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Abstract. Constant propagation (CP) is one of the most widely used
optimizations in practice (cf. [9]). Intuitively, it addresses the problem of
statically detecting whether an expression always evaluates to a unique
constant at run-time. Unfortunately, as proved by different authors [4,
16], CP is in general undecidable even if the interpretation of branches is
completely ignored. On the other hand, it is certainly decidable in more
restricted settings, like on loop-free programs (cf. [7]). In this paper, we
explore the complexity of CP for a three-dimensional taxonomy. We
present an almost complete complexity classification, leaving only two
upper bounds open.

1 Motivation

Constant propagation (CP) is one of the most widely used optimizations in prac-
tice (cf. [1,4,9]). Intuitively, it aims at detecting expressions that always yield
a unique constant value at run-time. Unfortunately, the constant propagation
problem is undecidable even if the interpretation of branches is completely ig-
nored, like in the common model of nondeterministic flow graphs where every
program path is considered executable. Independent proofs of this important
observation have been given by Hecht [4] and by Reif and Lewis [16]. We briefly
recall the construction of Hecht, which is based on the Post correspondence prob-
lem. A Post correspondence system consists of a set of pairs (u1, v1), . . . , (uk, vk)
with ui, vi ∈ {0, 1}∗. The correspondence system has a solution, iff there is a se-
quence i1, . . . , in such that ui1 · . . . · uin

= vi1 · . . . · vin
. Figure 1 illustrates

Hecht’s reduction. The variables x and y are used as decimal numbers repre-
senting strings in {0, 1}∗. For each pair of the correspondence system a distinct
branch of the loop appends the strings ui and vi to x and y, respectively.1

It is easy to see that x − y always evaluates to a value different from 0, if
the Post correspondence problem has no solution.2 In this case the expression
1 div ((x−y)2 +1) always evaluates to 0. But if the Post correspondence system
is solvable, this expression can evaluate to 1. Thus, r is constant (with value
0), if and only if the Post correspondence problem is not solvable. To exclude
1 Technically, this is achieved by shifting the digits of x and y by lg(ui) and lg(vi)

places first, where lg(ui) and lg(vi) are the length of the decimal representation of
ui and vi, respectively.

2 Note that the initialization of x and y with 1 avoids a problem with leading zeros.
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Fig. 1. Undecidability of CP: reduction of the Post correspondence problem.

r from being constantly 1 in the case that the Post correspondence system is
universally solvable, r is set to 0 by a bypassing assignment statement.

On the other hand, constant propagation is certainly decidable for acyclic,
i.e., loop-free, programs. But even in this setting the problem is intractable,
as it has been shown to be co-NP-hard [7] recently . This result is based on a
polynomial time reduction of the co-problem of 3-SAT, the satisfiability prob-
lem for clauses which are conjunctions consisting of three negated or unnegated
Boolean variables (cf. [3]). An instance of 3-SAT is solvable if there is a variable
assignment such that every clause is satisfied.

The reduction is illustrated in Figure 2 for a 3-SAT instance over the Boolean
variables {b1, . . . , bk}:

(b3 ∨ b5 ∨ b6)︸ ︷︷ ︸
c1

∧ . . . ∧ (b2 ∨ b3 ∨ b5)︸ ︷︷ ︸
cn

.

For each Boolean variable bi two integer variables xi and xi are introduced that
are initialized by 0. The idea underlying the reduction is the following: each
path of the program chooses a witnessing literal in each clause by setting the
corresponding variable to 1. If this can be done without setting both xi and xi

for some i then we have found a satisfying truth assignment, and vice versa. On
such a path r1 and consequently r2 evaluate to 0. On all other paths the value
of r1 differs from 0 but stays in the range {1, . . . , k} enforcing that variable r2
is set to 1. Summarizing, r2 evaluates to 1 on every program path if and only if
the underlying instance of 3-SAT has no solution. Similarly to the undecidability
reduction of Figure 1 the assignment r1 := 1 avoids that r1 is constantly 0 in
the case that all runs induce satisfying truth assignments.

