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Abstract

Consistent query answering is a standard approach for pro-
ducing meaningful query answers when data is inconsistent.
Recent work on consistent query answering in the presence
of ontologies has shown this problem to be intractable in data
complexity even for ontologies expressed in lightweight de-
scription logics. In order to better understand the source of
this intractability, we investigate the complexity of consis-
tent query answering for simple ontologies consisting only of
class subsumption and class disjointness axioms. We show
that for conjunctive queries with at most one quantified vari-
able, the problem is first-order expressible; for queries with
at most two quantified variables, the problem has polynomial
data complexity but may not be first-order expressible; and
for three quantified variables, the problem may become co-
NP-hard in data complexity. For queries having at most two
quantified variables, we further identify a necessary and suf-
ficient condition for first-order expressibility. In order to be
able to handle arbitrary conjunctive queries, we propose a
novel inconsistency-tolerant semantics and show that under
this semantics, first-order expressibility is always guaranteed.
We conclude by extending our positive results to DL-Lite
ontologies without inverse.

1 Introduction
In recent years, there has been growing interest in ontology-
based data access, in which the semantic information pro-
vided by the ontology is exploited when querying data.
Much of the work in this area has focused on ontologies
formulated using description logics (DLs). The DL-Lite
family of DLs (Calvanese et al. 2007; Artale et al. 2009)) is
considered especially well-suited for such applications due
to the fact that query answering can be performed by first in-
corporating the relevant information from the ontology into
the query, and then posing the modified query to the bare
data. This property, known as first-order rewritability, means
that query answering over DL-Lite ontologies has very low
data complexity, which is key to scalability.

An important issue which arises in ontology-based data
access is how to handle data which is inconsistent with the
ontology. Ideally, one would like to restore consistency
by identifying and correcting the errors in the data (us-
ing e.g. techniques for debugging or revising DL knowl-

Copyright c© 2012, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

edge bases, cf. (Schlobach et al. 2007; Qi and Du 2009;
Wang, Wang, and Topor 2010) and references therein).
However, such an approach presupposes the ability to mod-
ify the data and the necessary domain knowledge to deter-
mine which part of the data is erroneous. When these con-
ditions are not met (e.g. in information integration appli-
cations), a sensible strategy is to adopt an inconsistency-
tolerant semantics which allows reasonable answers to be
obtained despite the inconsistencies.

The related problem of querying databases which violate
integrity constraints has long been studied in the database
community (cf. (Arenas, Bertossi, and Chomicki 1999)
and the survey (Chomicki 2007)), under the name of con-
sistent query answering. The semantics is based upon the
notion of a repair, which is a database which satisfies the
integrity constraints and is as similar as possible to the orig-
inal database. Consistent query answering corresponds to
evaluating the query in each of the repairs, and then inter-
secting the results. This semantics is easily adapted to the
setting of ontology-based data access, by defining repairs as
the inclusion-maximal subsets of the data which are consis-
tent with the ontology.

Consistent query answering for the DL-Lite family of
lightweight DLs was investigated in (Lembo et al. 2010;
2011). The obtained complexity results are rather disheart-
ening: the problem was shown in (Lembo et al. 2010) to
be co-NP-hard in data complexity, even for the restricted
case of instance queries. Similarly discouraging results were
recently obtained in (Rosati 2011) for another prominent
lightweight DL EL⊥ (Baader, Brandt, and Lutz 2005). In
fact, we will see in Example 5 that if we consider conjunc-
tive queries, only a single concept disjointness axiom is re-
quired to obtain co-NP-hard data complexity.

In the database community, negative complexity results
spurred a line of research (Fuxman and Miller 2005; Grieco
et al. 2005; Wijsen 2010) aimed at identifying cases where
consistent query answering is feasible, and in particular, can
be done using first-order query rewriting techniques. The
idea is to use targeted polynomial-time procedures when-
ever possible, and to reserve generic methods with worst-
case exponential behavior for difficult cases (see (Grieco et
al. 2005) for some experimental results supporting such an
approach). A similar investigation for DL-Lite ontologies
was initiated in (Bienvenu 2011), where general conditions
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were identified for proving either first-order expressibility
or co-NP-hardness of consistent query answering. However,
that work considered only instance queries.

