
On the Complexity of Bisimulation Problems for
Pushdown Automata

Richard Mayr

LIAFA - Université Denis Diderot - Case 7014 - 2, place Jussieu,
F-75251 Paris Cedex 05. France. E-mail: mayr@liafa.jussieu.fr

Phone: +33 1 44 27 28 40, Fax: +33 1 44 27 68 49

Abstract. All bisimulation problems for pushdown automata are at
least PSPACE-hard. In particular, we show that (1) Weak bisimilarity
of pushdown automata and finite automata is PSPACE-hard, even for
a small fixed finite automaton, (2) Strong bisimilarity of pushdown au-
tomata and finite automata is PSPACE-hard, but polynomial for every
fixed finite automaton, (3) Regularity (finiteness) of pushdown automata
w.r.t. weak and strong bisimilarity is PSPACE-hard.

Keywords: Pushdown automata, bisimulation, verification, complexity

1 Introduction

Bisimulation equivalence plays a central role in the theory of process algebras
[21]. The decidability and complexity of bisimulation problems for infinite-state
systems has been studied intensively (see [22] for a survey). While many algo-
rithms for bisimulation problems have a very high complexity, only few lower bo-
unds are known. Jančar [12,13] showed that strong bisimilarity of two Petri nets
[25] and weak bisimilarity of a Petri net and a finite automaton is undecidable.
Stř́ıbrná [28] showed that weak bisimilarity for Basic Parallel Processes (BPP)
is NP-hard and weak bisimilarity for context-free processes (BPA) is PSPACE -
hard. (BPA are a proper subclass of pushdown automata.) However, it is still an
open question whether these two problems are decidable. So far, the only known
lower bound for a decidable bisimulation problem was an EXPSPACE -lower bo-
und for strong bisimilarity of Petri nets and finite automata [15], that follows
from the hardness of the Petri net reachability problem [18].

For bisimulation problems where one compares an infinite-state system with a
finite-state one, much more is known about the decidability and complexity than
in the general case of two infinite-state systems [14]. Also the complexity can be
much lower. In particular, weak (and strong) bisimilarity of a BPA-process and
a finite automaton is decidable in polynomial time [17], while weak bisimilarity
of two BPA-processes is PSPACE -hard [28].

However, this surprising result does not carry over to general pushdown au-
tomata. We show that strong and weak bisimilarity of a pushdown automaton

J. van Leeuwen et al. (Eds.): IFIP TCS2000, LNCS 1872, pp. 474–488, 2000.
c© Springer-Verlag Berlin Heidelberg 2000

On the Complexity of Bisimulation Problems for Pushdown Automata 475

and a finite automaton is PSPACE -hard. (These problems were already known
to be in EXPTIME [14].) For weak bisimilarity this hardness result holds even
for a small fixed finite automaton, while the same problem for strong bisimila-
rity is polynomial in the size of the pushdown automaton for every fixed finite
automaton. These results also yield a PSPACE lower bound for strong bisimi-
larity of two pushdown automata, a problem that has recently been shown to
be decidable by Sénizergues [27] (the proof in [27] uses a combination of two
semidecision procedures and does not yield any complexity measure).

The problem of bisimilarity is also related to the problem of language equi-
valence for deterministic systems, e.g., the problem of language equivalence for
deterministic pushdown automata [26]. See Section 5 for details.

Furthermore, we prove a PSPACE lower bound for the problem of regularity
(finiteness) of pushdown automata w.r.t. weak and strong bisimilarity.

Thus no bisimulation problem for pushdown automata is polynomial (unless
PSPACE is P). This shows that there is a great difference between pushdown
automata and BPA, although they describe exactly the same class of languages
(Chomsky-2).

2 Definitions

Let Act = {a, b, c, . . .} and Const = {ε, X, Y, Z, . . .} be disjoint countably infinite
sets of actions and process constants, respectively. The class of general process
expressions G is defined by E ::= ε | X | E‖E | E.E, where X ∈ Const and ε is a
special constant that denotes the empty expression. Intuitively, ‘.’ is a sequential
composition and ‘‖’ is a parallel composition. We do not distinguish between
expressions related by structural congruence which is given by the following
laws: ‘.’ and ‘‖’ are associative, ‘‖’ is commutative, and ‘ε’ is a unit for ‘.’ and
‘‖’.

A process rewrite system (PRS) [20] is specified by a finite set ∆ of rules
which have the form E

a→ F , where E, F ∈ G, E 6= ε and a ∈ Act . Const(∆)
and Act(∆) denote the sets of process constants and actions which are used in
the rules of ∆, respectively (note that these sets are finite). Each process rewrite
system ∆ defines a unique transition system where states are process expressions
over Const(∆). Act(∆) is the set of labels. The transitions are determined by ∆
and the following inference rules (remember that ‘‖’ is commutative):

(E a→ F) ∈ ∆

E
a→ F

E
a→ E′

E.F
a→ E′.F

E
a→ E′

E‖F
a→ E′‖F

We extend the notation E
a→ F to elements of Act∗ in a standard way. Moreover,

we say that F is reachable from E if E
w→ F for some w ∈ Act∗.

