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Abstract
Infinite duration games with regular conditions are one of the crucial tools in the areas of veri-
fication and synthesis. In this paper we consider a branching variant of such games – the game
contains branching vertices that split the play into two independent sub-games. Thus, a play
has the form of an infinite tree. The winner of the play is determined by a winning condition
specified as a set of infinite trees. Games of this kind were used by Mio to provide a game
semantics for the probabilistic µ-calculus. He used winning conditions defined in terms of parity
games on trees. In this work we consider a more general class of winning conditions, namely
those definable by finite automata on infinite trees. Our games can be seen as a branching-time
variant of the stochastic games on graphs.

We address the question of determinacy of a branching game and the problem of com-
puting the optimal game value for each of the players. We consider both the stochastic and
non-stochastic variants of the games. The questions under consideration are parametrised by
the family of strategies we allow: either mixed, behavioural, or pure.

We prove that in general, branching games are not determined under mixed strategies. This
holds even for topologically simple winning conditions (differences of two open sets) and non-
stochastic arenas. Nevertheless, we show that the games become determined under mixed
strategies if we restrict the winning conditions to open sets of trees. We prove that the problem
of comparing the game value to a rational threshold is undecidable for branching games with
regular conditions in all non-trivial stochastic cases. In the non-stochastic cases we provide exact
bounds on the complexity of the problem. The only case left open is the 0-player stochastic case,
i.e. the problem of computing the measure of a given regular language of infinite trees.
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1 Introduction

Since the seminal works of Büchi and Landweber [3], and of McNaughton [17], the infinite
duration games are widely used to model interaction between a system and an environment.
One of the fundamental questions about such games is the question of determinacy – does
always one of the players has a winning strategy? In a more general case of valued zero-sum
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games, determinacy amounts to the equality

sup
σ

inf
π

val (σ, π) = inf
π

sup
σ

val (σ, π), (1)

where σ and π range over strategies of the respective players. It is often crucial to provide
a specific information about the strategies that are enough to win a given game. Büchi
and Landweber proved that if the winning condition of a game is a regular language of
infinite words then the game is determined under finite memory strategies. Further results
have established more precise bounds for the amount of memory needed [9, 10]. Also, the
stochastic variant of the question was considered [7].

In this work we study a branching variant of stochastic games on graphs – a variant
called branching games (also known as tree games, c.f. [20, Chapter 4]), played on branching
boards. A play of a branching game consists of a number of threads, each thread develops
independently. When a thread reaches a vertex marked as branching, it is split into two
separate threads. Thus, a play of a branching game has the shape of an infinite tree. The
winner of the play is determined by a winning condition specified as a regular set of infinite
trees. Since the choices made by players in separate threads are independent, branching
games are not games of perfect information, nor of perfect recall in the meaning of [2].
Games of this kind were used by Mio [21] to provide a game semantics for the probabilistic
µ-calculus, with the meta-parity winning condition defined in terms of parity games on trees.
The author called them meta-parity games and established their pure determinacy subject to
some set-theoretic assumptions, that were later eliminated [13]. This result is interesting,
because, as the author notices in conclusion, determinacy results for imperfect information
games are not frequent in game theory.

In this article we address the question of determinacy of branching games and the problem
of computing the game value for a more general class of winning conditions than the meta-
parity conditions studied by Mio, namely those definable by finite automata on infinite trees.
We believe that this extension is motivated by the role tree automata play in verification
theory. Recall that these automata, introduced by Rabin in his proof of decidability of
the Monadic Second-Order theory of the full k-ary tree [23], constitute a general formalism
subsuming most of temporal logics of programs. The first step was made by the first author
who extended the results of Mio [21] to winning conditions given by game automata [22].

We consider both the stochastic and non-stochastic variants of the games. The questions
under consideration are parametrised by the family of strategies we allow, either mixed,
behavioural, or pure. The goal of this work is to provide answers to two questions:

When a branching game is determined in the sense of (1)?
When the optimal value for a given player can be effectively computed?

Both questions can be asked for stochastic and non-stochastic variants of games, which
usually yields different answers, see e.g. [7]; and for different sets of allowed strategies. The
distinction between the sets of pure, behavioural, and mixed strategies can significantly alter
the techniques and expected outcomes, see e.g. [5].