The main objective of the present work is to gain a better
understanding of what makes consistent conjunctive query
answering in the presence of ontologies so difficult. To this
end, we conduct a fine-grained complexity analysis which
aims to characterize the complexity of consistent query an-
swering based on the properties of the ontology and the
query. We focus on simple ontologies, consisting of class
subsumption (A1 v A2) and class disjointness (A1 v ¬A2)
axioms, since the problem is already far from trivial for this
case. We identify the number of quantified variables in the
query as an important factor in determining the complexity
of consistent query answering. Specifically, we show that
consistent query answering is always first-order expressible
for conjunctive queries with at most one quantified variable;
the problem has polynomial data complexity (but is not nec-
essarily first-order expressible) when there are two quanti-
fied variables; and it may become co-NP-hard starting from
three quantified variables. For queries having at most two
quantified variables, we further identify a necessary and suf-
ficient condition for first-order expressibility.

To obtain positive results for arbitrary conjunctive
queries, we propose a novel inconsistency-tolerant seman-
tics which is a sound approximation of the consistent query
answering semantics (and a finer approximation than the ap-
proximate semantics proposed in (Lembo et al. 2010)). We
show that under this semantics, first-order expressibility of
consistent query answering is guaranteed for all conjunctive
queries. Finally, in order to treat more expressive ontolo-
gies, and to demonstrate the applicability of our techniques,
we show how our positive results can be extended to handle
DL-Lite ontologies without inverse roles.

Note that full proofs have been omitted for lack of
space but can be found in an appendix available at
http://www.lri.fr/∼meghyn/publications.

2 Preliminaries
Syntax All the ontology languages considered in this pa-
per are fragments of DL-Litecore (Calvanese et al. 2007;
Artale et al. 2009), which we will henceforth abbreviate to
DL-Lite. We recall that DL-Lite knowledge bases (KBs)
are built up from a set NI of individuals, a set NC of atomic
concepts, and a set NR of atomic roles. Complex concept
and role expressions are constructed as follows:

B → A | ∃R C → B | ¬B P → R | R−

where A ∈ NC and R ∈ NR. A TBox is a finite set of
inclusions of the form B v C (with B,C as above). An
ABox is a finite set of assertions of the form A(a) (A ∈ NC)
or R(a, b) (R ∈ NR), where a, b ∈ NI. We use Ind(A) to
denote the set of individuals in A. A KB consists of a TBox
and an ABox.

Semantics An interpretation is I = (∆I , ·I), where ∆I is
a non-empty set and ·I maps each a ∈ NI to aI ∈ ∆I , each
A ∈ NC to AI ⊆ ∆I , and each P ∈ NR to P I ⊆ ∆I ×
∆I . The function ·I is straightforwardly extended to general

concepts and roles, e.g. (¬A)I = ∆I \ AI and (∃S)I =
{c | ∃d : (c, d) ∈ SI}. I satisfies G v H if GI ⊆ HI ; it
satisfies A(a) (resp. P (a, b)) if aI ∈ AI (resp. (aI , bI) ∈
P I). We write I |= α if I satisfies inclusion/assertion α. I
is a model of K = (T ,A) if I satisfies all inclusions in T
and assertions in A. We say a KB K is consistent if it has
a model, and that K entails an inclusion/assertion α, written
K |= α, if every model of K is a model of α. The closure
of an ABox A w.r.t. TBox T , written clT (A), is the set of
assertions which are entailed from T ,A.

In what follows, it will prove useful to extend the notions
of satisfaction and entailment to sets of concepts. We will
say that a set of concepts {C1, . . . , Cn} is consistent w.r.t.
a TBox T if there exists a model I of T and an element
e ∈ ∆I such that e ∈ Ci for every 1 ≤ i ≤ n. Entailment
of a concept from a set of concepts is defined in the obvious
way: T |= S v D if and only if for every model I of T , we
have ∩C∈SCI ⊆ DI .

Queries A (first-order) query is a formula of first-order logic
with equality, whose atoms are of the form A(t) (A ∈ NC),
R(t, t′) (R ∈ NR), or t = t′ with t, t′ terms, i.e., variables or
individuals. Conjunctive queries (CQs) have the form ∃~y ψ,
where ~y denotes a tuple of variables, and ψ is a conjunction
of atoms of the forms A(t) or R(t, t′). Instance queries are
queries consisting of a single atom with no variables (i.e.
ABox assertions). Free variables in queries are called an-
swer variables, whereas bound variables are called quanti-
fied variables. We use terms(q) to denote the set of terms
appearing in a query q.

