
ar
X

iv
:0

90
7.

13
34

v1
 [

cs
.G

T
]

 8
 J

ul
 2

00
9

On the Complexity of Envy-Free Cake Cutting

Xiaotie Deng

Department of Computer Science

City University of Hong Kong

Hong Kong SAR, P.R.China

deng@cs.cityu.edu.hk

Qi Qi

Department of Management Science and Engineering

Stanford University

Stanford, California, USA

kaylaqi@stanford.edu

Amin Saberi∗

Department of Management Science and Engineering

Stanford University

Stanford, California, USA

saberi@stanford.edu

∗Acknowledgements: Amin Saberi would like to thank Arash Asadpour as well as the
organizers and participants of Dagstuhl’s Fair Division workshop for valuable discussions.

1

http://arxiv.org/abs/0907.1334v1

Abstract

We study the envy-free cake-cutting problem for d+1 players with
d cuts, for both the oracle function model and the polynomial time
function model. For the former, we derive a θ((1

ǫ
)d−1) time match-

ing bound for the query complexity of d + 1 player cake cutting with
Lipschitz utilities for any d > 1. When the utility functions are given
by a polynomial time algorithm, we prove the problem to be PPAD-
complete.

For measurable utility functions, we find a fully polynomial-time
algorithm for finding an approximate envy-free allocation of a cake
among three people using two cuts.

1 Introduction

Suppose you have a cake represented by the interval ([0, 1]), and you would
like to divide it among n persons fairly. Each person may have a different
opinion as to which part is more valuable. There is a big literature on this
problem in economics, political science and computer science [24, 25, 12, 3,
17, 20, 19, 1, 30]. In particular, it is proved using a fixed-point argument
that this problem has an envy-free solution [26, 28, 27]. In other words, it is
possible to cut a cake into n pieces (X = {l0, l1, · · · , ln−1} from left to right
along [0, 1]) using n−1 cuts and to allocate one piece to each person (player
i assigned piece lπ(i) for permutation π(i)) so that everyone values his or
her assigned piece no less than any other piece. The question is: is there an
efficient algorithm that finds such a cut (called (n− 1)-cut subsequently) of
the cake?

A related but less demanding solution than an envy-free solution is that
of proportional cuts. That is, each person gets a piece which he or she values
more than 1/n of total. Its complexity has recently completely solved by
Edmonds and Pruhs [10][11].

For the d + 1-person envy-free cut problem with exactly d cuts under
our consideration, however, progress in complexity analysis has been limited.
The existence of such a solution was proven by Stromquist [26] with a fixed-
point argument. His proof implies that an ǫ-approximation can be found
in time exponential in input size O(log 1

ǫ
). Let N = 1

ǫ
throughout our

discussion.
We establish three main results: 1) When the best choices of the play-

ers are given by polynomial-time algorithms, we prove that the problem is
PPAD-complete. 2) If the choices are given by a functional oracle, we derive
a θ((1

ǫ
)d−1) matching bound for the query complexity of cutting a cake for

1

d + 1 players. Despite a strong connection, mathematical and complexity-
wise, between equilibrium computation and fixed point computation, this
is the first matching query complexity result for an equilibrium computa-
tion problem. We know of no such results for Nash equilibrium, which is
also PPAD-complete with a strong tie with fixed-point computation. 3) For
the special case of measurable utility functions, we make a simple observa-
tion: there is a fully polynomial-time approximation scheme for finding an
approximate envy-free allocation 2-cut of a cake among three people. We
sketch our approaches as follows.

PPAD completeness: First, we capture the concept of approximation
by defining a discrete envy-free cut (set) (π,X(0),X(1), · · · ,X(d)) such that
player i prefers the π(i)-th piece of the d-cut X(j) for some j, and the d-
cuts {X(0),X(1), · · · ,X(d)} are within ǫ distance (in L∞ metric) of each
other. Such a solution converges to an exact envy-free cake cut as the
distance bound for the d-cuts goes to zero. Using barycentric coordinates,
the d-cut can also be represented as (x0, x1, · · · , xd) with l0 = x0/N, l1 =
x1/N, · · · , ld = xd/N . Note that (x0, x1, · · · , xd) is a point on the standard
d-dimensional simplex. To prove that the problem is in PPAD, we reduce it
to the problem of finding a fully colored base cell in a triangulated Sperner
coloring of a d-simplex by using Kuhn’s triangulation [18]. This can be done
by a two-stage process: labeling and coloring. First, for a d-simplex and a
Kuhn’s triangulation with vertex set V , a labeling L : V → {0, 1, · · · , d} is
valid if ∀X,Y ∈ V and X,Y on the same base cell, L(X) 6= L(Y). Then
for any labeled vertex X, we define a coloring C : V → {0, 1, · · · , d} such
that C(X) = i if player L(X) prefers the i-th piece of the cut X. By a mild
condition for the utility functions, C is a proper Sperner coloring. Therefore,
the key point here is to find a polynomial time labeling rule. We define the
labeling rule as: L(X) =

∑d
i=0 ixi mod (d + 1) with a proof of its validity

for Kuhn’s triangulation. On the other hand, we design a reduction based
on the 2D BROUWER problem [21, 6, 7, 8] for its proof of PPAD-hardness.

Matching bound in the Oracle function model: We derive a θ((1
ǫ
)d−1)

time matching bound for the query complexity of cake cutting for d + 1
players with Lipschitz utilities. The tight upper bound requires a divide-
&-conquer method that finds a balanced cut of the simplex. It is made
possible by Kuhn’s triangulation of the simplex, and our labeling method
for the envy-free cake cutting problem that allows an efficient parity checking
of the boundary. For the lower bound, the results are obtained by a reduc-

2

tion to the zero-point problem [14, 15, 16, 6]. The reduction is achieved in
two steps. First, we reduce the zero-point problem for direction-preserving
functions to the problem of finding a discrete fixed-point on a hypergrid.
In the second step, we prove that the hypergrid can be embedded into the
original d-simplex for cake-cutting such that its coloring can be extended to
a proper Sperner coloring of vertices in the triangulated simplex.

Instrumental to our matching bound for envy-free cake-cutting, we prove
a matching bound for the SPERNER problem for any constant dimension
d > 2, in the oracle function model. This was an open problem, while for
the case of d = 2, a tight bound was known by a lower bound of Crescenzi
and Silvestri [9] and an upper bound of Friedl, et al [13]. This matching
bound for the SPERNER problem may have other applications for fixed-
point based solutions.

