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i. Introduction 

The principal goal of research in computational complexity is the determination of 

tight lower bounds on the complexity, in terms of primitive operation executions, of 

solving problems or performing larger operations. While algorithms now exist that 

yield better than naive upper bounds for various operations (e.g. [1,9,11,12]), 

finding lower bounds for the solution of a problem using a general model has proved 

to be more difficult. In order to circumvent these difficulties, many authors (e.g. 

[3,5,6,8,13]) have chosen to work with models that place some restriction on the 

primitive operations that can be used or on the flow of output that can occur. 

Typical of the restrictions that have been placed on models are: allowing the use 

of only a monotone basis of functions [6,8] or requiring that all circuits be 

restricted to fan-out one [3,5,13]. The value of using such models is in the 

insights they produce into the general process of finding lower bounds; many of the 

actual lower bounds they produce are shown, however, to be invalid for more general 

models. 

The goal of the current research is the study of lower bounds on the 

complexity of a set of searching problems under various restrictions on the nature 

of the primitive operation used to determine each branch within a search tree. Our 

model, to be described in more detail in the next section, has programs consisting 

of two types of statements, query statements of the form: 

Lk: if f(x) R 0 then goto L m else goto L 

where R is one of the relations (> or =) and f is a function of restricted form on 

the input of x. An output statement of the form 

Ls: accept (or reject) 

# Portions of the research of the first author were supported by ONR Grant 
N00014-75-C-0450. 
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occurs for each possible outcome of the problem. 

The problems we consider all involve searching a set of geometric objects in 

Euclidean space to determine in which region of their partition of space a given 

point lies or whether the point lies in any of the given regions. Among the new 

results obtained are exponential lower bounds for searching for solutions to a 

knapsack problem, viewed as a hyperplane search problem, for various models 

involving restrictions on the primitive operations allowed. A non-linear (in the 

number of hyperplanes) lower bound is given for a generalized hyperplane search 

problem along with an O(n log n) bound for a problem in the plane. 

2. Basic Model 

Our model of computation is based on the notion of a search program. A search 

program P with input (Xl,...,Xn) is a finite list of instructions of the following 

three types: 

i) Lk: if f(x I .... x n) R 0 then goto L (R c {>,=}) 
- -  ' m 

else goto L 
P 

2) Lk: accept 

3) Lk: reject 

Control initially starts at the first instruction. An "instruction of type (i) 

determines whether or not the indicated test is true: If it is true, then control 

passes to the statement with label Lm; otherwise, control passes to the statement 

with label L . An instruction of type (2) denotes that the program has halted and 
P 1 

it has accepted the input. Correspondingly, an instruction of type (3) denotes that 

the program has halted and it has rejected the input. 

We will restrict search programs in two distinct ways. The functions allowed 

in instructions of type (i) are called primitives. Often we will restrict the class 

of allowed primitives. We will also restrict at times the relations R allowed in 

instructions of type (i). Thus an equality search program can have R equal only to 

=. On the other hand, a linear search program can have only functions f that are 

linear. 

The complexity measure we will use on our search programs is "time." Each 

possible input (Xl,...,Xn) determines a computation through the search program. The 

length of this computation is the number of steps associated with the input 

(Xl,...,Xn). We are always interested in the worst-case behavior, i.e. the maximum 

number of steps required by a given search program. 
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3. Restricted Linear Programs 

In this section we will investigate the n-dimensional knapsack problem (KSn). 

can view this problem as follows: Given a point (Xl, .... x~) ~ E n+l we are to 

determine whether or not there exists an index set I such that 

We 

Z x .  - b  = O .  
1 

i e I  

The first question we ask is: 

form 
> 

Z x i ~ b 
i~I 

If we restrict our search programs to queries of the 

can we show that they must take exponential time? The answer is yes: 

Theorem 1. 

form 

Any search program having as its primitive operation functions of the 

Z x .  - b 
1 

i c i  

for some index set I and any tests >, =, or < must require 0(2 n) primitive steps to 

solve the n-dimensional Knapsack Problem. 

Proof. We adopt an adversary approach and provide a set of data such that if less 
n) 

than (n/2 primitive operations are executed the data can be altered so as to make 

it possible for the solution to the problem to change without changing previous 

results. 

Our adversary will return answers to queries according to the following plan: 

i) if IIl < n/2, then Z x. < b 
i 

i~I 

ii) if !If > n/2, then Z x. > b 
i 

i~I 

iii) if IIl= n/2 and less than (n~2) - 1 tests on index sets of exactly n/2 elements 

have been done, then E x. > b. 
i 

i~I 

We now make the claim that it is possible to provide three sets of data satisfying 

conditions (i), (ii), and (iii) such that each set yields a different result on the 

final query. From this claim, the theorem follows since although an algorithm 

knowing this adversary's strategy could eliminate all tests of index sets with 

n ) = 0(2 n) tests of index sets of cardinality cardinality not equal to n/2 the (n/2 

n/2 must all be performed. 