A Boolean query is a query with no answer variables. For
a Boolean query q, we write I |= q when q holds in the inter-
pretation I, and K |= q when I |= q for all models I of K.
For a non-Boolean query q with answer variables v1, . . . , vk,
a tuple of individuals (a1, . . . , ak) is said to be a certain an-
swer for q w.r.t. K just in the case that K |= q[a1, . . . , ak],
where q[a1, . . . , ak] is the Boolean query obtained by re-
placing each vi by ai. Thus, conjunctive query answering is
straightforwardly reduced to entailment of Boolean CQs.

First-order Rewritability It is well-known (cf. (Calvanese
et al. 2007; Artale et al. 2009)) that for every DL-Lite
TBox T and CQ q, we can find a first-order query q′ such
that for every ABox A and tuple of individuals ~a, we have
T ,A |= q[~a] if and only if IA |= q′[~a], where IA denotes
the interpretation which has domain Ind(A) and makes true
precisely the assertions in A.

3 Consistent Query Answering
In this section, we formally recall the consistent query an-
swering semantics, present some simple examples which il-
lustrate the difficulty of the problem, and introduce the main
problem which will be studied in this paper. For readability,
throughout the paper, we will formulate our definitions and
results in terms of Boolean CQs, but they can be straightfor-
wardly extended to general CQs.

Consistent query answering relies on the notion of a re-
pair, defined as follows:

Definition 1. A repair of an ABox A w.r.t. a TBox T is an

706



inclusion-maximal subset B of A consistent with T . We use
RepT (A) to denote the set of repairs of A w.r.t. T .

Consistent query answering can be seen as performing
standard query answering on each of the repairs and inter-
secting the answers. For Boolean queries, the formal defini-
tion is as follows:
Definition 2. A query q is said to be consistently entailed
from a DL KB (T ,A), written T ,A |=cons q, if T ,B |= q
for every repair B ∈ RepT (A).

Just as with standard query entailment, we can ask
whether consistent query entailment can be tested by rewrit-
ing the query and evaluating it over the data.
Definition 3. A first-order query q′ is a consistent rewriting
of a Boolean query q w.r.t. a TBox T if for every ABox A,
we have T ,A |=cons q iff IA |= q′.

As mentioned in the introduction, it was shown in (Lembo
et al. 2010) that consistent instance checking in DL-Lite is
co-NP-hard in data complexity, which means in particular
that consistent rewritings need not exist. We present the re-
duction in the following example.
Example 4. Consider an instance ϕ = c1∧ . . .∧ cm of UN-
SAT, where each ci is a propositional clause. Let v1, . . . , vk
be the propositional variables appearing in ϕ. We define the
DL-Litecore knowledge base (T ,A) as follows:

T = { ∃P− v ¬∃N−, ∃P v ¬∃U−,
∃N v ¬∃U−,∃U v A }

A = {U(a, ci) | 1 ≤ i ≤ m }∪
{P (ci, vj) | vj ∈ ci} ∪ {N(ci, vj) | ¬vj ∈ ci}

It is not hard to verify that ϕ is unsatisfiable if and only
if T ,A |=cons A(a). The basic idea is that, because of
the inclusion ∃P− v ¬∃N−, each repair corresponds to a
valuation of the variables, with vj assigned true if it has an
incoming P -edge in the repair. If a clause ci is not satisfied
by the valuation encoded by the repair, then the individual
ci will have no outgoing P - or N -edges, and hence it will
retain its incoming U -edge, causing A to be entailed at a.

The preceding reduction makes crucial use of inverse
roles, and indeed, we will show in Section 7 that consis-
tent instance checking is first-order expressible for DL-Lite
ontologies without inverse. However, in the case of con-
junctive queries, the absence of inverses does not guarantee
tractability. Indeed, the next example shows that only a sin-
gle concept disjointness axiom can yield co-NP-hardness.
Example 5. We use a variant of UNSAT, called 2+2UNSAT,
proved co-NP-hard in (Donini et al. 1994), in which each
clause has 2 positive and 2 negative literals, where literals
involve either regular variables or the truth constants true
and false. Consider an instance ϕ = c1 ∧ . . . ∧ cm of
2+2-UNSAT over v1, . . . , vk, true, and false. Let T =
{T v ¬F}, and define A as follows:

