
On the Complexity Analysis of Randomized

Block-Coordinate Descent Methods

Zhaosong Lu∗ Lin Xiao †

May 20, 2013

Abstract

In this paper we analyze the randomized block-coordinate descent (RBCD) methods
proposed in [8, 11] for minimizing the sum of a smooth convex function and a block-
separable convex function. In particular, we extend Nesterov’s technique developed
in [8] for analyzing the RBCD method for minimizing a smooth convex function over
a block-separable closed convex set to the aforementioned more general problem and
obtain a sharper expected-value type of convergence rate than the one implied in [11].
Also, we obtain a better high-probability type of iteration complexity, which improves
upon the one in [11] by at least the amount O(n/ǫ), where ǫ is the target solution
accuracy and n is the number of problem blocks. In addition, for unconstrained smooth
convex minimization, we develop a new technique called randomized estimate sequence

to analyze the accelerated RBCD method proposed by Nesterov [8] and establish a
sharper expected-value type of convergence rate than the one given in [8].

Key words: Randomized block-coordinate descent, accelerated coordinate descent,
iteration complexity, convergence rate, composite minimization.

1 Introduction

Block-coordinate descent (BCD) methods and their variants have been successfully applied to
solve various large-scale optimization problems (see, for example, [22, 4, 18, 19, 20, 21, 9, 23]).
At each iteration, these methods choose one block of coordinates to sufficiently reduce the
objective value while keeping the other blocks fixed. One common and simple approach for
choosing such a block is by means of a cyclic strategy. The global and local convergence of
the cyclic BCD method have been well studied in the literature (see, for example, [17, 5])
though its global convergence rate still remains unknown except for some special cases [13].
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Instead of using a deterministic cyclic order, recently many researchers proposed ran-
domized strategies for choosing a block to update at each iteration of the BCD methods
[1, 2, 14, 3, 8, 10, 11, 15, 12, 16]. The resulting methods are called randomized BCD
(RBCD) methods. Numerous experiments have demonstrated that the RBCD methods are
very powerful for solving large- and even huge-scale optimization problems arising in machine
learning [1, 2, 14, 15]. In particular, Chang et al. [1] proposed a RBCDmethod for minimizing
several smooth functions appearing in machine learning and derived its iteration complex-
ity. Shalev-Shwartz and Tewari [14] studied a RBCD method for minimizing l1-regularized
smooth convex problems. They first transformed the problem into a box-constrained smooth
problem by doubling the dimension and then applied a block-coordinate gradient descent
method in which each block was chosen with equal probability. Leventhal and Lewis [3]
proposed a RBCD method for minimizing a convex quadratic function and established its
iteration complexity. Nesterov [8] analyzed some RBCD methods for minimizing a smooth
convex function over a closed block-separable convex set and established its iteration com-
plexity, which in effect extends and improves upon some of the results in [1, 3, 14] in several
aspects. Richtárik and Takáč [11] generalized the RBCD methods proposed in [8] to the
problem of minimizing a composite objective (i.e., the sum of a smooth convex function and
a block-separable convex function) and derived some improved complexity results than those
given in [8]. More recently, Shalev-Shwartz and Zhang [15] studied a randomized proximal
coordinate ascent method for solving the dual of a class of large-scale convex minimization
problems arising in machine learning and established iteration complexity for obtaining a
pair of approximate primal-dual solutions.

Inspired by the recent work [8, 11], we consider the problem of minimizing the sum of
two convex functions:

min
x∈ℜN

{

F (x)
def
= f(x) + Ψ(x)

}

, (1)

where f is differentiable on ℜN , and Ψ has a block separable structure. More specifically,

Ψ(x) =
n∑

i=1

Ψi(xi),

where each xi denotes a subvector of x with cardinality Ni, the collection {xi : i = 1, . . . , n}
form a partition of the components of x, and each Ψi : ℜNi → ℜ∪ {+∞} is a closed convex
function. Given the current iterate xk, the RBCD method [11] picks a block i ∈ {1, . . . , n}
uniformly at random and solves a block-wise proximal subproblem in the form of

di(x
k) := arg min

di∈ℜNi

{

〈∇if(x
k), di〉+

Li

2
‖di‖2 +Ψi(x

k
i + di)

}

,

and then it sets the next iterate as xk+1
i = xk

i + di(x) and xk+1
j = xk

j for all j 6= i. Here
∇if(x) denotes the partial gradient of f with respect to xi, and Li is the Lipschitz constant
of the partial gradient (which will be defined precisely later).

Under the assumption that the partial gradients of f with respect to each block coordi-
nate are Lipschitz continuous, Nesterov [8] studied RBCD methods for solving some special
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cases of problem (1). In particular, for Ψ ≡ 0, he proposed a RBCD method in which a
random block is chosen per iteration according to a uniform or certain non-uniform proba-
bility distributions and established an expected-value type of convergence rate. In addition,
he proposed a RBCD method for solving (1) with each Ψi being the indicator function of
a closed convex set, in which a random block is chosen uniformly at each iteration. He
also derived an expected-value type of convergence rate for this method. It can be observed
that the techniques used by Nesterov to derive these two convergence rates substantially
differ from each other, and moreover, for Ψ ≡ 0 the second rate is much better than the
first one. (However, the second technique can only work with uniform distribution.) Re-
cently, Richtárik and Takáč [11] extended Nesterov’s RBCD methods to the general form of
problem (1) and established a high-probability type of iteration complexity. Although the
expected-value type of convergence rate is not presented explicitly in [11], it can be readily
obtained from some intermediate result developed in [11] (see Section 3 for a detailed dis-
cussion). Their results can be considered as a generalization of Nesterov’s first technique
mentioned above. Given that for Ψ ≡ 0 Nesterov’s second technique can produce a better
convergence rate than his first one, a natural question is whether his second technique can be
extended to work with the general setting of problem (1) and obtain a sharper convergence
rate than the one implied in [11] .

In addition, Nesterov [8] proposed an accelerated RBCD (ARCD) method for solving
problem (1) with Ψ ≡ 0 and established an expected-value type of convergence rate for
his method. When n = 1, this method becomes a deterministic accelerated full gradient
method for minimizing smooth convex functions. When f is a strongly convex function, the
convergence rate given in [8] for n = 1 is, however, worse than the well-known optimal rate
shown in [6, Theorem 2.2.2]. Then the question is whether a sharper convergence rate for
the ARCD method than the one given in [8] can be established (which would match the
optimal rate for n = 1).

In this paper, we successfully address the above two questions by obtaining some sharper
convergence rates for the RBCD method for solving problem (1) and for the ARCD method in
the case Ψ ≡ 0. First, we extend Nesterov’s second technique [8] developed for a special case
of (1) to analyze the RBCD method in the general setting, and obtain a sharper expected-
value type of convergence rate than the one implied in [11]. We also obtain a better high-
probability type of iteration complexity, which improves upon the one in [11] at least by the
amount O(n/ǫ), where ǫ is the target solution accuracy.

