then for all \z\ outside a set E of r of finite
logarithmic measure, we have

(a) ^ = (V-*Q)\ 1 + o( 1)) (/c is an integer, r $ E), (2.3)

( b ) m ^ ^ = Tim" l o g v*( r ) ,
_ „ logr ,_.„ logr

re[O,oo) re(0,oo)-£

where vg(r) is the central index ofg(z) (see [5,7,8]).

Proof, (a) This is the Wiman-Valiron theory (see [5,7,8]).
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(b) We clearly have

_ „ logr ,._„ logr
re[0,oo) re[O,oo)-E

On the other hand, from vg(r) is the central index of g(z), we have that v9(r) > 0 and
vB(r) is a nondecreasing function on [0, +oo). Setting J£dr/r = log8< oo for a given {r'n},
r'ne[0, +oo), r;-»oo, there exists a point rne[r;,(<5 + I K ] — E. From

vfl(rn)^ logvfl(r) ^

logr; = logr; - , o g r + l o g L logr . -d+od))
5+1

it follows that

logrn ,„..«, logrn ^ ^ logr
re[0,<»)-£

(2.4)

Since {r;} is arbitrary, we have

i s ^ ins .
^ .o logr ^ ^ logr

re[0,oo) re(0,oo)-£

This proves Lemma 3(b).

From Lemma 3, we can deduce the following:

Lemma 4. Let A(z) be a nonconstant polynomial with deg A = n. Then every solution
to the DE

f = 0 (2.5)

satisfies

Lemma 5. Let A(z) be a polynomial with degA = n^l, F(z)^0 be an entire function
with o(F) = f}< oo. Let f be a solution of the DE

f» + Af = F(z). (2.6)

Then

(a) if P^(n + k)/k, then a(f) = fi,
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(b) if P<(n + k)/k, then all solutions f of {2.6) satisfy <r(f) = (n + k)/k, except for at most
one possible exceptional one f0 with a(f0) = /?.

Proof. It is easy to see that a(f) ^ a(F) = P from (2.6). On the other hand we assume
that {/i,...,/t} is a fundamental solution set of (2.5) that is the corresponding
homogeneous differential equation of (2.6). By Lemma 4, we have

-+Bk(z)fk,

By variation of parameters, we can write

where Bt(z),...,Bk(z) are determined by

Noting that the Wronskian W(/1 }. . . , / t) is a differential polynomial in fi,...,fk with
constant coefficients, it is easy to deduce that a{W)Sff(/,)={n + k)/k. Set

W.= fu-..

r(k-\)

(0
,0,

,F, ...,/f - i )

= F-g,

where g,- are differential polynomials in fu..., fk with constant coefficients. So

and
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a(B,) = <T(B;.) ^ max \a{F),

<T(/) ^ max

Therefore,

(a) i f / J ^ ^ * , then

is "+k\

( b) if / ? < ^ , then f}^

We affirm that the DE (2.6) can only possess at most one exceptional solution / „
with P^o(f0)<(n + k)/k. In fact, if / * is a second solution with /? g <x(/*) < (n + fc)/fc,
then o{f0 — f*)<(n + k)/k. But fo—f* is a solution of the corresponding homogeneous
equation (2.5) of (2.6). This contradicts Lemma 4.

Now we prove that the exceptional solution f0 satisfies <j(fo) = p. We assume
f}<a(fo)<(n + k)/k. Let z be a point with \z\ = r at which |/0(z)| = M(r,f0). From
Lemma 3(a)

(2.7)

holds for all \z\ outside a set E of r of finite logarithmic measure. For sufficiently large
\z\, we have A = az"(l +o(l)) (a^O is constant). Substituting (2.7) into (2.6), we have

(2.8)

Now for a given e (0 < 3e < o(/0)—/?), there exists {rm}(rm->oo) such that M(fm, / 0)>
explrj,0"0'"*}. Setting J£ dr/r = log5<oo, there exists a point rme[rm,(<5+ l)rm] — £. At
such points rm, we have

M{rm,f0) ^ M(rm, f0) > exp {
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In addition for sufficiently large rm, we have

|F(z)| = M(rm,F)<exp{r£+E}.

So

F(z)
0(rw->oo).

Therefore, at such points |zm| = rm(rm^£, | /0(zm) | = M(rm, /0)), from (2.8) we have

(2.9)

From the Wiman-Valiron theory, we obtain

lim

This contradicts that <r(/0) < (« + fe)/fe. Hence o-{fo) = P-

Lemma 6. Let Ak_j (J=l,...,k), B^O be entire functions. If f is a solution of the DE

fW + Ak-lf
k-»+---+Aof = B, (2.10)

and max{<r(B), a(A0),...,a{Ak^)}=p<o{f\ then X(f) = X(f) = a(f).