The answers we provide create an almost complete picture from the point of view of
topological complexity of sets:

non-stochastic branching games are not determined under pure nor behavioural strategies
even for winning conditions that are topologically both closed and open,
non-stochastic branching games are not determined under mixed strategies for winning
conditions that are a difference of two open sets,
non-stochastic branching games are determined under mixed strategies for winning
conditions that are open (equivalently, closed) sets,
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the problem of comparing the value of a branching game to a rational number is undecid-
able in all the non-trivial stochastic cases,
in the non-stochastic case, when we ask about the existence of a pure winning strategy,
the problem is decidable and we provide precise bounds on its complexity.

The only remaining question is whether the value of a 0-player stochastic branching game
can be effectively computed. This is equivalent to asking about computability of the measure
of a given regular language of infinite trees.

Although the results of this paper show intractability of branching games, it is still
possible that they are determined for a reasonable class of winning conditions. These ideas
are discussed in Conclusions.

1.1 Related work
It is known that games with arbitrary pay-off functions are not determined. The celebrated
result of Martin [15] states that Gale-Steward games with Borel payoffs are determined under
pure strategies. His later result establishes an analogous result for the so-called Blackwell
games and mixed strategies (cf. [16]). In this work we show that branching games are
determined only for topologically simplest winning conditions – open or closed sets; even
allowing a difference of two open sets leads to indeterminacy.

Since the branching games are not games of perfect recall the Kuhn’s theorem (cf. e.g. [2])
does not hold; and the behavioural strategies are weaker than the mixed strategies. An ex-
ample of such a situation was provided by Mio in [20, Chapter 4]. Therefore, there are three
variants of the question of determinacy: pure, behavioural, and mixed determinacy.

The concept of branching games is a natural extension of the meta-parity games introduced
by Mio [21] to provide a game semantics for the probabilistic µ-calculus. The first author
proved in [22] that non-stochastic branching games with winning conditions given by the
so-called game automata are determined under pure strategies. In this work we study
determinacy of branching games from the perspective of the topological complexity of the
winning condition.

Recently Asarin et al. considered the so-called entropy games, cf. [1], which can be easily
embedded in our framework. In the authors’ own words, an entropy game is played on a
finite arena by two-and-a-half players: Despot, Tribune, and the non-deterministic People.
The pay-off function is the entropy of the language formed by paths of the resulting tree.
The authors of [1] prove that the entropy games are determined under pure strategies and
can be solved in NP ∩ coNP, extending the class of objectives for which branching games are
determined.

The question of computing the coin-flipping measure of a given regular languages of
infinite trees is one of the crucial open problems about probabilistic logics on infinite trees.
Chen, Dräger, and Kiefer proved in [8] that the problem is decidable for regular languages
recognisable by deterministic automata. The result was later strengthened by Michalewski and
Mio [19] to the so-called game automata. The question of computing the value of a branching
game is a natural extension of the above problem obtained by allowing interplay between
the players. The first author implicitly provided bounds on the complexity of the problem in
the non-stochastic case. In this paper we complete those bounds by proving 2-EXP-hardness
of the problem. Additionally, we prove that the problem becomes undecidable if any form of
randomisation is allowed (either by considering randomised or behavioural strategies; or by
adding stochastic positions). The only remaining open question is the original one – when
there are only stochastic positions and no players.

MFCS 2016
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Branching games fall into a general category of games of imperfect information, i.e. games
where the full information about the state of the game is not assumed: the definitions assure
that the players have no information about the execution of separate threads. The area of
imperfect information games is rich and not fully understood, see e.g. [7, 4, 6], see also [5].
In this context, branching games with regular objectives can be seen as a natural extension
of imperfect information games with ω-regular objectives to the branching-time case.

2 Definitions

In this section we will define the objects studied in the paper. The crucial definitions are
those of a branching game and game values. By ω we denote the set of natural numbers and
R stands for the set of reals.

Words and trees. An alphabet Γ is a finite non-empty set. A word over Γ is any, possibly
infinite, sequence w = a0a1 · · · an · · · where ai ∈ Γ. By w[i] we denote the i-th letter of w,
i.e. ai. ε stands for the empty sequence. Words are either finite (Γ∗) or infinite (Γω). |w| is
the length of a finite word w. The prefix order on words is denoted v.