For unconstrained smooth convex minimization (i.e., Ψ ≡ 0), we develop a new technique
called randomized estimate sequence to analyze Nesterov’s ARCD method and establish a
sharper expected-value type of convergence rate than the one given in [8]. Especially, for
n = 1, our rate becomes the same as the well-known optimal rate achieved by accelerated
full gradient method [6, Section 2.2].

This paper is organized as follows. In Section 2, we develop some technical results that
are used to analyze the RBCD methods. In Section 3, we analyze the RBCD method for
problem (1) by extending Nesterov’s second technique [8], and establish a sharper expected-
value type of converge rate as well as improved high-probability iteration complexity. In
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Section 4, we develop the randomized estimate sequence technique and use it to derive a
sharper expected-value type of converge rate for the ARCD method for solving unconstrained
smooth convex minimization.

2 Technical preliminaries

In this section we develop some technical results that will be used to analyze the RBCD
and ARCD methods subsequently. Throughout this paper we assume that problem (1) has
a minimum (F ⋆ > −∞) and its set of optimal solutions, denoted by X∗, is nonempty.

For any partition of x ∈ ℜN into {xi ∈ ℜNi : i = 1, . . . , n}, there is an N×N permutation
matrix U partitioned as U = [U1 · · ·Un], where Ui ∈ ℜN×Ni , such that

x =
n∑

i=1

Uixi, and xi = UT
i x, i = 1, . . . , n.

For any x ∈ ℜN , the partial gradient of f with respect to xi is defined as

∇if(x) = UT
i ∇f(x), i = 1, . . . , n.

For simplicity of presentation, we associate each subspace ℜNi , for i = 1, . . . , n, with the
standard Euclidean norm, denoted by ‖ ·‖. We make the following assumption which is used
in [8, 11] as well.

Assumption 1. The gradient of function f is block-wise Lipschitz continuous with constants
Li, i.e.,

‖∇if(x+ Uihi)−∇if(x)‖ ≤ Li‖hi‖, ∀hi ∈ R
Ni , i = 1, . . . , n, x ∈ R

N .

Following [8], we define the following pair of norms in the whole space ℜN :

‖x‖L =

( n∑

i=1

Li‖xi‖2
)1/2

, ∀ x ∈ ℜN ,

‖g‖∗L =

( n∑

i=1

1

Li

‖gi‖2
)1/2

, ∀ g ∈ ℜN .

Clearly, they satisfy the Cauchy-Schwartz inequality:

〈g, x〉 ≤ ‖x‖L · ‖g‖∗L, ∀ x, g ∈ ℜN .

The convexity parameter of a convex function φ : ℜN → ℜ ∪ {+∞} with respect to the
norm ‖ · ‖L, denoted by µφ, is the largest µ ≥ 0 such that for all x, y ∈ domφ,

φ(y) ≥ φ(x) + 〈s, y − x〉+ µ

2
‖y − x‖2L, ∀ s ∈ ∂φ(x).
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Clearly, φ is strongly convex if and only if µφ > 0.
Assume that f and Ψ have convexity parameters µf ≥ 0 and µΨ ≥ 0 with respect to the

norm ‖ · ‖L, respectively. Then the convexity parameter of F = f + Ψ is at least µf + µΨ.
Moreover, by Assumption 1, we have

f(x+ Uihi) ≤ f(x) + 〈∇if(x), hi〉+
Li

2
‖hi‖2, ∀hi ∈ R

Ni , i = 1, . . . , n, x ∈ R
N , (2)

which immediately implies that µf ≤ 1.

The following lemma concerns the expected value of a block-separable function when a
random block of coordinate is updated.

Lemma 1. Suppose that Φ(x) =
∑n

i=1 Φi(xi). For any x, d ∈ ℜN , if we pick i ∈ {1, . . . , n}
uniformly at random, then

Ei

[
Φ(x+ Uidi)

]
=

1

n
Φ(x+ d) +

n− 1

n
Φ(x).

Proof. Since each i is picked randomly with probability 1/n, we have

Ei

[
Φ(x+ Uidi)

]
=

1

n

n∑

i=1

(

Φi(xi + di) +
∑

j 6=i

Φj(xj)

)

=
1

n

n∑

i=1

Φi(xi + di) +
1

n

n∑

i=1

∑

j 6=i

Φj(xj)

=
1

n
Φ(x+ d) +

n− 1

n
Φ(x).

For notational convenience, we define

H(x, d) := f(x) + 〈∇f(x), d〉+ 1

2
‖d‖2L +Ψ(x+ d). (3)

The following result is equivalent to [11, Lemma 2].

Lemma 2. Suppose x, d ∈ ℜN . If we pick i ∈ {1, . . . , n} uniformly at random, then

Ei

[
F (x+ Uidi)

]
− F (x) ≤ 1

n

(
H(x, d)− F (x)

)
.

We next develop some results regarding the block-wise composite gradient mapping. Com-
posite gradient mapping was introduced by Nesterov [7] for the analysis of full gradient meth-
ods for solving problem (1). Here we extend the concept and several associated properties
to the block-coordinate case.
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As mentioned in the introduction, the RBCD methods studied in [11] solves in each
iteration a block-wise proximal subproblem in the form of:

di(x) := arg min
di∈ℜNi

{

〈∇if(x), di〉+
Li

2
‖di‖2 +Ψi(xi + di)

}

,

for some i ∈ {1, . . . , n}. By the first-order optimality condition, there exists a subgradient
si ∈ ∂Ψi(xi + di(x)) such that

∇if(x) + Lidi(x) + si = 0. (4)

Let d(x) =
∑n

i=1 Uidi(x). By (3), the definition of ‖ · ‖L and separability of Ψ, we then have

d(x) = arg min
d∈ℜN

H(x, d).

We define the block-wise composite gradient mappings as

gi(x)
def
= −Lidi(x), i = 1, . . . , n.

From the optimality conditions (4), we conclude

−∇if(x) + gi(x) ∈ ∂Ψi(xi + di(x)), i = 1, . . . , n.

Let

g(x) =
n∑

i=1

Uigi(x).

Then we have
−∇f(x) + g(x) ∈ ∂Ψ(x+ d(x)). (5)

Moreover,

‖d(x)‖2L =
n∑

i=1

Li‖di(x)‖2 =
n∑

i=1

1

Li

‖gi(x)‖2 =
(
‖g(x)‖∗L

)2
,

and
〈g(x), d(x)〉 = −‖d(x)‖2L = −

(
‖g(x)‖∗L

)2
. (6)

The following result establishes a lower bound of the function value F (y), where y is
arbitrary in ℜN , based on the composite gradient mapping at another point x.