Proof. We can write from (2.10)

If / has a zero at z0 of order a(>k), then B must have a zero at z0 of order a — k.
Hence,
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and

From (2.11), we have

ml r, — )^rn[ r, — \+ V m(r,/lt_,) + O(logT(r,/) + logr) r^E (2.13)

holds for all r outside a set £ of r of finite linear measure (if a(f)<co, then £ = $).
(2.12) and (2.13) give

T(r,f)=T(r,j

^kN(r, j \ + T (r, ±\ + £ T(r, Ak_j) + O(log T(r, f) + logr)

= kN(r, j \ + T(r;B) + £ T(r,Ak_}) + O(logT(r,f) + logr)(r$£) (2.14)

and there exists {/„} (r'n -* oo) such that

lim

Setting m£ = ^<oo, then there exists a point rne[r^, r̂  + ̂ +1] —£. For such rn, we have

, / ) ^ logTK,/) = log T(r;,/)

logrn

logr; + log( 1
V

So
^ logTXr.,/1^ H m logT(r;,/) =

and

lim
logrn
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For a given c such that p<c<o(f), we have

for sufficiently large rn. On the other hand, for a given e (0 < e < c — /?), we have

T(rn,B)<r£+e, T{rn,Ak_j)<r%+' (j=l,...,k).

Therefore

for sufficiently large rn

, . 1
nJ=fc + 3

holds. (2.14) and (2.15), (2.16), (2.17) give

So

(2.15)
•fc + 3

T(rn,Ak-j)^T^;T(rn,f) U=l,-,*) (2-16)

hold for sufficiently large rn. Since

T{rn,f) (2.17)

logrn

Therefore X(/) = A(/) = <r(/)-

Lemma 7. Let F be the same as in Theorem 3, let Q be the canonical product formed
with the nonzero zeros of F, with a(Q) < /? = a(F), let m(^0) be an integer, and let
bk-r,...,b0 be polynomials with degbk_, = i (/? — 1). Then the DE

(2.18)

https://doi.org/10.1017/S0013091500018538 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091500018538


ON THE COMPLEX OSCILLATION THEORY OF /<*> + Af = F 457

may have at most one exceptional solution g0 with X(g0) = (j(g0) = <AQ) — ^(Q), and oil the
other solutions g of (2.18) satisfy

Proof. It is not difficult to see that all solutions of (2.18) and its corresponding
homogeneous equation

•+bog=0 . (2.19)

are entire functions. For the DE (2.19), from Lemma 3(a), we have basic formulas

r$E,(j=l,...,k) (2.20)

where |z| = r, |g(z)| = M(r,g), jEdr/r<oo, vg(r) denotes the central index of g. As r->oo
set bk-i = dk-iz'lfi~i)(l+o{l)) dk_u...,do a r e nonzero constants). Substituting them and
(2.20) into (2.19), we have

(2.21)

By the reasoning in [7, pp. 106-108] for sufficiently large r, we have vg(r)~cz"
(|z| = r ^ £ , c^O a constant), substituting it into (2.21), it is easy to see that the degrees
of all terms of (2.21) are respectively

fc(a-l), ; ( / ? - l ) + ( / c - ; ) ( a - l ) ( ;= l , . . . , / c - l ) , fc(^-l).

From the Wiman-Valiron theory (see [5, pp. 227-229], [7,8]), we see that ot = f! is the
only possible value. Therefore, all solutions of (2.19) satisfy o(g) = p.

Using the same proof (variation of parameters) as in the proof of Lemma 5, we have
that all solution g of the DE (2.18) satisfy o{g)<,P-

Using the same proof as in the proof of Lemma 5, it is easy to see that the DE (2.18)
may have at most one exceptional solution g0 with a(go)<p.

Next we are going to work out the order of the exceptional solution g0. By the above
proof and (2.18), we have a{Q) ^ a(g0) < p. We will now prove that a(Q) < a(g0) < /? fails.

Suppose that a(Q) < a(g0) < p. From the Wiman-Valiron theory, we have basic
formulas

(2.22)
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where \z\=r, \go(z)\ = M(r,go), Udr/r<°°- A s r-»oo, we set bk_t =
di_jz'("~1)(l+o(l))(dt_,^0 are constants). Substituting them and (2.22) into (2.18), and
using the same proof as in the proof of Lemma 5(b), we can obtain a sequence {zn}. The
sequence {zn} satisfies \zn\ = rn$E, \go(zn)\ = M(rn,g0) and for sufficiently large rn

.+d0z*<"-1»(l + 0(l)) = 0( l) . (2.23)

Setting ff(g0) = <5 </?, by the reasoning in [7, pp. 106-108], for sufficiently larger rn, we
have vgo(rn)~clz

6
n (\zn\ = rn\E, c x ^ 0 a constant). It is easy to see that the degrees of all

terms of (2.23) are respectively

k(d - 1 ) , j(P - 1 ) + (k - j) (8 - 1 ) (j = 1,... , k - 1 ) , ktf -1).

Then there is only one term doz
k^~l)(do^0) with the degree k(P — l) being the highest

one in (2.23). This is impossible. Therefore, the order of g0 can only be ff(go) = <7(Q).
As <T(go) = a(Q), by [3], we have A(g0) Z ̂ zmQ) = a(Q). Hence

As a(g) = P>a(Q), by Lemma 6, we have

3. Proof of theorems

Proof of Theorem 1. (a) Now assume / 0 is a solution of (1.4) with CT(/0)<OO. If/* is
a second solution with o(f*) <oo, then <r(/*—/0)<oo. And /*—/0 is a solution of
(2.1), that is the corresponding homogeneous differential equation of (1.4). But by
Lemma 1, we have cr(/*—/o) = oo.