A tree over an alphabet Γ is any partial function t : {L, R}∗ ⇀ Γ with a non-empty
prefix-closed domain Dom(t) ⊆ {L, R}∗. The elements d ∈ {L, R} are called directions, d̄ is
the direction opposite to d. Elements of the set {L, R}∗ are called nodes. We say that a
node u of a tree t is fully branching if it has two children in the tree, is uniquely branching
if it has exactly one child in the tree. The set TΓ is the set of all trees over an alphabet
Γ. This set can naturally be enhanced with a topology in such a way that it becomes a
homeomorphic copy of the Cantor set [25]. We say that a tree t1 is a prefix of a tree t2 if
t1 ⊆ t2, i.e. Dom(t1) ⊆ Dom(t2) and for every u ∈ Dom(t1) we have t1(u) = t2(u).

Regular languages. In this work we use the standard notions of non-deterministic and
alternating parity automata over infinite trees. Together with Monadic Second-Order logic,
these automata form equivalent formalisms for defining regular languages of infinite trees.
For an introduction to this area see for instance [24].

Branching games. This paper is about branching games. The two adversaries of our games
are called Eve and Adam (or shortly E and A). Since we consider stochastic games, we addi-
tionally introduce Nature denoted N . A branching board is a tuple B = 〈V,Γ, sL, sR, ρ, η, λ, vI〉,
where V is the set of vertices; Γ is the alphabet; sL, sR : V → V are the successor functions;
λ : V → Γ is the labelling of the vertices; ρ : V → {A,E,N ,B} is a partition of the vertices
between Adam’s, Eve’s, Nature’s, and branching vertices; η : ρ−1({N})→ Dist({L, R}) maps
Nature’s vertices to random distributions over the successors; vI ∈ V is the initial vertex. We
extend the assignment s to arbitrary sequences of directions in the natural way: sε(v) = v

and su·d(v) = sd
(
su(v)

)
.

For P ∈ {A,E,N ,B}, by VP we denote the set of vertices belonging to P , i.e. ρ−1({P}).
We say that B is finitary if the set of vertices V is finite and the values used to define η are
rational. For P ⊆ {A,E,N ,B} we say that B is P-branching if Range(ρ) ⊆ P. Every board
B defines the tree tλB : {L, R}∗ → Γ as the unfolding of the adequate labelled sub-graph of the
board, i.e. tλB (u) = λ

(
su(vI)

)
. B is non-stochastic if it is {E,A,B}-branching.

Intuitively, a play over a branching board B proceeds in threads, each thread has one
token located in a vertex of the board. Initially, there is one thread with the token located
in vI. Consider a thread with a token located in a vertex v. If ρ(v) = B then the thread is
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duplicated into two separate threads with tokens located in sL(v) and sR(v). If ρ(v) = N
then the token is moved either to sL(v) or to sR(v) depending on an independent random
event with distribution η(v). If ρ(v) ∈ {E,A} then the respective player can make her/his
choice depending on the history of the current thread. However, she/he cannot take into
account positions of tokens from other threads in the current play. After all the threads
moved infinitely many times, a tree-like play has been created. The winning condition of a
branching game will indicate which plays are winning for which player. Figure 1 depicts a
branching board and a play on this board.

We will now formalise the notions of a play and a pure strategy of a player. Consider
a non-empty set P ⊆ {A,E,N ,B}. We say that a tree t ⊆ tλB is P-branching if it is fully
branching in the nodes u ∈ {L, R}∗ such that ρ

(
su(vI)

)
∈ P and uniquely branching in the

remaining nodes. A play on a board B is a tree t ⊆ tλB that is {B}-branching. The set of all
plays on a board B is denoted plays(B). For P ∈ {E,A,N} we say that a tree t ⊆ tλB is a
pure strategy of P over B if t is

(
{E,A,N ,B} \ {P}

)
-branching. The set of pure strategies of

P over B is denoted ΣPB . Notice that the sets plays(B) and ΣPB for P ∈ {E,A,N} are closed
sets of Γ-labelled trees. If V is finite then all these sets are regular.

Given three pure strategies σ ∈ ΣE
B , π ∈ ΣA

B , and η ∈ ΣNB the play resulting from σ, π,
and η (denoted evalB(σ, π, η)) is the tree σ∩π∩ η ∈ plays(B). Thus, evalB : ΣEB ×ΣAB ×ΣNB →
plays(Γ). Notice that the function evalB is continuous.

