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Abstract. Within the field of phylogenetics there is great interest in distance measures to quan-

tify the dissimilarity of two trees. Recently, a new distance measure has been proposed: the

Maximum Parsimony (MP) distance. This is based on the difference of the parsimony scores of

a single character on both trees under consideration, and the goal is to find the character which

maximizes this difference. Here we show that computation of MP distance on two binary phy-

logenetic trees is NP-hard. This is a highly nontrivial extension of an earlier NP-hardness proof

for two multifurcating phylogenetic trees, and it is particularly relevant given the prominence

of binary trees in the phylogenetics literature. As a corollary to the main hardness result we

show that computation of MP distance is also hard on binary trees if the number of states avail-

able is bounded. In fact, via a different reduction we show that it is hard even if only two states

are available. Finally, as a first response to this hardness we give a simple Integer Linear Pro-

gram (ILP) formulation which is capable of computing the MP distance exactly for small trees

(and for larger trees when only a small number of character states are available) and which is

used to computationally verify several auxiliary results required by the hardness proofs.

Keywords: Maximum Parsimony, phylogenetics, tree metrics, NP-hard, binary trees

1. Introduction

When present day species are considered and their evolutionary relationships are to

be investigated, phylogeneticists often seek to estimate the best evolutionary tree ex-

plaining the given species data (e.g., DNA alignments). However, it is well known

that different data sets on the same species can lead to different trees, or that differ-

ent phylogenetic tree estimation methods, e.g., Maximum Parsimony or Maximum

Likelihood or distance based methods, can lead to different trees even for the same

http://crossmark.crossref.org/dialog/?doi=10.1007/s00026-017-0361-1&domain=pdf
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data set [6, 11]. Thus, in practice one is often confronted with multiple trees, and it

is therefore interesting to measure how different these trees really are. A new way

of determining their relative similarity has recently been proposed [5]: the Maximum

Parsimony distance (or MP distance, for short).

This metric basically requires, the search for a character which has a low parsi-

mony score on one of the trees involved and a high score on the other one. In [5] it

has been shown that calculating the MP distance between two trees is NP-hard. The

proof presented there required non-binary trees (sometimes also called multifurcating

trees). This was not entirely satisfactory, for the following reason. In many branches

of phylogenetics multifurcating trees are used to model uncertainty about the precise

order of branching events [14], in which case the term unresolved is often used in-

stead of multifurcating. Distance measures which interpret multifurcations this way

often have the property that the distance decreases, or in the worst case stays the

same, if one or both of the input trees become more unresolved [12]. However, the

parsimony score of a single tree increases (or in the best case stays the same) if its

edges are contracted to create multifurcations. This is why algorithms that compute

Maximum Parsimony trees usually output binary trees: a non-binary solution can be

refined into a binary solution without loss of quality. Given this traditional emphasis

on binary trees in the parsimony literature, and the fact that evolutionary events such

as mutation or speciation are understood to split a lineage into two parts, not three or

more [9], it is logical to explore the complexity of MP distance on binary trees.

In this paper, we answer this question by showing that computing the MP distance

between two binary trees is, unfortunately, also NP-hard. This is by no means a

simple extension of the hardness proofs in [5]. To prove hardness in the present case

we are required to develop a rather elaborate array of novel gadgets and arguments,

with a strong graph-theoretical flavour.

Moreover, we show as a corollary to the main theorem that this hardness remains

if we restrict the number of character states to four (or more). Note that this covers

the most important biological applications, as the DNA and RNA alphabets consist

of four character states each, and the protein alphabet consists of 20 states. However,

when morphological data is analyzed, binary characters are also often relevant, which

is why we consider this case, too. We show that when restricted to two character

states, calculating the MP distance is not just NP-hard, but even APX-hard, which

means that there exists a constant c > 1 such that a polynomial-time c-approximation

is impossible unless P = NP.

As a tentative first step towards addressing the NP-hardness of the MP distance,

we present a simple Integer Linear Program (ILP) which calculates this distance (both

on a bounded number of states as well as in the unbounded case). The ILP is rather

“explicit” in the sense that it has a static, constraint-based formulation of Fitch’s

algorithm embedded within it. Although faster than naive brute force algorithms, the

ILP for an unbounded number of states does not scale well and is limited to trees

with approximately 16 taxa. On the other hand, the ILP for binary characters is

fast: it can cope with trees with up to 100 taxa in reasonable time. In both cases

the ILP is fast enough to verify the MP distance of a number of gadgets used in the

hardness proofs. An implementation of this ILP has been made publicly available at

http://skelk.sdf-eu.org/mpdistbinary/ [13].
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2. Notation

Recall that an unrooted phylogenetic X-tree is a tree T = (V (T ), E(T )) on a leaf set

X = {1, . . . , n} ⊂ V (T ). Such a tree is named binary if it has only vertices of degree

1 (leaves) or 3 (internal vertices). A rooted phylogenetic X-tree additionally has one

vertex specified as the root, and such a rooted tree is named binary if the root has

degree 2 and all other vertices are of degree 1 (leaves) or 3 (internal vertices). Note

that two leaves are said to form a cherry, if they are connected to the same inner node.

Moreover, a rooted binary tree on three taxa is also often referred to as a rooted triplet,

and a rooted tree with only one cherry is also called a caterpillar tree or caterpillar

for short. We often denote trees in the well-known Newick format [4], which uses

nested parentheses to group species together according to their degree of relatedness.

For instance, the tree ((1, 2), (3, 4)) is a tree with two so-called cherries (1, 2) and

(3, 4) and a root between the two.

Furthermore, recall that a character f is a function f : X → C for some set C :=
{c1, c2, c3, . . . , ck} of k character states (k ∈ N). Often, k is assumed to equal 4 in

order for C to represent the DNA alphabet {A, C, G, T}, but in the present paper k is

not restricted this way but can be any natural number unless stated otherwise. Note

that in the special case where | f (X)| = 2, we also refer to f as a binary character.

In general, when | f (X)| = r, f is called an r-state character. In order to shorten

the notation, it is customary to write, for instance, f = AACC instead of f (1) = A,

f (2) = A, f (3) = C, and f (4) = C. Note that each r-state character f on taxon set

X partitions X into r non-empty and non-overlapping subsets Xi, i = 1, . . . , r, where

x j, xk ∈ Xi if and only if f (x j) = f (xk).

Note that in this paper, we refer to a character always with its underlying taxon set

partition in mind, i.e., for instance we do not distinguish between AACC, CCAA, and

CCGG, and so on. Moreover, when there is no ambiguity and when the stated result

holds for both rooted and unrooted trees, we often just write ‘tree’ or ‘phylogenetic

tree’ when referring to a phylogenetic X-tree.

An extension of a character f to V (T ) is a map g : V (T )→C such that g(i) = f (i)
for all i in X . For such an extension g of f , we denote by lg(T ) the number of edges

e = {u, v} in T on which a substitution occurs, i.e., where g(u) �= g(v). Such sub-

stitutions are also often referred to as mutations or changes. The parsimony score or

parsimony length of a character f on T , denoted by l f (T ), is obtained by minimizing

lg(T ) over all possible extensions g of f . For binary trees T , the parsimony score of

a character f can easily be calculated with the Fitch algorithm [7], whose correctness

was formally proven by Hartigan in 1973 [8]. Recall that the bottom-up phase of

the Fitch algorithm starts at the labelled leaves and assigns to the unlabeled parent

of two nodes the intersection of both children’s label set if it is non-empty, or the

union otherwise. The top-down phase then starts at the root with an arbitrary choice

of the root states suggested by the bottom-up phase and keeps the current state for the

descending nodes whenever this is contained in the label set of these nodes, and takes

an arbitrary state out of the label set otherwise.

This paper deals with the so-called parsimony distance dMP as introduced in [5].

This distance is defined as follows: given two phylogenetic trees T1 and T2 on the
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same set X of taxa, the parsimony distance between these trees is defined as

dMP(T1, T2) = max
f

∣

∣l f (T1)− l f (T2)
∣

∣ , (2.1)

where the maximum is taken over all characters f on X . A character f which maxi-

mizes this distance is called an optimal character. Note that, due to the fact that the

parsimony score of a tree (for a given character) is not affected by the presence or

absence of a root, parsimony distance is also oblivious to whether the input trees are

rooted or unrooted. Later, in Section 5, we will consider the bounded-states variant

of dMP(T1, T2), denoted di
MP(T1, T2), where i ≥ 1. This is defined as in (2.1) ex-

cept that the characters f are restricted to having at most i states. Clearly, for all i,

di
MP(T1, T2) ≤ dMP(T1, T2).

For some proofs in this paper we need the notion of a maximum agreement forest,

which is closely linked to the so-called rooted subtree prune and regraft distance or

rSPR distance for short. Recall that, informally, an agreement forest of two rooted

phylogenetic trees is a set of subtrees which are identical in both trees and which in

total contain all leaves, see, e.g., [2]. A maximum agreement forest is an agreement

forest with minimum number of components. A single rSPR move involves moving

to a neighboring rooted tree by detaching a branch and re-attaching it elsewhere. The

rSPR distance drSPR is the minimum number of rSPR moves required to transform one

rooted tree into another. Maximum agreement forests and rSPR distance are closely

linked by the well-known result that, modulo a rooting technicality, an agreement

forest of two rooted trees with m components yields a set of m−1 rSPR moves which

turn the first tree into the second one [2].

3. Preliminaries

The following observation, which we will use extensively and implicitly throughout

the article, appeared unchanged in our earlier work [5].

Observation 3.1. Let f be a character on X and T a tree on X . Let f ′ be any char-

acter obtained from f by changing the state of exactly one taxon. Then l f (T )−1 ≤

l f ′(T ) ≤ l f (T )+ 1, i.e., the parsimony score can change by at most one.

Proof. Suppose l f ′(T ) ≤ l f (T )− 2. Consider any extension of f ′ to the interior

nodes of T that achieves l f ′(T ) mutations. Using the same extension but on f gives

at most l f ′(T ) + 1 mutations, because only one taxon changed state. So l f (T ) ≤
l f ′(T ) + 1 ≤ l f (T )− 1, which is a contradiction. In the other direction, take any

optimal extension of f and apply it to f ′. At most one extra mutation will be created,

so l f ′(T ) ≤ l f (T )+ 1.

A more general version of the following lemma appeared earlier in [5]. Here we

have specialized the lemma and its proof to apply to rooted binary trees, which is the

type of trees we will construct in the subsequent hardness reductions.