Various subclasses of process rewrite systems can be obtained by imposing
certain restrictions on the form of rules. To specify those restrictions, we first
define the classes S and P of sequential and parallel expressions, composed of all
process expressions which do not contain the ‘‖’ and the ‘.’ operator, respectively.
We also use ‘1’ to denote the set of process constants.

476 R. Mayr

PDA (S,S) PN (P,P)

BPA (1,S)

FS (1,1)

BPP (1,P)

PAN (P,G)PAD (S,G)

PRS (G,G)

PA (1,G)

Fig. 1. A hierarchy of PRS

The hierarchy of process rewrite systems is
presented in Fig. 1; the restrictions are specified
by a pair (A, B), where A and B are the clas-
ses of expressions which can appear on the left-
hand and the right-hand side of rules, respec-
tively. This hierarchy contains almost all classes
of infinite state systems which have been studied
so far; BPA (Basic Process Algebra, also cal-
led context-free processes), BPP (Basic Paral-
lel Processes), and PA-processes are well-known
[1], PDA correspond to pushdown automata (as
proved by Caucal in [6]), PN correspond to Pe-
tri nets, PRS stands for ‘Process Rewrite Sy-
stems’, PAD and PAN are artificial names made
by combining existing ones (PAD = PA+PDA,
PAN = PA+PN).

We consider the semantical equivalences
weak bisimilarity and strong bisimilarity [21] over transition systems generated
by PRS. In what follows we consider process expressions over Const(∆) where
∆ is some fixed process rewrite system.

Definition 1. The action τ is a special ‘silent’ internal action. The extended
transition relation ‘ a⇒’ is defined by E

a⇒ F iff either E = F and a = τ , or

E
τ i

→ E′ a→ E′′ τj

→ F for some i, j ∈ IN0, E′, E′′ ∈ G. A binary relation R over
process expressions is a weak bisimulation iff whenever (E, F) ∈ R then for every
a ∈ Act: if E

a→ E′ then there is F
a⇒ F ′ s.t. (E′, F ′) ∈ R and if F

a→ F ′ then
there is E

a⇒ E′ s.t. (E′, F ′) ∈ R. Processes E, F are weakly bisimilar, written
E ≈ F , iff there is a weak bisimulation relating them. Strong bisimulation is
defined similarly with a→ instead of a⇒. Processes E, F are strongly bisimilar,
written E ∼ F , iff there is a strong bisimulation relating them.

Bisimulation equivalence can also be described by bisimulation games bet-
ween two players. One player, the ‘attacker’, tries to prove that two given pro-
cesses are not bisimilar, while the other player, the ‘defender’, tries to frustrate
this. In every round of the game the attacker chooses one process and performs
an action. The defender must imitate this move and perform the same action in
the other process (possibly together with several internal τ -actions in the case of
weak bisimulation). If one player cannot move then the other player wins. The
defender wins every infinite game. Two processes are bisimilar iff the defender
has a winning strategy and non-bisimilar iff the attacker has a winning strategy.

Note that context-free processes (BPA) correspond to the subclass of push-
down automata (PDA) where the finite control has size 1. Although BPA and
PDA describe the same class of languages (Chomsky-2), BPA is strictly less
expressive w.r.t. bisimulation.

On the Complexity of Bisimulation Problems for Pushdown Automata 477

3 Hardness of Weak Bisimulation Problems

In this section we show lower bounds for problems about weak bisimulation. We
consider the following two problems:
Weak bisimilarity of pushdown automata and finite automata
Instance: A pushdown automaton P and a finite automaton F .
Question: P ≈ F ?
Weak Finiteness of Pushdown Automata
Instance: A pushdown automaton P .
Question: Does there exist a finite automaton F s.t. P ≈ F ?

We show that both these problems are PSPACE -hard. The proof is done by
a reduction from the PSPACE -complete problem if a single tape, linearly space-
bounded, nondeterministic Turing-machine M accepts a given input w. There is
a constant k s.t. if M accepts an input w then it has an accepting computation
that uses only k · |w| space. For any such M and w we construct a pushdown
automaton P s.t.

– If M accepts w then P is not weakly bisimilar to any finite automaton.
– If M doesn’t accept w then P is weakly bisimilar to the finite automaton F

of Figure 2.

s2

τ

s3

s1

a τ

Fig. 2. The finite automaton F
with initial state s1.

The construction of P is as follows: Let
n := k · |w| + 1 and Σ be the set of tape sym-
bols of M . Configurations of M are encoded
as sequences of n symbols of the form v1qv2
where v1, v2 ∈ Σ∗ are sequences of tape sym-
bols of M and q is a state of the finite control
of M . The sequence v1 are the symbols to the
left of the head and v2 are the symbols un-
der the head and to the right of it. (v1 can
be empty, but v2 can’t.) Let p0 be the initial
control-state of P and let the stack be initi-
ally empty. Initially, P is in the phase ‘guess’ where it guesses an arbitrarily long
sequence c1#c2# . . .#cm of configurations of M (each of these ci has length n)
and stores them on the stack. The pushdown automaton can guess a sequence of
length n by n times guessing a symbol and storing it on the stack. The number
of symbols guessed (from 1 to n) is counted in the finite-control of the push-
down automaton. The number m is not counted in the finite-control, since it
can be arbitrarily large. The configuration cm at the bottom of the stack must
be accepting (i.e., the state q in cm must be accepting) and the configuration
c1 at the top must be the initial configuration with the input w and the initial
control-state of M . All this is done with silent τ -actions. At the end of this phase
P is in the control state p. Then there are two possible transitions: (1) p

τ→ p0A
where the special symbol A /∈ Σ is written on the stack and the guessing phase
starts again. (2) p

τ→ pverify where the pushdown automaton enters the new
phase ‘verify’.