Fully PTAS for three players with measurable utility functions:

Finally, for the special case of measurable utility functions, we are able to
utilize their monotone properties to construct an ǫ-approximate envy-free
solution in time polynomial in log(1

ǫ
) for three players.

We still rely on the general approach of branch-&-bound on parity but
exploit the monotonicity of the best choice along certain lines of the possible
cuts to make an efficient count of the index along the boundary. Any player
with a measurable utility function would prefer A to B for B ⊆ A. Therefore,
when one cut is fixed, one of the three pieces is fixed. Any player’s preference
on the other two pieces will change monotonically as another cut changes
from left to right. Using the barycentric coordinate X = (x0, x1, x2), along
the line of fixed x0, let x1 increases from 0 to N − x0. The preference of a
player’s choice will start with the last piece l2, to l0, and to l1 (one or two of
them may be missing). Similar monotone property holds when x2 is fixed.
For each player, we can find the boundary point along those lines by binary
search and the break point of the choices will can be obtained in O(log N)
time.

We cut the space along those two directions, so that the choice function
of each individual player will be monotone along those directions. Because
of the monotonicity and using the above procedure, we can calculate the
indices of edges along those lines efficiently. Therefore, the indices of the
two regions split by the cut will be decided quickly. We will stay on the
region with an odd index so that we should end with one that is a diamond
shape polygon consisting of at most two base cells. Because of parity, one of
two cells is a fully colored base triangle. The overall query complexity and

3

running time will be of O(log2 N).

2 Triangulation and Index

Our results are based on Sperner’s Lemma and its generalizations using the
concept of the index of a region [29]. These results have been fundamental in
discrete fixed point computation (see, e.g., [22] and [29]) and establishing
Brouwer’s fixed point theorem [4].

Starting at two dimensions, a triangular grid of scale 1 is an ordinary
triangle ∆ which has three vertices and one base cell. A triangular grid of
scale N places N-1 equally spaced line segments parallel to each of the three
edges of ∆ and divides the triangle into N2 base cells.

We refer to the three vertices of ∆ as corner vertices, and denote them
by D0, D1, and D2. The vertices along the edges of ∆ are referred to as
boundary vertices. Other vertices are referred to as internal vertices. Edges
of a base cell are referred to as base edges. Each vertex x = (i × D0 + j ×
D1 + k × D2)/N is represented by (i, j, k) where i, j, k ≥ 0, i + j + k = N .
We call it the barycentric coordinates of the vertex.

By barycentric coordinates, D0 is represented by (N, 0, 0); D1 by (0, N, 0)
and D2 by (0, 0, N). Boundary vertices along D0 and D1 are the ones in
the form (i, j, 0) with i, j > 0, i + j = N . Other boundary vertices are
defined similarly. For any interior point represented by (i, j, k) we have
i, j, k > 0, i + j + k = N . Let V = {(i, j, k) : i, j, k ≥ 0, i + j + k = N}.

Base cells in the triangulation are oriented in the clockwise order of their
vertices and base edges are oriented according to the clockwise order of their
base cells. See Figure 1 in Appendix A.1.

A coloring φ : V → {0, 1, 2} is a Sperner coloring if and only if for any
vertex x = (x0, x1, x2), φ(x0, x1, x2) = j ∈ {0, 1, 2} implies xj > 0. Sperner
Lemma states that a triangulated triangle with a valid Sperner color has a
base cell such that its three vertices have different colors.

Given a Sperner coloring φ : V → {0, 1, 2} of all vertices in V , let
sign(δ, φ) and sign(e, δ, φ) denote the sign of a base cell δ and the sign of
a base edge e in δ respectively. The sign of e = (u, v) is 1 (or -1) if the
colors of its two vertices are 0 and 1 and the orientation of e in δ is from
color 0 vertex to color 1 vertex (or from 1 to 0). We denote the sign of
a base edge by sign(e, φ) if there is no ambiguity on its orientation. In
all other cases, sign(e, φ) = 0. The sign of a base cell δ is defined to
be the sum of the signs of its three base edges. Therefore, sign(δ, φ) =
sign(e1, δ, φ) + sign(e2, δ, φ) + sign(e3, δ, φ).

4

We may verify the following by a simple case analysis.

Proposition 1. For any base cell, its sign is 1 (or −1) if and only if its three
vertices are colored with 0, 1, 2 in the clockwise (counterclockwise) order. In
all other cases, its sign is zero.

The index of a connected set of base cells ∆, with respect to the color φ
is defined as:

index(∆, φ) =
∑

{sign(δ, φ) : δ a base triangle ∈ ∆}

Lemma 1. [29] For a triangulated triangle ∆ with colors φ : V → {0, 1, 2},
there are at least |index(∆, φ)| fully colored base cells. The index can be
calculated by summing the signs on its boundary base edges.

See Appendix A.2 for the proof. The result also holds for general poly-
gons in 2D.

To generalize the same result to a higher dimensional polyhedron P , we
consider a simpler version of index that is defined mod 2 and is used in [8].
For a d-dimensional simplex with vertices assigned d + 1 different colors
{0, 1, · · · , d}, we define its index as 1. Otherwise, it is defined to be zero. Let
V (P) be the vertices of its triangulation. With respect to a color φ : V (P) →
{0, 1, · · · , d}, its index is defined as index(P, φ) =

∑

δ∈P index(δ, φ), where
δ’s are d-dimensional simplices in the triangulation of P into simplices.

Denote by ∂P the boundaries of P . Note that the triangulation of P
induces a triangulation of ∂P into (d− 1)-dimensional simplices. We define
indexd−1(∂P, φ) =

∑

δd−1∈∂P indexd−1(δd−1, φ).

We need the following discrete version [6] of standard results on the index
defined here.

Proposition 2. index(P, φ) ≡ indexd−1(∂P, φ) mod 2.

See Appendix A.3 for the proof.

2.1 Kuhn’s Triangulation

In this section, we briefly introduce Kuhn’s triangulation [18] for a simplex.
Kuhn’s triangulation has the advantage of being a balanced triangulation
and it helps us derive a much improved algorithm for the envy-free cake
cutting problem.

Let us start by explaining the Kuhn’s triangulation of a unit cube in
d dimensions. Let v0 = (0, 0, · · · , 0)1×d be one of the corners of the cube.

5

The diagonal vertex to it would be vd+1 = (1, 1, · · · , 1)1×d. Suppose ei is a
d-dimensional unit vector such that eii = 1 and eij = 0 for all i 6= j. Kuhn’s
method partitions the cube into d! simplices. Let π := (π(1), π(2), · · · , π(d))
be any permutation of the integers 0, 1, · · · , d − 1. Each permutation π
corresponds to one small simplex ∆d

π whose vertices are given by vi
π =

vi−1
π + eπ(i)

and v0
π = v0.