Lemma 3. For any fixed x, y ∈ ℜN , if we pick i ∈ {1, . . . , n} uniformly at random, then

1

n
F (y) +

n− 1

n
F (x) ≥ Ei

[
F (x+ Uidi(x))

]
+

1

n

(

〈g(x), y − x〉+ 1

2

(
‖g(x)‖∗L

)2
)

+
1

n

(µf

2
‖x− y‖2L +

µΨ

2
‖x+ d(x)− y‖2L

)

.
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Proof. By (5) and convexity of f and Ψ, we have

H(x, d(x)) = f(x) + 〈∇f(x), d(x)〉+ 1

2
‖d(x)‖2L +Ψ(x+ d(x))

≤ f(y) + 〈∇f(x), x− y〉 − µf

2
‖x− y‖2L + 〈∇f(x), d(x)〉+ 1

2
‖d(x)‖2L

+Ψ(y) + 〈−∇f(x) + g(x), x+ d(x)− y〉 − µΨ

2
‖x+ d(x)− y‖2L

= F (y) + 〈g(x), x− y〉+ 〈g(x), d(x)〉+ 1

2
‖d(x)‖2L − µf

2
‖x− y‖2L

−µΨ

2
‖x+ d(x)− y‖2L

= F (y) + 〈g(x), x− y〉 − 1

2

(
‖g(x)‖∗L

)2 − µf

2
‖x− y‖2L − µΨ

2
‖x+ d(x)− y‖2L,

where the last inequality holds due to (6). This together with Lemma 2 yields the desired
result.

Using Lemma 1 with Φ(·) = ‖ · ‖2L, we can rewrite the conclusion of Lemma 3 in an
equivalent form:

1

n
F (y) +

n− 1

n
F (x) +

µΨ

2
‖x− y‖2L ≥ Ei

[

F (x+ Uidi(x)) +
µΨ

2
‖x+ Uidi − y‖2L

]

+
1

n

(

〈g(x), y − x〉+ 1

2

(
‖g(x)‖∗L

)2
+

µf + µΨ

2
‖x− y‖2L

)

. (7)

This is the form we will actually use in our subsequent convergence analysis.

Letting y = x in Lemma 3, we obtain the following corollary.

Corollary 1. Given x ∈ ℜN . If we pick i ∈ {1, . . . , n} uniformly at random, then

F (x)− Ei

[
F (x+ Uidi(x))

]
≥ 1 + µΨ

2n

(
‖g(x)‖∗L)2 =

1 + µΨ

2n

(
‖d(x)‖L)2.

By similar arguments as in the proof of Lemma 3, it can be shown that a similar result
as Lemma 3 also holds block-wise without taking expectation:

F (x)− F (x+ Uidi(x)) ≥
1 + µΨ

2
Li‖di(x)‖2.

The following (trivial) corollary is useful when we do not have knowledge on µf or µΨ.

Corollary 2. For any fixed x, y ∈ ℜN , if we pick i ∈ {1, . . . , n} uniformly at random, then

1

n
F (y) +

n− 1

n
F (x) ≥ Ei

[
F (x+ Uidi(x))

]
+

1

n

(

〈g(x), y − x〉+ 1

2

(
‖g(x)‖∗L

)2
)

.

7



3 Randomized block-coordinate descent

In this section we analyze the following randomized block coordinate descent (RBCD)
method for solving problem (1), which was proposed in [11]. In particular, we extend Nes-
terov’s technique [8] developed for a special case of problem (1) to work with the general
setting and establish some sharper expected-value type of converge rate, as well as improved
high-probability iteration complexity, than those given or implied in [11].

Algorithm: RBCD(x0)

Repeat for k = 0, 1, 2, . . .

1. Choose ik ∈ {1, . . . , n} randomly with a uniform distribution.

2. Update xk+1 = xk + Uikdik(x
k).

After k iterations, the RBCD method generates a random output xk, which depends on
the observed realization of the random variable

ξk−1
def
= {i0, i1, . . . , ik−1}.

The following quantity measures the distance between x0 and the optimal solution set of
problem (1) that will appear in our complexity results:

R0
def
= min

x⋆∈X∗

‖x0 − x⋆‖L, (8)

where X∗ is the set of optimal solutions of problem (1).

3.1 Convergence rate of expected values

The following theorem is a generalization of [8, Theorem 5], where the function Ψ in (1)
is restricted to be the indicator function of a block-separable closed convex set. Here we
extend it to the general case of Ψ being block-separable convex functions by employing the
machinery of block-wise composite gradient mapping developed in Section 2.

Theorem 1. Let R0 be defined in (8), F ⋆ be the optimal value of problem (1), and {xk} be
the sequence generated by the RBCD method. Then for any k ≥ 0, the iterate xk satisfies

Eξk−1

[
F (xk)

]
− F ⋆ ≤ n

n+ k

(
1

2
R2

0 + F (x0)− F ⋆

)

. (9)

Furthermore, if at least one of f and Ψ is strongly convex, i.e., µf + µΨ > 0, then

Eξk−1

[
F (xk)

]
− F ⋆ ≤

(

1− 2(µf + µΨ)

n(1 + µf + 2µΨ)

)k (
1 + µΨ

2
R2

0 + F (x0)− F ⋆

)

. (10)
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Proof. Let x⋆ be an arbitrary optimal solution of (1). Denote

r2k = ‖xk − x⋆‖2L =
n∑

i=1

Li〈xk
i − x⋆

i , x
k
i − x⋆

i 〉.

Notice that xk+1 = xk + Uikdik(x
k). Thus we have

r2k+1 = r2k + 2Lik〈dik(xk), xk
ik
− x⋆

ik
〉+ Lik‖dik(xk)‖2.

Multiplying both sides by 1/2 and taking expectation with respect to ik yield

Eik

[
1

2
r2k+1

]

=
1

2
r2k +

1

n

(
n∑

i=1

Li〈di(xk), xk
i − x⋆

i 〉+
1

2

n∑

i=1

1

Li

‖gi(xk)‖2
)

=
1

2
r2k +

1

n

(

〈g(xk), x⋆ − xk〉+ 1

2

(
‖g(xk)‖∗L

)2
)

. (11)

Using Corollary 2, we obtain

Eik

[
1

2
r2k+1

]

≤ 1

2
r2k +

1

n
F ⋆ +

n− 1

n
F (xk)− EikF (xk+1).

By rearranging terms, we obtain that for each k ≥ 0,

Eik

[
1

2
r2k+1 + F (xk+1)− F ⋆

]

≤
(
1

2
r2k + F (xk)− F ⋆

)

− 1

n

(
F (xk)− F ⋆

)
.

Taking expectation with respect to ξk−1 on both sides of the above inequality, we have

Eξk

[
1

2
r2k+1 + F (xk+1)− F ⋆

]

≤ Eξk−1

[
1

2
r2k + F (xk)− F ⋆

]

− 1

n
Eξk−1

[
F (xk)− F ⋆

]
.