Note that both reductions presented so far crucially depend on an operator
like integer division (or modulo) which is capable of projecting many different
values onto a single one.

Contributions. This paper aims at examining the borderline of intractab-
ility and undecidability more closely. To this end, we investigate the constant
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Fig. 2. Co-NP-hardness of CP for acyclic programs: reduction of co-3-SAT.

propagation problem for integers with respect to a three-dimensional taxonomy.
The first dimension is given by the distinction between arbitrary and loop-free
programs. We are currently also examining further extensions of this dimension
towards interprocedural and explicitly parallel programs (for first results see
[11]). However, this is beyond the scope of this paper whose focus is more directed
towards examining the influences of the other two dimensions

The second dimension is concerned with the underlying signature. We con-
sider signatures without operators (copy-constants), with linear expressions
x := ay + b (linear constants), with operators restricted to the set {+,−} (Pres-
burger constants), operators restricted to {+,−, ∗} (+,−, ∗-constants), and the
standard signature, i.e., the one with operators +,−, ∗, div, mod. Finally, in the
third dimension we investigate the general nature of the constant propagation
problem. Besides the standard must-constancy problem we also consider the less
frequently addressed problem of may-constancy here. Essentially, this problem
asks if a variable may evaluate to a given constant c on some program path.
Inspired by the work of Muth and Debray [12] we further distinguish between a
single value and a multiple value variant, where in the latter case the values of
multiple variables might be checked simultaneously.3

While the most prominent application of must-CP is the compile-time sim-
plification of expressions, the must- and may-variants are equally well suited for
eliminating unnecessary branches in programs. Furthermore, the may-variant
reveals some interesting insight in the complexity of (may-)aliasing of array ele-
ments.

In this paper, we present an almost complete complexity classification, pro-
viding all hardness results, i.e., lower bounds, leaving only two upper bounds
open. In particular, we observe that detecting may-constants is significantly
harder than detecting their must-counterparts. Furthermore, we demonstrate
that Presburger must-constants are polynomial time detectable which is some-

3 Muth and Debray introduced the single and multiple value variants as models for
independent-attribute and relational-attribute data flow analyses [5].
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how surprising, as non-distributivity in the standard setting already shows up
for this class. Finally, as a by-product we obtain some interesting results on the
decidability of may-aliasing of arrays.

2 The Setting

Flow Graphs. As usual in data-flow analysis and program optimization, we
represent programs by directed flow graphs G = (N, E, s, e) with node set N ,
edge set E, a unique start node s, and a unique end node e, which are assumed
to have no predecessors and successors, respectively. Each edge is associated
with an assignment statement or with the statement “skip”. Edges represent
the branching structure and the statements of a program, while nodes represent
program points. For readability the annotation “skip” is omitted in the figures.

By pred(n)=df { m | (m, n) ∈ E } and succ(n)=df { m | (n, m) ∈ E } we de-
note the set of immediate predecessors and successors of a node n. Additionally,
by source(e) and dest(e), e ∈ E, we denote the source node and the destination
node of edge e. A finite path in G is a sequence (e1, . . . , eq) of edges such that
dest(ej) = source(ej+1) for j ∈ {1, . . . , q − 1}. It is called a path from m to n,
if source(e1) =m and dest(eq) =n. By P[m, n] we denote the set of all (finite)
paths from m to n. Without loss of generality we assume that every node of a
flow graph G lies on a path from s to e.