These simplices all have disjoint interiors and their union is the d-cube.
It is not difficult to verify this, since any vertex x = (x0, x1, · · · , xd−1) is
an interior point of ∆d

π if and only if 1 > xπ(1) > xπ(2) > · · · > xπ(d) > 0.
Appendix A.4 illustrates Kuhn’s triangulation on a 3-cube.

Now, we are ready to explain the Kuhn’s triangulation of a simplex. Let
N be an integer bigger than 1. Take a unit d-cube and use parallel cuts
of equal distance to partition it into Nd smaller d-cubes of side length 1

N
.

Then, partition each small cube into d! simplices using the above method.
Now, observe that the unit cube can also be partitioned into d! big simplices
first and each big simplex contains Nd smaller simplices or base cells. The
proof of the consistency of the two processes can be found in Appendix A.5.

Based on the equivalency of the two partitioning processes, we choose one
of the big simplices, for example the one corresponding to π = (0, 1, 2, · · · , d−
1) and the smaller simplices that are contained in that will define its trian-
gulation. A vertex X in this big simplices can be represented by barycentric
coordinates X = (x0, x1, · · · , xd) by a transformation as illustrated in Ap-
pendix A.6. More details of the transformation can be found in page 42 of
[23].

We have the following property of the triangulation:

Lemma 2. For given X = (x0, x1, · · · , xd) and Y = (y0, y1, · · · , yd), define
δX−Y = max∀i∈{0,1,··· ,d}{|xi − yi|}. If X Y are in the same base cell in
Kuhn’s triangulation, then δX−Y = 1.

See Appendix A.7 for the proof.

3 Finding a Sperner Simplex under Oracle Func-

tion Model

In the oracle function model, the function value at a point (or color of the
point) is given only when it is queried and it remains the same when further
queries are performed on the same point.

We prove that the oracle complexity of finding a Sperner base simplex
under oracle function model in d dimensions is of θ(Nd−1). Such a matching

6

bound was known only for finding a Sperner’s fully colored base cell in a
two dimensional N × N grid [9][13]. Our extensions into higher dimensions
make use of the methodologies originated in the zero point computation on
hypercubes.

The matching bound derived in this section will be essential for solving
the envy-free cake-cutting problem. It could also be of independent interest
for other equilibrium problems that are based on fixed point computation.

To derive the upper bound, we define the concept of balanced triangu-
lations:

Definition 1. A simplex P is triangulated into balanced simplices of gran-
ularity g = 1

N
if

1. P is fully contained in the unit cube [0, 1]d;

2. every parallel plane along the coordinates xi = g × j (i = 1, 2, · · · , d,
j = 0, 1, · · · , N) cuts through P along the facets of the base cells of the
triangulation, i.e., the parallel plane will not cut into the base cells;

3. the number of the d-dimensional simplices of the triangulation within
any cube of side length g is constant.

By construction, Kuhn’s triangulation is a balanced triangulation.

Lemma 3. For any balanced triangulation, there is an algorithm that finds
a Sperner base cell in time O(Nd−1) if vertices are colored by a Sperner
coloring.

Proof. We fit the balanced triangulated simplex P into the unit cube [0, 1]d

which guaranteed by condition 1 of Definition 1. By condition 2, we use
parallel plane along the coordinates to cut the cube.

For the correctness, we note that, which sub-hypercube to look into will
be determined by applying Proposition 2 on the triangulated simplex. As
the boundary conditions give an odd index for the initial simplex because
of the valid coloring, each time one of the two parts of the cut simplex will
be odd. The procedure can proceed until the last base cube. Then, we can
simply examine up to C remaining simplices contained in this base cube,
where C is a constant (note that because of d is a constant, the function:
f(d) is a constant function).

For complexity, our algorithm will be doing a binary cut along the d
coordinate one after another. It takes d such cuts to reduce a hypercube
into half of its size(in length). Therefore, in d log2 (1

g
) cuts, we reduce the

7

unit hypercube into a base cube of side length g. We upper bound the
time complexity with the total time necessary for the hypercube (the actual
number of operations will be less on the simplex and its triangulation). As
the size reduces geometrically, the total number of operations is dominated
by the number of operations we do at the first d cuts. For each cut, we need
to apply Proposition 2 to calculate the index of the boundary simplices of
(d − 1)-dimension, which requires a computational time O((1

g
)d−1). The

computational upper bound follows.

We also derive a similar lower bound:

Lemma 4. For any algorithm that finds a Sperner base cell for any tri-
angulation of a d-dimensional simplex with a Sperner coloring, there exists
some input triangulation such that the algorithm takes time Ω(Nd−1).

The proof of the above lemma is build on a deep result of Chen and
Deng [6]. It is explained in details in Appendix A.8.

Lemma 3 and Lemma 4 result in a matching bound as follows.

Theorem 1. (matching bound) Given a balanced triangulation where all
vertices are colored by {0, 1, · · · , d} by a Sperner coloring, a Sperner base
cell can be found in time θ(Nd−1).

4 Envy-Free Cake Cutting and Sperner Lemma

As far as we know, the first proof of the existence of envy-free cake cutting
solutions using Sperner’s lemma is by Simmons [28]. Su [27] uses a similar
argument to develop a computational procedure to derive an approximate
envy-free cake cutting solution, by a labeling process on barycentric sub-
divisions of a simplex (See figure 4 as in Appendix A.9 as well as [2][27]).
However, Su’s method creates simplices with large aspect-ratios that make
the process converge rather slowly. Instead, we use Kuhn’s triangulation.

4.1 Utility functions and envy-free solutions

Consider a set I = {0, 1, · · · , d} of d + 1 players. Each player i ∈ I has a
utility function ui defined on the Borel space of the line segment L = [0, 1].
Our utility functions are required to satisfy the following two conditions:

• Nonnegativity condition: ui(∅) = 0 and ui(6= ∅) > 0.

• Lipschitz condition: For any interval [x, y] ⊆ L, ui([x, y]) ≤ K×|y−x|.

8

We use d cuts to partition L into a set S of d + 1 disjoint segments of
lengths l0, l1, · · · , ld such that

∑d
i=0 li = 1. Using barycentric coordinates,

we restrict our discussion to integer vectors (x0, x1, · · · , xd) such that l0 =
x0/N, l1 = x1/N, · · · , ld = xd/N , with

∑d
i=0 xi = N . All possible partitions

form a d-dimensional simplex ∆d with d + 1 vertices. The i-th vertex of ∆d

is represented as Nei, where i = {0, 1, · · · , d} and ei is the unit vector whose
i-th coordinate is 1.

