
On the Complexity of Computations

under Varying Sets of Primitives

David P. Dobkin and Richard J. Lipton
Department of Computer Science

Yale University
New Haven, Connecticut 06520 USA

i. Introduction

The principal goal of research in computational complexity is the determination of

tight lower bounds on the complexity, in terms of primitive operation executions, of

solving problems or performing larger operations. While algorithms now exist that

yield better than naive upper bounds for various operations (e.g. [1,9,11,12]),

finding lower bounds for the solution of a problem using a general model has proved

to be more difficult. In order to circumvent these difficulties, many authors (e.g.

[3,5,6,8,13]) have chosen to work with models that place some restriction on the

primitive operations that can be used or on the flow of output that can occur.

Typical of the restrictions that have been placed on models are: allowing the use

of only a monotone basis of functions [6,8] or requiring that all circuits be

restricted to fan-out one [3,5,13]. The value of using such models is in the

insights they produce into the general process of finding lower bounds; many of the

actual lower bounds they produce are shown, however, to be invalid for more general

models.

The goal of the current research is the study of lower bounds on the

complexity of a set of searching problems under various restrictions on the nature

of the primitive operation used to determine each branch within a search tree. Our

model, to be described in more detail in the next section, has programs consisting

of two types of statements, query statements of the form:

Lk: if f(x) R 0 then goto L m else goto L

where R is one of the relations (> or =) and f is a function of restricted form on

the input of x. An output statement of the form

Ls: accept (or reject)

Portions of the research of the first author were supported by ONR Grant
N00014-75-C-0450.

111

occurs for each possible outcome of the problem.

The problems we consider all involve searching a set of geometric objects in

Euclidean space to determine in which region of their partition of space a given

point lies or whether the point lies in any of the given regions. Among the new

results obtained are exponential lower bounds for searching for solutions to a

knapsack problem, viewed as a hyperplane search problem, for various models

involving restrictions on the primitive operations allowed. A non-linear (in the

number of hyperplanes) lower bound is given for a generalized hyperplane search

problem along with an O(n log n) bound for a problem in the plane.

2. Basic Model

Our model of computation is based on the notion of a search program. A search

program P with input (Xl,...,Xn) is a finite list of instructions of the following

three types:

i) Lk: if f(x I x n) R 0 then goto L (R c {>,=})
- - ' m

else goto L
P

2) Lk: accept

3) Lk: reject

Control initially starts at the first instruction. An "instruction of type (i)

determines whether or not the indicated test is true: If it is true, then control

passes to the statement with label Lm; otherwise, control passes to the statement

with label L . An instruction of type (2) denotes that the program has halted and
P 1

it has accepted the input. Correspondingly, an instruction of type (3) denotes that

the program has halted and it has rejected the input.

We will restrict search programs in two distinct ways. The functions allowed

in instructions of type (i) are called primitives. Often we will restrict the class

of allowed primitives. We will also restrict at times the relations R allowed in

instructions of type (i). Thus an equality search program can have R equal only to

=. On the other hand, a linear search program can have only functions f that are

linear.

The complexity measure we will use on our search programs is "time." Each

possible input (Xl,...,Xn) determines a computation through the search program. The

length of this computation is the number of steps associated with the input

(Xl,...,Xn). We are always interested in the worst-case behavior, i.e. the maximum

number of steps required by a given search program.

112

3. Restricted Linear Programs

In this section we will investigate the n-dimensional knapsack problem (KSn).

can view this problem as follows: Given a point (Xl, x~) ~ E n+l we are to

determine whether or not there exists an index set I such that

We

Z x . - b = O .
1

i e I

The first question we ask is:

form
>

Z x i ~ b
i~I

If we restrict our search programs to queries of the

can we show that they must take exponential time? The answer is yes:

Theorem 1.

form

Any search program having as its primitive operation functions of the

Z x . - b
1

i c i

for some index set I and any tests >, =, or < must require 0(2 n) primitive steps to

solve the n-dimensional Knapsack Problem.

Proof. We adopt an adversary approach and provide a set of data such that if less
n)

than (n/2 primitive operations are executed the data can be altered so as to make

it possible for the solution to the problem to change without changing previous

results.

Our adversary will return answers to queries according to the following plan:

i) if IIl < n/2, then Z x. < b
i

i~I

ii) if !If > n/2, then Z x. > b
i

i~I

iii) if IIl= n/2 and less than (n~2) - 1 tests on index sets of exactly n/2 elements

have been done, then E x. > b.
i

i~I

We now make the claim that it is possible to provide three sets of data satisfying

conditions (i), (ii), and (iii) such that each set yields a different result on the

final query. From this claim, the theorem follows since although an algorithm

knowing this adversary's strategy could eliminate all tests of index sets with

n) = 0(2 n) tests of index sets of cardinality cardinality not equal to n/2 the (n/2

n/2 must all be performed.

Claim. Assume the last test performed on an index set of exactly n/2 elements

compares x I + x 2 + ... + Xn/2 to b; then there are choices of x I = y,

x 2 = x 3 = ... = Xn/2 = ~ and X(n/2)+ I = X(n/2)+ 2 = ... = x n = B for 0 < X S a S B < b

satisfying the three conditions of the adversary and yielding any of the three

113

<

possible results x I + ... + Xn/2 ~ b.