Lemma 3.2. Let f be an optimal character for two rooted, binary trees T1 and T2, i.e.,

dMP(T1, T2) =
∣

∣l f (T2)− l f (T1)
∣

∣. Without loss of generality, assume l f (T1) < l f (T2).
Then we can construct in polynomial time an optimal character f ′ with the following



Computing MP Distance Between Binary Phylogenetic Trees 577

property: l f ′(T1) < l f ′(T2) and for each vertex u of T1 such that both u’s children are

leaves (i.e., they form a cherry), f ′ assigns both children of u the same state.

Proof. Consider a vertex u of T1 such that both of its children are taxa, but such

that f assigns the two children different states. We calculate an optimal extension

of f to the interior nodes of T1 by applying Fitch’s algorithm. Let s be the state

allocated to u by the top-down phase of the Fitch algorithm. Choose the child of

u that does not have state s and change its state to s. This yields a new character

f ∗. Clearly, l f ∗(T1) < l f (T1), simply by using the same extension that the Fitch

algorithm gave. Combining this with Observation 3.1 gives l f ∗(T1) = l f (T1)−1 and

thus l f ∗(T2) = l f (T2)− 1 (otherwise f could not have been optimal). Hence, f ∗ is

also an optimal character, and l f ∗(T1) < l f ∗(T2). This process can be repeated for as

long as necessary. Termination in polynomial time is guaranteed because each taxon

has its state changed at most once.

Observation 3.3. Lemma 3.2 also holds for optimal characters under the d i
MP(T1, T2)

model.

Proof. The transformation in the proof of Lemma 3.2 does not increase the number

of states in the character.

4. MP Distance on Binary Trees Is NP-Hard

4.1. The Symmetry-Breaking Construction

In the hardness proof in Section 4.2 we will construct two trees TE and TV and a

central fact used in the proof of correctness of the reduction is that, for all optimal

characters f , l f (TE) < l f (TV ). In this section we show how to construct a gadget to

enforce this property. Note that all the trees constructed in this section are binary. (As

we demonstrated in [5] constructing such a symmetry-breaking gadget is far easier in

the non-binary case.)

Tb

A

6

GA A C C G G

2 3 4 5 6 1 2 1

A C G

4 5

C

Ta

3

Figure 1: The two “asymmetric” trees Ta and Tb and an optimal character fasym =
GAACCG.

Consider the two rooted trees

Ta = (((((2, 3), 4), 5), 6), 1),
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Tb = ((((2, 6), (3, 4)), 5), 1),

shown in Figure 1. It can be verified computationally that dMP(Ta, Tb) = 2, achieved,

for example, by character fasym = GAACCG∗ with l f (Ta) = 2 and l f (Tb) = 4.

Moreover, if f is an optimal character, then l f (Ta)+ 2 = l f (Tb). Expressed dif-

ferently: there does not exist any optimal character f for which l f (Ta) > l f (Tb), so

the instance is “asymmetric”. For two trees T1 and T2, let

gap(T1, T2) =

∣

∣

∣

∣

max
f

(l f (T2)− l f (T1))−max
f

(l f (T1)− l f (T2))

∣

∣

∣

∣

,

where f ranges over all characters (not just optimal ones). Note that gap(Ta, Tb) = 1

because max f

(

l f (Tb)− l f (Ta)
)

= 2 and max f

(

l f (Ta)− l f (Tb)
)

= 1, where, e.g., the

character f = AACCAA achieves l f (Ta)− l f (Tb) = 2−1 = 1.

We now describe an iterative construction such that, for any desired gap g, we can

construct two trees T1 and T2, both on O(g) taxa, such that gap(T1, T2) ≥ g.

We start with Ta and Tb. Let TA be the rooted tree on 12 taxa obtained by taking

two disjoint copies of Ta and joining them together via their roots ρ1, ρ2 to a newly

introduced root ρ . (Here, the copying operation is assumed to introduce new taxon

labels to prevent the same taxon occuring twice in the same tree.) TB is defined the

same way, but with respect to Tb.

Claim 4.1. gap(TA, TB) ≥ 2.

Proof. We will show that max f

(

l f (TB)− l f (TA)
)

≥ 4 and max f

(

l f (TA)− l f (TB)
)

≤

2, from which the claim will follow. Let f be a character such that l f (Ta)+2 = l f (Tb),
i.e., f is an optimal character for Ta, Tb. We extend character f to become charac-

ter F on TA, TB in the natural way, i.e., disjoint copies of the same taxon receive

the same character state. If we run the bottom-up phase of Fitch’s algorithm on TA

and TB, we observe that each copy of Ta induces 2 fewer mutations than its cor-

responding copy of Tb. Moreover, the set of states identified (by the Fitch algo-

rithm’s bottom-up phase) to be possible at ρ1 will be equal to the set of states iden-

tified to be possible at ρ2, so there will be no mutations incurred in TA on the two

edges incident to its root ρ . By the same argument, there will be no mutations in-

curred in TB on the edges incident to its root. Hence, lF(TB)− lF(TA) ≥ 4. Showing

max f

(

l f (TA)− l f (TB)
)

≤ 2 is possible analytically but it is technical. We therefore

omit the proof, noting however that we have used an exhaustive computational search

to verify that (a) max f

(

l f (TB)− l f (TA)
)

= 4, where the maximum is reached, e.g.,

by f = ABBCCAACCBBA and (b) max f

(

l f (TA)− l f (TB)
)

= 2, where the maximum

is reached, e.g., by f = AABBAAAABBAA. Note that our ILP described in Section 6

can also be used to verify the claim. The computational search thus allows us to draw

the slightly stronger conclusion that gap(TA, TB) = 2.

Let T k
A be the rooted tree on 12k taxa obtained by arranging k disjoint copies of

TA along a caterpillar backbone. That is, T 1

A = TA and for k > 1, T k
A is obtained by

joining T k−1

A and TA via a new root. T k
B is defined analogously.

∗ Note that for this specific character there exist optimal extensions in both trees such that the root is

allocated state G.
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Claim 4.2. gap
(

T 2

A , T 2

B

)

≥ 3.

Proof. By extending the character F to T 2

A , T 2

B in the usual fashion, and using

the same Fitch algorithm-based argument as in the previous proof, we see that

max f

(

l f

(

T 2

B

)

− l f

(

T 2

A

))

≥ 8. On the other hand, due to the fact that max f

(

l f (TA)−
l f (TB)

)

≤ 2, the total number of mutations incurred inside the two copies of TA can

in total be at most 4 more than the total number of mutations incurred inside the two

copies of TB. In the worst case, T 2

A can perhaps also suffer a single mutation on the

two edges incident to the root, while T 2

B suffers none, so max f

(

l f

(

T 2

A

)

− l f

(

T 2

B

))

≤
5. The claim follows.

Lemma 4.3. For k ≥ 1, gap
(

T k
A , T k

B

)

≥ k + 1.

Proof. We prove this statement by induction. For k ∈ {1, 2} the lemma has already

been proved, so assume k ≥ 3. By continuing the arguments used in the previous

claims, we see that

max
f

(

l f

(

T k
B

)

− l f

(

T k
A

))

≥ max
f

(

l f

(

T k−1

B

)

− l f

(

T k−1

A

))

+ max
f

(

l f (TB)− l f (TA)
)

and

max
f

(

l f

(

T k
A

)

− l f

(

T k
B

))

≤ max
f

(

l f

(

T k−1

A

)

− l f

(

T k−1

B

))

+ max
f

(

l f (TA)− l f (TB)
)

+ 1,

where the 1 in the second expression accounts for the possibility that in T k
A a muta-

tion is incurred on one of the root edges, while no such mutation is incurred in T k
B .

Combining the above with the fact that max f

(

l f (TB)− l f (TA)
)

= 4, max f

(

l f (TA)−

l f (TB)
)

= 2, max f

(

l f

(

T 2

B

)

− l f

(

T 2

A

))

≥ 8, and max f

(

l f

(

T 2

A

)

− l f

(

T 2

B

))

≤ 5, we

obtain the desired result.

In addition to Lemma 4.3, we actually also need to know a (polynomial-time

computable) expression for dMP

(

T k
A , T k

B

)

. Conveniently, we have a closed expression

for this.

Lemma 4.4. For k ≥ 2, dMP

(

T k
A , T k

B

)

= 8 + 4(k−2) = 4k.

Proof. From the proof of Lemma 4.3 we know that

dMP

(

T k
A , T k

B

)

= max f

(

l f

(

T k
B

)

− l f

(

T k
A

))

.

Due to the recurrence shown in the proof of that lemma we see,

max f

(

l f

(

T k
B

)

− l f

(

T k
A

))

≥ 8 + 4(k−2).
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We will complete the proof by showing dMP

(

T k
A , T k

B

)

≤ 8 + 4(k − 2). To do this,

we exploit the fact (proven in [5]) that dMP

(

T k
A , T k

B

)

≤ drSPR

(

T k
A , T k

B

)

, i.e., MP dis-

tance is a lower bound on the well-known rooted subtree prune and regraft (rSPR)

distance. In particular, we prove that drSPR

(

T k
A , T k

B

)

≤ 8 + 4(k− 2). We do this by

showing that T k
A , T k

B permit an agreement forest with at most 8+4(k−2)+1= 4k+1

components. (It is well known that an agreement forest with m components yields a

set of m− 1 rSPR moves that turn one tree into the other, see [2]†.) Now, observe

that T k
A , T k

B contain 4+2(k−2) = 2k copies of the original Ta, Tb trees, respectively.

Next, observe that an agreement forest for Ta, Tb with 3 components can be obtained

by placing taxon 3 and taxon 6 each in a singleton component, and {1, 2, 4, 5} in the

remaining component. To obtain an agreement forest for T k
A , T k

B we put all copies of

taxon 3 and all copies of taxon 6 in singleton components, yielding 4k singleton com-

ponents. All remaining taxa can be placed in one large component, yielding 4k + 1

components in total.

Finally, we consider the following auxiliary observation, which will be useful

later.

Observation 4.5. For each k ≥ 2, there exists an optimal character f k on T k
A , T k

B such

that f k has 3 states, and there exist optimal extensions of f k to both trees, such that

the roots of T k
A , T k

B both receive the same state.

Proof. As noted earlier, fasym = GAACCG is an optimal character for Ta, Tb and

permits optimal extensions such that the roots of both trees can be assigned state G.

We can obtain an optimal character f k on T k
A , T k

B simply by making 2k copies of

fasym. The optimality of f k follows from the fact that fasym is optimal for Ta, Tb and

that in the proof of Claim 4.1, any optimal character for Ta, Tb can be used. Given that

each copy of Ta and Tb can have state G allocated to its root, it follows (by continuing

the bottom-up phase of the Fitch algorithm on the remainder of T k
A and T k

B ) that there

exist optimal extensions of f k such that the roots of T k
A and T k

B are both allocated

state G.