{P1(ci, u), P2(ci, x), N1(ci, y), N2(ci, z) |
ci = u ∨ x ∨ ¬y ∨ ¬z, 1 ≤ i ≤ m}

∪ {T (vj), F (vj) | 1 ≤ j ≤ k } ∪ {T (true), F (false)}

Then one can show that ϕ is unsatisfiable just in the case
that (T ,A) consistently entails the following query:

∃x, y1, . . . , y4 P1(x, y1) ∧ F (y1) ∧ P2(x, y2) ∧ F (y2)

∧N1(x, y3) ∧ T (y3) ∧N2(x, y4) ∧ T (y4)

Essentially, T v ¬F forces the choice of a truth value for
each variable, so the repairs of A correspond exactly to the
set of valuations. Importantly, there is only one way to avoid
satisfying a 2+2-clause: the first two variables must be as-
signed false and the last two variables must be assigned true.
The existence of such a configuration is checked by q.

We remark that the query in the preceding reduction has
quite a simple structure, its only notable property being the
use of several quantified variables.

The aim of this paper is to gain a better understanding
of what makes consistent conjunctive query answering so
difficult (and conversely, what can make it easy). To this
end, we will consider the following decision problem:

CERTAIN(q, T ) = {A | T ,A |=cons q}
and analyze its complexity in terms of the properties of the
pair (q, T ). We will investigate in particular the impact of
limiting the number of quantified variables in q.

In the next three sections, we focus on simple ontologies,
consisting of axioms of the forms A1 v A2 and A1 v ¬A2

where A1, A2 ∈ NC. As Example 5 demonstrates, the prob-
lem is already non-trivial in this case. All obtained lower
bounds clearly transfer to richer ontologies, and we will
show in Section 7 that positive results can also be extended
to DL-Lite ontologies without inverse roles.

4 Tractability for Queries with at Most
Two Quantified Variables

In this section, we investigate the complexity of consistent
query answering in the presence of simple ontologies for
CQs having at most two quantified variables. We show this
problem has tractable data complexity, and we provide nec-
essary and sufficient conditions for FO-expressibility.

We begin with queries with at most one quantified vari-
able, showing that a consistent rewriting always exists.

Theorem 6. Let T be a simple ontology, and let q be a
Boolean CQ with at most one quantified variable. Then
CERTAIN(q, T ) is first-order expressible.

Proof Sketch. We show how to construct the desired consis-
tent rewriting of q in the case where q has a single quan-
tified variable x. First, for each t ∈ terms(q), we set
Ct = {A | A(t) ∈ q}, and we let Σt be the set of all S ⊆ NC

such that every maximal subset U ⊆ S consistent with T is
such that T |= U v Ct. Intuitively, Σt defines the possi-
ble circumstances under which the conjunction of concepts
in Ct is consistently entailed. We can express this condition
with the first-order formula ψt:

ψt =
∨

S∈Σt

(
∧
A∈S

A(t) ∧
∧

A∈NC\S

¬A(t))
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Figure 1: ABoxes for Example 7. Arrows indicate the role
R, and each of the four R-chains has length exceeding 2k.

Now using the ψt, we construct q′:

q′ = ∃x
∧

R(t,t′)∈q

R(t, t′) ∧
∧

t∈terms(q)

ψt

It can be shown that q′ is indeed a consistent rewriting of q
w.r.t. T . To see why this is so, it is helpful to remark that
the repairs of (T ,A) contain precisely the role assertions
in A, together with a maximal subset of concept assertions
consistent with T for each individual.

The next example shows that Theorem 6 cannot be ex-
tended to the class of queries with two quantified variables.

Example 7. Consider q = ∃xy A(x)∧R(x, y)∧B(y) and
T = {A v ¬B}. Suppose for a contradiction that q′ is a
consistent rewriting of q w.r.t. T , and let k be the quantifier
rank of q′. In Figure 1, we give two ABoxesA1 andA2, each
consisting of two R-chains of length > 2k. It can be verified
that q is consistently entailed from T ,A1. This is because in
every repair, the upper chain will haveA at one end,B at the
other, and either an A or B at all interior points; every such
configuration makes q true somewhere along the chain. On
the other hand, we can construct a repair for T ,A2 which
does not entail q by always preferringA on the top chain and
B on the bottom chain. It follows that the interpretation IA1

satisfies q′, whereas IA2 does not. However, one can show
using standard tools from finite model theory (cf. Ch. 3-4
of (Libkin 2004)) that no formula of quantifier rank k can
distinguish IA1

and IA2
, yielding the desired contradiction.