Proof. The conditions (i), (ii), and (iii) can be restated as

i) ((n/2)-l)'s < b

ii) y + ((n/2)-l).~ + ~ > b

iii) y + ((n/2)-2)'~ + B > b

and we observe that (iii) implies (ii), so that we need show only that conditions

(i) and (i~) can be met along with the result of one of the cases:

Case I:

Case II:

Case III:

y + ((n/2)-l)-~ > b

y + ((n/2)-l)-~ < b

¥ + ((n/2)-l).e = b.

In the first case, the choice ~ = a = B = 2b/(n-l) works since

i) ((n/2)-l).(2b/(n-l)) = ((n-2)/(n-l)).b < b
i i i) (2b / (n-1)) + ((n / 2) - 2) - (2 b / (n - 1)) + (2b / (n-1)) = (n / (n - 1)) . b > b
and (2b/ (n-1)) + ((n / 2) - l) . (2 b / (n - 1)) = (n / (n - 1)) . b > b.

The second case is handled by the choice y = b'(2n-5 2) '
(n-(i/2))

= 2b.(n_12 + 2)2) 1
(n-(i/2)

i) ((n/2)-l).(2b (~_l 2

iii) b.(2n-5 2) + ((n/2)_2).2b.(n_~12 +
(n-(i/2))

4n-ll
= b'(+ i) > b

(n-(i/2)) 2

and b.(2n-5 2) + ((n/2)_l).2b.(~_12 +
(n-(i/2))

2b(n-2) 2bn
Finally, the choices ~ 2_ 4 , ~ = , B

n n2-4

i) ((n/2)-l).(2b(n+-l)) = b(n+l) < b
n2_4 n+2

iii) 2b(n-2_____~) + ((n/2)-2).(2bn) + 2b(n+l)

n2-4 n2_4 n2_4

and 2b(n--2) + ((n/2)-l).(2bn) = b.
n2-4 n2_4

- since , B = 2b (~_12 (n_(1/2))2)

1 n-2
-- - 2)) = b'(l - 2) < b

(n- (i/2)) (n- (i/2))

2 2b. (~_12
2)+ (n-(i/2))

2

(n_(i/2))2) = b

1

(n-(i/2)) 2)

2b(n+l)

n2-4

4n-9
• (+i) >b

(n-(1/2)) 2

- - settle the third case via

b" (n2---~2) > b
n2-4

[7

The result of this theorem is that any polynomial-time algorithm for solving

the knapsack problem must use comparisons to hyperplanes not in the original set but

generated from the original set. While such an algorithm is possible, it is

unlikely to exist as a general procedure but might rather exist as a set of

procedures {Pi}~=l such that solving the n-dimensional knapsack problem involves

114

using procedure P to generate new hyperplanes and solving the n+l-dimensional
n

knapsack problem involves using (possibly different) procedure Pn+l to generate new

hyperplanes. Examples of such procedures as well as a brief discussion of the

implications of such a system for the question "P = NP?" are contained in [2]. The

present result in conjunction with those discussions makes it extremely unlikely

that P and NP are the same.

4. Linear Programs

Next we will study linear programs. That is, we will allow any tests of the form

f(xl,...,x n) ~ 0
where f is a linear function. The next theorem allows us to obtain lower bounds for

the complexity of various membership problems:

Theorem 2. Any linear search tree that solves the membership problem for a disjoint

union of a family {Ai}i~ I of open subsets of R n requires at least log 2 IIl queries

in the worst case.

Proof. We prove that any such search tree T with leaves DI,...,D r has r > III and

hence a path of depth k log 2 IIl. The leaves partition R n and, for each j, Dj is an

a u A. and a rejection leaf otherwise. The theorem then accepting leaf if D3 _ ieI i

follows from the observation that the function Y: I + {l,...,r} defined by Y(i)'s

being the least i such that A i n D is non-empty is an injective function. This

observation is true since if Y(i) = Y(j) = R for i ~ j then there exist distinct

points x and y such that x c A i n DZ and y ~ Aj n D R. By the convexity of DR, each

point on the line joining x and y lies in D R and hence is accepted as a point of

u A.. Defining the function g: L ÷ I by g(Z) = k whenever Z ~ ~ yields the
1

ieI
contradiction that g is the constant function i, since A i is open and I is

finite. D

Let us now generalize the knapsack problem (KSn) to the generalized knapsack

problem (GKSn): We are given 2 n hyperplanes HI,...,H2n in E n+l space that form a

simple arrangement, i.e. no n+2 hyperplanes have a common point. For each new point

x we are to determine whether or not x lies in any of these hyperplanes. Note, we

do not insist that the search tree determine which hyperplane x lies in, only that

it determine whether or not x lies in some hyperplane.

From this result we obtain the following corollaries:

Corollary i. The membership problem for GKS n takes at least O(n 2) queries for any

search tree.