Now assume / is a solution of (1.4) with <r(/) = oo. Then max {a(A), o(F)}<o{f). By
Lemma 6, we have X(/) = A(/) = o(f) = oo.

(b) Assume / is an exceptional solution of (1.4) with <r(/0)<oo. Using the same proof
as in the proof of Lemma 6, we have

r, /„) ^ kN (r, 1
\ Jo

Now set max {a,(A), a(F)} =a. Then for sufficiently large r, we have

T(r, /„) ^ kN (r, 1 ) + T(r, F) + T(r, A) + O(log r). (3.1)
/

T(r,F)<rs+t, T(r,A)<rs+t.

By (3.1) we have
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T(r, /„) < kN (r, ^ \ + 2f+° + O(log r).
\ Jo/

Therefore

<r(/o) ̂ max {X(/o), a} = max {X(/o), a{A), a{F)}. (3.2)

If a(A)%<j(F), X(/O)<<T(/O), then from (3.2), we get

and by (1,4), we have CT(/0) ^ max {<r(y4), a(F)}. Therefore,

Proof of Theorem 2. By Lemma 2, every solution g^O of (2.2), that is the
corresponding homogeneous equation of (1.6), satisfies a(g) = oo. Using the analogous
proof to that in Theorem 1, we can prove that Theorem 2 holds.

Proof of Theorem 3. (a) By Lemma 5, we have a{f) = p.

(b) If X{F) = p, then by [3] we have A(/)^1(F). Hence A(/) = <r(/)=/?.

(c) If A(F)<p, set F = ZmQep, (Q is the canonical product formed with the nonzero
zeros of F,P is a polynomial with degP = 0). Set f=gep, then X(g) = X(f), I(g) = ! ( / ) .
Substituting f=gep into (1.4), we have

g(t» + 4 - i g " t - 1 ) + - - - + d o g = zmQ. (3.3)

To work out the degrees of dk_j for j=l,...,k, we need dk_j (_/= l,...,fc) in more
detailed form. It is easy to check by induction that we have for k ̂  2 (see [6])

(3.4)

where //y_,(p') are differential polynomials in p' and its derivatives of total degree j—l
with constant coefficients. It is easy to see that the derivatives of Hj.^p') as to z are of
the same form Hj-^p'). C{ is the usual notation for the binomial coefficients. (1.4) and
(3.4) give

So degdk-j=j(P-\)(j=l,...,k-l). Since p>(n + k)/k, we have degdo = k(P-l). By
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Lemma 7, the DE (3.3) may have at most one exceptional solution g0 with A(go) =
o(g0) = o(Q) = k(Q), and all the other solutions g of (3.3) satisfy X(g) = k(g) = a(g) = 0.

Therefore, the DE (1.4) may have at most one exceptional solution /o=goe"
A(/0) = A(F), and all the other solutions f=gep of (1.4) satisfy

Proof of Theorem 4. (a) If 0<(n + k)/k, then by Lemma 5, the DE(1.4) may have at
most one exceptional solution f0 with a(fo) = P, and all the other solutions / of (1.4)
satisfy a(f)=(n + k)/k. By Lemma 6, all the other solutions / of (1.4) satisfy

(b) If P = (n + k)/k, then by Lemma 5, all solutions / of (1.4) satisfy a{f) = {n + k)/k.

From [3], we have

4. Examples of the exceptional solution

Example 2 (concerning the exceptional solution in Theorem 1). / 0 = ez2 solves

/ " + (sin z - 4z2 - 2)/=e*2 sin z,

there o(A)<o{F), a{f0) = o{F), A(/O) = 0 « J ( / O ) .

Example 3 (concerning the exceptional solution in Theorem 2). Let G be a given
transcendental entire function with a(G)^l, a(G)<co, Then/ 0 = e3z solves

there (j(/o) = l,I(/o) = 0.

Example 4 (concerning the exceptional solution in Theorem 3). The DE

/ " + (l-6z)/=3z2(2cosz + 3z

has exceptional solution / 0 = sinzez3, there o(F) = 3 > (n + k)/k, and o-(/o) = 3, A(/O) = 1.
Now we prove that 1(F) = 1. For the real function 2 cos x + 3x2 sin x, sinm7i = 0 and
2cos»j7t + 3(m7r)2-sinm7z:^0 (m= + l, +2,...), the zeros of 2cosx + 3x2sinx are zeros of
ctgx+^x2. ctgx + jx2 has zeros xme(mn,(m+ 1)TT)(WJ= ± 1, +2,...). Hence k
(2 cos x + 3x2 sin x) = 1. Therefore A(F) = 1.

Example 5 (concerning the exceptional solution in Theorem 4). / 0 = sinz solves
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= z2sinz,

there (n + k)/k = 2>ex(F) = 1, o(/0) = C
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