4.2. The Reduction

In this section we exclusively consider simple undirected graphs. Recall that a graph

G = (V, E) is cubic if every vertex has degree exactly 3, in which case |E| = 3|V |/2.

A proper edge colouring of a graph G is an assignment of colours to the edges such

that no two adjacent edges have the same colour, where two edges are adjacent if

they have a common endpoint. Let χ ′(G), the chromatic index of G, be the minimum

number of colours required to properly colour the edges of G. The classical result

of Vizing (see any standard graph-theory text, such as [3]) states that for every graph

G, ∆(G) ≤ χ ′(G) ≤ ∆(G)+ 1 where ∆(G) is the maximum degree of a vertex in G.

Hence, for cubic G, χ ′(G)∈ {3, 4}. Even for cubic graphs it is NP-hard to distinguish

between these two possibilities [10].

Theorem 4.6. Computation of dMP(T1, T2) on binary trees is NP-hard.

† To utilize this agreement forest formulation of rSPR we should first append a new taxon ρ to the root of

both trees. However, in this case it is easy to check that the omission of ρ does not harm the analysis.
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Proof. Let G = (V, E) be a cubic graph where n = |V |. We give a polynomial-

time reduction from computation of χ ′(G) to computation of dMP, from which NP-

hardness will follow. Specifically, we will construct two trees TE and TV such that,

for a certain integer P, dMP(TE , TV ) = P if and only if χ ′(G) = 3. In particular, if

χ ′(G) = 4, then dMP(TE , TV ) will be P− 1 (or less). An important difference with

[5, Theorem 4.6] is that here optimal characters f will be engineered to always have

the property l f (TE) < l f (TV ) and not the other way round. Informally, at optimality

TE always “wins”.

The high-level idea is that in TE we will choose the colours of the edges of G.

In fact, for each edge we will choose three colours, all different, representing the

colour of e in three different copies of G. Due to the way we construct the two

trees, there will exist optimal characters in which the edge colouring (in each of the

three copies of G) is proper. This is because, the closer an edge colouring is to being

proper, the higher the parsimony score induced in TV . Within the space of proper edge

colourings, we will show that it is advantageous to use as few colours as possible,

because this will give the character a low parsimony score on TE . Leveraging the fact

that the colours used for the three copies of each edge are all different, we will derive

the conclusion that dMP can reach a certain value P if and only if there is a proper

edge colouring that uses only 3 colours, i.e., χ ′(G) = 3.

We will prove the following:

χ ′(G) = 3 ⇒ dMP(TE , TV ) = P,

χ ′(G) = 4 ⇒ dMP(TE , TV ) ≤ P−1.

Let M be a large integer, at most polynomially large in n, whose value we will

specify later. Letting k = M, construct T k
A , T k

B (as described in the previous section).

Relabel SE = T k
A and SV = T k

B . By Lemma 4.3, gap(SE , SV ) ≥ M + 1.

The core ingredients of TE are the subtrees B, SE , and T ∗∗∗. We construct B by

taking an arbitrary rooted binary tree on 3|V |+ |E| taxa. By appending an extra taxon

α just above its root, we create a new root yielding 3|V |+ |E|+ 1 taxa in total. Note

that since α is not a taxon of B, in the following we refer to B including α or B

without α to stress whether or not α is considered together with B or not.

The tree T ∗∗∗ is constructed as follows. Fix an arbitrary rooted binary tree T ∗

on |E| leaves, identifying the leaves with elements of E . Replace each leaf ue of T ∗,

where e ∈ E , with a rooted triplet to obtain T ∗∗ on 3|E| leaves ue, j where e ∈ E and

j ∈ {1, 2, 3}. Finally, replace each leaf ue, j of T ∗∗ with a rooted triplet on three taxa

xu
e, j, xv

e, j, and x
edge
e, j where u, v ∈V are the two endpoints of e. We ensure that xu

e, j, xv
e, j

are sibling to each other (i.e., form a cherry). This is T ∗∗∗, which is depicted in Figure

2, and it has thus 9|E| taxa.

The basic idea is that each edge e = {u, v} occurs 3 times in total, and each such

occurrence consists of a cherry representing u and v, and an extra taxon (“edge”)

sitting just above the cherry.

The construction of TE is concluded by joining B including α , SE , and T ∗∗∗ as

shown in Figure 3, which also introduces auxiliary taxa β1, β2, γ1, γ2. We adopt the
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T
∗∗

u|E|u2u1

u1,2 u1,3u1,1 u2,3 u2,2 u2,1 u|E|,3 u|E|,2 u|E|,1

x
u
1,1 x

v
1,1 x

edge
1,1 x

edge
1,2 x

v
1,2 x

u
1,2 x

edge

|E|,3 x
v
|E|,3 x

u
|E|,3x

u
2,1x

edge
2,1 x

v
2,1

T
∗∗∗

T
∗

Figure 2: The tree T ∗∗∗. Here we have identified E with the set {1, . . . , |E|} to sim-

plify the figure. In the lowermost leaves we have overloaded u and v: in each case

they refer to the two endpoints of the edge in question.

labels used in that figure. Summarizing, TE contains

3|V |+ |E|+ 1 + 4 +9|E|+12M

taxa.

To construct TV we start by taking B and attaching SV on the edge entering taxon

α . Now, let

H = {(v, j)|v ∈V, j ∈ {1, 2, 3}}∪{e|e ∈ E}.

Clearly, |H|= 3|V |+ |E|. Pick an arbitrary bijection between the taxa of B (excluding

α) and the elements of H. For each edge e ∈ H, introduce a rooted triplet on the three

taxa x
edge
e,1 , x

edge
e,2 , x

edge
e,3 and attach this rooted triplet on the edge entering the taxon of B

corresponding to e. For each tuple (v, j) ∈ H, let {e, e∗, e∗∗} be the 3 edges incident

to v in G, introduce a rooted triplet on the three taxa xv
e, j , xv

e∗, j, and xv
e∗∗, j, and attach

this rooted triplet on the edge entering the taxon of B corresponding to (v, j). Finally,

we introduce a new root and join B to the new subtree on ((β1, γ 1), (β2, γ 2)). This

completes the construction of TV , which is depicted in Figure 4.

We are now in a position to specify the number M. We require M to be sufficiently

large that, for every optimal character f , l f (TE) < l f (TV ). From Lemma 4.4 we know

that there exists some character f ′ such that l f ′(TV )− l f ′(TE) ≥ 4M. (In particular,

we can obtain such a character by, for example, extending the character suggested by

Lemma 4.4 such that all taxa outside SE and SV are assigned the same state.) Now,

let t be the number of edges in TE that lie outside SE . For every character f we have

l f (TE)− l f (TV ) ≤ t +(4M− (M + 1)).
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T
∗∗∗

β2

3|V | + |E| = 3|E| taxa 12M taxa

9|E| taxa

SEB

TE

α

γ2γ1

β1

p1

p2

Figure 3: The tree TE . Taxon α is closely linked to subtree B as it is descending from

the same root as B in TE . This root is considered in the proof. However, in TV , α
shares a direct common root with SV , not B.

The 4M term is obtained from Lemma 4.4, the (M + 1) term from Lemma 4.3, and

the t term arises (pessimistically) from the situation when every edge in TE (outside

SE ) incurs a mutation, but no edge in TV (outside SV ) incurs a mutation. So, if we

choose M such that

t + 4M− (M + 1) < 4M,

it follows that for every optimal character f , dMP(TV , TE) = l f (TV )− l f (TE) and in

particular l f (TV ) > l f (TE). Choosing M = t is therefore sufficient to achieve this.

This “symmetry breaking” has far-reaching consequences which we shall heavily

utilize later.

Next, let f S be any 3-state character on the taxa in SE and SV such that l f S(TV )−
l f S(TE) = 4M = dMP(SE , SV ). This character exists and can be constructed in poly-

nomial time thanks to Observation 4.5. Recall, in particular, that it is constructed by

making many disjoint copies of the character fasym = GAACCG.

Now, suppose χ ′(G) = 3. We will extend f S to all the taxa in TE as follows,

obtaining a 4-state character. Take any proper edge colouring Col of graph G using

three colours red, blue, and green. We start by relabelling f S as follows: character

state G maps to blue, A maps to red and C maps to green. Next, colour all the taxa in

B including α pink. Colour the cherry {β1, β2} pink and the cherry {γ 1, γ 2} blue.

Next, consider the following cyclical mapping F :

F(red, 1) → red, F(red, 2) → blue, F(red, 3) → green;

F(blue, 1) → blue, F(blue, 2) → green, F(blue, 3) → red;
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γ2

12M taxa

xv
e∗,j

TV

SVB

xv
e,jx

edge
e,1 x

edge
e,2 x

edge
e,3

α

4(3|V | + |E|) = 12|E| taxa

xv
e∗∗,j

β2β1 γ1

Figure 4: The tree TV .

F(green, 1) → green, F(green, 2) → red, F(green, 3) → blue.

Now, for every e ∈ E , j ∈ {1, 2, 3} and letting e = {u, v}, we assign x u
e, j , x v

e, j ,

and x
edge
e, j all the same colour: the colour F(Col(e), j) where as usual Col(e) is the

colour assigned to e by the proper edge colouring Col.

Let this character be called f Col . Observe that

l f Col (TE) = 1 + 2|E|+ l f S(SE).

This can be confirmed by applying Fitch’s algorithm. Note, in particular, that there

is an optimal extension such that all the internal nodes of the tree B (including α)

are coloured pink, all the nodes of the T ∗ part of T ∗∗∗ are blue, p2 is blue, the root

is blue, and all the unlabelled nodes are blue. The +1 is then the mutation in the

transition from pink to blue on, for example, the edge between the cherries {β1, β2}
and {γ 1, γ 2}. There is no mutation on the edge entering the root of SE because, by

Observation 4.5 and the way we relabelled f S, there is an optimal extension of SE in

which its root is permitted to be blue.

Also,

l f Col (TV ) = 2 + 3(3|V |+ |E|)+ 1 + l f S(SV ).

The +1 term here is definitely incurred because there is an optimal extension in which

the root of TV and α are both coloured pink, but pink is not used in f S, so there will
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then be a mutation on the edge entering the root of SV . The +2 term corresponds to

mutations incurred in the β1, β2, γ 1, γ 2 region of TV .

Now, define P as follows:

P = l f Col (TV )− l f Col (TE)

=
(

2 + 3(3|V |+ |E|)+ 1 + l f S(SV )
)

−
(

1 + 2|E|+ l f S(SE)
)

= (2 + 3(3|V |+ |E|)+ 1)− (1 + 2|E|)+ 4M.