By the nonnegativity condition of utility functions, every player will
strictly prefer the nonzero segments to the zero segments. Hence, we have
the following boundary preference condition.

Property 1. Boundary Preference Property: consider any boundary vertex
X that belongs to a boundary which is incident to the i-th corner but not the
j-th corner. In the cake cutting defined by X, every player strictly prefers
the i-th segment to the j-th.

The above property actually ensures a Sperner coloring. We can now
give a sketch of the envy-free cake cutting problem using this connection.
The argument has two stages: labeling and coloring.

For the simplicity of exposition, consider the problem for three players.
For the case of 3 players, the closed set of all possible cuts is a triangle.
As in the previous section we place N − 1 equally spaced line segments
parallel to each of the three edges of the triangle and divide it into N2

equal-size base triangles. Let V be the set of vertices of all base triangles,
i.e., V = {(x0, x1, x2) : x0, x1, x2 ≥ 0, x0 + x1 + x2 = N}.

Next, we partition V into three control subsets V0, V1, V2. Starting by
assigning (N, 0, 0) to V0, (N − 1, 1, 0) to V1, and (N − 2, 2, 0) to V2. The
rest of V is partitioned in such a way that the three vertices of each base
triangle belong to different subsets Vt’s. This can be done by defining Vt =
{(x0, x1, x2) : x1 − x2 = t(mod 3) for x0, x1, x2 ≥ 0, x0 + x1 + x2 = N}.

Now, we should color V . For any vertex (x0, x1, x2) ∈ Vt, we let player
t choose, among three segments, [0, l0], [l0, l0 + l1], [l0 + l1, 1], of I, one that
maximizes his utility. For simplicity of presentation, we should assume a
non-degenerate condition that the choice is unique. The general case can be
handled with a careful tie-breaking rule. If the optimal segment is the one
of length ls, 0 ≤ s ≤ 2, we assign color s to the vertex (x0, x1, x2). We claim
that the above coloring is a valid Sperner coloring. This can be easily checked
by the assumption of utility functions. Since ui(∅) = 0, the three vertices
(N, 0, 0), (0, N, 0), (0, 0, N) of the large triangle must be colored by 0, 1, 2
respectively and the vertices on the edge (N, 0, 0) → (0, N, 0), (0, N, 0) →
(0, 0, N), and (0, 0, N) → (N, 0, 0) will be colored either by 0 or 1, 1 or 2

9

and 2 or 0 respectively by our coloring procedure. Hence, it satisfies the
boundary condition of Sperner lemma, and the coloring is valid. See Figure
5 in Appendix A.10 for an example.

Since the three vertices of each base triangle belong to three different
subsets, or we say three different players, if we find a fully colored base
triangle, then on the three vertices of this triangle, different players prefer
different segments. By Sperner Lemma, there exists at least one fully colored
base triangle. By refining the triangulations, the fully colored base triangles
become smaller and smaller, and a subsequence of the base triangles will
converges to a fixed point. Such a fixed point is an envy free solution for the
cake cutting problem. Therefore, there always exist an envy-free solution
for 3 players case.

The case of d + 1 players for d > 2 can be handled in a similar way.
In that case, the closed set of all possible partitions of the cake forms a
d-dimensional simplex.

In Kuhn’s triangulation the labeling can be done by using barycentric
coordinates. X = (x0, x1, · · · , xd). For any vertex X of the base simplex, let
W (X) =

∑d
i=0 ixi. We assign vertex X to subset Vt if W (X) ≡ t(mod d+1).

This will partition the vertices of the base simplices into d+1 control subsets
V0, V1, · · · , Vd. This is a suitable labeling because

W (vi
π) = W (vi−1

π) + ((π(i) + 1) − π(i)) = W (vi−1
π) + 1.

This also proves the existence of a d-cut solution.

Theorem 2. [26, 27] There is an envy-free cake cutting solution for d + 1
players that uses only d cuts.

It is not hard to see that a fully colored base simplex represents an
approximate envy-free cake cutting solution. In fact, by using the Lipschitz
condition defined above, one can find a cake cutting solution with maximum
envy ǫ through a triangulation in which the sizes of all base simplices is
bounded by ǫ/K. Motivated by this observation, we define the discrete cake
cutting problem and derive its computation and oracle complexity.

5 Complexity of Discrete Cake Cutting

To formalize the analysis for the cake cutting problem, we introduce a dis-
crete version of the envy-free allocation of a cake among d + 1 people using
d cuts (the d-cut problem for short). We use the barycentric coordinates
(x0, x1, · · · , xd) as in the previous section restricting x to integer vectors

10

satisfying
∑d

i=0 xi = N . We define two d-cuts x and y to be adjacent to
each other, if ∀i ∈ {1, 2, · · · , d} : |xi − yi| ≤ 1. We call them affine adjacent
to each other if they are adjacent to each other and |x0 − y0| ≤ 1.

A discrete cake cut is defined to be a set {x(0), x(1), x(2), · · · , x(d)} of
d + 1 d-cuts such that for each pair of j and k, the two d-cuts x(j) and x(k)

are adjacent. We call it an affine discrete cake-cut if we further require that
∀j, k ∈ {0, 1, · · · , d}: x(j) and x(k) are affine adjacent.

Definition 2. Discrete ENVY-FREE CAKE CUT: A discrete cake cut is
an envy-free solution if there is a permutation π of {0, 1, · · · , d} such that
player i prefers the π(i)-th segment for some d-cut x(j) in the set. We denote
it by Pi(x

(j)) = π(i).

Note that, our definition is inspired and in line of the definition of discrete
BROUWER fixed point [21, 6, 8].

Definition 3. 2D BROUWER: The input is a 2D grid of size G = N × N
(N = 2n), together with a function f : G → {0, 1, 2} such that a boundary
condition is satisfied: ∀y ≥ 0 : f(0, y) = 1, ∀x > 0 : f(x, 0) = 2, and
∀x, y > 0 : f(x,N) = f(N, y) = 0. The required output is a unit square
US = {(x, y), (x, y+1), (x+1, y), (x+1, y+1)} such that f(US) = {0, 1, 2}.

Using Kuhn’s triangulation, labeling each node can be done in polyno-
mial time, and so is coloring if the utility functions are given by a polynomial
time algorithm. Therefore, each base cell can be constructed and their col-
ors verified in polynomial time. In addition, vertices of each base cell in the
Kuhn’s triangulation are adjacent to each other. Therefore, the problem
reduces to one of finding a fully colored Sperner cell, which can be done in
PPAD. Therefore, we have the following:

Corollary 1. Finding a discrete d-cut set for Envy-Free Cake Cutting
problem for d + 1 people is in PPAD.