Measure theory. For an introduction to measure theory we refer to [14, Chapter 17].
Measure properties of regular sets of trees are discussed in [13]. Let µ be a Borel measure
on a topological space X. We say that µ is a probability measure if µ(X) = 1. A function
f : X → R is µ-measurable if the pre-image of any measurable set in R is µ-measurable in X.
f : X → R is universally measurable if it is µ-measurable for every Borel measure µ on X. If
f : X → R is µ-measurable then by

∫
X
f(x) µ(dx) we denote the integral of f with respect

to the measure µ.

Branching games. A branching game is a pair G = 〈B,Φ〉 where B is a branching board
and Φ is a universally measurable bounded real function Φ: plays(B)→ R+. The notions of
a P-branching game and a finitary game refer to the respective properties of the board.

Mixed strategies. A mixed strategy of a player P ∈ {E,A} is a Borel probability measure
over the set ΣPB . The set of all mixed strategies of P is denoted by ΣMP

B .
There is a natural way of defining a Borel probability measure η∗B on the set ΣNB of

strategies of N . This measure represents the intuition, that after a sequence of directions
u ∈ {L, R} corresponding to a vertex v = su(vI) ∈ V such that ρ(v) = N , Nature chooses to
move to a direction d ∈ {L, R} with the probability η(v)(d) and is called behavioural.

Behavioural strategies. We say that a mixed strategy of P is behavioural if it is a “coin
flipping” measure, i.e. a measure induced by supplying some of the nodes of tλB corresponding
to vertices of P with a probability distribution over the successors. To produce a pure
strategy from a behavioural one, the directions are chosen independently according to the
fixed probability distributions.

More formally, a mixed strategy τ of P is behavioural if it is, as a measure over ΣPB , the
measure η∗B′ for some (possibly not finitary) board B′. The set of all behavioural strategies
of P is denoted by ΣBP

B . Clearly we can treat every pure strategy in ΣP
B as a Dirac delta

function in ΣMP
B (in fact in ΣBPB ). Thus, we can assume that ΣPB ⊆ ΣBPB ⊆ ΣMP

B .

MFCS 2016
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f1 f2
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Figure 1 An example of a branching board and a play on this board. We denote Eve’s, Adam’s,
Nature’s, and branching vertices by diamonds, squares, circles, and triangles respectively. Nature’s
vertices are equipped with a probability distribution over the successors. The successors L and R

agree with the directions on the picture, i.e. L moves to the left.

Strategies as functions. There is a different way to define the three types of strategies
that may give more intuition to the behaviour and expressive power of the strategies.
A pure strategy σ ∈ ΣP can be seen as a function σ : {L, R}∗ → {L, R}; a behavioural strategy
σb ∈ ΣBP as a function σb : {L, R}∗ → µ({L, R}); and a mixed strategy σm ∈ ΣMP as a measure
σm ∈ µ(ΣP ), where µ(X) dentotes some Borel probability mesure on the set X.

An example. Figure 1 depicts a branching board B and a play t on this board. We identify
the vertices with their labels. A pure strategy of Adam can make different choices in a

depending on the history of the thread that lead to this vertex (there are infinitely many
such histories). A pure strategy of Eve can make different choices in e2 depending on the
edge taken by Nature in n. A mixed strategy of Eve can synchronise: with probability 1

2
move to L in both vertices e1, e2; and with probability 1

2 move to R in both of them. A
behavioural strategy cannot make such a synchronisation: the probability distribution over
the successors depends only on the history of the current thread.

Values of strategies. Assume that σm ∈ ΣME
B and πm ∈ ΣMA

B are two mixed strategies of
the respective players. Our aim is to define the value valG(σm, πm). Intuitively, valG(σm, πm)
should be the expected value of Φ

(
evalG(σ, π, η)

)
where the pure strategies σ, π, and η

are chosen according to the probability distributions σm, πm, and η∗B respectively. This is
formalised as follows.

valG(σm, πm) def=
∫

ΣE
B ,ΣA

B ,ΣN
B

Φ
(
evalG(σ, π, η)

)
σm(dσ)πm(dπ) η∗B (dη) (2)

If σ and π are pure strategies and the board is non-stochastic then valG(σ, π) = Φ(π ∩ σ).