478 R. Mayr

In the phase ‘verify’ the pushdown automaton P pops symbols from the stack
(by action τ). At any time in this phase it can (but need not) enter the special
phase ‘check’. For a ‘check’ it reads three symbols from the stack. These symbols
are part of some configuration ci. Then it pops n − 2 symbols and then reads
the three symbols at the same position in the next configuration ci+1 (unless the
bottom of the stack is reached already). In a correct computation step from ci

to ci+1 the second triple of symbols depends on the first and on the definition
of M . If these symbols in the second triple are as they should be in a correct
computation step of M from ci to ci+1 then the ‘check’ is successful and it goes
back into the phase ‘verify’. Otherwise the ‘check’ has failed and P is in the
control-state fail . Here there are two possible transitions: (1) fail τ→ p2. In the
control-state p2 the stack is ignored and the pushdown automaton from then
on behaves just like the state s2 in the finite automaton F of Figure 2. (2)
fail τ→ p3. In the control-state p3 again the stack is ignored and from then on
the pushdown automaton behaves just like the state s3 in the finite automaton
F of Figure 2. The intuition is that if the sequence of configurations represents
a correct computation of M then no ‘check’ can fail, i.e., the control-state fail
cannot be reached. However, if the sequence isn’t a correct computation then
there must be at least one error somewhere and thus the control-state fail can
be reached by doing the ‘check’ at the right place.

So far, all actions have been silent τ -actions. The only case where a visible
action can occur is the following: The pushdown automaton P is in phase ‘verify’
or ‘check’ (but not in state fail) and reads the special symbol A from the stack.
Then it does the visible action ‘a’ and goes to the control-state pverify . If P
reaches the bottom of the stack while being in phase ‘verify’ or ‘check’ then it
is in a deadlock.

Lemma 2. If M accepts the input w then P is not weakly bisimilar to any finite
automaton.

Proof. We assume the contrary and derive a contradiction. Assume that there
is finite automaton F ′ with k states s.t. P ≈ F ′. Since M accepts w, there
exists an accepting computation sequence c = c1#c2# . . .#cm where all ci are
configurations of M , c1 is the initial configuration of M with input w, cm is
accepting and for all i ∈ {1, . . . , m − 1} ci → ci+1 is a correct computation step
of M .

P can (by a sequence of τ -steps) reach the configuration α := pverify (cA)k+1c.
Since c is an accepting computation sequence of M , none of the checks can fail.
Thus α can only do the following sequence of actions: τmn+m−1(aτmn+m−1)k+1.

We assumed that P ≈ F ′. Thus there must be some state f of F ′ s.t. α ≈ f .
Since F ′ has only k states, it follows from the Pumping Lemma for regular
languages that α 6≈ f and we have a contradiction. ut

Lemma 3. Let F be the finite automaton from Figure 2. If M doesn’t accept
the input w then P ≈ F .

On the Complexity of Bisimulation Problems for Pushdown Automata 479

Proof. Since there is no accepting computation of M on w, any reachable con-
figuration of P belongs to one of the following three sets.

1. Let C1 be the set of configurations of P where either P is in phase ‘guess’ or
P is in phase ‘verify’ or ‘check’ s.t. a check can fail before the next symbol
A is popped from the stack, i.e. the control-state fail can be reached with
only τ -actions.

2. Let C2 be the set of configurations of P where either the finite control of P is
in state p2 or P is in phase ‘verify’ or ‘check’, there is at least one symbol A
on the stack and no check can fail before the next symbol A is popped from
the stack, i.e. the control-state fail cannot be reached with only τ -actions,
but possibly after another ‘a’ action.

3. Let C3 be the set of configurations of P where either the finite control of P
is in state p3 or P is in phase ‘verify’ or ‘check’, there is no symbol A on the
stack and no check can fail, i.e. the control-state fail cannot be reached.

The following relation is a weak bisimulation:

{(α1, s1) | α1 ∈ C1} ∪ {(α2, s2) | α2 ∈ C2} ∪ {(α3, s3) | α3 ∈ C3}

We consider all possible attacks.

1. Note that no α1 ∈ C1 can do action ‘a’.
– If the attacker makes a move from a configuration in C1 with control-

state fail to p2/p3 then the defender responds by a move s1
τ→ s1/s2.

These are weakly bisimilar to p2/p3 by definition. If the attacker makes
a move α1

τ→ α′
1 with α1, α

′
1 ∈ C1 then the defender responds by doing

nothing. If the attacker makes a move α1
τ→ α′

1 with α1 ∈ C1 and
α2 ∈ C2 (this is only possible if there is at least one symbol A on the
stack) then the defender responds by making a move s1

τ→ s2. If the
attacker makes a move α1

τ→ α′
1 with α1 ∈ C1 and α2 ∈ C3 (this is only

possible if there is no symbol A on the stack) then the defender responds
by making a move s1

τ→ s3.
– If the attacker makes a move s1

τ→ s2/s3 then the defender makes a
sequence of τ -moves where a ‘check’ fails and goes (via the control-state
fail) to a configuration with control-state p2/p3. This is weakly bisimilar
to s2/s3 by definition.