On the other hand, we apply a reduction from the 2D BROUWER prob-
lem to prove it PPAD-hard [7]; and hence:

Theorem 3. Finding an approximate solution for Envy-Free Cake Cutting
with d cuts for d + 1 people is PPAD-Complete.

Proof. Given an input function of 2D BROUWER on grid f : N × N →
{0, 1, 2}, we embed it into a Kuhn’s triangle defined by three vertices:
< (0, 0), (2N, 0), (2N, 2N) > by the mapping: M(x, y) = (2N − x, y). We
define the preference functions (for all i = 0, 1, 2): Pi(2N−x, y) = f(x, y) for

11

0 ≤ x, y ≤ N ; Pi(x, 0) = 2, for 0 ≤ x ≤ N ; Pi(2N, y) = 0 for N < y ≤ 2N ;
P (x, y) = 0 for all other cases. We name (0, 0) the vertex X2, (2N, 0) X1,
and (2N, 2N) X0. Therefore, the Kuhn’s triangle and the preference func-
tions form a discrete ENVY-FREE CAKE CUT problem. The boundary
condition for the SPERNER is now satisfied and there is a Sperner colored
triangle, which is at the same time a ENVY-FREE CAKE CUT by our
choices of the preference functions. Therefore ENVY-FREE CAKE CUT
does have a solution. Once we find one, it must be in the region bounded
by N ≤ x ≤ 2N, 0 ≤ y ≤ N . The inverse mapping of M will give us the
required BROUWER’s solution.

Therefore, the envy-free cake-cutting has the same time complexity as
the Sperner Simplex computation if the utility functions are given by a
polynomial time algorithm.

Similar, under the oracle model for utility functions, we should show the
same also holds.

Theorem 4. Solving the ENVY-FREE CAKE CUT problem of d+1 people
for the oracle functions requires time complexity θ((K

ǫ
)d−1).

Proof. By Lemma 2, the Kuhn’s triangulation in the last section allows
us to find a Sperner’s simplex in time O((K

ǫ
)d−1). Therefore, the solution

corresponds to a discrete ENVY-FREE CAKE CUT solution.
To prove the lower bound, we apply the same reduction for the Sperner’s

problem. Given an input instance of the zero point problem with direction
preserving functions, we introduce the same structure as before. The only
extra definition we need to introduce is for each vertex x of the grid, we
define ∀i : Pi(x) = j if f(x) = ej and Pi(x) = 0 otherwise. Clearly, if
a unit square contains all the preferences, there must be some i such that
Pi(x) = 0. By direction preserving property, f(x) cannot be −ej for any j.
Therefore f(x) = 0 and a zero point is found.

Our lower bound of Ω((K
ǫ
)d−1) follows.

6 A Fully PTAS for 3 Players with Monotone Util-

ity Functions

For general oracle utility functions, the above results imply a θ(K
ǫ
) matching

bound when the number of players is three. Further improvement can only
be possible when we have further restrictions on the utility functions. In

12

this section, we assume the utility functions in addition to satisfying the
nonnegativity condition and the Lipschitz condition are also monotone.

Even in this case, the celebrated Stromquist’s moving knife [26] for envy-
free cake cutting of three players can be shown to have an exponential lower
bound (See Appendix A.11). The main result here is to give an algorithm
with a running time polynomial in the number of bits of K and 1

ǫ
.

Theorem 5. When the utility functions satisfy the above three conditions,
an ǫ envy-free solution can be found in time O(log2 K

ǫ
) when the number of

players is three.

The improvement has been made possible by an efficient way to compute
the index of a triangulated polygon, i.e., counting the sum of the signs of
base intervals on the boundary. The main idea is an observation that at
some appropriate cuts, the colors along the cut are monotone. Therefore,
we can find the boundary of the three different colors on this cut to calculate
the sum quickly.

At any time in the algorithm, we maintain a subset of V , with a non-zero
index value, V (i1, i2, k1, k2) = {(i, j, k) : i, j, k ≥ 0, i + j + k = N, i1 ≤ i ≤
i2, k1 ≤ k ≤ k2}, delimited by i = i1, i = i2 and k = k1, k = k2.

Algorithm 1. 1. If i2 − i1 = 1 & k2 − k1 = 1, find a fully colored base
triangle of V (i1, i1 + 1, k1, k1 + 1), terminate.

2. Choose max{i2 − i1, k2 − k1} (and assume it is i2 − i1 w.l.o.g.).

3. Let i3 = ⌊(i1 + i2)/2⌋.

4. Calculate index(V (i1, i3, k1, k2)) and index(V (i3, i2, k1, k2)).

5. Recurse on one of the two sub-polygons with a non-zero index.

By definition, index(V (i1, i2, k1, k2)) = index(V (i1, i3, k1, k2))+index(V (i3, i2, k1, k2)).
At least one of the index(V (i1, i3, k1, k2)) and index(V (i3, i2, k1, k2)) is non-
zero as index(V (i1, i2, k1, k2)) is non-zero. The algorithm always keep a
polygon of non-zero index as the initial polygon has a non-zero index. At
the base case i2 = i1 + 1 and k2 = k1 + 1, V (i1, i1 + 1, k1, k1 + 1) is either
already a base triangle (with non-zero index), or a diamond shape consisting
of two base triangles, one of which must be of index non-zero. The correct-
ness follows as the only possibility for its index being non-zero is when it is
colored with all three colors.

For complexity analysis, we first characterize the boundary conditions:

13

Property 2. There are up to three types of boundaries for V (i1, i2, k1, k2)

1. Bi=c = {(i, j, k) ∈ V : i constant, k1 ≤ k ≤ k2, i+j+k = N, i, j, k ≥ 0}

2. Bk=c = {(i, j, k) ∈ V : k constant, i1 ≤ i ≤ i2, i+ j +k = N, i, j, k ≥ 0}

3. Bj=0 = {(i, 0, k) ∈ V : i + k = N, i, k ≥ 0}

Second, we establish the monotonicity property. Note that for the third
type of boundaries listed above, the monotonicity property does not hold
for Bj=c in general but only for Bj=0.

Property 3. The colors of V0∩Bi=c are monotone in k, and so are V1∩Bi=c

and V2∩Bi=c. The same hold for Vt∩Bk=c, as well as Vt∩Bj=0, t = 0, 1, 2.