Values of a game. The aim of Eve in a branching game is to maximise the value valG(σ, π).
Let us define the partial values of the game. Consider X ∈ {ε,B,M} (i.e. X stands for
respectively pure, behavioural, and mixed strategies). The X value of G for Eve (resp. Adam)
is defined as

valXEG
def= sup

σ∈ΣXE
B

valG(σ) where valG(σ) def= inf
π∈ΣA

B

valG(σ, π),

valXAG
def= inf

π∈ΣXA
B

valG(π) where valG(π) def= sup
σ∈ΣE

B

valG(σ, π).
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Notice, that the second inf/sup is taken over the pure strategies of the opponent. This is
explained by the following simple lemma.

I Lemma 1. Let G be a branching game. If σm is Eve’s mixed strategy then

inf
πm∈ΣMA

B

valG(σm, πm) = inf
πb∈ΣBA

B

valG(σm, πb) = inf
π∈ΣA

B

valG(σm, π)

Dually, the same holds for mixed strategies of Adam if we replace inf with sup and A with E.

Determinacy. As a simple consequence of Lemma 1 we obtain the following inequalities

valAG ≥ valBAG ≥ valMA
G ≥ valME

G ≥ valBEG ≥ valEG. (3)

The first two (resp. the last two) inequalities hold by the fact that we take inf (resp. sup)
over greater (reps. smaller) sets of strategies. The third inequality holds by Lemma 1 and
the fact that infx supy f(x, y) ≥ supy infx f(x, y).

We will say that a branching game G is determined
under pure strategies if valAG = valEG,
under behavioural strategies if valBAG = valBEG ,

under mixed strategies if valMA
G = valME

G .

Clearly, Equation (3) shows that pure determinacy implies behavioural determinacy and
behavioural determinacy implies mixed determinacy. In general, the opposite implications
do not hold. The questions of determinacy of branching games are discussed in Section 3.

Regular branching games. The following theorem implies that we can take as Φ an indicator
of a regular language of trees L ⊆ plays(B), i.e. Φ(t) = 1 if t ∈ L and Φ(t) = 0 otherwise.
In that case we say that a game G has L as a winning condition and we write G = 〈B, L〉
instead of G = 〈B,Φ〉.

I Theorem 2 (Michalewski et al. [13]). Every regular language L of infinite trees is universally
measurable, i.e. for every Borel measure µ on the set of trees, we know that L is µ-measurable.

3 Determinacy

In this section we study determinacy of branching games in the three variants: pure,
behavioural, and mixed; see (3). We will show that for general regular winning conditions all
three variants fail. However, when we restrict to closed regular winning sets we can recover
the mixed determinacy.

Notice that if a branching game is not branching, i.e. it is a {E,A,N}-branching game
then the determinacy is well-understood [16, 7]. Similarly, if there are no positions of one of
the players then the game is purely determined by Lemma 1. Therefore, the simplest case
specific for the branching games are the {E,A,B}-branching games.

3.1 Behavioural indeterminacy
We start by proving the following theorem.

I Theorem 3. There is a {E,A,B}-branching game G with a regular winning condition that
is both closed and open such that G is not determined under behavioural strategies.

MFCS 2016
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c

c c

x1 x2 x3 x4

0 1

f

Figure 2 A branching board that is not determined under behavioural strategies.

The board B of the game G is depicted in Figure 2. A play t ∈ plays(B) over B starts
by splitting into four separate threads by the B-vertices labelled with c. Then, each of the
players can perform two separate choices, E in the two vertices labelled x1 and x2, and A in
the two vertices labelled x3 and x4. Their choices lead to vertices labelled by either 0 or 1.
The rest of the play stays forever in the branching vertex labelled by f . For i = 1, 2, 3, 4 let
xi(t) ∈ {0, 1} be label chosen by the respective player in the vertex labelled by xi, i.e. the
label of the unique child of the unique node labelled by xi in t. Consider a winning set
L ⊆ plays(B) defined as follows

L
def=
{
t ∈ plays(B) | x1(t) = x2(t) = x3(t) = x4(t) ∨ x3(t) 6= x4(t)

}
(4)

In other words, Eve wins a play t if either Adam has chosen two different labels in x3 and x4
or all the chosen labels are equal. Since the vertices labelled xi lie at a fixed depth of every
play t ∈ plays(B), L is a closed and open regular language of infinite trees.

I Example 4. The game G = 〈B, L〉 has the following partial values:

valAG = 1; valBAG = 3
4; valMA

G = 1
2 = valME

G ; valBEG = 1
4; valEG = 0.