Applying this inequality recursively and using the fact that Eξk

[
F (xj)

]
is monotonically

decreasing for j = 0, . . . , k + 1 (see Corollary 1), we further obtain that

Eξk

[
F (xk+1)

]
− F ⋆ ≤ Eξk

[
1

2
r2k+1 + F (xk+1)− F ⋆

]

≤ 1

2
r20 + F (x0)− F ⋆ − 1

n

k∑

j=0

(
Eξk

[
F (xj)

]
− F ⋆

)

≤ 1

2
r20 + F (x0)− F ⋆ − k + 1

n

(
Eξk

[
F (xk+1)

]
− F ⋆

)
.

This leads to

Eξk

[
F (xk+1)

]
− F ⋆ ≤ n

n+ k + 1

(
1

2
‖x0 − x⋆‖2L + F (x0)− F ⋆

)

,
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which together with the arbitrariness of x⋆ and the definition of R0 yields (9).
Next we prove (10) under the strong convexity assumption µf + µΨ > 0. Using (7) and

(11), we obtain that

Eik

[
1 + µΨ

2
r2k+1 + F (xk+1)− F ⋆

]

≤
(
1 + µΨ

2
r2k + F (xk)− F ⋆

)

− 1

n

(
µf + µΨ

2
r2k + F (xk)− F ⋆

)

. (12)

By strong convexity of F , we have

µf + µΨ

2
r2k + F (xk)− F ⋆ ≥ µf + µΨ

2
r2k +

µf + µΨ

2
r2k = (µf + µΨ)r

2
k.

Define

β =
2(µf + µΨ)

1 + µf + 2µΨ

.

We have 0 < β ≤ 1 due to µf + µΨ > 0 and µf ≤ 1. Then

µf + µΨ

2
r2k + F (xk)− F ⋆ ≥ β

(
µf + µΨ

2
r2k + F (xk)− F ⋆

)

+ (1− β)(µf + µΨ)r
2
k

= β

(
1 + µΨ

2
r2k + F (xk)− F ⋆

)

.

Combining the above inequality with (12) gives

Eik

[
1 + µΨ

2
r2k+1 + F (xk+1)− F ⋆

]

≤
(

1− β

n

)(
1 + µΨ

2
r2k + F (xk)− F ⋆

)

Taking expectation with respect ξk−1 on both sides of the above relation, we have

Eξk

[
1 + µΨ

2
r2k+1 + F (xk+1)− F ⋆

]

≤
(

1− β

n

)k+1(
1 + µΨ

2
r20 + F (x0)− F ⋆

)

,

which together with the arbitrariness of x⋆ and the definition of R0 leads to (10).

We have the following remarks on comparing the results in Theorem 1 with those in [11].

• For the general setting of problem (1), expected-value type of convergence rate is not
presented explicitly in [11]. Nevertheless, it can be derived straightforwardly from the
following relation that was proved in [11, Theorem 5]:

Eik [∆k+1] ≤ ∆k −
∆2

k

2nc
, ∀k ≥ 0, (13)
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where ∆k := F (xk)− F ⋆, and

c := max{R̄2
0, F (x0)− F ⋆}, (14)

R̄0 := max
x

{

max
x⋆∈X∗

‖x− x⋆‖L : F (x) ≤ F (x0)
}

. (15)

Taking expectation with respect to ξk−1 on both sides of (13), one can have

Eξk [∆k+1] ≤ Eξk−1
[∆k]−

1

2nc

(
Eξk−1

[∆k]
)2

, ∀k ≥ 0.

By this relation and a similar argument as used in the proof of [8, Theorem 1], one can
obtain that

Eξk−1
[F (xk)]− F ⋆ ≤ 2nc(F (x0)− F ⋆)

k(F (x0)− F ⋆) + 2nc
, ∀k ≥ 0. (16)

Let a and b denote the right-hand side of (9) and (16), respectively. By the definition
of c and the relation R̄0 ≥ R0, we can see that when k is sufficiently large,

b

a
≈ 2c

1
2
R2

0 + F (x0)− F ⋆
≥ 4

3
.

Therefore, our expected-value type of convergence rate is better by at least a factor
of 4/3 asymptotically, and the improvement can be much larger if R̄0 is much larger
than R0.

• For the special case of (1) where at least one of f and Ψ is strongly convex, i.e.,
µf + µΨ > 0, Richtárik and Takáč [11, Theorem 7] showed that for all k ≥ 0, there
holds

Eξk−1

[
F (xk)

]
− F ⋆ ≤

(

1− µf + µΨ

n(1 + µΨ)

)k
(
F (x0)− F ⋆

)
.

It is not hard to observe that

2(µf + µΨ)

n(1 + µf + 2µΨ)
>

µf + µΨ

n(1 + µΨ)
. (17)

It then follows that for sufficiently large k, one has

(

1− 2(µf + µΨ)

n(1 + µf + 2µΨ)

)k (
1 + µΨ

2
R2

0 + F (x0)− F ⋆

)

≤
(

1− 2(µf + µΨ)

n(1 + µf + 2µΨ)

)k (
1 + µf + µΨ

µf + µΨ

)
(
F (x0)− F ⋆

)

≪
(

1− µf + µΨ

n(1 + µΨ)

)k
(
F (x0)− F ⋆

)
.

Therefore, our convergence rate (10) is much sharper than their rate for sufficiently
large k.
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3.2 High probability complexity bound

By virtue of Theorem 1 we can also derive a sharper iteration complexity for a single run of
the RBCD method for obtaining an ǫ-optimal solution with high probability than the one
given in [11, Theorems 5 and 7].

Theorem 2. Let R0 be defined in (8) and {xk} be the sequence generated by the RBCD
method. Let 0 < ǫ < F (x0)− F ⋆ and ρ ∈ (0, 1) be chosen arbitrarily.

(i) For all k ≥ K, there holds

P(F (xk)− F ⋆ ≤ ǫ) ≥ 1− ρ, (18)

where

K :=
2nc

ǫ

(

1 + log

(
R2

0 + 2[F (x0)− F ⋆]

4cρ

))

+ 2− n. (19)

(ii) Furthermore, if at least one of f and Ψ is strongly convex, i.e., µf +µΨ > 0, then (18)
holds when k ≥ K̃, where

K̃ :=
n(1 + µf + 2µΨ)

2(µf + µΨ)
log

(
1+µΨ

2
R2

0 + F (x0)− F ⋆

ρǫ

)

Proof. (i) For convenience, let ∆k = F (xk) − F ⋆ for all k. Define the truncated sequence
{∆ǫ

k} as follows:

∆ǫ
k =

{
∆k if ∆k ≥ ǫ,
0 otherwise.

Using (13) and the same argument as used in the proof of [11, Theorem 1], one can have

Eik [∆
ǫ
k+1] ≤

(

1− ǫ

2nc

)

∆ǫ
k, ∀k ≥ 0.