Proof. Observe that,at V0 ∩ Bi=c, the color is determined by Player 0 by
finding the maximum of u0([0,

c
N

]), u0([
c
N

, c+j
N

]), and u0([
c+j
N

, 1]), where 0 ≤
j ≤ N − c. The first item is fixed. The second item is increasing in j
since [c

N
, c+j

N
] ⊆ [c

N
, c+j′

N
] for j ≤ j′ and ui is assumed to be a probability

distribution. For the same reason, the last item is decreasing in j. The color
will be 0 if u0([0,

c
N

]) is the maximum, 1 if u0([
c
N

, c+j
N

]) is the maximum, or
2 otherwise. In general, as j increases, the color in V0 ∩Bi=c will start with
2, then 0, and finally 1, assuming non-degeneracy. However, any of those
colors may be missing.

The same analysis holds for other players and for the case when k is
fixed. However, it does not hold when j is fixed, except when j = 0.

Property 3 allows us to find the colors of all the vertices on the boundaries
Vt∩Bi=i1 ,Vt∩Bi=i2, Vt∩Bj=0, Vt∩Bk=k1 and Vt∩Bk=k2, t = 0, 1, 2, in time
proportional to logarithm of the length of the sides, by finding all vertices
at which the color changes along it. Once the changing points of the colors
are found, using monotonicity, the total number of positively and negatively
signed base intervals along the boundary can be calculated in constant time.

The recursive algorithm reduces the size of V (i1, i2, k1, k2) geometrically.
Let L = max{|i1 − i2|, |k1 − k2|). L halves in two rounds of the algorithm.
It takes 2 log2 N steps to reduce L to 1.

At each round of the algorithm, we need to find out, for each of three
players, for each side of V (i1, i2, k1, k2) (up to five in all), the boundary of the
player’s color changes (two boundaries). That takes time log2 L, bounded
by log2 N , to derive a total of 3 × 5 × 2 log2 N .

Therefore, the time complexity is O((log2 N)2).

14

7 Discussion and Conclusion

It remains open whether the approximate envy-free cake cutting problem
for four or more players would allow for a polynomial time approximation
scheme as in the three player case, when we are dealing with measurable or
monotone functions.

References

[1] Arash Asadpour, Amin Saberi. An approximation algorithm for
max-min fair allocation of indivisible goods. STOC 2007. 114-121.

[2] M.A.Armstrong, Basic Topology, Springer-Verlag, New York,
1983.

[3] Steven J. Brams; Alan D. Taylor, An Envy-Free Cake Division
Protocol, The American Mathematical Monthly, Vol. 102, No. 1.
(Jan., 1995), pp. 9-18.

[4] L.E.J. Brouwer, ”Ueber eineindeutige, stetige Transformationen
von Flächen in sich” Math. Ann. , 69 (1910) pp. 176–180.

[5] Crescenzi, P., Silvestri, R.: Sperners lemma and robust machines.
Comput. Complex. 7(2), 163C173 (1998).

[6] Xi Chen, Xiaotie Deng. On algorithms for discrete and approx-
imate brouwer fixed points. STOC 2005. 323-330. Journal ver-
sion appeared at: Xi Chen, Xiaotie Deng: Matching algorithmic
bounds for finding a Brouwer fixed point. J. ACM 55(3): (2008)

[7] Xi Chen, Xiaotie Deng: On the Complexity of 2D Discrete Fixed
Point Problem. ICALP (1) 2006: 489-500.

[8] Xi Chen, Xiaotie Deng. A Simplicial Approach for Discrete Fixed
Point Theorems. COCOON 2006. 3-12.

[9] Pierluigi Crescenzi, Riccardo Silvestri. Sperner’s Lemma and Ro-
bust Machines. Computational Complexity (CC) 7(2).163-173
(1998).

[10] Jeff Edmonds, Kirk Pruhs. Cake cutting really is not a piece of
cake. SODA 2006. 271-278.

15

[11] Jeff Edmonds, Kirk Pruhs. Balanced Allocations of Cake. FOCS
2006. 623-634.

[12] S. Even and A. Paz, A note on cake-cutting, Discrete Appl.
Math.7 (1984) 285-286.

[13] K. Friedl and G. Ivanyos and M. Santha and F. Verhoeven, On the
Black-box Complexity of Sperner’s Lemma, Proceedings of the
15th International Symposium on Fundamentals of Computation
Theory, 2005, 245–257.

[14] M.D. Hirsch and C.H. Papadimitriou and S. Vavasis, Exponen-
tial Lower Bounds for Finding Brouwer Fixed Points, Journal of
Complexity, Vol. 5 (1989), pp.379–416.

[15] T. Iimura. A discrete fixed point theorem and its applications.
Journal of Mathematical Economics, 39:725–742, 2003.

[16] T. Iimura, K. Murota, and A. Tamura. Discrete fixed point the-
orem reconsidered. METR, 9 2004.

[17] J. Kleinberg, Y. Rabani, E. Tardos. Fairness in routing and load
balancing. Proc. 40th IEEE Symposium on Foundations of Com-
puter Science, 1999.

[18] H.W. Kuhn, Some Combinatorial Lemmas in Topology, IBM J.
Research and Develop. 4 (1960), pp.518-524.

[19] Amit Kumar, Jon M. Kleinberg. Fairness Measures for Resource
Allocation. SIAM J. Comput. 36(3). 657-680 (2006)

[20] Richard J. Lipton, Evangelos Markakis, Elchanan Mossel, Amin
Saberi. On approximately fair allocations of indivisible goods.
ACM Conference on Electronic Commerce 2004. 125-131

[21] Christos H. Papadimitriou: On the Complexity of the Parity
Argument and Other Inefficient Proofs of Existence. J. Comput.
Syst. Sci. 48(3): 498-532 (1994).

[22] Herbert Scarf. The Approximation of Fixed Points of a Continu-
ous Mapping SIAM Journal Appli. Math. Vol. 15, No. 5, Septem-
ber 1967.

16

[23] Herbert Scarf. The Computation of Equilibrium Prices: An Ex-
position H, Cowles Foundation for Research in Economics at Yale
University, 1977

[24] H. Steinhaus, The problem of fair division, Econornetrica 16
(1948), 101-104.

[25] H. Steinhaus, Sur la division pragmatique, Econometrica (sup-
plement) 17 (1949), 315-319.

[26] W. Stromquist, How to cut a cake fairly, American Mathematical
Monthly 87, no. 8 (1980), 640-644. Addendum, vol. 88, no. 8
(1981), 613-614.

[27] F. E. Su, Rental harmony: Sperners lemma in fair division, Amer.
Math. Monthly, 106 (1999), 930-942.