Hence, if χ ′(G) = 3, dMP(TE , TV ) ≥ P. We still need to show (1) dMP(TE , TV )≤
P and (2) dMP(TE , TV ) = P if and only if χ ′(G) = 3. Once these facts have been

established NP-hardness will follow.

We approach this by starting from an arbitrary optimal character f and then trans-

forming f step by step such that we do not lose optimality but the character attains

a certain canonical form. This canonical form will be attained by accumulating one

special property at a time. In all cases the argument that a new property can be

obtained is based on the assumption that all earlier properties have already been ac-

cumulated. Properties are never lost, and each property can be attained in polynomial

time. Thus, given an arbitrary optimal character we can transform it in polynomial

time into a character that has all the described properties. Some of the proofs of the

properties have been deferred to the appendix. Proofs of properties are terminated

with a � symbol.

Property 1. All cherries in TE are monochromatic. That is, if {x, y} are two taxa that

share a parent in TE , then both are assigned the same colour (i.e., state).

Proof. This is possible by combining Lemma 3.2 with the fact (established earlier)

that, for every optimal character f , l f (TE) < l f (TV ).

Property 2.1. In TE , the cherry {β1, β2} has a different colour to the cherry {γ 1, γ 2}.

Property 2.2. In TE , the (possibly multiple) colours used for the taxa of B (including

α) are not used elsewhere in TE , except possibly {β1, β2}.

Property 2.3. In TE , all the taxa in B have the same colour which, with the possible

exception of β1, β2, does not appear on taxa outside B and α .

Property 3. In TE , all the taxa in B have the same colour, and cherry {β1, β2} also has

this colour. Moreover, this colour does not appear on any other taxa, i.e., it is unique

for B (including α) and β1, β2.

From now on we refer to the unique colour used by B (including α), β1 and β2 as

pink. Property 3 is extremely important. In particular, it means that from now on

we can assume the existence of optimal extensions of TV such that the root of TV is

coloured pink and, moreover, that the entire image of B inside TV is coloured pink.

We call these pink extensions. These greatly simplify the task of counting mutations

inside TV . In particular, it means that we from now on (in TV ) only need to consider

mutations incurred inside the subtrees sibling to the taxa of B, which we call below

pink subtrees. These subtrees never contain pink taxa.
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Property 4. Let f be an optimal character with properties 1–3 and let f ∗ be the

restriction of f to the taxa in SV and SE . Then l f ∗(SV )− l f ∗(SE) = dMP(SE , SV ).

Proof. Fix a pink extension of f . From the earlier properties, f ∗ does not contain any

pink taxa. Now, taxon α is coloured pink, because α is a taxon of B. This means that,

in TV , there is unavoidably a mutation on the edge entering the root of SV . Moreover,

we know that there exist optimal characters for SE , SV in which the roots of SE and

SV can be allocated the same colour blue: this is the 3-state character f S that we

constructed at the start of the proof. This means that, without loss of optimality, we

can assume f ∗ = f S, where we are free to (and should) relabel the blue inside f S

such that in TE no mutation is incurred on the edge entering the root of SE . (This

can be achieved by running the bottom-up phase of the Fitch algorithm on the subtree

sibling to SE in TE , identifying the set of colours permitted by the Fitch algorithm at

the root of the subtree, and arbitrarily picking one of those colours as the relabelling

colour). Optimality is assured because (1) l f S(SV )− l f S(SE) = dMP(SE , SV ), (2) we

force a mutation at the root of SV and (3) we definitely avoid a mutation at the root of

SE .

Property 5. (a) For every edge e = {u, v} ∈ E the three taxa x
edge
e,1 , x

edge
e,2 , x

edge
e,3

all have distinct colours. Moreover, (b) x
edge
e,1 , x u

e,1, x v
e,1 all have the same colour,

x
edge
e,2 , x u

e,2, x v
e,2 all have the same colour, and finally x

edge
e,3 , x u

e,3, x v
e,3 all have the same

colour.

Proof. (The following proof only requires Property 3, it does not use Property 4.)

First, suppose for some e ∈ E there exist j, j ′ ∈ {1, 2, 3} such that j �= j ′ and x
edge
e, j ,

x
edge

e, j ′
have the same colour. Observe that x

edge
e,1 , x

edge
e,2 , x

edge
e,3 all form a single below

pink subtree in TV . Suppose we recolour x
edge
e, j to some brand new colour. This raises

the parsimony score of TE by at most 1. However, it also raises the parsimony score

of TV by at least one, due to the introduction of a new colour into the corresponding

below pink subtree. Hence, the recoloured character is optimal. We can repeat this as

long as necessary to ensure that (a) eventually holds. Now, suppose for some e ∈ E

and j ∈ {1, 2, 3} the taxa x
edge
e, j , x u

e, j , x v
e, j do not all have the same colour. By Property

1 we know that x u
e, j and x v

e, j have the same colour, because they form a cherry in TE .

We recolour all 3 taxa with a brand new colour. This cannot raise the parsimony

score of TE . On the other hand, it cannot lower the parsimony score of TV , because

the three now uniquely coloured taxa all occur in different below pink subtrees of

TV . (The pink taxa are critical here: without them it could happen that an optimal

extension saves mutations by constructing monochromatic paths between some or

all of the 3 taxa, causing the parsimony score of TV to actually decrease.) Hence, the

recoloured character is optimal, and (a) still holds. We repeat this as long as necessary

to ensure that (b) eventually also holds.

Property 6. For every j ∈ {1, 2, 3}, the edge colouring induced by the colours of the

x
edge
e, j taxa (e ∈ E), is a proper edge colouring.

Proof. Recall that, by Property 5, each x
edge
e, j taxon has the same colour as the x u

e, j
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and x v
e, j taxa below it in TE . Suppose that there is some j ∈ {1, 2, 3} for which the

induced edge colouring is not proper. Then there exists some u∈V and two edges e �=
e ′ in E incident at u such that x u

e, j and x u
e ′, j

both have the same colour. Both these taxa

are together in a below pink subtree of TV . This subtree therefore currently induces

m < 2 mutations (excluding the mutation as the subtree touches the pink region).

Now, suppose we introduce a brand new colour and recolour x u
e, j , x v

e, j , and x
edge
e, j

with it. This raises the parsimony score of TE by at most 1. However, it definitely

also raises the parsimony score of TV , by at least 1, because the aforementioned below

pink subtree now induces m+ 1 mutations (due to the introduction of a new colour).

Hence, the new character is optimal, and all earlier properties are preserved. We can

repeat this process until the induced edge colouring is proper.

Property 7. For an optimal character f ,

l f (TV ) = 2 + 3(3|V |+ |E|)+ 1 + l f S(SV ).

Proof. This is a consequence of the fact that (from Property 6) we can assume that

in TV a proper edge colouring is induced, plus the fact that a pink extension is an

optimal extension. In particular, the proper edge colouring means that each of the

3|V |+ |E| below pink subtrees induces 2 mutations on its internal edges and a third

mutation where the subtree touches the pink region. The ‘2’ term corresponds to the

fact that the two taxa γ1, γ2 are necessarily not pink. The ‘1’ term is the mutation at

the root of SV .

Central argument.

As a consequence of Property 7, optimal characters (which we always assume to

induce proper edge colourings) are only distinguished by their ability to minimize the

number of mutations induced in TE . We can already establish a strong lower bound

for this number:

l f (TE) ≥ 1 + 2|E|+ l f S(SE).

Every proper edge colouring induces (at least) these mutations in TE . The ‘1’ term

is the mutation that occurs between the β1, β2 and γ 1, γ 2 taxa and the 2|E| term is a

consequence of (amongst others) Property 5.

Combining this with Property 4, we see that dMP(TE , TV ) = l f (TV )− l f (TE)≤ P,

where P is the value defined earlier in the proof. We have already shown that, if G

has χ ′(G) = 3, P is possible. We now see that this is optimal. The only thing we have

left to show, is that if χ ′(G) > 3, that P is not possible. We use the contrapositive to

prove this. In particular, we will show

l f (TE) = 1 + 2|E|+ l f S(SE) ⇒ χ ′(G) = 3.

Suppose, then, that l f (TE) = 1 + 2|E|+ l f S(SE). This means that there are no muta-

tions in the subtree T ∗∗∗ other than the 2|E| unavoidable mutations due to Property

5. To achieve this it must be the case that all the |E| subtrees (each containing 9 taxa)

in T ∗∗∗ all have a single colour in common. Let us call this colour blue. Hence, for

every e ∈ E , there exists exactly one j ∈ {1, 2, 3} such that x
edge
e, j , x u

e, j , x v
e, j are all
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blue. We now build a proper 3-edge-colouring for G. If j = 1, we assign e the colour

red. If j = 2, we assign e the colour blue. If j = 3, we assign e the colour green. This

must be a proper colouring: if it was not, then there would be some vertex u ∈V , two

incident edges e, e ′ incident to u, and some j ∈ {1, 2, 3} such that x
edge
e, j and x

edge

e ′, j

were both blue. But this would contradict Property 6. Hence, χ ′(G) = 3.

This completes the proof. Summarising, for a given cubic graph G = (V, E),

χ
′(G) = 3 ⇔ dMP(TE , TV ) = P,

from which the NP-hardness of computing dMP(TE , TV ) on binary trees follows.

Corollary 4.7. For every fixed integer i ≥ 4, computation of d i
MP on binary trees is

NP-hard.

Proof. This is a consequence of the fact that in the theorem only 4 states are required

to construct a character achieving MP distance P. Namely, the 3 colours used in the

proper edge colouring of G, plus pink.

Note that the above proof cannot (obviously) be extended to give APX-hardness.

By taking multiple copies of the tree T ∗∗∗ it is possible to increase the gap between

χ ′(G) = 3 and χ ′(G) = 4 instances to more than 1, but this is insufficient for APX-

hardness.

5. Computation of d2

MP is NP-Hard on Binary Trees

As in the previous section we first require a gadget that can break symmetry between

two trees.

5.1. Symmetry Breaking Gadget in the Case of 2 States

Consider the two rooted trees

Ta = (((5, (6, 4)), 3), ((1, (8, 2)), 7))

and

Tb = (((7, ((4, 2), 6)), 3), (8, (1, 5)))

shown in Figure 5.

Here, it can be verified (e.g., by exhaustive search) that d2

MP(Ta, Tb) = 3, and the

character fasym = AAGGGGAA can achieve this: l fasym
(Ta) = 1 and l fasym

(Tb) = 4.