Taking expectation with respect to ξk−1 on both sides of the above relation, we obtain that

Eξk [∆
ǫ
k+1] ≤

(

1− ǫ

2nc

)

Eξk−1
[∆ǫ

k], ∀k ≥ 0. (20)

In addition, using (9) and the relation ∆ǫ
k ≤ ∆k, we have

Eξk−1
[∆ǫ

k] ≤ n

n+ k

(
1

2
R2

0 + F (x0)− F ⋆

)

, ∀k ≥ 0. (21)

For any t > 0, let

K1 =

⌈
n

tǫ

(
1

2
R2

0 + F (x0)− F ⋆

)⌉

− n, K2 =

⌈
2nc

ǫ
log

(
t

ρ

)⌉

.

12



It follows from (21) that EξK1−1
[∆ǫ

K1
] ≤ tǫ, which together with (20) implies that

EξK1+K2−1
[∆ǫ

K1+K2
] ≤

(

1− ǫ

2nc

)K2

EξK1−1
[∆ǫ

K1
] ≤

(

1− ǫ

2nc

)K2

tǫ ≤ ρǫ.

Notice from (20) that {Eξk−1
[∆ǫ

k]} is decreasing. Hence, we have

Eξk−1
[∆ǫ

k] ≤ ρǫ, ∀k ≥ K(t), (22)

where

K(t) :=
n

tǫ

(
1

2
R2

0 + F (x0)− F ⋆

)

+
2nc

ǫ
log

(
t

ρ

)

+ 2− n.

It is not hard to verify that

t∗ :=
1
2
R2

0 + F (x0)− F ⋆

2c
= argmin

t>0
K(t).

Also, one can observe from (19) that K ≥ K(t∗), which together with (22) implies that

Eξk−1
[∆ǫ

k] ≤ ρǫ, ∀k ≥ K.

Using this relation and Markov inequality, we obtain that

P(F (xk)− F ⋆ > ǫ) = P(∆k > ǫ) = P(∆ǫ
k > ǫ) ≤ Eξk−1

[∆ǫ
k]

ǫ
≤ ρ, ∀k ≥ K,

which immediately implies statement (i) holds.
(ii) Using the Markov inequality, the inequality (10) and the definition of K̃, we obtain

that for any k ≥ K̃,

P(F (xk)− F ⋆ > ǫ) ≤ Eξk−1
[F (xk)− F ⋆]

ǫ

≤ 1

ǫ

(

1− 2(µf + µΨ)

n(1 + µf + 2µΨ)

)K̃ (
1 + µΨ

2
R2

0 + F (x0)− F ⋆

)

≤ 1

ǫ
exp

(

− 2(µf + µΨ)K̃

n(1 + µf + 2µΨ)

)(
1 + µΨ

2
R2

0 + F (x0)− F ⋆

)

≤ ρ

and hence statement (ii) holds.

We make the following remarks in comparing our results in Theorem 2 with those in [11].
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• For any 0 < ǫ < F (x0) − F ⋆ and ρ ∈ (0, 1), Richtárik and Takáč [11, Theorem 5]
showed that (18) holds for all k ≥ K̄, where

K̄ =
2nc

ǫ

(

1 + log
1

ρ

)

+ 2− 2nc

F (x0)− F ⋆

and c is given in (14). Using the definitions of c and R0 and the fact R0 ≤ R̄0, one can
observe that

τ :=
R2

0 + 2[F (x0)− F ⋆]

4c
≤ 3

4
.

By the definitions of K and K̄, we have that for sufficiently small ǫ > 0,

K − K̄ ≈ 2nc log τ

ǫ
≤ −2nc log(4/3)

ǫ
.

In addition, by the definitions of R0 and R̄0, one can see that R0 can be much smaller
than R̄0 and thus τ can be very small. It follows from the above relation that K can
be substantially smaller than K̄.

• For a special case of (1) where at least one of f and Ψ is strongly convex, i.e., µf+µΨ >

0, Richtárik and Takáč [11, Theorem 8] showed that (18) holds for all k ≥ K̂, where

K̂ :=
n(1 + µΨ)

µf + µΨ

log

(
F (x0)− F ⋆

ρǫ

)

.

We then see that when ρ or ǫ is sufficiently small,

K̃

K̂
≈ 1 + µf + 2µΨ

2(1 + µΨ)
≤ 1

due to 0 ≤ µf ≤ 1. When µf < 1, we have K̃ ≤ τ̃ K̂ for some τ̃ ∈ (0, 1) and thus our
complexity bound is tighter when ρ or ǫ is sufficiently small.

As discussed in [11, Section 2], the number of iterations required by the RBCD method
for obtaining an ǫ-optimal solution with high probability can also be estimated by us-
ing a multiple-run strategy, each run with an independently generated random sequence
{i0, i1, . . .}. We next derive such an iteration complexity.

Theorem 3. Let 0 < ǫ < F (x0) − F ⋆ and ρ ∈ (0, 1) be arbitrarily chosen, and let
r = ⌈log(1/ρ)⌉. Suppose that we run the RBCD method starting with x0 for r times in-
dependently, each time for the same number of iterations k. Let xk

(j) denote the output by
the RBCD at the kth iteration of the jth run. Then there holds:

P

(

min
1≤j≤r

F (xk
(j))− F ⋆ ≤ ǫ

)

≥ 1− ρ

for any k ≥ K, where

K :=

⌈
en

ǫ

(
1

2
R2

0 + F (x0)− F ⋆

)⌉

− n.
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Proof. Let ξ
(j)
k−1 =

{

i
(j)
0 , i

(j)
1 , . . . , i

(j)
k−1

}

denote the random sequence used in the jth run.

Using Markov inequality, (9) and the definition of K, we obtain that for any k ≥ K,

P
(
F (xk

(j))− F ⋆ > ǫ
)

≤
E

ξ
(j)
k−1

[F (xk
(j))− F ⋆]

ǫ
≤ n

(n+ k)ǫ

(
1

2
R2

0 + F (x0)− F ⋆

)

≤ 1

e
.

This together with the definition of r implies that

P

(

min
1≤j≤r

F (xk
(j))− F ⋆ > ǫ

)

= Πr
j=1P

(
F (xk

(j))− F ⋆ > ǫ
)

≤ 1

er
≤ ρ,

and hence the conclusion holds.

Remark. From Theorem 3, one can see that the total number of iterations by RBCD with a
multiple-run strategy for obtaining an ǫ-optimal solution is at most

KM :=

(⌈
2en

ǫ

(
R2

0 + 2(F (x0)− F ⋆)
)
⌉

− n

)⌈

log
1

ρ

⌉

.

It was implicitly established in [11] that an ǫ-optimal solution can be found by RBCD with
a multiple-run strategy in at most

K̄M :=

⌈
2enc

ǫ
− 2nc

F (x0)− F ⋆

⌉⌈

log
1

ρ

⌉

iterations. When ρ or ǫ is sufficiently small, we have

KM

K̄M
≈ R2

0 + 2(F (x0)− F ⋆)

c
.