We can generalize the preceding example to obtain suffi-
cient conditions for the inexistence of a consistent rewriting.

Theorem 8. Let T be a simple ontology, and let q be a
Boolean CQ with two quantified variables x, y. Assume that
there do not exist CQs q1 and q2, each with less than two
quantified variables, such that q ≡ q1 ∧ q2. Denote by Cx

(resp. Cy) the set of concepts A such that A(x) ∈ q (resp.
A(y) ∈ q). Then CERTAIN(q, T ) is not first-order express-
ible if there exists S ⊆ NC such that:

- for v ∈ {x, y}, there is a maximal subset Dv ⊆ S consis-
tent with T s.t. T 6|= Dv v Cv

- for every maximal subsetD ⊆ S consistent with T , either
T |= D v Cx or T |= D v Cy

Sketch. The proof generalizes the argument outlined in Ex-
ample 7. Instead of having a single role connecting succes-
sive elements in the chains, we establish the required rela-
tional structure for each pair of successive points. We then
substitute the set Dy for A, the set Dx for B, and the set
S for {A,B}. The properties of S ensure that if S is as-
serted at some individual, then we can block the satisfaction
of Cx using Dy , and we can block Cy using Dx, but we can
never simultaneously block both Cx and Cy . The assump-
tion that q cannot be rewritten as a conjunction of queries
with less than two quantified variables is used in the proof
of T ,A2 6|=cons q to show that the only possible matches of
q involve successive chain elements (and not constants from
the query). To show IA1

and IA2
cannot be distinguished,

we use Ehrenfeucht-Fraı̈ssé games, rather than Hanf local-
ity, since the latter is inapplicable when there is a role atom
containing a constant and a quantified variable.

The following theorem shows that whenever the condi-
tions of Theorem 8 are not met, a consistent rewriting exists.

Theorem 9. Let T be a simple ontology, and let q
be a Boolean CQ with two quantified variables. Then
CERTAIN(q, T ) is first-order expressible if q is equivalent
to a conjunction q1 ∧ q2 of CQs q1, q2 each with at most
one quantified variable, or if there is no set S satisfying the
conditions of Theorem 8.

Proof Sketch. First suppose q is equivalent to q1∧ q2, where
q1 and q2 both have at most one quantified variable. Then
we can apply Theorem 6 to obtain consistent rewritings q′1
and q′2 of q1 and q2 respectively. We can show that q′1 ∧ q′2
is a consistent rewriting for q1 ∧ q2, hence for q. Thus, the
interesting case is when there is no such equivalent query,
nor any set S satisfying the conditions of Theorem 8. Intu-
itively, the inexistence of such a set S ensures that if at some
individual, one can block Cx, and one can block Cy , then
it is possible to simultaneously block Cx and Cy (compare
this to Example 7 in which blocking A causes B to hold,
and vice-versa). This property is key, as it allows different
potential query matches to be treated independently.

Together, Theorems 8 and 9 provide a necessary and suf-
ficient condition for the existence of a consistent rewriting.
We now reconsider T and q from Example 7 and outline a
polynomial-time method for solving CERTAIN(q, T ).

Example 10. Suppose we have an ABox A, and we wish
to decide if T ,A |=cons q, for T = {A v ¬B} and q =
∃xy A(x)∧R(x, y)∧B(y). The basic idea is to try to con-
struct a repair which does not entail q. We start by iteratively
applying the following rules until neither rule is applicable:
(1) if R(a, b), A(a), B(a), B(b) ∈ A but A(b) 6∈ A, then
delete A(a) from A, and (2) if R(a, b), A(a), A(b), B(b) ∈
A but B(a) 6∈ A, then delete B(b). Note that since the size
ofA decreases with every rule application, we will stop after
a polynomial number of iterations. Once finished, we check
whether there are a, b such that A(a), R(a, b), B(b) ∈ A,
B(a) 6∈ A, and A(b) 6∈ A. If so, we return ‘yes’ (to in-
dicate T ,A |=cons q), and otherwise, we output no’ (for
T ,A 6|=cons q). Note that in the latter case, for all pairs a, b
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Figure 2: Abox Ac` for clause c` = ¬vi ∨ ¬vj ∨ ¬vk.

withA(a), R(a, b), B(b) ∈ A, we have bothB(a) andA(b).
Thus, we can choose to always keep A, thereby blocking all
remaining potential matches.