Semantics of Terms. In this article we concentrate on integer expressions Exp
which are inductively built from variables v ∈ V, constants c ∈ C, and binary
integer operators Op = {+,−, ∗, div, mod}. The semantics of integer expressions
is induced by the standard interpretation S = (Z⊥, S0), where Z⊥=df Z ∪ {⊥}
is the flat integer domain with least element ⊥ and S0 is a function mapping
every integer constant c ∈ C to the corresponding datum S0(c) ∈ Z, and ev-
ery integer operator op ∈ Op to the corresponding total and strict function
S0(op) : (Z⊥)2 → Z⊥. Σ=df { σ |σ : V → Z⊥ } denotes the set of states, and σ⊥
the distinct start state assigning ⊥ to all variables v ∈ V. This choice reflects
that we do not assume anything about the context of the analyzed program.
The semantics of an expression e ∈ Exp is then given by the evaluation func-
tion E : Exp → (Σ → Z⊥) inductively defined by E(x)(σ)=df σ(x) for x ∈
V, E(c)(σ)=df I0(c) for c ∈ C and E(op(e1, e2))(σ)=df I0(op)(E(e1)(σ), E(e2)(σ))
for composite expressions.

Each assignment statement ι ≡ x := e is associated with the state transfor-
mation function θι : Σ → Σ which is defined by θι(σ)(y)=df E(e)(σ) if y = x
and θι(σ)(y)=df σ(y) otherwise.

The statement ι ≡ skip is associated with the identity state transformer,
θι(σ) = σ. We obtain the set of states Σn, which are possible at a program point
n ∈ N as follows:4 Σn=df { θp(σ⊥) | p ∈ P[s, n]}.

4 In the definition of Σn, θp denotes the straightforward extension of the state trans-
formation functions to paths.
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Classes of Constants

In the following we briefly introduce some classes of constants that are of par-
ticular interest with respect to the taxonomy considered later on in the paper.
We start by providing a distinction of constants into the more common class of
must-constants and the less frequently considered class of may-constants. For
both we provide their formal definitions as well as some application scenarios.

Must-Constants. Formally, an expression e is a must-constant at node n if
and only if

∃ d ∈ Z ∀σ ∈ Σn. E(e)(σ) = d.

The problem of (must-)constancy propagation is to determine for a given
expression e, whether e is a must-constant and if so what the value of the constant
is. This information can be used in various ways. The most important application
is the compile-time simplification of expressions. Furthermore, information on
must-constancy can be exploited in order to eliminate conditional branches. For
instance, if there is a condition e 6= d situated at an edge leaving node n and
e is determined a must-constant of value d at node n, then this branch can
be classified unexecutable (cf. Figure 3(a)). Since (must-)constant propagation
and the elimination of unexecutable branches mutually benefit from each other,
approaches for conditional constant propagation where developed taking this
effect into account [20,2].

May-Constants. Complementary to the must-constancy problem an expres-
sion e is a may-constant of value d ∈ Z at node n if and only if

∃σ ∈ Σn. E(e)(σ) = d.

Note that opposed to the must-constancy definition here the value of the con-
stant is given as an additional input parameter. This naturally induces a multiple
value extension of the notion of may-constancy. Given expressions e1, . . . , ek and
values d1, . . . , dk ∈ Z the corresponding multiple value may-constancy problem
is defined by:

∃σ ∈ Σn. E(e1)(σ) = d1 ∧ . . . ∧ E(ek)(σ) = dk.

While may-constancy information cannot be used for expression simplifica-
tion, it has also some valuable applications. Most obvious is a complementary
branch elimination transformation. If an expression e is not a may-constant of
value d at node n then any branch being guarded by a condition e = d is unex-
cecutable (cf. Figure 3(b)).

May-constancy information is also valuable for reasoning about the aliasing
of array elements. This can be used, for instance, for parallelization of code or for
improving the precision of other analyses by excluding a worst-case treatment of
assignments to elements in an array. Figure 4 gives such an example in the con-
text of constant propagation. Here the assignment to x can be simplified towards
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e = d e = d e = d e = d

a) b)

Removable if e

of value d

Removable if e   is
not a may−constant
of value d

a must−constant
   is

Fig. 3. Constancy information used for
branch elimination.

a[0] := 5

a[i] := ..

x := a[0] + 1

Fig. 4. Using array alias information
from may-constant propagation in the
context of (must)-constant propagation.

x := 6, only if the assignment to a[i] does not influence a[0]. This, however, can
be guaranteed if i is not a may-constant of value 0 at the corresponding program
node.