[28] F. W. Simmons, private communication to Michael Starbird,
1980

[29] Michael J. Todd, The computation of Fixed Points and Appli-
cations, Lecture Notes in Economics and Mathematical Systems,
Springer-Verlag, New York, 1976.

[30] Gerhard J. Woeginger, Jiri Sgall: On the complexity of cake
cutting. Discrete Optimization 4(2): 213-220 (2007)

17

Appendix

A.1 Figure 1: Base triangle with edge orientation

Figure 1: Base triangle with edge orientation

A.2 Proof of Lemma 1

Proof. By Proposition 1 and the definition of index(∆, φ), the statement
that there are at least index(∆, φ) fully colored base triangles is obviously
true.

Note that every internal base edge is in two base triangles and has dif-
ferent signs with respect to the two base triangles. Therefore, they cancel
each other and to derive the following:

index(∆, φ) =
∑

{sign(e, φ) : e a boundary base edge}

Therefore, we complete the proof.
Note that in the above sum, the orientation of the boundary base edges

are in the clockwise order around ∆.

A.3 Proof of Proposition 2

Proof. For each d-dimensional simplex indexd(δ, φ) is one if and only i f the
set of colors of its d+1 vertices are all distinct and is the same as {0, 1, · · · , d}.

18

On the other hand, it has d+1 faces of d−1-dimension. Each face of (d−1)-
dimension is a simplex of (d−1)-dimension. By the definition of the induced
index indexd−1 only considers colors {0, 1, · · · , d − 1}, a (d − 1)-dimension
simplex has an index 1 if and only if the set of colors of all its vertices is
the same as {0, 1, · · · , d− 1}. Now there is only one vertex left for which we
don’t know its color. If it is anything in {0, 1, · · · , d − 1}, we have exactly
one more face having index equal to 1. In that case, summing up the indices
of the faces, we obtain a sum of two which is zero mod 2. If the last color is
d, then the sum will be one. Therefore, the claim holds when P is a simplex
with no further triangulation.

In general, index(P, φ) =
∑

δ∈P index(δ, φ). We can replace index(δ, φ)
by the sum of indices of the boundaries of δ. However, each (d − 1)-
dimensional simplex in the triangulation appears in exact two d-dimensional
simplices in the triangulations, unless it is at the boundary of P where it
appear only once. Since we consider the sum mod 2, all the terms cancel
out except those on the boundaries of P . The claim follows.

A.4 An example of Kuhn’s triangulation for a 3-cube

Let (0, 0, 0) be the base point, according to the different permutations of
0,1,2, we obtain six tetrahedrons which is a simplicial partition of the unit
cube.

π = (0, 1, 2) : ∆ = {(0, 0, 0), (1, 0, 0), (1, 1, 0), (1, 1, 1)};

π = (0, 2, 1) : ∆ = {(0, 0, 0), (1, 0, 0), (1, 0, 1), (1, 1, 1)};

π = (1, 0, 2) : ∆ = {(0, 0, 0), (0, 1, 0), (1, 1, 0), (1, 1, 1)};

π = (1, 2, 0) : ∆ = {(0, 0, 0), (0, 1, 0), (0, 1, 1), (1, 1, 1)};

π = (2, 0, 1) : ∆ = {(0, 0, 0), (0, 0, 1), (1, 0, 1), (1, 1, 1)};

π = (2, 1, 0) : ∆ = {(0, 0, 0), (0, 0, 1), (0, 1, 1), (1, 1, 1)}.

The partition is illustrated in Figure 2.

19

Figure 2: An illustration of Kuhn’s partition on a unit cube in 3 dimension

A.5 Proof of the consistency of the two processes

we scale the unit cube into one of side length N . We call it the big cube,
and each of the Nd sub-cubes as the small cubes.

It is enough to show that, for a simplex in the refined grid starting from
any grid point x∗ = (x∗

1, x
∗
2, · · · , x∗

d) to x∗ = (x∗
1 + 1, x∗

2 + 1, · · · , x∗
d + 1),

defined by a permutation γ, all its d+1 vertices are in the same big simplex
derived by some permutation ρ with base point (0, 0, · · · , 0) to the point
(N,N, · · · , N).

Let x0 = x∗, and xi is the same as xi−1 except in its coordinate xi
γ(i)

which is xi−1
γ(i)+1. Therefore, if x∗

i > x∗
j , then x∗

i ≥ x∗
j+1 and then xk

i ≥ xk
j for

all k = 1, 2, · · · , d. Similarly, if x∗
i < x∗

j , then xk
i ≤ xk

j for all k = 1, 2, · · · , d.

If x∗
i = x∗

j , then we have xk
i ≥ xk

j for all k = 1, 2, · · · , n, or xk
i ≤ xk

j for all
k = 1, 2, · · · , n, dependent on γ(i) < γ(j) or γ(i) > γ(j).

Therefore, there is a permutation ρ such that xk
ρ(1) ≥ xk

ρ(2) ≥ · · · ≥ xk
ρ(d)

for all k = 0, 1, 2, · · · , d, which guarantees the base simplex inside one of the
d! large simplices.

A.6 Transformation process

This can be done by a transformation as follows. Let X be a base point
in barycentric coordinates. Set ei = (ei0, ei1, · · · , eid) where eij = 0 for all
i and j except that eii = −1, ei,i+1 = 1 for i = 0, · · · , d − 1. Then the
vertices of the base simplex according to permutation π based on X are
given by vi

π = vi−1
π + eπ(i)

for ∀i = 1, · · · , d and v0
π = X. For example, for

a simplex based on vertex v0 = (0, 0, · · · , 0)d corresponding to permutation

20

(0, 1, 2, · · · , d − 1). We first set v0 = (1, 0, · · · , 0)d+1, then by the above
transformation v1 = (0, 1, · · · , 0)d+1, v2 = (0, 0, 1, · · · , 0)d+1. Please refer to
page 42 of [23] for more details.

A.7 Proof of Lemma 2

Proof. WLOG, assume the base cell corresponds to a permutation π and
Y = X +

∑k
i=l eπi

for some 0 ≤ l ≤ k ≤ d. Fix i, since eii = 1, ei,i+1 = −1

are the only non-zero coordinates in ei, let a = (a1, a2, · · · , ad+1) =
∑k

i=l eπi
,

then ∀i, ai ∈ {−1, 0, 1}. Therefore, δX−Y equals to either 0 or 1 and since
X, Y are two different vertices, we must have δX−Y = 1.

A.8 Proof of Lemma 4

Proof. We establish a reduction from the zero point problem considered by
Chen and Deng [6] for the direction preserving functions. to the Sperner
problem of dimension d to derive a similar matching bound within a constant
factor for any constant dimension d.