In fact, these trees are asymmetric, in the sense that for every optimal 2-state

character f , l f (Ta) < l f (Tb). In particular, as can be verified by computational search

(e.g., using the ILP formulation or performing an exhaustive search), max f

(

l f (Tb)−
l f (Ta)

)

= 3 and max f

(

l f (Ta)− l f (Tb)
)

= 2. (The second maximum is achieved by

the character AAGAAGGG, for example.) Using the same notation as in Section 4.1,

but restricted to characters with at most 2 states, we therefore obtain:

gap(Ta, Tb) = 1.
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8 3
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6
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A

Figure 5: Two trees Ta and Tb that are “asymmetric” on characters with at most 2

states. An example of an optimal character is fasym = AAGGGGAA.

From now on we implicitly assume that all characters have at most 2 states.

Define TA and TB in the same way as in Section 4.1. It can be verified that

gap(TA, TB) ≥ 1. This is not yet strong enough for what we require, so let TAA

and TBB be obtained by joining two copies of TA, and two copies of TB, together

(respectively).

Claim 5.1. gap(TAA, TBB) ≥ 2.

Proof. It can easily be checked that max f

(

l f (TBB)− l f (TAA)
)

≥ 12. This can be

achieved, for example, by taking a character f that comprises 4 disjoint copies

of fasym, thus obtaining l f (TBB) = 16 and l f (TAA) = 4. (In fact, by performing

an exhaustive search, one can show that this is optimal). Verifying that

max f (l f

(

TAA)− l f (TBB)
)

= 10 is more challenging. We have used an exhaustive

search to check this, but note that our ILP gives the same result

in significantly less time. In fact, l f (TAA) − l f (TBB) = 10 can be achieved by

f = AGAGAGGAAGGGAGGAGAAAGAAGAGGGAGGA, for which the score on TAA

is 14 and the score on tree TBB is 4. So, altogether we have max f

(

l f (TBB)− l f (TAA)
)

= 12 and max f

(

l f (TAA)− l f (TBB)
)

= 10, so gap(TAA, TBB)≥ 2 and d2

MP(TAA, TBB)=
12.

Let T k
AA be the rooted tree on 32k taxa obtained by arranging k disjoint copies of

TAA along a caterpillar backbone. That is, T 1

AA = TAA and for k > 1, T k
AA is obtained

by joining T k−1

AA and TAA via a new root. T k
BB is defined analogously.

Lemma 5.2. For k ≥ 1, gap
(

T k
AA, T k

BB

)

≥ k + 1.

Proof. The case k = 1 is proven by Claim 5.1 and for higher k we use analogous

arguments to the proof of Claim 4.2 and Lemma 4.3. We omit details.

Lemma 5.3. For k ≥ 1, d2

MP

(

T k
AA, T k

BB

)

= 12k.

Proof. T k
AA comprises 4k copies of Ta. By taking 4k copies of character fasym, we

see that d2

MP

(

T k
AA, T k

BB

)

≥ 4k(4− 1) = 12k. That 12k is also the upper bound, can

be verified by showing drSPR

(

T k
AA, T k

BB

)

≤ 12k. This follows because by cutting off
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all copies of taxa 2, 5, 7 into separate components, we obtain an agreement forest of

T k
AA, T k

BB containing 12k + 1 components.

5.2. The Reduction

We reduce from the NP-hard (and APX-hard) problem CUBIC MAX CUT [1]. Here

we are given a cubic graph G = (V, E), |E| = 3|V |/2, and we are asked to partition V

into two disjoint pieces V1 ∪V2 such that the number of edges that have one endpoint

in V1 and one endpoint in V2 (“cut” edges), is maximized. Let MAXCUT (G) represent

this value. We can assume, without loss of generality, that G is connected and not

bipartite.

The high-level idea is similar to the 2-state hardness reduction in [5]. Namely,

we will construct two trees TV and TE and apply the symmetry-breaking gadget to

ensure that for all optimal characters f , l f (TV ) < l f (TE). We will model the vertices

as subtrees in TV , each comprising three taxa, and argue — via a technical argument

— that these subtrees are monochromatic. We will let the 2 states represent the two

sides of the chosen partition V1 ∪V2. Henceforth, we will call these states red and

blue. The colour of a vertex subtree thus denotes which side of the partition it is

on. The tree TE will be constructed such that, the more cut edges are induced by the

partition chosen by TV , the higher the parsimony score of TE . The construction will

thus naturally choose a character that maximizes MAXCUT (G).
The fact that TV and TE must be binary, introduces significant complications com-

pared to the 2-state hardness reduction in [5]. For this reason we will introduce two

new special gadgets, that allow TV (respectively, TE ) to be viewed as the independent

union of several subtrees. In TV the gadget will be called the cherry switch and in TE

we will have the D(wi) gadget, to be explained in due course. These independence

gadgets neutralise the influence of side-effects that can occur as a consequence of the

fact that TV and TE are both binary.

We begin by constructing TE . First, we construct the left-hand side subtree T of

TE as depicted in Figure 6. Let T̃ be an arbitrary rooted binary tree on |E|+ 1 leaves

{m1, . . . , m|E|+1}. Let I = {w1, . . . , w|E|} be the |E| interior nodes of T̃ . Let M be

a large integer whose value we will determine in due course. Let SV be the tree T M
AA

and SE be the tree T M
BB. Let l be an arbitrary leaf of T̃ . We replace l with SE . Next,

select an arbitrary bijection between the remaining leaves of T̃ and E . For each edge

e = {u, v} ∈ E , replace the leaf of T̃ corresponding to e with a cherry on two taxa

{xe[u], xe[v]}. Now, for each internal vertex wi, let pi and qi be the two children of

wi. We now introduce the independence gadget D(wi), constructed as follows. Take a

rooted binary tree
(

w2
i ,

((

w0

i , w4
i

)

,
(

w3

i ,
(

w5

i , w1
i

))))

. We replace wi with this tree, in

the following sense: delete wi, identify w0

i with pi, identify w1
i with qi and if wi had an

incoming edge, identify the root of D(wi) with the head of this edge. The remaining

leaves of D(wi) are
{

w2
i , w3

i , w4
i , w5

i

}

and we regard these as taxa, so replacing each

wi with D(wi) increases the number of taxa in total by 4|E|.
T has in total 2|E|+32M+4|E| taxa, where the 32M is the number of taxa in SE .

Let T ′ be a rooted caterpillar on |V |+3|E| leaves
{

l1, . . . , l|V |+3|E|

}

. Replace each

leaf li by a “double cherry” ((αi, γi), (βi, δi)) where {αi, βi, γi, δi} are taxa. Join T
and T ′ together by a new root: this completes the construction of TE as depicted in
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xe| |
[u|E|]

T

T̃

wi

32M taxa

D(wi)

ρi ≡ wi

m|E|+1m|E|m2m1

SE

2|E| + 4|E| taxa

(4 taxa per D(wi))

w4
i

w3
i

xe [u1] xe [v1] xe [u2]

w2
i≡ ≡w5

i
w1

i
w0

i
pi qi

qipi

xe [v2] xe| |
[v|E|]

Figure 6: Tree T is the left-hand side subtree of TE in the 2-state NP-hardness con-

struction, cf. Figure 7. Every internal node wi with children nodes pi and qi of the

original tree T̃ is replaced by tree D(wi) with root wi and children w0

i
, . . . , w5

i
. Chil-

dren w0

i
and w1

i
correspond to pi and qi, respectively, whereas the other children form

new leaves. Therefore, each D(wi) contributes four leaves to tree T . For the leaves

labelled xei
[ui] and xei

[vi], ui and vi are the endpoints of edge ei.

Figure 7. TE thus has in total,

2|E|+ 32M+ 4|E|+ 4(|V |+ 3|E|) = 32M + 18|E|+ 4|V|

taxa.

To construct TV we start by creating a set of taxa-disjoint trees J. The disjoint

union of the taxa in the |V |+ 1 + 3|E| trees in J will be exactly the set of taxa in the

tree T depicted in Figure 6. J contains,

(1) SV ;

(2) for each vertex u ∈V , a rooted triplet (xe[u], (xe∗ [u], xe∗∗ [u])) where e, e∗, e∗∗ are

the three edges incident to u in G;

(3) for each gadget D(wi), two single taxon trees w4
i

and w5

i
, and one cherry

(

w2
i
, w3

i

)

.

Let C be a rooted caterpillar on |V |+ 1 + 3|E| leaves. Consider a directed path on

|V |+ 3|E| edges that starts at the root of C and terminates at one of the leaves in the

unique cherry of C. Let K be the edges in this path. Choose an arbitrary bijection

between the leaves of C and the trees in J, and replace each leaf with its corresponding

subtree. We now need to replace each edge in K with a special gadget. In particular,

select an arbitrary bijection between K and {1, . . . , |V |+3|E|}. Next, for each edge in

K, subdivide it twice. From one of the vertices created by the subdivision operation,

hang a cherry (αi, βi), and from the other hang a cherry (γi, δi), where i is the index

given by the bijection. We call these two cherries a cherry switch — this is the
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6|E| + 32M taxa

TE

δ2

T

β2 βk

T ′

αk γk δk

4(|V | + 3|E|) taxa

α2 γ2

l2l1 lk:=|V |+3|E|

δ1γ1α1 β1

Figure 7: Tree TE for the 2-state NP-hardness construction consists of T as depicted

in Figure 6 on the left-hand side and T ′ on the right-hand side. Note that TE employs

in total 32M + 6|E|+ 4(|V|+ 3|E|) = 32M + 18|E|+ 4|V| taxa.

independence gadget for TV . This completes the construction of TV , which is depicted

in Figure 8.

We are now in a position to specify the number M. We require M to be sufficiently

large that, for every optimal character f , l f (TV ) < l f (TE). From Lemma 5.3 we know

that there exists some character f ′ such that l f ′(TE)− l f ′(TV )≥ 12M. We can obtain

such a character by extending the character suggested by Lemma 5.3 such that all

taxa outside SE and SV are assigned the same state. Now, let t be the number of edges

in TV that lie outside SV . For every character f we have

l f (TV )− l f (TE) ≤ t +(12M− (M + 1)).

The 12M term is obtained from Lemma 5.3, the (M + 1) term from Lemma 5.2, and

the t term arises (pessimistically) from the situation when every edge in TV (outside

SV ) incurs a mutation, but no edge in TE (outside SE ) incurs a mutation. So, if we

choose M such that

t + 12M− (M + 1) < 12M,

it follows that for every optimal character f , dMP(TV , TE) = l f (TE)− l f (TV ) and in

particular l f (TE) > l f (TV ). Choosing M = t is therefore sufficient to achieve this.

Consider now the following.