Claim. Assume the last test performed on an index set of exactly n/2 elements 

compares x I + x 2 + ... + Xn/2 to b; then there are choices of x I = y, 

x 2 = x 3 = ... = Xn/2 = ~ and X(n/2)+ I = X(n/2)+ 2 = ... = x n = B for 0 < X S a S B < b 

satisfying the three conditions of the adversary and yielding any of the three 
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< 

possible results x I + ... + Xn/2 ~ b. 

Proof. The conditions (i), (ii), and (iii) can be restated as 

i) ((n/2)-l)'s < b 

ii) y + ((n/2)-l).~ + ~ > b 

iii) y + ((n/2)-2)'~ + B > b 

and we observe that (iii) implies (ii), so that we need show only that conditions 

(i) and (i~) can be met along with the result of one of the cases: 

Case I: 

Case II: 

Case III: 

y + ((n/2)-l)-~ > b 

y + ((n/2)-l)-~ < b 

¥ + ((n/2)-l).e = b. 

In the first case, the choice ~ = a = B = 2b/(n-l) works since 

i) ((n/2)-l).(2b/(n-l)) = ((n-2)/(n-l)).b < b 
i i i )  (2b / (n-1) )  + ( ( n / 2 ) - 2 ) - ( 2 b / ( n - 1 ) )  + (2b / (n-1) )  = ( n / ( n - 1 ) ) . b  > b 
and (2b/ (n-1) )  + ( ( n / 2 ) - l ) . ( 2 b / ( n - 1 ) )  = ( n / ( n - 1 ) ) . b  > b. 

The second case is handled by the choice y = b'( 2n-5 2) ' 
(n-(i/2)) 

= 2b.(n_12 + 2 )2 ) 1 
(n-(i/2) 

i) ((n/2)-l).(2b (~_l 2 

iii) b.( 2n-5 2) + ((n/2)_2).2b.(n_~12 + 
(n-(i/2)) 

4n-ll 
= b'( + i) > b 

(n-(i/2)) 2 

and b.( 2n-5 2) + ((n/2)_l).2b.(~_12 + 
(n-(i/2)) 

2b(n-2) 2bn 
Finally, the choices ~ 2_ 4 , ~ = , B 

n n2-4 

i) ((n/2)-l).(2b(n+-l)) = b(n+l) < b 
n2_4 n+2 

iii) 2b(n-2_____~) + ((n/2)-2).(2bn) + 2b(n+l) 

n2-4 n2_4 n2_4 

and 2b(n--2) + ((n/2)-l).(2bn) = b. 
n2-4 n2_4 

- since , B = 2b (~_12 (n_(1/2))2)  

1 n-2 
-- - 2 )) = b'(l - 2 ) < b 

(n- (i/2) ) (n- (i/2)) 

2 2b. (~_12 
2)+ (n-(i/2)) 

2 

(n_(i/2))2) = b 

1 

(n-(i/2)) 2) 

2b(n+l) 

n2-4 

4n-9 
• ( +i) >b 

(n-(1/2)) 2 

- -  settle the third case via 

b" (n2---~2) > b 
n2-4 

[7 

The result of this theorem is that any polynomial-time algorithm for solving 

the knapsack problem must use comparisons to hyperplanes not in the original set but 

generated from the original set. While such an algorithm is possible, it is 

unlikely to exist as a general procedure but might rather exist as a set of 

procedures {Pi}~=l such that solving the n-dimensional knapsack problem involves 
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using procedure P to generate new hyperplanes and solving the n+l-dimensional 
n 

knapsack problem involves using (possibly different) procedure Pn+l to generate new 

hyperplanes. Examples of such procedures as well as a brief discussion of the 

implications of such a system for the question "P = NP?" are contained in [2]. The 

present result in conjunction with those discussions makes it extremely unlikely 

that P and NP are the same. 

4. Linear Programs 

Next we will study linear programs. That is, we will allow any tests of the form 

f(xl,...,x n) ~ 0 
where f is a linear function. The next theorem allows us to obtain lower bounds for 

the complexity of various membership problems: 

Theorem 2. Any linear search tree that solves the membership problem for a disjoint 

union of a family {Ai}i~ I of open subsets of R n requires at least log 2 IIl queries 

in the worst case. 