2. If α2 is a configuration with control-state p2 then this is bisimilar to s2 by
definition.
– If the attacker makes a move α2

τ→ α′
2 with α2, α

′
2 ∈ C2 then the defender

responds by doing nothing. If the attacker makes a move α2
a→ α′

2 (this
is only possible if the symbol A is at the top of the stack) then the
control-state of α′

2 is qverify and α′
2 ∈ C1. Thus the defender can respond

by s2
a→ s1.

– If the attacker makes a move s2
a→ s1 then the defender responds as

follows: First he makes a sequence of τ -moves α2
τ∗
→ α′

2 that pops symbols

480 R. Mayr

from the stack without doing any ‘check’ until the special symbol A is at
the top. Then he makes a move α′

2
a→ α′′

2 . By definition the control-state
of α′′

2 is qverify and α′′
2 ∈ C1.

3. A configuration α3 ∈ C3 can never reach a configuration where it can do
action ‘a’. The only possible action is τ . Thus α3 ≈ s3.

Since the initial configuration of P is in C1 and the initial state of F is s1, we
get P ≈ F . ut

Theorem 4. Weak bisimilarity of pushdown automata and finite automata is
PSPACE-hard, even for the fixed finite automaton F of Figure 2.

Proof. By reduction of the acceptance problem for single tape nondeterministic
linear space-bounded Turing machines. Let M , w, P and F be defined as above. If
M accepts w then by Lemma 2 P is not weakly bisimilar to any finite automaton
and thus P 6≈ F . If M doesn’t accept w then by Lemma 3 P ≈ F . ut

Theorem 5. Weak finiteness of pushdown automata is PSPACE-hard.

Proof. By reduction of the acceptance problem for single tape nondeterministic
linear space-bounded Turing machines. Let M , w, P and F be defined as above. If
M accepts w then by Lemma 2 P is not weakly bisimilar to any finite automaton
and thus not weakly finite. If M doesn’t accept w then by Lemma 3 P ≈ F and
thus P is weakly finite. ut

4 Hardness of Strong Bisimulation Problems

Strong bisimilarity of pushdown automata and finite automata
Instance: A pushdown automaton P and a finite automaton F .
Question: P ∼ F ?

We show that this problem is PSPACE -hard in general, but polynomial in
the size of P for every fixed finite automaton F . The PSPACE lower bound is
shown by a reduction of the PSPACE -complete problem of quantified boolean
formulae (QBF). Let n ∈ IN and let x1, . . . , xn be boolean variables. W.r. we
assume that n is even. A literal is either a variable or the negation of a variable.
A clause is a disjunction of literals. The quantified boolean formula Q is given
by

Q := ∀x1∃x2 . . .∀xn−1∃xn(Q1 ∧ . . . ∧ Qk)

where the Qi are clauses. The problem is if Q is valid. We reduce this problem
to the bisimulation problem by constructing a pushdown automaton P and a
finite automaton F s.t. Q is valid iff P ∼ F .

On the Complexity of Bisimulation Problems for Pushdown Automata 481

F is defined as follows: The initial state is s0.

s2i
x2i+1−→ s2(i+1) for 0 ≤ i ≤ n/2 − 1

s2i
x̄2i+1−→ s2(i+1) for 0 ≤ i ≤ n/2 − 1

s2i
x2i+1−→ t2(i+1) for 0 ≤ i ≤ n/2 − 1

s2i
x̄2i+1−→ t2(i+1) for 0 ≤ i ≤ n/2 − 1

t2i
x2i+1−→ t2(i+1) for 1 ≤ i ≤ n/2 − 1

t2i
x̄2i+1−→ t2(i+1) for 1 ≤ i ≤ n/2 − 1

sn
a−→ u

u
c−→ u

tn
a−→ u

tn
a−→ wn

wi
c−→ wi−1 for 1 ≤ i ≤ n

Note that, unlike in the previous section, the size of F is not fixed, but linear in
n. Figure 3 illustrates the construction.

Now we define the pushdown automaton P . Initially the stack is empty and
the initial control-state is p0. For 1 ≤ j ≤ k and 1 ≤ l ≤ n we define Qj(Xl) iff
Xl makes the clause Qj true and Qj(X̄l) iff X̄l makes Qj true. The transitions
of P are as follows:

p2i
x2i+1−→ p2(i+1)X2i+2X2i+1 for 0 ≤ i ≤ n/2 − 1

p2i
x2i+1−→ p2(i+1)X̄2i+2X2i+1 for 0 ≤ i ≤ n/2 − 1

p2i
x̄2i+1−→ p2(i+1)X2i+2X̄2i+1 for 0 ≤ i ≤ n/2 − 1

p2i
x̄2i+1−→ p2(i+1)X̄2i+2X̄2i+1 for 0 ≤ i ≤ n/2 − 1

p2i
x2i+1−→ r2(i+1) for 0 ≤ i ≤ n/2 − 1

p2i
x̄2i+1−→ r2(i+1) for 0 ≤ i ≤ n/2 − 1

pn
a−→ qj for 0 ≤ j ≤ k

q0
c−→ q0

qjXl
c−→ qjXl for 1 ≤ j ≤ k, 1 ≤ l ≤ n if Qj(Xl).