Recall that R̄0 can be much larger than R0, which together with (15) implies that c can be
much larger than R2

0 +2(F (x0)−F ⋆). It follows from the above relation that when ρ or ǫ is
sufficiently small, KM can be substantially smaller than K̄M.

4 Accelerated randomized coordinate descent

In this section, we restrict ourselves to the unconstrained smooth minimization problem

min
x∈ℜN

f(x), (23)

where f is convex in ℜN with convexity parameter µ = µf ≥ 0 with respect to the norm
‖ · ‖L and satisfies Assumption 1. It then follows from (2) that µ ≤ 1. Our aim is to analyze
the convergence rate of the following accelerated randomized coordinate descent (ARCD)
method.
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Algorithm: ARCD(x0)

Set v0 = x0, choose γ0 > 0 arbitrarily, and repeat for k = 0, 1, 2, . . .

1. Compute αk ∈ (0, n] from the equation

α2
k =

(
1− αk

n

)
γk +

αk

n
µ

and set
γk+1 =

(
1− αk

n

)
γk +

αk

n
µ.

2. Compute yk as

yk = 1
αk
n

γk+γk+1

(
αk

n
γkv

k + γk+1x
k
)
.

3. Choose ik ∈ {1, . . . , n} uniformly at random, and update

xk+1 = yk − 1
Lik

Uik∇ikf(y
k).

4. Set

vk+1 = 1
γk+1

((
1− αk

n

)
γkv

k + αk

n
µyk − αk

Lik

Uik∇ikf(y
k)
)

.

Remark. For the above algorithm, claim that γk > 0 and αk is well-defined for all k. Indeed,
let γ > 0 be arbitrarily given and define

h(α) := α2 −
(

1− α

n

)

γ − α

n
µ, ∀α ≥ 0.

We observe that
h(0) = −γ < 0, h(n) = n2 − µ ≥ 0,

where the last inequality is due to µ ≤ 1. Therefore, by continuity of h, there exists some
α∗ ∈ (0, n] such that h(α∗) = 0. Moreover, if µ = 0, we have 0 < α∗ < n. Using these
observations and the definitions of αk and γk, it is not hard to see by induction that γk > 0
and αk is well-defined for all k.

The above description of the ARCD method comes directly from the derivation using
randomized estimate sequence we develop in Section 4.1, and is very convenient for the
purpose of our convergence analysis. For implementation in practice, one can simplify the
notations and use an equivalent algorithm described below. In the simplified description, it
is also clear that the ARCD method is equivalent to the method (5.1) in [8, Section 5], with
the following correspondences between the symbols used.

This paper αk αk−1 θk βk µ
[8, (5.1)] 1/γk bk/ak αk βk σ
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Algorithm: ARCD(x0)

Set v0 = x0, choose α−1 ∈ (0, n], and repeat for k = 0, 1, 2, . . .

1. Compute αk ∈ (0, n] from the equation

α2
k =

(
1− αk

n

)
α2
k−1 +

αk

n
µ,

and set
θk =

nαk−µ
n2−µ

, βk = 1− µ
nαk

.

2. Compute yk as
yk = θkv

k + (1− θk)x
k.

3. Choose ik ∈ {1, . . . , n} uniformly at random, and update

xk+1 = yk − 1
Lik

Uik∇ikf(y
k).

4. Set
vk+1 = βkv

k + (1− βk)y
k − 1

αkLik

Uik∇ikf(y
k).

At each iteration k, the ARCD method generates yk, xk+1 and vk+1. One can observe
that xk+1 and vk+1 depend on the realization of the random variable

ξk = {i0, i1, . . . , ik}

while yk depends on the realization of ξk−1.
We now state a sharper expected-value type of convergence rate for the ARCD method

than the one given in [8]. Its proof relies on a new technique called randomized estimate
sequence that will be developed in Subsection 4.1. Therefore, we postpone the proof to
Subsection 4.2.

Theorem 4. Let f ⋆ be the optimal value of problem (23), R0 be defined in (8), and {xk} be
the sequence generated by the ARCD method. Then, for any k ≥ 0, there holds:

Eξk−1
[f(xk)]− f ⋆ ≤ λk

(

f(x0)− f ⋆ +
γ0R

2
0

2

)

,

where λ0 = 1 and λk =
∏k−1

i=0

(
1− αi

n

)
. In particular, if γ0 ≥ µ, then

λk ≤ min







(

1−
√
µ

n

)k

,

(

n

n+ k
√
γ0
2

)2





.

Remark. We note that for n = 1, the ARCD method reduces to a deterministic accelerated
full gradient method described in [6, (2.2.8)]; Our iteration complexity result above also
becomes the same as the one given there.
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Nesterov [8, Theorem 6] established the following convergence rate for the above ARCD
method:

Eξk−1
[f(xk)]−f ⋆ ≤







aµ
︷ ︸︸ ︷

µ

[

2R2
0 +

1

n2
(f(x0)− f ⋆)

]

·
[(

1 +

√
µ

2n

)k+1

−
(

1−
√
µ

2n

)k+1
]−2

if µ > 0,

(
n

k + 1

)2

·
[

2R2
0 +

1

n2
(f(x0)− f ⋆)

]

︸ ︷︷ ︸

a0

otherwise.

In view of Theorem 4, our convergence rate is given by

Eξk−1
[f(xk)]− f ⋆ ≤ min







(

1−
√
µ

n

)k

,

(

n

n+ k
√
γ0
2

)2






(

f(x0)− f ⋆ +
γ0R

2
0

2

)

︸ ︷︷ ︸

bµ

We now compare the above two rates by considering two cases: µ > 0 and µ = 0.

• Case (1): µ > 0. We can observe that for sufficiently large k,

aµ = O

((

1 +

√
µ

2n

)−2k
)

, bµ = O

((

1−
√
µ

n

)k
)

.

It is easy to verify that
(

1 +

√
µ

2n

)−2

> 1−
√
µ

n

and hence aµ ≫ bµ when k is sufficiently large, which implies that our rate is much
tighter.

• Case (2): µ = 0. For sufficiently k, we have

a0 ≈ (2n2R2
0 + f(x0)− f ⋆)/k2,

b0 ≈
(

2n2R2
0 +

4n2

γ0
(f(x0)− f ⋆)

)

/k2.

Therefore, when γ0 > 4n2, we obtain b0 < a0 for sufficiently large k, which again
implies that our rate is sharper.
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4.1 Randomized estimate sequence

In [6], Nesterov introduced a powerful framework of estimate sequence for the development
and analysis of accelerated full gradient methods. Here we extend it to a randomized block-
coordinate descent setup, and use it to analyze the convergence rate of the ARCD method
subsequently.