Observation 5.4. Let T1, T2 be two binary trees and let f be an optimal character such

that l f (T1) < l f (T2). Suppose T1 contains two cherries (a, b) and (c, d) and, in T2,

there are cherries (a, c) and (b, d) under a common parent (i.e., a “double cherry”).

Then f can be modified to obtain an optimal character f ′′ in which (a, b) and (c, d)
are both monochromatic but with different colours, and the colours of all other taxa

are unchanged.

Proof. Let f be an optimal character. We first apply Lemma 3.2 to obtain an optimal

character f ′ in which the two cherries are monochromatic in T1. If the two cherries
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xe∗[u]

γ1 δ1

γ2 δ2

α3 β3

γ3 δ3

α4 β4

γ4 δ4

w4

i
w5

i
w3

i

TV

32M + 4(|V | + 3|E|) + 3|V | + 4|E| taxa

SV

α1 β1

α2 β2

w2

i
xe∗∗[u] xe[u]

Figure 8: TV consists of a modification of a caterpillar tree with directed path K which

starts at the root and leads to a leaf in a cherry. Path K is depicted in bold. Each of the

|V |+ 3|E| edges in K carries two additional cherries (αi, βi) and (γi, δi). Therefore,

K contributes in total 4(|V |+ 3|E|) taxa. Moreover, for each of the original |E| inner

nodes wi of tree T as depicted in Figure 6, TV contains four taxa w2
i , w3

i , w4
i , w5

i .

This leads to 4|E| more taxa. Finally, for each vertex u in V , TV contains a triple

(xe[u], (xe∗ [u], xe∗∗ [u])), which are 3|V | taxa. Using the fact that in cubic graphs we

have |V |= 2

3
|E|, TV employs in total 32M+16|E|+7|V |= 32M+18|E|+4|V | taxa.

have different colours we are done. If not, then recolour one of the cherries to obtain

f ′′. This raises the parsimony score of T1 by (at most) one. In T2 two new mutations

are created in the cherries (a, c) and (b, d) while at most one mutation is saved on the

edge entering the common parent. Hence, f ′′ is also optimal.

In exactly the same way as Theorem 4.6 we now give an accumulating list of

properties which can be shown to be enjoyed by at least one optimal character that

can be constructed in polynomial time.

Property 1. In TV , for each i∈ |V |+3|E|, cherry (αi, βi) is monochromatic and cherry

(γi, δi) is monochromatic, and the cherries have different colours.

Proof. This is an immediate consequence of Observation 5.4.

Next, observe that if a character f has Property 1, and we swap the colours used

in some (or all) of the cherry switches to obtain f ′, then l f (TE) = l f ′(TE). This is

because each cherry switch in TV corresponds to a double cherry in TE , and (as long

as Property 1 already holds) the behaviour of the double cherries is invariant under

permutation of red and blue. This is the key observation behind the next property.
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Property 2. There is an optimal character f such that

l f (TV ) = |V |+ 3|E|+ ∑
T∗

∈J

l f (T
∗)

where l f (T
∗) has the expected meaning i.e., the parsimony score of T ∗ after restrict-

ing f to the taxa in T ∗.

Proof. Observe that for any optimal character f , |V |+3|E|+ ∑T ∗
∈J l f (T

∗) is a lower

bound on l f (TV ). This can be observed by first applying Fitch’s algorithm to the trees

in J (which are all pendant in TV ) and then noting that, due to Property 1, each of

the |V |+ 3|E| cherry switches also incurs a mutation, irrespective of the states that

Fitch’s algorithm designates to the roots of the trees in J. To show that it is also an

upper bound, first run the Fitch algorithm on the trees in J. For those trees in J that are

allowed by the Fitch algorithm to have either colour at the root, pick one arbitrarily.

For each cherry switch, consider the root state of the tree from J directly above it

(where here “above” means: closer to the root of TV ), and directly below it. There are

four possibilities: red-blue (i.e., the tree from J above it requires a root state of red,

the tree below it wants blue), red-red, blue-red, and blue-blue. If it is red-blue, then if

necessary swap the colours on the two cherries in the cherry switch, to ensure that the

red cherry is closer to the root of TV . If it is blue-red, then ensure that the blue cherry

is closer to the root of TV . Now, irrespective of which of the four possibilities holds,

there is an optimal extension which occurs exactly one mutation (and not more) per

cherry switch. In the red-blue and blue-red cases the mutation will be on the edge

between the two subdivision vertices (i.e., the edge between the vertices at which the

two cherries are attached to the caterpillar backbone). In the cases red-red and blue-

blue the mutation will be on the edge feeding into the blue, respectively red cherry.

Property 3. In TV , the trees in J that are rooted triplets or cherries, are all monochro-

matic.

Proof. That the cherries can be made monochromatic, is simply a consequence of

Lemma 3.2. That the rooted triplets are monochromatic is more subtle. Consider

any triplet in J, this has the form (xe[u], (xe∗ [u], xe∗∗ [u])). We already know that

{xe∗ [u], xe∗∗ [u]} have the same colour, as they form a cherry. Now, if xe[u] also has

this colour, we are done. If not, then recolour it to give it the same colour as the other

two taxa. By Property 2, this must lower the parsimony score of TV by exactly one.

Hence, the new character is also optimal. (We really need Property 2 here, since “the

parsimony score of TV does not increase” — which in general is the strongest state-

ment we can make after such a recolouring — is not strong enough for our purposes).

Property 3 basically says that, in TV , the three taxa that represent each vertex of G

all have the same colour. This will allow us to encode MAX CUT correctly. Property

3 also tells us that the
{

w2
i , w3

i

}

pairs of taxa, which form part of the D(wi) gadget,

will be monochromatic. This is particularly useful when combined with the fact that

w4
i and w5

i are both single taxa trees in J. A tree comprising only a single taxon has
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parsimony score 0, so whichever colour is allocated to the w4
i

and w5

i
taxa, they do not

impact upon the parsimony score of TV , by Property 2. In other words, these two taxa

are “free”: they can be allocated any colour in an attempt to cause as many mutations

as possible in TE . The
{

w2
i
, w3

i

}

pairs of taxa are also “free”, except for the limitation

that w2
i

and w3

i
should have the same colour. This underpins the following critical

observation.

Observation 5.5. Consider the rooted binary tree

D(wi) =
(

w2

i ,

(

(

w0

i , w4

i

)

,

(

w3

i ,

(

w5

i , w1

i

))))

.

Suppose we fix w0

i
as red, or blue, or {red, blue}, where {red, blue} has the same

meaning as in Fitch’s algorithm, i.e., “both states are possible”. Suppose we do the

same (independently) for w1
i
. Then depending on our choice we can always select

colours for w2
i
, w3

i
, w4

i
, w5

i
, whilst ensuring that the same colour is chosen for w2

i
and

w3

i
, such that the parsimony score of D(wi) under the resulting character is at least 2.

Moreover, it is never possible to achieve a parsimony score higher than 2 in this way.

Proof. A straightforward case-analysis is sufficient to verify the “at least 2” part of the

claim. There are 32 cases, several of which are symmetrical. These are the relevant

cases:

(1) w0

i
and w1

i
are both red. Then choose all other taxa to be blue.

(2) w0

i
is red and w1

i
is blue. Then choose w4

i
to be blue, w5

i
to be red, and w2

i
and w3

i

to both be blue.

(3) w0

i
is red and w1

i
is {red, blue}. Then choose w4

i
to be blue, w5

i
to be blue, and

w2

i
and w3

i
to both be red.

(4) w0

i
is {red, blue} and w1

i
is red. Then choose w4

i
to be red, w5

i
to be blue, and w2

i

and w3

i
to both be blue.

(5) w0

i
and w1

i
are both {red, blue}. Then choose w4

i
to be red, w5

i
to be red, and w2

i

and w3

i
to both be blue.

To show that 3 or more mutations are never possible, note that a character on 6 taxa

can only possibly have a parsimony score of 3 if there are exactly 3 red taxa and

exactly 3 blue taxa. (Otherwise, simply choose an extension that assigns the majority

colour to all internal nodes of the tree, yielding at most 2 mutations.) Now, if at least

one of w0

i
and w1

i
chooses {red, blue}, then 3 mutations are certainly not possible,

because we can (again) colour all the internal nodes of the tree monochromatic in the

majority colour, yielding at most 2 mutations. So, suppose without loss of generality

w2
i

and w3

i
are both red. Then exactly one of w0

i
and w4

i
will be red, and the other

blue. But then w1
i

and w5

i
will both be blue. But this character has parsimony score at

most 2, contradiction.

In TE the taxa w0

i
and w1

i
become the roots of subtrees, and the three possible

choices for each taxon in Observation 5.5 reflect the three possible decisions that

Fitch’s algorithm can make when, in the bottom-up phase, the root of that subtree is

reached. Essentially, then, Observation 5.5 allows us to “glue” these two subtrees to-

gether with a profit of exactly 2 mutations, entirely independently of the two subtrees

themselves.
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Now, consider any optimal character f that has Property 3 (and thus all earlier

properties too). We have

l f (TV ) = |V |+ 3|E|+ l f (SV )

since (by Property 2) the singletons, cherries and triplets in J do not internally gen-

erate any mutations and mutations along the K part of TV are already accounted for.

(As usual, l f (SV ) refers to the parsimony score of the restriction of f to the taxa in

SV ). Let CUT ( f ) be the number of cut edges induced by f , i.e., after partitioning the

vertices of V according to the colours of the corresponding rooted triplets in J. We

have,

l f (TE) = 2(|V |+ 3|E|)+ l f (SE)+CUT( f )+ 2|E|.

The 2(|V |+3|E|) term is the contribution of the double cherries, and the 2|E| term is

the 2 mutations that we know we can definitely incur in each D(wi) gadget. Hence,

an optimal character should try and make the induced cut as large as possible: there

is no other freedom. Consequently,

d2
MP(TV , TE) = l f (TE)− l f (TV )

= 2(|V |+ 3|E|)+ l f (SE)+ MAXCUT(G)+ 2|E|

− (|V |+ 3|E|+ l f (SV ))

= |V |+ 5|E|+(l f (SE)− l f (SV ))+ MAXCUT(G)

= |V |+ 5|E|+ 12M+ MAXCUT(G).

The fact that
(

l f (SE)− l f (SV )
)

is equal to 12M is not entirely automatic. It is a

consequence of the fact that in this context there is no point choosing a character f

which, when restricted to SV and SE , yields an MP distance smaller than d2
MP(SV , SE)

(where the latter value is equal to 12M by Lemma 5.3).

The terms can easily be rearranged to obtain MAXCUT (G) from d2
MP, which

yields the overall theorem:

Theorem 5.6. Computation of d2
MP is NP-hard on binary trees.