qjXl
c−→ qj for 1 ≤ j ≤ k, 1 ≤ l ≤ n if ¬Qj(Xl).

qjX̄l
c−→ qjX̄l for 1 ≤ j ≤ k, 1 ≤ l ≤ n if Qj(X̄l).

qjX̄l
c−→ qj for 1 ≤ j ≤ k, 1 ≤ l ≤ n if ¬Qj(X̄l).

Additionally we define for 1 ≤ i ≤ n/2− 1 that in the control-state r2i the stack
is ignored and the systems behaves just like t2i in the system F of Figure 3.

Lemma 6. If Q is not valid then P 6∼ F .

Proof. If Q is not valid then ∃x1∀x2 . . .∃xn−1∀xn(¬Q1 ∨ . . . ∨ ¬Qk) and the
attacker has the following winning strategy: The attacker chooses the values for
the variables with the odd indices by doing actions xi or x̄i in the finite automa-
ton F and goes from s0 to sn. The defender can respond in two different ways:
(1) If the defender goes into a control-state r2i for some i then the attacker can

482 R. Mayr

s0 s2 s4 s6 s8 sn

x1/x̄1

t2 t4 t6 t8

u

c

tn

a

a

· · ·

wnwn−1wn−2wn−3w1w0

t10

x3/x̄3

· · · · · ·

· · ·

ax1/x̄1 x3/x̄3

x3/x̄3

c c c c

Fig. 3. Reducing QBF to strong bisimulation.

easily win, since r2i behaves like t2i and s2i 6∼ t2i for every i. (2) If the defen-
der stays in the ‘p-domain’ of control-states, he is forced to store the attacker’s
choices for the variables with odd indices on the stack. However, he can make
his own choices for the variables with even indices and also stores them on the
stack. Finally, the defender reaches the control-state pn and the stack contains
an assignment of values to all n variables. Since Q is not valid, there exists at
least one Qj with 1 ≤ j ≤ k that is not satisfied by this assignment. Now the
attacker changes sides and makes the move pn

a→ qj in the pushdown automaton
P . The defender can only respond by making the move sn

a→ u in the system
F . Now the pushdown automaton P can do the action ‘c’ only n times, while
system F in state u can do it infinitely often. Thus the attacker can win. It
follows that P 6∼ F . ut

Lemma 7. If Q is valid then P ∼ F .

Proof. Let C be a content of the stack and thus a (possibly incomplete) assign-
ment of values to variables. Let Qi(C) be true iff C makes clause Qi true. Let
Q(C) :=

∧
1≤i≤k Qi(C). Let QX (C) be true iff C can be completed to a C ′ s.t.

Q(C ′). If Q is valid then the following relation is a strong bisimulation.

{(p2iC, s2i) | 0 ≤ i ≤ n/2 ∧ QX (C)} ∪ {(p2iC, t2i) | 1 ≤ i ≤ n/2 ∧ ¬QX (C)} ∪
{(r2iC, t2i) | 1 ≤ i ≤ n/2} ∪ {(qjC, u) | 1 ≤ j ≤ k ∧ Qj(C)} ∪ {(q0C, u)} ∪
{(qjC, wi) | 1 ≤ j ≤ k ∧ 0 ≤ i ≤ n ∧ ¬Qj(C) ∧ length(C) = i}

Since (p0ε, s0) is in this relation, we get P ∼ F . ut

Theorem 8. Strong bisimilarity of pushdown automata and finite automata is
PSPACE-hard.

Proof. Directly from Lemma 6 and Lemma 7. ut

Corollary 9. Strong bisimilarity of pushdown automata is PSPACE-hard.

On the Complexity of Bisimulation Problems for Pushdown Automata 483

Note that Theorem 4 is not a corollary of Theorem 8. For weak bisimilarity
the hardness result holds even for the small fixed finite automaton of Figure 2.
However, strong bisimilarity of a pushdown automaton P and a finite automaton
F is polynomial in the size of P for every fixed F .

Theorem 10. Let F be a fixed finite automaton. For every pushdown automaton
P the problem if P ∼ F requires only polynomial time in the size of P .

Proof. Using the construction from [14] one can reduce the problem P ∼ F to
a model checking problem in the temporal logic EF (a fragment of CTL). One
can effectively construct Hennessy-Milner Logic formulae Φ and Ψ that depend
only on F s.t.