Definition 1. Let φ0(x) be a deterministic function and φk(x) be a random function de-
pending on ξk−1 for all k ≥ 1, and λk ≥ 0 for all k ≥ 0. The sequence {(φk(x), λk)}∞k=0 is
called a randomized estimate sequence of function f(x) if

λk → 0 (24)

and for any x ∈ ℜN and all k ≥ 0 we have

Eξk−1
[φk(x)] ≤ (1− λk)f(x) + λkφ0(x), (25)

where Eξ−1 [φ0(x)]
def
= φ0(x).

Here we assume {λk}k≥0 is a deterministic sequence that is independent of ξk.

Lemma 4. Let x⋆ be an optimal solution to (23) and f ⋆ be the optimal value. Suppose that
{(φk(x), λk)}∞k=0 is a randomized estimate sequence of function f(x). Assume that {xk} is a
sequence such that for each k ≥ 0,

Eξk−1
[f(xk)] ≤ min

x
Eξk−1

[φk(x)], (26)

where Eξ−1 [f(x
0)]

def
= f(x0). Then we have

Eξk−1
[f(xk)]− f ⋆ ≤ λk (φ0(x

⋆)− f ⋆) → 0.

Proof. Since {(φk(x), λk)}∞k=0 is a randomized estimate sequence of f(x), it follows from (25)
and (26) that

Eξk−1
[f(xk)] ≤ min

x
Eξk−1

[φk(x)]

≤ min
x

{(1− λk)f(x) + λkφ0(x)}
≤ (1− λk)f(x

⋆) + λkφ0(x
⋆)

= f ⋆ + λk(φ0(x
⋆)− f ⋆),

which together with (24) implies that the conclusion holds.

As we will see next, our construction of the randomized estimate sequence satisfies a
stronger condition, i.e.,

Eξk−1
f(xk) ≤ Eξk−1

[min
x

φk(x)].

This implies that the assumption in Lemma 4, namely, (26) holds due to

Eξk−1
[min

x
φk(x)] ≤ min

x
Eξk−1

[φk(x)].
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Lemma 5. Assume that f satisfies Assumption 1 with convexity parameter µ ≥ 0. In
addition, suppose that

• φ0(x) is an arbitrary deterministic function on ℜN ;

• {yk}∞k=1 is a sequence in ℜN such that yk depends on ξk−1;

• {αk}∞k=1 is independent of ξk and satisfies αk ∈ (0, n) for all k ≥ 0 and
∑∞

k=0 αk = ∞.

Then the pair of sequences {φk(x)}∞k=0 and {λk}∞k=0 constructed by setting λ0 = 1 and

λk+1 =
(

1− αk

n

)

λk, (27)

φk+1(x) =
(

1− αk

n

)

φk(x) + αk

(
1

n
f(yk) + 〈∇ikf(y

k), xik − ykik〉+
µ

2n
‖x− yk‖2L

)

,(28)

is a randomized estimate sequence of f(x).

Proof. It follows from (27) and λ0 = 1 that λk =
∏k−1

i=0 (1− αi/n) for k ≥ 1. Then we have

log λk =
k−1∑

i=0

log
(

1− αi

n

)

≤ − 1

n

k−1∑

i=0

αi → −∞

due to
∑∞

i=0 αi = ∞. Hence, λk → 0. We next prove by induction that (25) holds for all
k ≥ 0. Indeed, for k = 0, we know that λ0 = 1 and hence

Eξ−1 [φ0(x)] = φ0(x) = (1− λ0)f(x) + λ0φ0(x),

that is, (25) holds for k = 0. Now suppose it holds for some k ≥ 0. Using (28), we obtain
that

Eξk [φk+1(x)] = Eξk−1
[Eik [φk+1(x)]]

= Eξk−1

[(

1− αk

n

)

φk(x) + αk

(
1

n
f(yk) + Eik

[
〈∇ikf(y

k), xik − ykik〉
]

+
µ

2n
‖x− yk‖2L

)]

= Eξk−1

[(

1− αk

n

)

φk(x) +
αk

n

(

f(yk) + 〈∇f(yk), x− yk〉+ µ

2
‖x− yk‖2L

)]

≤ Eξk−1

[(

1− αk

n

)

φk(x) +
αk

n
f(x)

]

,

where the last inequality is due to convexity of f . Using the induction hypothesis, we have

Eξk [φk+1(x)] ≤
(

1− αk

n

) (
(1− λk)f(x) + λkφ0(x)

)
+

αk

n
f(x)

=
(

1−
(

1− αk

n

)

λk

)

f(x) +
(

1− αk

n

)

λkφ0(x)

= (1− λk+1)f(x) + λk+1φ0(x)

and hence (25) also holds for k + 1. This completes the proof.
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Lemma 6. Let φ0(x) = φ⋆
0+

γ0
2
‖x−v0‖2L. Then the randomized estimate sequence constructed

in Lemma 5 preserves the canonical form of the functions, i.e., for all k ≥ 0,

φk(x) = φ⋆
k +

γk
2
‖x− vk‖2L, (29)

where the sequences {γk}, {vk} and {φ⋆
k} are defined as follows:

γk+1 =
(

1− αk

n

)

γk +
αk

n
µ, (30)

vk+1 =
1

γk+1

((

1− αk

n

)

γkv
k +

αk

n
µyk − αk

Lik

Uik∇ikf(y
k)

)

(31)

φ⋆
k+1 =

(

1− αk

n

)

φ⋆
k +

αk

n
f(yk)− α2

k

2γk+1Lik

‖∇ikf(y
k)‖2

+
αk

(
1− αk

n

)
γk

γk+1

( µ

2n
‖yk − vk‖2L + 〈∇ikf(y

k), vkik − ykik〉
)

(32)

Proof. First we observe that φk(x) is a convex quadratic function due to (28) and the defi-
nition of φ0(x). We now prove by induction that for φk is given by (29) all k ≥ 0. Clearly,
(29) holds for k = 0. Suppose now that it holds for some k ≥ 0. It follows that the Hessian
of φk(x) is a block-diagonal matrix given by

∇2φk(x) = γk diag (L1IN1 , . . . , LnINn
) .

Using this relation, (28) and (30), we have

∇2φk+1(x) =
(

1− αk

n

)

∇2φk(x) +
αk

n
µ diag (L1IN1 , . . . , LnINn

)

= γk+1 diag (L1IN1 , . . . , LnINn
) . (33)

Using the induction hypothesis by substituting (29) into (28), we can write φk+1(x) as

φk+1(x) =
(

1− αk

n

)(

φ⋆
k +

γk
2
‖x− vk‖2L

)

+αk

(
1

n
f(yk) + 〈∇ikf(y

k), xik − ykik〉+
µ

2n
‖x− yk‖2L

)

, (34)

which together with (31) implies

∇φk+1(v
k+1) =

(

1− αk

n

)

γk

n∑

i=1

UiLi(v
k+1
i −vki )+αkUik∇ikf(y

k)+
αk

n
µ

n∑

i=1

UiLi(v
k+1
i −yki ) = 0.