We first argue about the pure values – a pure strategy over the board from Figure 2 needs
to declare in advance the two values xi(t) and xi+1(t) for i = 1, 3 depending on the player.

If such a strategy is fixed, the opponent can choose his values in such a way to win.
We now consider the mixed value. Let σm randomly choose with equal probability between

the following two pure strategies σi for i = 0, 1: the strategy σi satisfies x1(σi) = x2(σi) = i.
πm is defined analogously. It is easy to check that these strategies are optimal and witness
that the mixed value of the game is 1

2 for both players.
Consider a behavioural strategy σb of Eve (the case of Adam is entirely dual). Such a

strategy can be described by two independent random choices:
1. σb chooses x1 to be 0 with probability p1,
2. σb chooses x2 to be 0 with probability p2.
Thus, each behavioural strategy of Eve is characterised by a pair of numbers p1, p2 ∈ [0, 1].
A simple computation shows that no matter how Eve chooses her values p1, p2, Adam can
find a counter-strategy guaranteeing the value of at most 1

4 .
Since valBAG = 3

4 6=
1
4 = valBEG the proof of Theorem 3 is concluded.
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Figure 3 A branching board that is not determined under mixed strategies.

3.2 Mixed indeterminacy
We will now show that the mixed determinacy fails for relatively simple regular sets, as
expressed by the following theorem.

I Theorem 5. There is a {E,A,B}-branching game with a regular winning set being a
difference of two open sets that is not determined under mixed strategies.

To prove this theorem we will encode the following game as a {E,A,B}-branching game
G. Assume that ∞ is an additional symbol such that for every n ∈ ω we have n <∞.

I Example 6 (Folklore). Consider the following game: Adam and Eve simultaneously and
independently choose two numbers: Eve chooses e ∈ ω ∪ {∞}, Adam chooses a ∈ ω ∪ {∞}.
Eve wins if e <∞, and either a =∞ or a ≤ e.

It is easy to see that this game is not determined under mixed strategies. Intuitively, it
follows from the fact that both players try to choose a finite number as big as possible.

The board B of the game G is depicted in Figure 3. A play t ∈ plays(B) consists of
infinitely many independent sub-games that start in the vertices labelled by b. More precisely,
the k-th sub-game starts in the node LkR in the tree t. Such a sub-game is split into two
independent choices: Adam chooses a label, either 0 or 1, for the successor of the node
labelled by a; Eve chooses a label, either 2 or 3, for the successor of the node labelled by e.

Let a(t) (resp. e(t)) be the smallest number k ∈ ω such that Eve (resp. Adam) has
chosen an odd label in the k-th sub-game, i.e. LkRLR ∈ Dom(t) (resp. LkRRR ∈ Dom(t)). If no
such number exists then a(t) (resp. e(t)) equals ∞.

Let the winning condition L of the game G be defined as follows

L
def=
{
t ∈ plays(B) | e(t) <∞ and not (e(t) < a(t) <∞)

}
. (5)

It is easy to see that L is a regular language of infinite trees (to compare a(t) with e(t) it
is enough to notice that each of these values corresponds to a node on the left-most branch
of the play t). Moreover, both the conditions e(t) <∞ and e(t) < a(t) <∞ are open sets of
plays.

MFCS 2016
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Hence, the game G = 〈B, L〉 is a game as required in Theorem 5. Moreover, there is a
clear correspondence between the pure strategies in G and the pure strategies in the game
from Example 6. This correspondence extends to the mixed strategies what implies the
following claim.

I Claim 7. We have that valMA
G = 1 and valME

G = 0.

This concludes the proof of Theorem 5.

3.3 Mixed determinacy for closed sets
In this section we use Glicksberg’s minimax theorem to prove that if a winning condition is
a closed set of plays then the game is determined under mixed strategies.

I Theorem 8. If G = 〈B, L〉 is a {E,A,N ,B}-branching game and L is an arbitrary closed
subset of plays(B) then G is determined under mixed strategies.

Before we recall the statement of Glicksberg’s minimax theorem, let us introduce some
relevant notions. Assume that X is a metrisable topological space. We say that a function
f : X → R is upper semi-continuous if for every x0 ∈ X we have lim supx→x0 ≤ f(x0).
Clearly, if C ⊆ X is a closed subset of X then the characteristic function of C is upper
semi-continuous. Also, a composition of a continuous function and an upper semi-continuous
function is upper semi-continuous.