By carefully generalizing the ideas outlined in Example
10, we obtain a tractability result which covers all queries
having at most two quantified variables.

Theorem 11. Let T be a simple ontology, and let q be a CQ
with at most 2 quantified variables. Then CERTAIN(q, T ) is
polynomial in data complexity.

5 Improved co-NP Lower Bound:
Three Quantified Variables Suffice

The objective of this section is to show that the tractability
result we obtained for queries with at most two quantified
variables cannot be extended further to the class of conjunc-
tive queries with three quantified variables. We will do this
by establishing co-NP-hardness for a specific conjunctive
query with three quantified variables, thereby improving the
lower bound sketched in Example 5. Specifically, we will
reduce 3SAT to CERTAIN(q, T ) where:

T = {A v ¬B,A v ¬C,B v ¬C}
q = ∃x, y, z A(x) ∧R(x, y) ∧B(y) ∧R(y, z) ∧ C(z).

The first component of the reduction is a mechanism for
choosing truth values for the variables. For this, we create
an ABox Avi

= {A(vi), C(vi)} for each variable vi. It
is easy to see that there are two repairs for Avi

w.r.t. T :
{A(vi)} and {C(vi)}. We will interpret the choice of A(vi)
as assigning true to vi, and the presence of C(vi) to mean
that vi is false.

Next we need some way of verifying whether a clause is
satisfied by the valuation associated with a repair of ∪iAvi

.
To this end, we create an ABox Ac` for each clause c`; the
ABox Aϕ encoding ϕ will then simply be the union of the
ABoxes Avi and Ac` . The precise definition of the ABox
Ac` is a bit delicate and depends on the polarity of the liter-
als in c`. Figure 2 presents a pictorial representation of Ac`
for the case where c` = ¬vi ∨ ¬vj ∨ ¬vk (the ABoxes Avi

,
Avj

, and Avk
are also displayed).

Let us now see how the ABox Ac` pictured in Figure 2
can be used to test the satisfaction of c`. First suppose that
we have a repair B of Aϕ which contains A(vi), A(vj), and
A(vk), i.e. the valuation associated with the repair does not
satisfy c`. We claim that this implies that q holds. Sup-
pose for a contradiction that q is not entailed from B, T . We
first note that by maximality of repairs, B must contain all of

the assertionsA(vj), R(vj , a`), B(a`), andR(a`, c
2
`). It fol-

lows that including C(c2`) in B would cause q to hold, which
means we must choose to includeB(c2`) instead. Using sim-
ilar reasoning, we can see that in order to avoid satisfying q,
we must have C(d`) in B rather than B(d`), which in turn
forces us to select C(c3`) to block A(c3`). However, this is
a contradiction, since we have identified a match for q in B
with x = vi, y = c2` , z = c3` . The above argument (once
extended to the other possible forms of Ac` ) is the key to
showing that the unsatisfiability of ϕ implies T ,Aϕ |= q.

Conversely, it can be proven that if one of c`’s literals is
made true by the valuation, then it is possible to repair Ac`
in such a way that a match for q is avoided. For example,
consider again Ac` from Figure 2, and suppose that the sec-
ond literal vj is satisfied. It follows that C(vj) ∈ B, hence
A(vj) 6∈ B, which means we can keep C(c2`) rather than
B(c2`), thereby blocking the match at (vi, c

2
` , c

3
`). By show-

ing this property holds for the different forms ofAc` , and by
further arguing that we can combine “q-avoiding” repairs of
the Ac` without inducing a match for q, we can prove that
the satisfiability of ϕ implies T ,Aϕ 6|= q. We thus have:
Theorem 12. CERTAIN(q, T ) is co-NP-hard in data com-
plexity for T = {A v ¬B,A v ¬C,B v ¬C} and
q = ∃x, y, z A(x) ∧R(x, y) ∧B(y) ∧R(y, z) ∧ C(z).

6 Tractability through Approximation
The positive results from Section 4 give us a polynomial al-
gorithm for consistent query answering in the presence of
simple ontologies, but only for CQs with at most two quan-
tified variables. In order to be able to handle all queries, we
explore in this section alternative inconsistency-tolerant se-
mantics which are sound approximations of the consistent
query answering semantics1.