Next we formally introduce some classes of constants according to the form
of expressions that are allowed on the right hand side of assignments. Except
of linear constants these classes are induced by considering only a fragment of
the standard signature. While the first two classes are well-known in the field of
constant propagation and the class of Presburger constants is closely related to
the class of affine constants investigated in [6]5, we are not aware of any work
devoted to the fragment of +,−, ∗-constants.

Copy-Constants. If all expressions in the program are non-composite, then
the resulting constants are denoted copy-constants. This is due to the fact that
constants can only be produced by assignments x := c and be propagated by
assignments of the form x := y.

Linear Constants. If the expressions in the program are restricted to linear
ones, which means that all assignments take the form x := a z + b where a and b
are integer constants and z is an integer variable,6 then the resulting constants
are denoted linear constants.

Presburger Constants. If the expressions of the program are restricted to
ones built from the operator + and −, then the resulting constants are denoted
Presburger constants. We decided for this term according to Presburger arith-
metics, where integer operations are also restricted to addition and subtraction.
However, the complexity issues in deciding Presburger formulas and Presburger
constants are of a completely different nature, since in the context of constant
propagation the problem is mainly induced by path conditions and not by a given
logical formula. As far as expressiveness is concerned Presburger expressions and
5 Affine constants are linear ones generalized towards multiple variables, i.e., constants

in programs where expressions take only the form a1 x1 + . . . + ak xk.
6 If a = 0 or b = 0 the corresponding summand may be omitted.
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affine expressions coincide because multiplication with constants can be simu-
lated by iterated addition. Affine expressions can, however, be more succinct.
Nevertheless all results of this paper equally apply to both characterizations.

+, −, ∗-Constants. If the expressions of the program are restricted to ones
built from the operator +,− and ∗, then the resulting constants are called
+,−, ∗-Constants.

It is for technical convenience and conceptual clarity that the classes of con-
stants are introduced by means of a restriction to the form of all assignments in
the considered programs. In practice, one uses a complete algorithm for either
of the classes and extends it to programs with a more general kind of expres-
sions in assignments by worst-case or approximating assumptions. The resulting
algorithm can then still detect constants in the program completely that only
depend on assignments of the given form. When judging the practical relevance
of the results this should be kept in mind.

3 The Taxonomy and Complexity Results

3.1 Known Results

Table 1 summarizes the already known complexity results. Problems with a
polynomial time algorithm are emphasized in a light shade of grey, those be-
ing decidable though intractable in a dark shade of grey, and the undecidable
fields are filled black. White fields represent problems where the complexity and
decidability is unknown or at least, to the best of our knowledge, undocumented.

In the following we briefly comment on these results. For an unrestricted sig-
nature we already presented Hecht’s undecidability reduction for must-constants
and the co-NP-hardness result for the acyclic counterpart.

It is also well-known that the must-constant propagation problem is dis-
tributive [4], if all right-hand side expressions are either constant or represent
a one-to-one function in Z → Z depending on a single variable (see the remark
on page 206 in [18]). Hence the class of linear constants defines a distributive
data flow problem, which guarantees that the standard maximum fixed point
iteration strategy over Z ∪ {⊥,>} computes the exact solution in polynomial
time.7

On side of the may-constancy problem the class of copy-constant has recently
been examined by Muth and Debray [12]. It is obvious, that the single value case
can be dealt with efficiently. This is due to the fact that the number of constant
values that a variable may posses at a program point (via copy-assignments) is
bound to the number of assignments to constants in the program. Hence one
can essentially keep track of any possible constant value at a program point by
7 Sagiv, Reps and Horwitz [17] gave an alternative procedure for detecting linear con-

stants by solving a graph reachability problem on the exploded supergraph of a pro-
gram. They additionally showed that with this method linear constant propagation
can be solved precisely even for interprocedural control flow.
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Table 1. Complexity classification of a taxonomy of CP: the known results.
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collecting the set of possible values of variables. Formally, this can be achieved
by computing the union-over-all-path solution in a union-distributive data flow
framework over the lattice {σ|σ : V → P(ZG)}, where ZG denotes the set of
constant right-hand sides in the flow graph G under consideration.