I Theorem 9 (Glicksberg’s minimax theorem [12], see also [18, pages 299–306]). Let A, B be
compact metrisable spaces and f : A×B → R be an upper semi-continuous function. Then
the following holds

sup
µ

inf
ν

∫
A,B

f(a, b) µ(da) ν(db) = inf
ν

sup
µ

∫
A,B

f(a, b) µ(da) ν(db), (6)

where µ, ν range over the Borel probability measures on the sets A, B respectively.

It remains to prove that if G = 〈B, L〉 with L ⊆ plays(B) closed then the function
valG : ΣEB ×ΣAB → R is upper semi-continuous. This function can be written as a composition
of two functions. The first one maps a pair of pure strategies (σ, π) to a measure on plays(B)
defined as µ(σ,π)(T ) def= ν∗B

(
{t ∈ ΣNB | σ ∩ π ∩ t ∈ T}

)
, i.e. the ν∗B measure of the pre-image of

the set T under the function that intersects the three strategies. This mapping is continuous,
as proved by Mio in [20, Lemma 4.1.4]. The second one applies the measure µ(σ,π) to the
winning set L ⊆ plays(B). For a closed set L this function is upper semi-continuous by [14,
Corollary 17.21].

4 Computing game values

In this section we will discuss the computational complexity of determining the partial
values of branching games. To be more precise, we consider the following family of problems,
parametrised by the set of available positions P ⊆ {A,E,N ,B} and the type of the value
V ∈ {valA, valBA, valMA, valME , valBE , valE}.

I Problem 10 (The value V of a regular P-branching game).
Input: A finitary P-branching game G with the winning condition given by a non-
deterministic tree automaton.
Output: Does V > 1

2?
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4.1 The non-stochastic case
If no random choice is involved, i.e. the board has no Nature’s positions and we consider
pure strategies, the values belong to the set {0, 1} and we can compute them, as expressed
by the following theorem.

I Theorem 11. The value valE problem of a regular {A,E,B}-branching game is in 2-EXP,
the value valA problem of a regular {A,E,B}-branching game is EXP-complete.

Moreover, the value valE problem of a regular {A,E,B}-branching game is 2-EXP-com-
plete if the winning condition is given by an alternating tree automaton.

This theorem follows from the constructions in [22], performed in a bit different language.
The asymmetry in this theorem comes from the fact that in Problem 10 we assume that the
winning condition of a game is given as a non-deterministic automaton. In this work we
strengthen the second part of the above theorem by proving that the value valE problem of a
regular {A,E,B}-branching game is 2-EXP-hard also for non-deterministic automata. This
is achieved by using the completeness result from [22] together with the following reduction.
It is somehow surprising to notice that in the context of branching games one can de-alternate
an automaton in polynomial time.

I Theorem 12. There exists a polynomial time reduction that inputs a {A,E,B}-branching
game G with the winning condition given as an alternating tree automaton and constructs a
{A,E,B}-branching game G′ with the winning condition given by a non-deterministic tree
automaton, such that valEG = valEG′ .

The proof is straightforward, its main idea is to split the alternation of the given automaton
into two parts: the choices of Adam and the choices of Eve. In the game G′ the former
choices will be done explicitly on the board while the latter choices will be performed by the
non-deterministic automaton that recognises the winning condition of G′.

I Corollary 13. valE problem of a regular {A,E,B}-branching game is 2-EXP-complete.

4.2 The stochastic cases
The above decidability results hold for non-stochastic games and pure strategies. Restoring
any of those features yields undecidability, as expressed by the two theorems of this section.

I Theorem 14. For every V ∈ {valA, valBA, valMA, valME , valBE , valE} and P ∈ {E,A},
the value V problem of a regular {P,N ,B}-branching game is undecidable.

Observe that by Lemma 1 a {P,N ,B}-branching game is determined under pure strategies.
It means that all the six partial values are the same for such games. Thus, by the symmetry
we can assume that P = E and V = valE .

To prove Theorem 14 we reduce the following undecidable problem, cf. [11]. It can be
shown that the word problem is undecidable even if we restrict our attention to a two-letters
alphabet and the so-called very simple automata: a non-deterministic automaton is very
simple if from every state and every letter there are exactly two possible transitions leading
to two distinct states.