P ∼ F ⇐⇒ (P |= Φ) ∧ (P |= ¬EF Ψ)

where the modal operator EF denotes reachability. Let n be the size of (the
description of) P and m the maximum of the nesting-depth of Φ and Ψ . (The
total size of Φ and Ψ can be O(2m).) Let P ′ be a state that is reachable from
P . It depends only on the control state of P and P ′ and on the first m stack
symbols of P and P ′ if they satisfy Φ and Ψ , respectively. There are only n
different possibilities for the control state and nm different possibilities for the
first m stack symbols. For each of these nm+1 configurations we check if it
satisfies Φ or Ψ . Each of those checks can be done in O(nm) time. Also for each
α of these nm+1 configurations we check if P can reach a configuration αβ for
some β. (β represents the stack contents below the first m stack symbols. It does
not matter for Φ and Ψ .) Each of those (generalized) reachability-checks can be
done in O(n3m2) time [3]. Therefore the whole property above can be checked
in O(n2m+1m2) time. Thus the problem is polynomial in n, the size of P , but
exponential in m. (To be precise, m depends only on F and can be made linear
in the number of states in F [14].) ut

Now we consider the strong finiteness problem.
Strong Finiteness of Pushdown Automata
Instance: A pushdown automaton P .
Question: Does there exist a finite automaton F s.t. P ∼ F ?

We show that this problem is PSPACE -hard by a reduction of QBF. Let Q,
P and F be defined just as before in the hardness proof of strong bisimilarity.
As shown before, Q is valid iff P ∼ F . We now construct a pushdown automaton
P ′ s.t. P ′ is finite w.r.t. strong bisimilarity iff P ∼ F . The initial configuration
of P ′ is p′Z. The transition rules are

p′ a′
→ p′C

p′ a′
→ q′

q′C b′
→ q′

q′C c′
→ p0

q′Z b′
→ q′Z

q′Z c′
→ s0

484 R. Mayr

Note that if P ′ is in control-state p0 or s0 then it behaves like P and F , respec-
tively.

Lemma 11. If P 6∼ F then P ′ is infinite w.r.t. strong bisimilarity.

Proof. There are infinitely many non-bisimilar reachable states q′CiZ for all
i ∈ IN. It suffices to show that q′CiZ 6∼ q′CjZ for i > j. The attacker has
the following winning strategy: He does action b′ exactly j times (the defender
can respond in only one way) and the new state in the bisimulation game is
(q′Ci−jZ, q′Z). Then the attacker does action c′ and after the defender’s response
the new state is (p0C

i−j−1Z, s0). Since P 6∼ F , the attacker can win. ut

Lemma 12. If P ∼ F then P ′ is finite w.r.t. strong bisimilarity.

Proof. Let the finite automaton F ′ with initial state s′ be defined by

s′ a′
→ s′

s′ a′
→ t′

t′ b′
→ t′

t′ c′
→ s0

where s0 is the initial state of F . If P ∼ F then p′CiZ ∼ s′, q′CjZ ∼ t′,
p0C

kZ ∼ s0 and s0 ∼ s0 and thus P ′ ∼ F ′. ut

Theorem 13. Strong finiteness of pushdown automata is PSPACE-hard.

Proof. It follows from Lemmas 6,7, 11 and 12 that Q is satisfiable iff P ∼ F iff
P ′ is finite w.r.t. strong bisimilarity. ut

It might seem that Theorem 5 is a corollary of Theorem 13. However, a
careful inspection reveals a slight difference. The proof of Theorem 5 shows that
the question if, given a pushdown automaton P , “Is P weakly bisimilar to any
finite automaton with at most 3 states ?” is PSPACE -hard. The same question
for strong bisimilarity is polynomial, because of Theorem 10. (These results still
hold if the number 3 in the question above is replaced by any other integer k ≥ 3.
For weak bisimilarity the question is PSPACE -hard in the size of P . For strong
bisimilarity it is polynomial in the size of P and exponential in k.) So, while
in general the finiteness problem for a pushdown automaton P is PSPACE -
hard for both weak and strong bisimilarity, the modified question “Is P finite
and small ?” is PSPACE -hard for weak bisimilarity, but polynomial for strong
bisimilarity. To conclude, finiteness w.r.t. weak bisimilarity is hard in a slightly
stronger sense.

On the Complexity of Bisimulation Problems for Pushdown Automata 485

5 Conclusion

We have shown that all bisimulation problems for pushdown automata are at
least PSPACE -hard. Thus no bisimulation problem for pushdown automata is
polynomial (unless PSPACE = P). It is interesting to compare these results
with the results for context-free processes (BPA), which describe exactly the
same class of languages (Chomsky-2). Strong and weak bisimilarity of BPA and
finite automata can be decided in polynomial time [17]. This shows that there is
a significant difference between pushdown automata and context-free processes
(BPA) as far as ‘branching-time equivalences’ like strong and weak bisimulation
are concerned. Intuitively, the reason for this is that, due to their finite control,
pushdown automata have a limited power of self-test that context-free processes
lack.

The problem of bisimulation equivalence is related to the problem of language
equivalence for deterministic systems, e.g., the problem of language equivalence
for deterministic pushdown automata (dPDA), which has been shown to be de-
cidable in [26]. However, the relationship is more complex than it seems, because
of the presence of ε-transitions in PDAs. ‘Real-time’ PDAs are PDAs without ε-
transitions. We denote them by rPDA. We denote real-time deterministic PDAs
as rdPDA. We can distinguish five problems.