Proof. We prove that any such search tree T with leaves DI,...,D r has r > III and 

hence a path of depth k log 2 IIl. The leaves partition R n and, for each j, Dj is an 

a u A. and a rejection leaf otherwise. The theorem then accepting leaf if D3 _ ieI i 

follows from the observation that the function Y: I + {l,...,r} defined by Y(i)'s 

being the least i such that A i n D is non-empty is an injective function. This 

observation is true since if Y(i) = Y(j) = R for i ~ j then there exist distinct 

points x and y such that x c A i n DZ and y ~ Aj n D R. By the convexity of DR, each 

point on the line joining x and y lies in D R and hence is accepted as a point of 

u A.. Defining the function g: L ÷ I by g(Z) = k whenever Z ~ ~ yields the 
1 

ieI 
contradiction that g is the constant function i, since A i is open and I is 

finite. D 

Let us now generalize the knapsack problem (KSn) to the generalized knapsack 

problem (GKSn): We are given 2 n hyperplanes HI,...,H2n in E n+l space that form a 

simple arrangement, i.e. no n+2 hyperplanes have a common point. For each new point 

x we are to determine whether or not x lies in any of these hyperplanes. Note, we 

do not insist that the search tree determine which hyperplane x lies in, only that 

it determine whether or not x lies in some hyperplane. 

From this result we obtain the following corollaries: 

Corollary i. The membership problem for GKS n takes at least O(n 2) queries for any 

search tree. 

Proof. Since the hyperplanes of this problem form a simple arrangement, we can find 
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a family {Ai}ie I of open subsets of R n such that 

x ~ u A. +-~ x ~ GKS 
1 n 

icI 

and III ~ 0(2 n2) [4]. The corollary then follows from the theorem. 

This result improves  a l o w e r  bound o f  O(n) due to S p i r a  [10] .  

Corollary 2. (Element  U n i q u e n e s s  P r o b l e m . )  Le t  E n be  t h e  s e t  of  p o i n t s  i n  R n t h a t  

have two coordinates equal; then any algorithm for determining membership in E n 
r e q u i r e s  a t  l e a s t  O(n log  n) q u e r i e s .  

Proof. Solving the membership problem for E corresponds to solving the membership 
n 

problem for the family u {A } where 
~ES 

n 

R n < < 
A {(Xl,''',x n) ~ I x~(1) x~(2) < "'" X~(n)} 

and S is the set of permutations on n objects. The result then follows from 
n 

lSn[ = n!. 

5. Eguality Programs 

In the previous section, we considered the problem of determining whether a point 

belonged to the union of a family of open sets allowing linear search programs. 

Here, we extend our methodology to the problem of determining whether a point 

belongs to the union of a family of varieties allowing search programs that 

determine at each step whether the point is the root of an irreducible polynomial. 

Before proceeding, we state some results from algebraic geometry [7] that will be 

necessary to our development. 

Definition. A variety V(fl,...,fm) is a subset of R n defined by 

... R n . . . .  
V(f I ..... fm ) = {(x I, ,x n) ~ I fl(Xl , ,x n) = ." = fm(Xl ..... x n) = 0} 

for polynomials fl,...,fm. 

Definition. The polynomials f and g are said to be equivalent iff there exists a 

non-zero constant h such that f = hg. 

Fact 1. If the dimension of V(fl,...,f n) is denoted by dim(V(fl,...,fn)) then 

i) dim(A) = 0 if and only if A is empty 
k 

ii) if R n = u V(fi) , then one of the polynomials f, is trivial 
i-i I 

iii) if f and g are non-trivial irreducible polynomials that are not equivalent, 

then dim(V(f,g)) < dim(V(f)). 

Theorem 3. If fl,...,fm are irreducible polynomials of n real variables that are 

not equivalent, then any equality search program for 
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m 

U V(f i) 
i=l 

using only irreducible polynomials requires at least m queries. 

Proof. Let T be a search program of depth k that determines for any x c R n whether 
m 

x e o V(fi). Suppose that a path through T makes queries as to whether gi(x) = 0 
i=l 

m m 

for i = k if x ~ u V(fi) and # 0 for i = k if x ~ u V(fi). We will show by 
i=l i=l 

dimension arguments that this is possible only if k -> m. 
m i 

To begin, we define the sets F = u V(fi) and G i = ( u V(gj)) c (A c is the 
i=l j =l 

complement of the set A) and observe that x e Gt_ 1 if and only if k -> t. 

Furthermore, either G k _c F or G k ! F c since after k queries we can determine for 

each x whether x belongs to F or not. Now, if k < m, then for some i V(f i) is not 

one of the sets V(g I) .... ,(V(gk) and dim(V(gj) n V(fi)) < dim(V(fi)). Thus the set 

G k n V(fi) is of the same dimension as the variety V(f i) and is non-empty. Hence 
c m n" G k n F # 0. Assume next that G k _c F; then G k u F = But this implies that R n 

can be written as the union of non-trivial varieties, which is not true, and thus 

G k n F c # 0 and so k queries are insufficient for k < m. D 

Corollary 3. Any equality search program for KS n that uses only irreducible 

polynomials requires at least 2 n queries. 
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