The multiple value problem has been shown NP-complete in the acyclic case
and PSPACE-complete in the presence of unrestricted control flow [12].

In the remainder of this section we aim at successively filling the white parts in
Table 1. To this end, we start with providing new undecidability results, then give
some new intractability results and finally indicate that constant propagation can
be achieved efficiently for the class of Presburger constants.

3.2 New Undecidability Results

Fortunately, Hecht’s construction that was sketched in the introduction can eas-
ily be adapted for proving undecidability of Presburger may-constants. The only
modification necessary for this is to replace the two assignment to r in Figure 1
by a single assignment x := x − y. As argued before, x may equal y immediately
after leaving the loop, if and only if the instance of the Post correspondence
problem has a solution. Hence in this case x − y may evaluate to 0. As the mul-
tiplications with the constants 10lg(ui) and 10lg(vi) can be expressed by iterated
additions, we get:

Theorem 1. Deciding single valued may-constancy at a program point is unde-
cidable for the class of Presburger constants.
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This construction can be further modified to obtain an even stronger undecid-
ability result for the class of multiple value may-constants. Here we have:

Theorem 2. Deciding multiple valued may-constancy at a program point is un-
decidable for the class of linear constants. This even holds if only two values are
questioned.

The idea is to substitute the difference x−y in the assignment to r by a loop
which simultaneously decrements x and y. It is easy to see that x = 0 ∧ y = 0
may hold at the end of such a program fragment, if and only if x may equal y
at the end of the main loop.

Complexity of Array Aliasing. The previous two undecidability results have
an immediate impact on the problem of array aliasing, which complements sim-
ilar results known in the field of pointer induced aliasing [8]. In fact as a conse-
quence of Theorem 1 we have:

Corollary 1. Deciding whether a[i] may alias a[c] for a one-dimensional array
a, integer variable i and integer constant c is undecidable, even if i is computed
only using the operators + and −.

In fact, Theorem 2 even provides some negative results for array accesses
when using only linear index calculations.8 We have:

Corollary 2. Let c1, c2 be integer constants and i, j integer variables being com-
puted only with linear assignments of the form x := a y + b. Then the following
problems are undecidable:

1. Determining whether a[i] may alias a[j] for a one-dimensional array a.
2. Determining whether a[i, j] may alias a[c1, c2] for a two-dimensional array a.

It should be noted that traditional work on array dependences like the omega
test [14,15] is restricted to scenarios where array elements are addressed by affine
functions depending on some index variables of possibly nested for-loops. In this
setting the aliasing problem can be stated as an integer linear programming
problem which can be solved effectively. In contrast, our results address the
more fundamental issue of aliasing in the presence of arbitrary loops.

3.3 New Intractability Results

After having marked off the range of undecidability we prove in this section
intractability of some of the uncovered fields.

We start by strengthening the result on the co-NP-hardness of must-constant
propagation for acyclic control flow. Here the construction of Figure 2 can be
modified such that the usage of integer division is no longer necessary. Basically,
the trick is to use multiplication by 0 as the projective operation, i.e., as the
8 The first part is not an immediate corollary, but relies on the same construction as

Theorem 2.
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operation with the power to map many different values onto a single one. In the
construction of Figure 2 this requires the following modifications. All variables
are now initialized by 1. The part reflecting the clauses then sets the correspond-
ing variables to 0. Finally the assignments to r1 and r2 are substituted by a single
assignment r := (x1 + x1) · . . . · (xk + xk) being bypassed by another assignment
r := 0. It is easy to see that the instance of 3-SAT has no solution if and only if
on every path both xi and xi are set to 0 for some i ∈ {1, . . . , k}. This, however,
guarantees that at least one factor of the right-hand side expression defining r
is 0 which then ensures that r is a must-constant of value 0. Finally, the branch
performing the assignment r := 0 assures that r cannot be a must-constant of
any other value. Thus we have:

Theorem 3. Must-constant propagation is co-NP hard even when restricted to
acyclic control flow and to +,−, ∗-constants.