1. For rdPDA, strong bisimilarity and trace-language equivalence coincide. (The
problem of trace-language equivalence can easily be reduced to terminal-
language equivalence on rdPDA.) This problem is also equivalent to strong
bisimilarity of dPDA, because the ε-transitions don’t matter for strong bi-
similarity. Language equivalence on rdPDA has been shown to be decidable
in [23]. Neither an upper complexity bound nor a lower complexity bound is
known.

2. Strong bisimilarity for PDA and rPDA. These problems are equivalent, be-
cause the ε-transitions don’t matter for strong bisimilarity. Decidability of
strong bisimilarity for PDA has been shown in [27]. No upper complexity
bound is known. Theorem 8 gives a PSPACE lower bound.

3. Language equivalence of dPDA. This is equivalent to weak bisimilarity of
dPDA, if one renames the ε-transitions to τ -transitions. The problem is
decidable by [26]. Neither an upper complexity bound nor a lower complexity
bound is known.

4. Weak bisimilarity for PDA. It is an open question if this problem is decidable.
A PSPACE lower bound has been shown in [28] (even for BPA). Theorem 4
shows that even the asymmetric problem of weak bisimilarity of a PDA and
a (small fixed) finite automaton is PSPACE -hard.

5. Language equivalence for PDA and rPDA. These problems are inter-reducible
and undecidable by [11].

Figure 4 shows the relationships between these five problems. The hardness
results of this paper hold only for bisimilarity of nondeterministic PDA (i.e.,
problems number 2 and 4) and thus they don’t yield a lower bound for the

486 R. Mayr

1

2

5

3

4

Fig. 4: Bisimulation vs. lan-
guages

problem of language equivalence of dPDA (problem
number 3). In particular, it is easy to see that lan-
guage equivalence of a dPDA and a deterministic
finite automaton is polynomial (unlike bisimilarity
for nondeterministic systems; see Theorem 8). It still
cannot be ruled out that a polynomial algorithm for
language equivalence of dPDA might exist.
Two lower bounds for bisimulation problems ab-
out Petri nets have not been mentioned explicitly
in the literature so far. They concern the problems
of strong bisimilarity of a Petri net and a finite au-
tomaton and finiteness of a Petri net w.r.t. strong
bisimulation. It can easily be shown that these pro-
blems are EXPSPACE -hard by a reduction of the

problem if a given place in a Petri net can ever become marked. (This problem is
polynomially equivalent to the reachability problem for Petri nets [25] and thus
EXPSPACE -hard [18].)

Table 1 summarizes known results about the complexity of bisimulation pro-
blems for several classes of infinite-state systems. The different columns show the
results about the following problems: strong bisimilarity with finite automata,
strong bisimilarity of two infinite-state systems, weak bisimilarity with finite au-
tomata and weak bisimilarity of two infinite-state systems. New results are in
boldface.

Table 1.

∼ F ∼ ≈ F ≈
FS P [2,24] P [2,24] P [2,24] P [2,24]

BPA P [17] ∈ 2−EXPTIME [4] P [17] PSPACE -hard [28]

PDA
∈ EXPTIME [14]
PSPACE-hard

decidable [27]
PSPACE-hard

∈ EXPTIME [14]
PSPACE-hard

PSPACE -hard [28]

BPP ∈ PSPACE [14]
decidable [7]
co-NP-hard [19] ∈ PSPACE [14]

NP-hard [28]
Πp

2 -hard [19]

PA decidable [14] co-NP-hard [19] decidable [14] PSPACE -hard [28]

PAD
decidable [14]
PSPACE-hard

PSPACE-hard
decidable [14]
PSPACE-hard

PSPACE -hard [28]

PN
decidable [15,14]
EXPSPACE -hard undecidable [12] undecidable [12] undecidable [12]

PAN EXPSPACE -hard undecidable [12] undecidable [12] undecidable [12]

PRS EXPSPACE -hard undecidable [12] undecidable [12] undecidable [12]

Table 2 summarizes results about the problems of strong and weak finiteness.
New results are in boldface.

On the Complexity of Bisimulation Problems for Pushdown Automata 487

Table 2.

strong finiteness weak finiteness

BPA ∈ 2−EXPTIME [5,4] ?

PDA PSPACE-hard PSPACE-hard

BPP
decidable [13]
co-NP-hard [19] Πp

2 -hard [19]

PA co-NP-hard [19] Πp
2 -hard [19]

PAD PSPACE-hard PSPACE-hard

PN
decidable [13]
EXPSPACE -hard undecidable [13]

PAN/PRS EXPSPACE -hard undecidable [13]

Some more results are known about the restricted subclasses of these systems
that satisfy the ‘normedness condition’ (e.g. [10,9,8,16]). Normedness means that
from every reachable state there is a terminating computation. This condition
makes many bisimulation problems much easier, e.g., strong bisimilarity of nor-
med BPP is decidable in polynomial time [10], while it is at least co-NP-hard in
the general case [19]. Also for normed systems finiteness w.r.t. strong bisimilarity
coincides with boundedness [16], while this doesn’t hold in the general case.

Acknowledgment: Thanks to Colin Stirling for helpful discussions.

References

[1] J.C.M. Baeten and W.P. Weijland. Process algebra. Cambridge Tracts in Theo-
retical Computer Science, 18, 1990.