One possibility is to adopt the IAR semantics from
(Lembo et al. 2010). We recall that this semantics (denoted
by |=IAR) can be seen as evaluating queries against the
ABox corresponding to the intersection of the repairs. Con-
junctive query answering under IAR semantics was shown
in (Lembo et al. 2011) to be tractable for general CQs in
the presence of DL-Lite ontologies (and a fortiori simple
ontologies) using query rewriting.

To obtain a finer approximation of the consistent query
answering semantics, we propose a new inconsistency-
tolerant semantics which corresponds to closing repairs with
respect to the TBox before intersecting them:
Definition 13. A Boolean query q is said to be entailed
from (T ,A) under ICR semantics (“intersection of closed
repairs”), written T ,A |=ICR q, if T ,D |= q, where
D =

⋂
B∈RepT (A) clT (B).

The following theorem, which is easy to prove, estab-
lishes the relationship among the three semantics.
Theorem 14. For every Boolean CQ q and TBox T :

T ,A |=IAR q ⇒ T ,A |=ICR q ⇒ T ,A |=cons q

The reverse implications do not hold.
1We recall that a semantics |=1 is said to be a sound approxi-

mation of a semantics |=2 if K |=1 α⇒ K |=2 α for all K, α.
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The next example illustrates how the ICR semantics can
preserve information lost by the IAR semantics:

Example 15. Let T = {A v C,B v C,A v ¬B} and
A = {A(a), B(a)}. Then C(a) is entailed from (T ,A)
under ICR semantics, but not under IAR semantics.

Finally, we show that under ICR semantics, we can an-
swer any CQ in polynomial time using query rewriting.

Theorem 16. Let T be a simple ontology and q a Boolean
CQ. Then there exists a first-order query q′ such that for
every ABox A: T ,A |=ICR q if and only if IA |= q′.

Proof Sketch. We first compute, using standard techniques,
a union of conjunctive queries q′ such that for every A, we
have T ,A |= q if and only if IA |= q′. Next we use The-
orem 6 to find a consistent rewriting ϕA(t) of each concept
atom A(t) ∈ q′, and we let ψ be the first-order query ob-
tained by replacing each occurrence of A(t) in q′ by ϕA(t).
It can be shown that the query ψ is such that T ,A |=ICR q
if and only if IA |= ψ.

7 Extension to Inverse-free DL-Lite
In this section, we show how the techniques we developed
for simple ontologies can be used to extend our positive re-
sults to DL-Lite ontologies which do not contain inverse
roles (we will use DL-Liteno− to refer to this logic).

Our first result shows that the analogues of Theorems 6
and 11 hold forDL-Liteno− ontologies. The main technical
difficulty in adapting the proofs of Theorems 6 and 11 is
that role assertions may now be contradicted, which means
repairs need not have the same set of role assertions as the
original ABox.

Theorem 17. Consider a DL-Liteno− ontology T , and a
Boolean CQ q with at most two quantified variables. Then
CERTAIN(q, T ) is polynomial in data complexity, and first-
order expressible if there is at most one quantified variable.

We can also extend the general first-order expressibility
result for the new ICR semantics (Theorem 16) to the class
of DL-Liteno− ontologies.

Theorem 18. Let T be a DL-Liteno− ontology, and let q
be a Boolean CQ. Then there exists a first-order query q′
such that for every ABox A: T ,A |=ICR q if and only if
IA |= q′.

Proof Sketch. We apply the same strategy as for Theorem
16, except now we must also replace each role atom R(t, t′)
in q′ by its consistent rewriting.

As noted earlier, consistent query answering in (full)
DL-Lite is co-NP-hard in data complexity even for instance
queries, which means that neither of the preceding theorems
can be extended to the class of DL-Lite ontologies.

8 Related Work
The principal inspiration for the present paper comes from
a line of research in the database community (Fuxman and
Miller 2005; Wijsen 2010; Kolaitis and Pema 2012) aimed
at deciding for a given set of integrity constraints (typically,

functional dependencies) and a given CQ, whether the asso-
ciated consistent query answering problem is first-order ex-
pressible, tractable, or intractable. Although a full character-
ization has proved elusive, there have been some important
recent advances. Notably, a necessary and sufficient con-
dition for first-order expressibility was obtained in (Wijsen
2010) for functional dependencies and the class of acyclic
conjunctive queries without self-join. Very recently, a P-
co-NP dichotomy was shown for the same setting (Kolaitis
and Pema 2012), although only for queries with at most two
atoms. Despite the strong similarities in motivation, the set-
ting we consider differs significantly from the one studied
by the database community, since we adopt an open world
semantics, use different types of constraints, and exploit dif-
ferent restrictions on the query to gain tractability.