We also obtain the following corollary.

Corollary 5.7. Computation of d2
MP is APX-hard on binary trees.

Proof. We will show that if d2
MP can be approximated in polynomial time to within

a multiplicative factor of (1− ε), for some ε > 0, that CUBIC MAXCUT can be

approximated in polynomial time to within a factor of (1− kε) for some constant

k > 0 that is independent of ε . Given that CUBIC MAX CUT is APX-hard [1] there

is (by definition) some ε
′ > 0 such that a factor (1− ε

′) approximation or better is

not possible in polynomial time unless P = NP. The APX-hardness of d2
MP will then

follow‡: the corresponding threshhold for d2
MP will be ε

′/k.

‡ Formally speaking, we should give an L-reduction here [15]. For brevity we omit the technicalities. An

L-reduction can if desired easily be constructed from the information provided here.
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First, suppose we obtain character f , which is a (1 − ε) approximation to

d2

MP(TV , TE). We need to show that a feasible solution (i.e., a cut) can be extracted

in polynomial time from f , which requires that the solution obeys all the Properties.

Character f might not have these Properties, but they can be acquired in polyno-

mial time without lowering the parsimony distance score of the character. To do

this, ensure first that SV and SE use the duplicated character fasym (which optimizes

the MP distance between SV and SE). This ensures that l f (TV ) < l f (TE). From this

point on the Properties can be accumulated one at a time: the constructive proofs

describing how the Properties are obtained do not require that f is optimal, only that

l f (TV ) < l f (TE).
Recall that |V | = (2/3)|E|. We need an explicit expression for M. This was set

to be t, the number of edges in TV minus the edges in subtree SV . TV has in total

32M + 18|E|+ 4|V | taxa, and after subtracting the 32M this gives 18|E|+ 4|V |. A

rooted binary tree on |X | taxa has 2(|X |−1) edges, yielding 36|E|+ 8|V |−2, plus 2

extra edges created when the subtree SV is re-attached, giving 36|E|+ 8|V | which is

(124/3)|E|. Hence,

d2

MP(TV , TE) = |V |+ 5|E|+ 12M+ MAXCUT(G)

= (2/3)|E|+ 5|E|+ 496|E|+MAXCUT(G)

= (1505/3)|E|+ MAXCUT(G).

The size of the cut returned after processing f is at least

= (1− ε)((1505/3)|E|+ MAXCUT(G))− (1505/3)|E|

= (1− ε)MAXCUT(G)− ε(1505/3)|E|.

It is well known that for cubic G, MAXCUT (G) ≥ 2|E|/3, by moving a vertex to

the other side of the partition if one or fewer of its incident edges is in the cut. So,

(1− ε)MAXCUT(G)− ε(1505/3)|E|

≥ (1− ε)MAXCUT(G)− ε(1505/2)MAXCUT(G)

=

(

1−
1507

2
ε

)

MAXCUT (G).

This concludes the proof.

6. An Integer Linear Programming (ILP) Formulation for Binary Instances

Let T1 and T2 be two binary phylogenetic trees on n ≥ 2 taxa. Given the hardness of

MP distance it is natural to ask how well dMP(T1, T2) can be computed in practice.

One option is to leverage the result in [5] which proves that there always exists an

optimal character that is convex on one of the trees (i.e., has a parsimony score exactly

one less than the number of states in the character). Hence, we can guess which of

the two input trees is convex, guess the number of states s in the optimal character,
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and then guess the (s− 1) edges of the convex tree on which the mutations occur.

Assuming the trees are unrooted, and letting g(T1, T2) be any safe upper bound on s,

this gives a deterministic running time of

O

(

g(T1,T2)

∑
s=2

(

2n−3

s−1

)

)

.

As the following observation shows, we can take g(T1, T2) = ⌊n/2⌋.

Observation 6.1. Let T1 and T2 be two binary phylogenetic trees on n≥ 2 taxa. There

exists an optimal convex character with at most ⌊n/2⌋ states. Moreover, this bound is

tight.

Proof. Let f be an optimal convex character. Suppose f has strictly more than ⌊n/2⌋
states. Then there exists a state t that occurs on only one taxon x. We root T1 on the

edge entering x. If we run the Fitch algorithm on this rooted tree a union event will

necessarily be generated at the root due to the fact that t occurs on only one taxon.

Let C be the set of states in this union event, and let t ′ be any state in C \ {t}. Let

f ′ be the character obtained from f by assigning state t ′ to taxon x. By re-running

the Fitch algorithm we see that l f ′(T1) = l f (T1)− 1. Moreover, f ′ has one fewer

state than f , so f ′ is convex. By Observation 3.1 l f ′(T2) ≥ l f (T2)−1. Hence, f ′ is

optimal, convex and has fewer states than f . By repeating this process we eventually

obtain an optimal convex character with at most ⌊n/2⌋ states.

The trees in Figure 1 on 6 taxa are a tight example for this bound: it can easily be

verified computationally that for these two trees optimal characters require at least 3

states.

Of course, even if we take g(T1, T2) = ⌊n/2⌋, such brute-force algorithms will

quickly become impractical for even very small n. Hence, we turn to Integer Linear

Programming (ILP), which allows us to compute dMP and di
MP for larger trees. The

ILP for computing d2

MP performs very well, allowing computation of d2

MP in reason-

able time for trees with up to 100 taxa. Unfortunately, in the case of dMP the ILP

struggles to terminate in reasonable time for trees with more than 16 taxa. Future

research (i.e., better ILP formulations) will hopefully improve upon this.

The ILP formulation is currently limited to binary trees but the model could be

extended to non-binary trees without too much difficulty.

Let T1 and T2 be rooted, binary phylogenetic trees on the same set of taxa X ,

where |X |= n. Let U be the internal nodes of T1 and V the internal nodes of T2. Let s

be a constant denoting the maximum number of states that any character can have; as

discussed taking s = ⌊n/2⌋ is a safe choice. (To compute d i
MP we simply take s ≤ i.)

The following ILP maximizes l f (T1)− l f (T2) ranging over all characters f with

at most s states. To obtain the true parsimony distance the ILP should be run twice,

once to compute the maximum of l f (T1)− l f (T2) and once to compute the maximum

of l f (T2)− l f (T1).

All variables in the program are binary.

First of all we constrain that in both trees the taxa have the same state, and that

each taxon chooses exactly one state. We introduce variables xt, i for each t ∈ X and
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1 ≤ i ≤ s. For each t ∈ X we introduce the constraint:

s

∑
i=1

xt, i = 1.

We now show how the parsimony score can be computed for T1. The variables and

constraints essentially “hard-code” Fitch’s algorithm. (The encoding of T2 is symmet-

rical. The two encodings are linked together via the variables that represent the states

of the taxa in X , and the objective function, which we shall discuss in due course).

Given an internal node u ∈ U , let l be its left child and r its right child. Fitch’s

algorithm tells us to take the intersection of the states at l and r, if the intersection is

non-empty, and otherwise the union (in which case we pay 1 mutation). We do this

computation as follows. For 1≤ i≤ s we introduce a variable xu, i. The idea is that xu, i

will be 1 if and only if state i is in the set of states at node u (in the bottom-up phase

of the Fitch algorithm). We determine the set of states at u by performing the union

and intersection computations directly. For that purpose, for 1 ≤ i ≤ s we introduce

x
∩

u, i
and x

∪

u, i
and the following constraints:

x
∩

u, i ≤ xl, i,

x
∩

u, i ≤ xr, i,

x
∩

u, i ≥ xl, i + xr, i−1,

x
∪

u, i ≥ xl, i,

x
∪

u, i ≥ xr, i,

x
∪

u, i ≤ xl, i + xr, i.

The top group of constraints ensure that the x
∩

u, i
variables reflect the intersection of

the states at the children (i.e., logical AND) and x
∪

u, i
the union (i.e., logical OR).

For each u ∈ U we have variables x
∩

u and x
∪

u which are 1 (0, respectively) if the

Fitch algorithm assigns an intersection operation to node u. We can ensure that these

variables take the correct value as follows. Firstly:

s

∑
i=1

x
∩

u, i ≥ x
∩

u .

And, secondly, we add the following constraint for each 1 ≤ i ≤ s:

x
∩

u ≥ x
∩

u, i.

To ensure that x
∩

u and x
∪

u are complementary we add the constraint

x
∩

u + x
∪

u = 1.

Now, we have to ensure that xu, i takes the value x
∩

u, i
whenever x

∩

u is 1, and x
∪

u, i

otherwise. We do this by, for each 1 ≤ i ≤ s, adding the following four constraints:

xu, i ≥ x
∩

u, i,
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xu, i ≤ x
∪

u, i,

xu, i ≤ x
∩

u, i + 1− x
∩

u ,

xu, i ≥ x
∪

u, i − x
∩

u .

Finally, all that remains is to compute the difference between the two parsimony

scores. We do this with the following objective function:

Maximize ∑
u∈U

x
∪

u − ∑
v∈V

x
∪

v .

This concludes the formulation. We have implemented it by using Java to translate the

input trees into an ILP format suitable for solvers such as GLPK, SCIP, or CPLEX.

We have used this to verify several of the bounds used in Section 4.1. The source

code can be downloaded from [13].

We tested our ILP running CPLEX on a 3.10GHz 64-bit machine with 4 GB

RAM.

We observed the following running times. For computation of dMP:

• the two trees Ta and Tb on 6 taxa as depicted in Figure 1: total running time < 1

second.

• the two trees TA and TB on 12 taxa consisting of two copies of Ta or Tb, respec-

tively: 70 seconds.

For computation of d
2

MP
:

• the two trees on 8 taxa as depicted in Figure 5: < 1 second.

• the two trees TA and TB on 16 taxa consisting of two copies of Ta or Tb, respec-

tively: < 1 second.

• the two trees TAA and TBB on 32 taxa consisting of four copies of Ta or Tb: 6

seconds.

Computation of d
i

MP
, for small i, is much faster than dMP due to the greatly re-

duced number of binary variables. We observed that the ILP could compute d
2

MP
for

trees with 100 taxa in approximately 140 seconds.

7. Conclusion

In this article we have proven that calculating MP distance (dMP) is NP-hard on binary

trees. Computation of d
2

MP
(the version of the problem where we are restricted to

binary characters) is also NP-hard on binary trees. The latter problem is also APX-

hard, and determining whether dMP is APX-hard remains an open question. At the

moment we do not have an NP-hardness proof for d
3

MP
on binary trees but given that

d
i

MP
on binary trees is NP-hard for each i ≥ 4 we expect that this will also be hard.