Proof. Since the hyperplanes of this problem form a simple arrangement, we can find

115

a family {Ai}ie I of open subsets of R n such that

x ~ u A. +-~ x ~ GKS
1 n

icI

and III ~ 0(2 n2) [4]. The corollary then follows from the theorem.

This result improves a l o w e r bound o f O(n) due to S p i r a [10] .

Corollary 2. (Element U n i q u e n e s s P r o b l e m .) Le t E n be t h e s e t of p o i n t s i n R n t h a t

have two coordinates equal; then any algorithm for determining membership in E n
r e q u i r e s a t l e a s t O(n log n) q u e r i e s .

Proof. Solving the membership problem for E corresponds to solving the membership
n

problem for the family u {A } where
~ES

n

R n < <
A {(Xl,''',x n) ~ I x~(1) x~(2) < "'" X~(n)}

and S is the set of permutations on n objects. The result then follows from
n

lSn[= n!.

5. Eguality Programs

In the previous section, we considered the problem of determining whether a point

belonged to the union of a family of open sets allowing linear search programs.

Here, we extend our methodology to the problem of determining whether a point

belongs to the union of a family of varieties allowing search programs that

determine at each step whether the point is the root of an irreducible polynomial.

Before proceeding, we state some results from algebraic geometry [7] that will be

necessary to our development.

Definition. A variety V(fl,...,fm) is a subset of R n defined by

... R n
V(f I fm) = {(x I, ,x n) ~ I fl(Xl , ,x n) = ." = fm(Xl x n) = 0}

for polynomials fl,...,fm.

Definition. The polynomials f and g are said to be equivalent iff there exists a

non-zero constant h such that f = hg.

Fact 1. If the dimension of V(fl,...,f n) is denoted by dim(V(fl,...,fn)) then

i) dim(A) = 0 if and only if A is empty
k

ii) if R n = u V(fi) , then one of the polynomials f, is trivial
i-i I

iii) if f and g are non-trivial irreducible polynomials that are not equivalent,

then dim(V(f,g)) < dim(V(f)).

Theorem 3. If fl,...,fm are irreducible polynomials of n real variables that are

not equivalent, then any equality search program for

116

m

U V(f i)
i=l

using only irreducible polynomials requires at least m queries.

Proof. Let T be a search program of depth k that determines for any x c R n whether
m

x e o V(fi). Suppose that a path through T makes queries as to whether gi(x) = 0
i=l

m m

for i = k if x ~ u V(fi) and # 0 for i = k if x ~ u V(fi). We will show by
i=l i=l

dimension arguments that this is possible only if k -> m.
m i

To begin, we define the sets F = u V(fi) and G i = (u V(gj)) c (A c is the
i=l j =l

complement of the set A) and observe that x e Gt_ 1 if and only if k -> t.

Furthermore, either G k _c F or G k ! F c since after k queries we can determine for

each x whether x belongs to F or not. Now, if k < m, then for some i V(f i) is not

one of the sets V(g I) ,(V(gk) and dim(V(gj) n V(fi)) < dim(V(fi)). Thus the set

G k n V(fi) is of the same dimension as the variety V(f i) and is non-empty. Hence
c m n" G k n F # 0. Assume next that G k _c F; then G k u F = But this implies that R n

can be written as the union of non-trivial varieties, which is not true, and thus

G k n F c # 0 and so k queries are insufficient for k < m. D

Corollary 3. Any equality search program for KS n that uses only irreducible

polynomials requires at least 2 n queries.

References

[i] Blum, Floyd, Pratt, Rivest, Tarjan. Linear time bounds for selection. JCSS
7:448-461, 1973.

[2] Dobkin, Lipton. On some generalizations of binary search. ACM Symposium on
the Theory of Computing, Seattle, Washington, May 1974.

[3] Fischer, Meyer, Paterson. Lower bounds on the size of Boolean formulas. ACM
Symposium on the Theory of Computing, Albuquerque, New Mexico, May 1975.

[4] Gr~nbaum. Convex Polytopes. Interscience Publishers, 1967.

[5] Harper, Savage. On the complexity of the marriage problem. Advances in
Mathematics 9:299-312, 1972.

[6] Kerr. The effect of algebraic structure on the computational complexity of
matrix multiplication. PhD thesis, Cornell University, Ithaca, New York, 1970.

[7] Lefschetz. Algebraic Geometry. Princeton University Press, 1953.

[8] Schnorr. A lower bound on the number of additions in monotone computations of
monotone rational polynomials. Unpublished manuscript.

[9] SchDnhage, Strassen. Fast multiplication of large numbers (in German).
Computing 1:182-196, 1966.

[i0] Spira. On the number of comparisons necessary to rank an element.
Computational Complexity Symposium, Courant Institute, 1973.

[ii] Strassen. Gaussian elimination is not optimal. Numerische Mathematik 13:
354-6, 1969.

I17

[12] Tarjan. Depth-first search and linear graph algorithms. SIAIM Journal on
Computing i, 1972.

[13] Vilfan. The complexity of finite functions. Technical Report 97, Project
MAC, MIT, 1972.