(35)
Letting x = yk in (34), one has

φk+1(y
k) =

(

1− αk

n

)(

φ⋆
k +

γk
2
‖yk − vk‖2L

)

+
αk

n
f(yk).
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In view of (31), we have

vk+1 − yk =
1

γk+1

((

1− αk

n

)

γk(v
k − yk)− αk

Lik

Uik∇ikf(y
k)

)

,

and hence

γk+1

2
‖yk − vk+1‖2L =

1

2γk+1

((

1− αk

n

)2

γ2
k‖yk − vk‖2L +

α2
k

Lik

‖∇ikf(y
k)‖2

−2αk

(

1− αk

n

)

γk
〈
∇ikf(y

k), vkik − ykik
〉
)

.

In addition, using (30) we obtain that
(

1− αk

n

) γk
2

− 1

2γk+1

(

1− αk

n

)2

γ2
k =

1

2γk+1

(

1− αk

n

)

γk
αk

n
µ.

By virtue of the above relations and (32), it is not hard to conclude that

φk+1(y
k) = φ⋆

k+1 +
γk+1

2
‖yk − vk+1‖2L,

which, together with (33), (35) and the fact that φk+1 is quadratic, implies that

φk+1(x) = φ⋆
k+1 +

γk+1

2
‖x− vk+1‖2L.

Therefore, the conclusion holds.

4.2 Proof of Theorem 4

Let φ0(x) = f(v0) + γ0‖x − v0‖2L/2, {yk} and {αk} be generated in the ARCD method.
In addition, let {(φk(x), λk} be the randomized estimate sequence of f(x) generated as in
Lemma 5 by using such {yk} and {αk}.

First we prove by induction that for all k ≥ 0,

Eξk−1
[f(xk)] ≤ Eξk−1

[{

φ⋆
k = min

x
φk(x)

}]

. (36)

For k = 0, using v0 = x0, the definition of φ0(x) and Eξ−1 [f(x
0)] = f(x0), we have

Eξ−1 [f(x
0)] = f(x0) = f(v0) = φ⋆

0,

and hence (36) holds for k = 0. Now suppose it holds for some k ≥ 0. It follows from (32)
that

Eξk [φ
⋆
k+1] = Eξk−1

[
Eik [φ

⋆
k+1]

]

= Eξk−1

[
(

1− αk

n

)

φ⋆
k +

αk

n
f(yk)− α2

k

2γk+1

Eik

[
1

Lik

‖∇ikf(y
k)‖2

]

(37)

+
αk

(
1− αk

n

)
γk

γk+1

( µ

2n
‖yk − vk‖2L + Eik

[
〈∇ikf(y

k), vkik − ykik〉
])
]

.
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Let

di(y
k) = − 1

Li

∇if(y
k), i = 1, . . . , n,

and d(yk) =
∑n

i=1 Uidi(y
k). Then we have

Eik

[
1

Lik

‖∇ikf(y
k)‖2

]

=
1

n
‖d(yk)‖2L.

Moreover,

Eik

[
〈∇ikf(y

k), vkik − ykik〉
]

=
1

n
〈∇f(yk), vk − yk〉.

Using these two equalities and dropping the term ‖yk − vk‖2L in (37), we arrive at

Eξk [φ
⋆
k+1] ≥ Eξk−1

[
(

1− αk

n

)

φ⋆
k +

αk

n
f(yk)− α2

k

2nγk+1

‖d(yk)‖2L

+
αk

n

(

1− αk

n

) γk
γk+1

〈∇f(yk), vk − yk〉
]

.

By the induction hypothesis and the convexity of f , we obtain that

Eξk−1
[φ⋆

k] ≥ Eξk−1
[f(xk)] ≥ Eξk−1

[f(yk) + 〈∇f(yk), xk − yk〉].

Combining the above two inequalities gives

Eξk [φ
⋆
k+1] ≥ Eξk−1

[

f(yk)− α2
k

2nγk+1

‖d(yk)‖2L

+
(

1− αk

n

)〈

∇f(yk),
αkγk
nγk+1

(vk − yk) + (xk − yk)

〉]

.

Recall that

yk =
1

αk

n
γk + γk+1

(αk

n
γkv

k + γk+1x
k
)

.

This relation together with the above inequality yields

Eξk [φ
⋆
k+1] ≥ Eξk−1

[

f(yk)− α2
k

2nγk+1

‖d(yk)‖2L
]

.

Also, we observe that α2
k = γk+1. Substituting it into the above inequality gives

Eξk [φ
⋆
k+1] ≥ Eξk−1

[

f(yk)− 1

2n
‖d(yk)‖2L

]

.

In addition, notice that

xk+1 = yk − 1

Lik

Uik∇ikf(y
k) = yk + Uikdik(y

k),
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which together with Corollary 1 yields

Eξk [φ
⋆
k+1] ≥ Eξk−1

[
Eikf(x

k+1)
]

= Eξk [f(x
k+1)].

Therefore, (36) holds for all k + 1. Further, by Lemma 4, we have

Eξk−1
[f(xk)]− f ⋆ ≤ λk

(

f(x0)− f ⋆ +
γ0
2
‖x0 − x⋆‖2L

)

.

Finally, we estimate the decay of λk, using the same arguments in the proof of [6,
Lemma 2.2.4]. Here we assume γ0 ≥ µ (it suffices to set γ0 = 1 because µ ≤ 1). Indeed, if
γk ≥ µ, then

γk+1 =
(

1− αk

n

)

γk +
αk

n
µ ≥ µ.

So we have γk ≥ µ for all k ≥ 0. Since α2
k = γk+1, we have αk ≥

√
µ for all k ≥ 0. Therefore,

λk =
k−1∏

i=0

(1− αi

n
) ≤

(

1−
√
µ

n

)k

.

In addition, we have γk ≥ γ0λk. To see this, we note γ0 = γ0λ0 and use induction

γk+1 ≥
(

1− αk

n

)

γk ≥
(

1− αk

n

)

γ0λk = γ0λk+1.

This implies
αk =

√
γk+1 ≥

√

γ0λk+1. (38)

Since {λk} is a decreasing sequence, we have

1
√

λk+1

− 1√
λk

=

√
λk −

√

λk+1√
λk

√

λk+1

=
λk − λk+1√

λk

√

λk+1(
√
λk +

√

λk+1)

≥ λk − λk+1

2λk

√

λk+1

=
λk −

(
1− αk

n

)
λk

2λk

√

λk+1

=
αk

n

2
√

λk+1

.

Combining with (38) gives
1

√

λk+1

− 1√
λk

≥
√
γ0

2n
.

By further noting λ0 = 1, we obtain

1√
λk

≥ 1 +
k

n

√
γ0

2
.

Therefore

λk ≤
(

n

n+ k
√
γ0
2

)2

.

This completes the proof for Theorem 4.
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