We have presented and implemented a simple ILP formulation, which is publicly

available at [13]. The ILP is much faster than obvious brute-force algorithms and

allowed us to verify the MP-distance of the symmetry-breaking gadgets used in the

hardness reductions. The ILP for d
2

MP
is fast but the ILP for dMP does not scale well.
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An important open problem is therefore to develop an ILP formulation that avoids the

present approach of simply hard-coding Fitch’s algorithm.

Finally, elucidating the exact relationship between MP distance and other phylo-

genetic metrics remains an intriguing challenge.

8. Appendix

Here, we present the proofs we omitted from Section 4.2.

Property 2.1. In TE , the cherry {β1, β2} has a different colour to the cherry {γ1, γ2}.

Proof. Suppose this is not so. Recolour {β1, β2} to some new colour not appearing

elsewhere. This increases the number of mutations in TE by at most 1. However, in TV

the number of mutations in the β1, β2, γ1, γ2 subtree increases from 0 to 2. Possibly

TV then saves a single mutation at the root, but in any case the parsimony score of TV

increases by at least 1. So the new character is still optimal.

Property 2.2. In TE , the (possibly multiple) colours used for the taxa of B (including

α) are not used elsewhere in TE , except possibly {β1, β2}.

Proof. Take an optimal extension F of f by applying Fitch’s algorithm. Let c be the

colour allocated to the root of B by this extension. Let c∗ be the colour of the parent

p1 of the root of B, and c∗∗ the colour of its parent p2. Let cβ be the colour of the

{β1, β2} taxa and define cγ similarly.

There are two cases to consider. If it is not true that c = c∗ = c∗∗, then we are in the

“easier” of the two cases, and proceed as follows. We recolour all the monochromatic

connected components induced by the extension, and starting at some vertex of B,

with brand new colours. This new character must be optimal. (The score of TV

under this new character does not decrease, so the recoloured extension must also be

optimal.) Moreover, with the possible exception of β1, β2 none of the colours used

for taxa in B are used outside B. This is guaranteed because in this case there must be

a mutation between the root of B and p1 and/or between p1 and p2. In particular, this

prohibits the existence of monochromatic connected components that connect taxa in

B with taxa beyond B∪{β1, β2}. This ensures that the property holds.

The second case is much more challenging: c = c∗ = c∗∗. We will recolour the

character — and this extension — to ensure that this is no longer the case. By Prop-

erty 2.1, cβ �= cγ . If c �= cβ and c �= cγ , then recolour γ1, γ2 and their parent to colour

c. (This lowers the parsimony score of TE by 1, and can lower the parsimony score of

TV by at most 1, so the character — and the extension — is still optimal.) Otherwise,

exactly one of cβ and cγ is equal to c. If cβ has this property, then swap the colours

of {β1, β2} and {γ1, γ2} (and their parents). So we now have c = cγ and c �= cβ . In

particular, there is a mutation on the edge entering the cherry {β1, β2}. For technical

reasons we now introduce a brand new colour, bronze say, and recolour {β1, β2} (and

their parent) to be bronze. This leaves the parsimony score of TE unchanged, and

cannot decrease the parsimony score of TV , so the character is still optimal. We do

this simply to ensure that the colour of β1, β2 does not occur anywhere else. Run

Fitch’s algorithm on TV and record the output as R.
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At this point we introduce a new colour silver. Recolour the following vertices

silver: β1, β2, their parent, p1, and the entire c-coloured connected component inside

B starting at the root of B. This gives a new character and extension which saves

one mutation (on the edge leading into the cherry β1, β2) but creates one mutation

between p1 and p2. So the parsimony score of TE does not increase. It is not obvious,

but the parsimony score of TV will not drop. To see why this is, note that (under this

particular recolouring) the only way the parsimony score of TV could drop, is if the

recolouring causes a mutation (i.e., union event) at the root of TV to vanish, and at

the same time does not create any additional mutations elsewhere. If R did not have a

mutation event at the root of TV anyway we are done, there is nothing to consider. If

it did, then in R the union event at the root must have had the form {c, bronze}∪W

where W ∩{c, bronze} = /0 and the W is the set of states generated by the bottom-up

phase of Fitch’s algorithm for the root-incident right subtree of TV , let us call this

Tright . Now, if the recolouring causes the parsimony score of Tright to increase, we

are also done. So suppose the parsimony score of Tright stays the same and Tright

suddenly has an optimal extension (generated by any method, not necessarily the

Fitch algorithm) in which its root can be coloured c or silver (which is necessary to

save a mutation at the root of TV ). But then we could take this extension and re-

merge the colours c and silver back into c, showing that Tright did originally have an

optimal extension in which its root could be coloured c. This would mean that R

cannot possibly have been an optimal extension: it claimed a mutation was needed at

the root of TV , but we have just shown that colouring the root c would have avoided

mutations on both of its outgoing edges. Contradiction to the assumed optimality of

F .

Hence, this new character is indeed still optimal. The modified extension (on TE )

is necessarily also optimal for this new character: if some other extension existed

that induced fewer mutations, then this would violate the assumed optimality of the

original character (i.e., because the parsimony score of TV does not decrease).

At this point we can recolour all the monochromatic connected components in-

duced by the extension, and starting at some vertex of B, with brand new colours.

This new character must be optimal. (The score of TV under this new character does

not decrease, so the recoloured extension must also be optimal.) Moreover, with the

possible exception of β1, β2 none of the colours used for taxa in B are used out-

side B. This is guaranteed because the silver recolouring ensured that there are no

longer monochromatic connected components that connect taxa in B with taxa be-

yond B∪{β1, β2}.

Property 2.3 In TE , all the taxa in B have the same colour which, with the possible

exception of β1, β2, does not appear on taxa outside B and α .

Proof. Let f be an optimal character. If the taxa in B are monochromatic we are

done. Otherwise, run Fitch’s algorithm to generate an optimal extension on TE . (Also

run the Fitch algorithm on TV and let m be the number of mutations incurred there,

although we do not need to remember the corresponding extension). In TE at least

one node of B must be a union event (in the bottom-up phase of the Fitch algorithm).

Let u be such a node that is furthest from the root of B, and let Tu be the subtree of

B rooted at u. Let T1, T2 be the two subtrees rooted at the two children of u. The
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taxa in T1 must be monochromatic with some colour c1, and the taxa in T2 must be

monochromatic with some colour c2 �= c1. Suppose, without loss of generality, that

the optimal extension colours u with colour c2. This causes a mutation between u

and the root of T1. Hence, if we recolour the entire subtree T1 (i.e., taxa and non-taxa

alike) with colour c2, then this generates a new character f ′ (and new extension) in

which the parsimony score of TE drops by (at least) 1. We argue that f ′ can decrease

the parsimony score of TV by (at most) 1, from which the optimality of f ′ (and its

new extension) will follow. Suppose, for the sake of contradiction, that f ′ generates

m−2 or fewer mutations in TV . Apply the Fitch algorithm to f ′ on TV . Now, due to

the fact that B has essentially the same topology in both TV and TE , the subtree Tu is

topologically preserved inside TV . In particular, the images of all vertices of Tu are

unambiguously defined inside TV . Now, in its bottom-up phase the Fitch algorithm

will generate in TV no union events on the images of the nodes of Tu, due to the fact

that all taxa in Tu have colour c2. (There will, however, be a union event generated

at each point where a pendant rooted triplet is grafted onto the image of Tu, i.e., the

point in Figure 4 where the dotted line intersects with B. Such subdivision nodes are

not considered to be part of the image of Tu. There will definitely be a union event

on such nodes because, due to Property 2.2, c2 is different to the colours used in the

pendant rooted triplet.) At this point we recolour, in TV , T1 (taxa and non-taxa alike)

with colour c1, creating in total exactly one extra mutation, on the edge between u

and the root of T1: the fact that the subdivision nodes were all union events prevents

additional extra mutations from being created.

This new extension is a valid extension of f on TV but generates at most m− 1

mutations, contradicting the assumption that an optimal extension of f on TV had m

mutations. Hence, f ′ must be optimal.

If f ′ is not yet monochromatic for B, then we re-run the Fitch algorithm on TE

to generate a fresh optimal extension, and iterate the entire process until B becomes

monochromatic. This process must terminate (in polynomial time) because each iter-

ation merges two distinctly coloured subtrees of B into one strictly larger monochro-

matic subtree.

Property 3. In TE , all the taxa in B (including α) have the same colour, and cherry

{β1, β2} also has this colour. Moreover, this colour does not appear on any other

taxa, i.e., it is unique for B and β1, β2.

Proof. From Property 2.3 we already know that all taxa in B have the same colour

and, with the possible exception of β1, β2, this colour does not appear outside B. Let

c be the colour used in B. If c is the same as the colour of {β1, β2}, denoted again

cβ , we are done. If c is the same colour as {γ1, γ2}, then swapping the colours on

{β1, β2} and {γ1, γ2} preserves optimality, and we are done. (Optimality is preserved

because the parsimony score of TE cannot increase under such a swap, and the parsi-

mony score of TV cannot decrease due to symmetry.) So suppose neither cβ nor cγ is

equal to c. Run the Fitch algorithm to generate an optimal extension. In the bottom-

up phase the Fitch algorithm will assign states {c, cβ} to p1 and {c, cβ , cγ} to p2.

Suppose, in the top-down phase, the parent of p2 communicates a state to p2 that is

either equal to c, or not in {c, cβ , cγ}. In this case the Fitch algorithm allows us to

give p2 colour c. We can then recolour {γ1, γ2} to be c (saving at least one mutation
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in TE , and saving at most one mutation in TV , thus preserving optimality) and then

switch back to the earlier case. If the Fitch algorithm permits p1 to be coloured c, we

simply recolour {β1, β2} to be c and we are done because this, via the same analysis,

preserves optimality. The only case remaining is if every possible set of choices in the

top-down phase of Fitch’s algorithm leads to the conclusion that both p1 and p2 are

coloured cβ . (This is the only remaining case because if p2 is or can be coloured cγ ,

then the Fitch algorithm will subsequently allow us to colour p1 with colour c, due to

the fact that cγ �∈ {c, cβ}, i.e., we will be in an earlier case.) So consider an extension

generated by the Fitch algorithm in this case. We swap the colours on {β1, β2} and

{γ1, γ2} (including the colours of their parents). This colour swap does not affect

the number of mutations but it ensures that both edges leaving p1 carry mutations.

Hence, if we now colour {β1, β2}, their parent, and p1 all c, both these mutations

vanish. So we definitely save one mutation in TE , and as usual at most one mutation

is saved in TV . So we are done. This concludes the proof of Property 3.
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