[2] J. Balcazar, J. Gabarro, and M. Santha. Deciding bisimilarity is P-complete.
Formal Aspects of Computing, 4:638–648, 1992.

[3] A. Bouajjani, J. Esparza, and O. Maler. Reachability analysis of pushdown auto-
mata: application to model checking. In International Conference on Concurrency
Theory (CONCUR’97), volume 1243 of LNCS. Springer Verlag, 1997.

[4] O. Burkart, D. Caucal, and B. Steffen. An elementary bisimulation decision pro-
cedure for arbitrary context-free processes. In MFCS’95, volume 969 of LNCS.
Springer Verlag, 1995.

[5] O. Burkart, D. Caucal, and B. Steffen. Bisimulation collapse and the process
taxonomy. In U. Montanari and V. Sassone, editors, Proceedings of CONCUR’96,
volume 1119 of LNCS. Springer Verlag, 1996.

[6] D. Caucal. On the regular structure of prefix rewriting. Journal of Theoretical
Computer Science, 106:61–86, 1992.

[7] S. Christensen, Y. Hirshfeld, and F. Moller. Bisimulation equivalence is decidable
for Basic Parallel Processes. In E. Best, editor, Proceedings of CONCUR 93,
volume 715 of LNCS. Springer Verlag, 1993.

488 R. Mayr

[8] Y. Hirshfeld and M. Jerrum. Bisimulation equivalence is decidable for normed
process algebra. In Proc. of ICALP’99, volume 1644 of LNCS. Springer Verlag,
1999.

[9] Y. Hirshfeld, M. Jerrum, and F. Moller. A polynomial algorithm for deciding bisi-
milarity of normed context-free processes. Theoretical Computer Science, 158:143–
159, 1996.

[10] Y. Hirshfeld, M. Jerrum, and F. Moller. A polynomial-time algorithm for de-
ciding bisimulation equivalence of normed Basic Parallel Processes. Journal of
Mathematical Structures in Computer Science, 6:251–259, 1996.

[11] J.E. Hopcroft and J.D. Ullman. Introduction to Automata Theory, Languages and
Computation. Addison Wesley, 1979.

[12] P. Jančar. Undecidability of bisimilarity for Petri nets and some related problems.
Theoretical Computer Science, 148:281–301, 1995.

[13] P. Jančar and J. Esparza. Deciding finiteness of Petri nets up to bisimulation. In
F. Meyer auf der Heide and B. Monien, editors, Proceedings of ICALP’96, volume
1099 of LNCS. Springer Verlag, 1996.

[14] P. Jančar, A. Kučera, and R. Mayr. Deciding bisimulation-like equivalences with
finite-state processes. In Proc. of ICALP’98, volume 1443 of LNCS. Springer
Verlag, 1998.

[15] P. Jančar and F. Moller. Checking regular properties of Petri nets. In Insup Lee
and Scott A. Smolka, editors, Proceedings of CONCUR’95, volume 962 of LNCS.
Springer Verlag, 1995.

[16] A. Kučera. Regularity is decidable for normed PA processes in polynomial
time. In Foundations of Software Technology and Theoretical Computer Science
(FST&TCS’96), volume 1180 of LNCS. Springer Verlag, 1996.

[17] A. Kučera and R. Mayr. Weak bisimilarity with infinite-state systems can be
decided in polynomial time. In Proc. of CONCUR’99, volume 1664 of LNCS.
Springer Verlag, 1999.

[18] R. Lipton. The reachability problem requires exponential space. Technical Re-
port 62, Department of Computer Science, Yale University, January 1976.

[19] R. Mayr. On the complexity of bisimulation problems for Basic Parallel Processes.
In Proc. of ICALP’2000, volume ? of LNCS. Springer Verlag, 2000.

[20] R. Mayr. Process rewrite systems. Information and Computation, 156(1):264–286,
2000.

[21] R. Milner. Communication and Concurrency. Prentice Hall, 1989.
[22] F. Moller. Infinite results. In Ugo Montanari and Vladimiro Sassone, editors,

Proceedings of CONCUR’96, volume 1119 of LNCS. Springer Verlag, 1996.
[23] M. Oyamaguchi, N. Honda, and Y. Inagaki. The equivalence problem for real-time

strict deterministic languages. Information and Control, 45:90–115, 1980.
[24] R. Paige and R. Tarjan. Three partition refinement algorithms. SIAM Journal of

Computing, 16(6):973–989, 1987.
[25] J.L. Peterson. Petri net theory and the modeling of systems. Prentice-Hall, 1981.
[26] G. Sénizergues. The Equivalence Problem for Deterministic Pushdown Automata

is Decidable. In Proceedings of ICALP’97, volume 1256 of LNCS, pages 671–681.
Springer Verlag, 1997.

[27] G. Sénizergues. Decidability of bisimulation equivalence for equational graphs of
finite out-degree. In Proc. of FOCS’98. IEEE, 1998.

[28] J. Stř́ıbrná. Hardness results for weak bisimilarity of simple process algebras.
Electronic Notes in Theoretical Computer Science (ENTCS), 18, 1998.

	Introduction
	Definitions
	Hardness of Weak Bisimulation Problems
	Hardness of Strong Bisimulation Problems
	Conclusion
	Acknowledgment:
	References