I Problem 15 (Word problem for VSNA).
Input: A very simple non-deterministic automaton A on finite words over {a, b}.
Output: Does there exist a finite word such that more than half of the runs of A on this
word is accepting?

MFCS 2016
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(a) A branching board used in the proof of Theorem 14.
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(b) A gadget used in the proof of
Theorem 16. to replace Nature’s
vertex in the board

Figure 4 Boards used in undecidability proofs.

We will now sketch the proof of Theorem 14. Let us take a very simple non-deterministic
automaton A and assume that the two transitions over a letter l ∈ {a, b} from a state q ∈ QA
lead to the states δ0(q, l) and δ1(q, l). Assume that l0, l1, . . . , lk is a sequence of letters
li ∈ {a, b} and n0, n1, . . . , nk is a sequence of numbers ni ∈ {0, 1}. These two sequences
allow us to naturally define a run ρ = run(~l, ~n) of A over the word l0, . . . , lk that follows the
respective transitions of A: ρ[0] = qI and ρ[i+ 1] = δni

(ρ[i], li).
Consider the board B depicted on Figure 4a. A play on this board consists of a sequence

of decisions made by Eve, whether to move from the vertex labelled l to a or to b. At every
moment Eve can stop this sequence by choosing the right successor of the vertex labelled
p. For every choice of a or b by Eve, the Nature simultaneously chooses a number 0 or 1.
Thus, a play t results in two finite or infinite sequences of the same length: l0, l1, . . . with
li ∈ {a, b} and n0, n1, . . . with ni ∈ {0, 1}. Consider the following winning condition

L
def= {t ∈ plays(B) | the sequences ~l and ~n are finite and run(~l, ~n) is accepting}. (7)

Now let G = 〈B, L〉. It is easy to see that the winning condition L can be represented as a
regular language of infinite trees. A pure strategy of Eve in G either never moves from the
vertex labelled p to the vertex labelled f (in that case its value is 0) or in the opposite case
it corresponds to a finite word l0, l1, . . . , lk. The value of such a strategy is the probability
that the choices of Nature will represent an accepting run of A over the word ~l. Thus, Eve
has a pure strategy σ with valEG(σ) > 1

2 if and only if more than half of the runs of A over
the word ~l produced by σ is accepting.

To complete the landscape of decidability we state.

I Theorem 16. For every V ∈ {valBA, valMA, valME , valBE} the value V problem of a
regular {E,A,B}-branching game is undecidable.

The theorem follows from the fact that the game used in the proof of Theorem 14 can be
simulated on the board with Nature’s position replaced by the gadget depicted in Figure 4b.
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5 Conclusions

In this work we have studied questions of determinacy and decidability of regular branching
games. We have shown that the games are not determined even for topologically simple
regular conditions. In the case of mixed determinacy, the frontier lies in the first level of the
difference hierarchy of closed sets. Additionally, we have shown that the question whether
the value of a given game is greater than a fixed threshold is undecidable in all non-trivial
stochastic cases. In the non-stochastic cases (i.e. when the board is non-stochastic and we
ask about pure strategies) we have given exact bounds on the complexity of the problem.
The only remaining case is the 0-player stochastic case, i.e. the problem of computing the
measure of a regular language of infinite trees.

Further work. It seems interesting to understand for which classes of regular winning
conditions, the branching games are determined. It was proved by the first author in [22]
that the non-stochastic branching games with winning conditions given by game automata
are determined under pure strategies. We believe that the proof can be naturally extended
to the stochastic case. However, there are regular languages of infinite trees L that are not
recognisable by game automata, but still all the branching games with the winning condition
L are purely determined. The characterisation of such objectives poses an interesting research
direction as it could give a broader class of games with decidable value problem.

On the frontier of mixed determinacy, it seems that allowing the objective to check local
consistency at arbitrary depths of the tree is the cause of both the indeterminacy and the
undecidability. This intuition suggests the following conjecture. We say that L is a path
language if L is a Boolean combination of languages of the form{

t | there exists a branch of t belonging to a regular language of infinite words K ⊆ Γω
}
.

I Conjecture 17. If G = 〈B, L〉 is a branching game and L is a path language then the game
G is determined under mixed strategies.

Acknowledgement. The authors would like to thank Damian Niwiński for insightful dis-
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