On the other hand, we can show that the problem of must-constant propa-
gation is in co-NP for acyclic control flow. To this end, one has to prove that
the co-problem, i.e., checking non-constancy at a program point, is in NP, which
is easy to see: a non-deterministic Turing machine can guess two paths through
the program witnessing two different values. Since each path is of linear length
in the program size and the integer operations can be performed in linear time
with respect to the sum of the lengths of the decimal representation of their
inputs, this can be done in polynomial time. Hence we have:

Theorem 4. Must-constant propagation is in co-NP when restricted to acyclic
control flow.

Next we are going to show that the problem addressed by Theorem 3 gets
presumably harder without the restriction to acyclic control flow.

Theorem 5. Must-constant propagation is PSPACE-hard even when restricted
to +,−, ∗-constants.

Theorem 5 is proved by means of a polynomial time reduction from the
language universality problem of nondeterministic finite automata (NDFA) (cf.
remark to Problem AL1 in [3]). This is the question whether an NDFA A over
an alphabet X accepts the universal language, i.e., L(A) =X∗. W.l.o.g. let us
thus consider an NDFA A = (X, S, δ, s1, F ), where X = {0, 1} is the underlying
alphabet, S = {1, . . . , k} the set of states, δ ⊆ S ×X ×S the transition relation,
s1 the start state, and F ⊆ S the set of accepting states. The polynomial time
reduction to a constant propagation problem is depicted in Figure 5.

For every state i ∈ {1, . . . , k} a variable si is introduced. The idea of the
construction is to guess an arbitrary input word letter by letter. While this is
done, it is ensured by appropriate assignments that each variable si holds 0 if
and only state i is reachable in the automaton under the word.

∏
i∈F si is then

0 for all words if and only if A accepts the universal language.
Initially, only the start state variable s1 is set to 0 as it is the only state

which is reachable under the empty word. The central part of the program is
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Fig. 5. PSPACE-hardness of must-constant propagation for +, −, ∗-constants.

a loop which guesses an alphabet symbol for the next transition. If we decide,
for instance, for 0 then, for each i, an auxiliary state variable ti is set to 0
by the assignment ti :=

∏
δ(j,0,i) sj , if and only if one of its 0-predecessors is

recognized reachable.9 After all variables ti have been set in this way their values
are copied to the variables si, respectively. The loop can be left at any time;
then it is checked whether the guessed word is accepted. Like before, the direct
assignment f := 0 has the purpose to ensure that constant values different from
0 are impossible. Therefore, f is a must-constant (of value 0) at the end of the
program, if and only if the underlying automaton accepts the universal language
{0, 1}∗.

The final reduction in this section addresses the complexity of linear may-
constants. Here we have:

Theorem 6. May-constant propagation is NP-hard even when restricted to the
class of linear constants.

Again we employ a polynomial time reduction from 3-SAT which however
differs from the ones seen before. The major idea here is to code a set of satisfied
clauses by a number interpreted as a bit-string. For example, in an instance
with four clauses the number 1100 would indicate that clause two and three are
satisfied, while clause zero and one are not. To avoid problems with carry-over
effects, we employ a (k+1)-adic number representation where k is the number of
variables in the 3-SAT instance. With this coding we can use linear assignments
to set the single “bits” corresponding to satisfied clauses.