We next discuss the relationship with prior work on
inconsistency-tolerant query answering for DLs. In (Lembo
et al. 2010), four different inconsistency-tolerant query an-
swering semantics (AR, IAR, CAR, ICAR) were studied
for DL-Lite, and it was shown that CQ answering is co-
NP-hard in data complexity for AR and CAR semantics,
and first-order expressible for the IAR and ICAR seman-
tics (Lembo et al. 2011). The AR semantics corresponds
exactly to the consistent query answering semantics we in-
vestigated in this paper, and the IAR semantics is the sound
approximation we discussed in Section 6. The CAR and
ICAR semantics are defined analogously to the AR and IAR
semantics, except that they work on the closure of the input
ABox. While this idea is similar to our ICR semantics, in
which we close the repairs, the semantics have quite differ-
ent properties. Indeed, unlike the ICR semantics, the CAR
and ICAR semantics are not sound approximations of the
consistent query answering semantics. For example, given
T = {A v ¬B,A v C} and A = {A(a), B(a)}, the
query C(a) is entailed under CAR and ICAR semantics, but
T ,A 6|=cons C(a). The paraconsistent approach to querying
inconsistentDL-Lite knowledge bases recently proposed in
(Zhou et al. 2012) also differs considerably from our own,
as it does not guarantee that the query result is consistent
with the TBox. For example, given T = {A v ¬B} and
A = {A(a), B(a)}, both A(a) and B(a) are entailed.

Finally, we note that is a large literature devoted to other
forms of inconsistency-handling in description logics, in-
cluding debugging and revision of DL knowledge bases,
both of which aim to modify a KB so as to restore con-
sistency. In general, such methods have the advantage
of allowing for the use of standard querying algorithms,
which typically have lower complexity than inconsistency-
tolerant querying algorithms. However, these approaches
are not well-suited to all applications, first, because they
presuppose the ability to modify the KB, and second, be-
cause they usually require some extra information to de-
cide among the many different ways of restoring consis-
tency. For ontology debugging (Schlobach et al. 2007;
Nikitina, Rudolph, and Glimm 2011), this extra information
takes the form of a domain expert who is available to an-
swer questions or to decide which modifications should be
made. For belief revision operators, the extra information
typically takes the form of preferences encoded by an inci-
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sion or selection function (Ribeiro and Wassermann 2009).
A recently proposed model-based revision operator for DL-
Litebool KBs (Wang, Wang, and Topor 2010) does not re-
quire any extra input, but the result of the revision may not
be representable as a DL-Lite KB, and approximation can
lead to significant loss of information. Finally, it is relevant
to note that most prior work on debugging and revision for
DLs either focuses uniquely on the TBox, or treats ABox
and TBox statements equally, whereas we consider a setting
in which the TBox is considered reliable and inconsistencies
arise due to errors in the ABox.

9 Conclusion and Future Work
The detailed complexity analysis we conducted for consis-
tent query answering in the presence of simple ontologies
provides further insight into the negative complexity results
obtained in (Lembo et al. 2010; Rosati 2011), by making
clear how little is needed to obtain first-order inexpressibil-
ity or intractability. Our investigation also yielded some pos-
itive results, including the identification of novel tractable
cases, such as inverse-freeDL-Lite ontologies coupled with
CQs with at most two quantified variables (or coupled with
arbitary CQs, under the new ICR semantics).

There are several natural directions for future work. First,
it would be interesting to explore how far we can push our
positive results. We expect that adding Horn inclusions and
positive role inclusions should be unproblematic, but role
disjointness axioms will be more challenging. In order to
handle functional roles, we might try to combine our positive
results with those which have been obtained for relational
databases under functional dependencies (Wijsen 2010). It
would also be interesting to try to build upon the results in
this paper in order to obtain a criterion for first-order ex-
pressibility (or tractability) which applies to all conjunctive
queries, regardless of the number of quantified variables.

Finally, we view the present work as a useful starting
point in the development of sound but incomplete consistent
query answering algorithms for popular lightweight DLs
like (full)DL-Lite and EL⊥. For example, our results could
be extended to identify some CQ-TBox pairs in these richer
logics for which consistent query answering is tractable. An-
other idea would be to use the new ICR semantics to lift
tractability results for IQs (like those from (Bienvenu 2011))
to classes of CQs.
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