9 Auxiliary state variables are introduced in order to avoid overwriting state variables
which are still used in consecutive assignments.
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To illustrate our reduction let us
assume an instance of 3-SAT with
Boolean variables {b1, . . . , bk} and
clauses c0, . . . , cn−1, where the lit-
eral b1 is contained in c3 and c5, and
the negated literal ¬b1 is contained
in c2 only. Then this is coded in
a program as depicted in Figure 6.
We have a non-deterministic choice
part for each Boolean variable bi.
The left branch sets the bits for the
clauses that contain bi and the right
branch those for the clauses that
contain bi. Every assignment can be
bypassed by an empty edge in case

c := 0

c := (k+1)  + c

c := (k+1)  + c

c := (k+1)  + c 23

5
for

part

b1

choice

Fig. 6: NP-hardness of linear may-CP.

that the clause is also made true by another literal. It is now easy to see that r
is a may-constant of value 1 . . . 1︸ ︷︷ ︸

n times

(in (k + 1)-adic number representation) if and

only if the underlying instance of 3-SAT is satisfiable.
On the other hand, it is easy to see that detecting may-constancy is in NP

for acyclic control flow, since a nondeterministic Turing machine can guess a
witnessing path for a given constant in polynomial time. We have:

Theorem 7. May-constant propagation is in NP when restricted to acyclic con-
trol flow.

3.4 New Polynomial-Time Algorithm

In this section we fill the last field in our taxonomy by showing that all Presburger
constants can be detected in polynomial time.

One way of showing this claim is by carefully investigating a polynomial-
time algorithm proposed by Karr [6]. He employs a forward data flow analysis
that establishes for each program point n an affine vector space (over Q) that
over-approximates Σn. This information can in turn be used to detect certain
constants. It can be shown that the resulting algorithm is complete with respect
to the detection of Presburger constants, a question that has not been explored
by Karr, but this proof is beyond the scope of the current paper. In the following
we sketch a new algorithm that leads to a more transparent proof of polynomial-
time detectability of Presburger constants.

Figure 7 gives an impression on the problem dimension behind this class
where the emphazised annotation will be explained later.

Part (a) of this Figure extends the classical non-distributivity pattern of
constant propagation (cf. [4]). The point here is that z is a must-constant of
value 14 at the end of the program. However, none of its operands is constant,
although both are defined outside of any conditional branch. Part (b) shows a
small loop example where z is a must-constant of value 0. However, also this
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a+b+c = 9

x := 0
y := 0

z := x + y

a) b)

a := 2

b := 3

a := 3

b := 2

x := a + c
y := b + d
z := x + y

z = 14

a+b = 5

5 = 5

z = 0

x+y = 0
x := x - 1

y := y + 1

x+y = -1

0 = 0

c := 4

d := 5

c := 5

d := 4

a+b+c+d = 14

a+b+c = 10

Fig. 7. Deciding Presburger constants by backward propagation of linear constraints.

example is outside of the scope of any standard algorithm except of Karr’s, and
even outside of the scope of Knoop’s and Steffen’s EXPTIME algorithm for
detecting finite constants [19].

The algorithm at a glance. Our algorithm employs techniques known from
linear algebra. In fact, we use a backward analysis propagating sets of linear
equational constraints describing affine vector spaces (over Q).

The Data Flow Framework. Given a set of pro-
gram variables {x1, . . . , xk} a linear constraint is an equa-
tion of the form:

∑
i ai xi = b where ai, b ∈ Q (i= 1, . . . ,

k). Since at most k of these linear constraints are linearly independent,
an affine vector space can always be described by means of a linear equation
system Ax= b where A is a k × k-matrix. The affine vector sub-spaces of Qk

can be partially ordered by set inclusion. This results in a (complete) lattice
where the length of chains is bounded by k as any affine space strictly contained
in another affine space has a smaller dimension.

The Meet Operation. The meet of two affine vector spaces represented by the
equations A1 x= b1 and A2 x= b2 can be computed by normalizing the equation(

A1

A2

)
x=

(
b1

b2

)

which can be done efficiently using Gauss-elimination [13].

Local Transfer Functions. The local transfer functions are realized by performing
a backward substitution on the linear constraints. For instance, a constraint
3x+y = 10 is backward-substituted along an assignment x := 2u−3v+5 towards
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3 (2u − 3 v + 5) + y = 10 which then can be “normalized” towards y + 6 u −
9 v = 5. Clearly, this can be done in polynomial time. After this normalization,
the resulting equation system is also simplified using Gauss-elimination.

The Overall Procedure. Our backward data flow analysis can be regarded as a
demand-driven analysis which works separately for each variable x and program
point n. Conceptually, it is organized in three stages:

Stage 1: Guess an arbitrary cycle-free path leading to n, for instance using
depth-first search, and compute the value d of x on this path.

Stage 2: Solve the backward data flow analysis where initially the program
point n is annotated by the affine vector space described by the linear con-
straint: x= d and all other program points by the universal affine space, i.e.,
the one given by 0x= 0.

Stage 3: The guess generated in stage 1 is proved, if and only if the start node
is still associated with the universal affine vector space.10

The completeness of the algorithm is a simple consequence of the distribu-
tivity of the analysis. Obviously, the guessed constraint is true iff the backward
substitution along every path originating at the start node yields a universally
valid constraint at the start node. Since this defines the meet-over-all-paths solu-
tion of our data flow framework the algorithmic solution is guaranteed to coincide
if the transfer functions are distributive, which is immediate from the definition.

The algorithm can also be understood from a program verification point of
view. By Stage 1, d is the only candidate value for x being constant at n. Stage 2
effectively computes the weakest (liberal) precondition of the assertion x = d at
program point n. Clearly, x is a constant at n if and only if the weakest liberal
precondition of x = d is universally valid.

As mentioned, the length of chains in the analysis is bound by the number of
variables k. Any change at a node can trigger a reevaluation at its predecessor
nodes. Therefore, we have at most O(e · k) Gauss-elimination steps, where e
denotes the number of edges in the flow graph. Each Gauss-elimination step is of
order O(k3) [13]. Thus the complexity for the complete data flow analysis w.r.t.
a single occurrence of a program variable is O(e k4). For an exhaustive analysis
that computes must-constancy information for any left-hand side occurrence of a
variable the estimation becomes O(n e k4), where n denotes the number of nodes
in the flow graph. Summarizing, we have:

Theorem 8. The class of Presburger must-constants can be detected in polyno-
mial time.

Finally, we are going to illustrate our algorithm by means of the example
of Figure 7. The emphazised annotation of Figure 7 contains the constraints
resulting from the initial guess z = 14 (in Figure 7(a)) and z = 0 (in Figure 7(b)),
respectively. It should be noted that for the sake of presentation we did not
10 In practice, one may already terminate with the result of non-constancy of x when-

ever a linear equation system encountered during the analysis renders unsolvable.
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display the constraints for every program point. The particular power of this
technique lies in the normalization performed on the linear constraints which
provides a handle to cope with arithmetic properties like commutativity and
associativity to a certain extent. For instance, the constraint a + b = 5 in Figure
7(a) has been the uniform result of two different intermediate constraints.

4 Summary and Conclusions

The decidability and complexity considerations of this paper are summarized in
Table 2. In fact, we almost completely succeeded in filling the white fields of
Table 1. As apparent, only two upper bounds are left open. At the moment we
neither have an upper bound for the class of +,−, ∗-must-constants nor for the
class of linear may-constants. Although we do not expect one of the problems
to be undecidable, a solution might require some deeper number theoretical
insights.

An interesting observation which is immediately obvious from inspecting the
table is that the detection of may-constants is significantly harder than detecting
their must-counterparts.

Future work will be concerned with answering the open upper bounds, with
tuning the constraint based technique for Presburger constants into an algorithm
that is usable in practice, and with extending the taxonomy by considering
advanced settings, like interprocedural or parallel ones, too. In as yet unpublished
work we show that in a setting with fork-join type parallelism the intraprocedural
problem is PSPACE-complete already for may- and must-copy constants and
becomes even undecidable for the corresponding interprocedural problems (see
[11] for somewhat weaker results).
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