We achieve the goal in two steps. Let N = 1
g
. First, we reduce the

problem in [6] to one of finding a discrete fixed point over a base hypercube
on hypergrids for functions from the grid points Nd to {0, 1, 2, · · · , d} sat-
isfying the usual boundary conditions, where a discrete fixed point over a
base hypercube (2d points within distance one in | · |∞ metric) is one with
function values on the nodes of the base hypercube cover all the values from
0 to d.

To do that, we quickly review the fixed point problem for direction
preserving functions discussed in [6]. We consider functions which are de-
fined on the grids point Nd, which has values Ud := {0,±e1,±e2, · · · ,±ed},
where ei is the unit vector with the i-th coordinate being 1. A function
f : Nd → Ud is direction preserving if and only if for each x, y ∈ Nd with
|x − y|∞ ≤ 1, f(x)T · f(y) ≥ 0. That is, the function values of nodes within
distance 1 of each other cannot be of different signs. We define a function
h : Nd → {0, 1, · · · , d} such that h(x) = 0 if f(x) ≤ 0 and h(x) = i if
f(x) = ei. If we find a discrete fixed point set in h on a base hypercube,
then the base hypercube must contain a node x such that f(x) = 0 as f
is direction preserving. Therefore, finding a zero point in f can be reduced
to the problem of finding a discrete fixed point of the hypercube form in
function values of h. There is still an issue whether such a solution exists.
For the zero point problem, in addition to the requirement of direction pre-
serving, it is assumed that the function f is bounded, i.e., f(x) + x ∈ Nd.

21

In fact, we can further assume a specific boundary condition that either
f(x) = ei if xi = 0 and ∀j < i : xj > 0, f(x) = −ei if x >> 0 (all the
coordinates of x are positive), xi = N and ∀j < i : xj < N . In fact, for
any bounded function f , we can always cover it with one more layer on
each face of its boundary (and function values) to achieve that. It is easy
to verify the direction preserving condition still holds for bounded functions
satisfying the property in the original cube. Now it is easy to see there is
only one cube of dimension (d − 1) that has an index one on the boundary.
By Proposition 2, there must be a base simplex inside the hypercube that
has index one, i.e., has its vertices colored differently from {0, 1, · · · , d}.

Figure 3: Reduction process in Lemma 3

In the second (and last) step, we note that there is a size (N
d
)d hypergrid

in a d dimensional simplex of length N . The lower bound Ω((N
d
)d−1) follows

from a lower bound of Ω(Nd−1) for the fixed point problem. Since d is a
constant here, we obtain the lower bound Ω(Nd−1). We need to add that,
the hypergrid can be embedded into the simplex such that its coloring can
be extended to a valid coloring of vertices in the triangulated simplex. We
align the colored hypergrid in a way that the origin is placed at the origin
of the simplex, and align the d rays out of the hypergrid with the rays of
the simplex out of its origin. For the overlapping vertices of the simplex,

22

they are colored with the same colors as in the hypergrid. The faces of the
simplex passing through the origin will be colored by the same rules as the
corresponding faces of the hypergrid, except the vertices Ne1, Ne2, · · · , Ned.
which are colored in the following rules: Nei is colored with i + 1 and Ned

is colored with 0. Note that the origin is colored with 1. All the extra
vertices of the simplex will be colored 0. This way, the boundary conditions
of the simplex are satisfied. In addition, no new fully colored base simplex
is introduced into the triangulated simplex. See Figure 3.

A.9 Figure 4: Barycentric subdivision on a two dimensional

triangle

(a) 1st iteration (b) 2nd iteration (c) 3rd iteration

Figure 4: Barycentric subdivision on a two dimensional triangle

23

A.10 Figure 5: An illustration of Sperner simplex approach

for 3 players envy-free cake-cutting

Figure 5: Sperner simplex approach for 3 players envy-free cake-cutting

A.11 Proof of an exponential lower bound for Stromquist’s

solution

The celebrated Stromquist’s solution [26] involves a referee who moves her
sword from left to right. The three players each has a knife at the point
that would cut the right piece to the sword in half, according to their own
valuation. While the referee’s sword moves right, the three knives all move
right in parallel but possibly at different speeds. At all times, each player
evaluates the piece to the left of the sword, and the two pieces that would
result if the middle knife cuts. If any of them sees the left piece of the sword
is the largest, he would shout ”cut”. Then the sword cuts. The leftmost
piece is assigned to the player who shouted. For the two players who didn’t
shout, one whose knife is to the left of the middle knife receives the middle
piece, and one whose knife is on the right of the middle knife receives the
rightmost piece.

we will show that Stromquist’s moving knife procedure can not be turned
into a polynomial time algorithm for finding an ǫ-envy free solution. We will

24

do this by showing that the particular fixed point found by the Stromquist’s
procedure can not be found with polynomial number of queries. We assume
a query can ask about the valuation of a player for an interval (x, y).

Suppose we have three players A, B, and C. The cake is represented as
an interval [0, 1]. Players A and B have the same utility function. Their
utility functions can be described as follows 1.

uA(x, y) = uB(x, y) =











































0 for x = 0, y = 1/10

2 for x = 1/10, y = 3/10

100 for x = 3/10, y = 4/10

2 for x = 4/10, y = 8/10

100 for x = 8/10, y = 9/10

0 for x = 9/10, y = 1

(1)

The value of both players for any other interval can be computed as-
suming that their valuation is uniform across all the above intervals. For
example uA(1/20, 3/20) = 0.5. uC can be described in a similar way as
follows:

uC(x, y) =































100 − δ for x = 0, y = 1/10

2 for x = 1/10, y = 3/10

98 for x = 3/10, y = 4/10

2 for x = 4/10, y = 5/10

0 for x = 5/10, y = 1

(2)

Assume that the value of δ is very small. Now, consider the Stromquist’s
moving knives. Suppose the referee starts by moving her knife from 0 to-
wards 1. A and B have the same utility function so their knives are going
to be at the same place. Moreover, the ”middle knife” will be always A’s
or B’s. Observe that when the referee’s knife reaches point 1/10 the middle
knife is at point 4/10. No one will shout cut yet. Now, observe that since
according to A and B the density of the interval (1/10, 3/10) is twice the
interval (4/10, 5/10), the speed of the knives of A and B will be exactly the
same as the referee’s knife. For a similar reason, according to C the value of
the middle piece (from referee’s knife to the knife of A or B) will remain just
δ above the value of the leftmost piece until the referee’s knife goes slightly
beyond 3/10. At that time C will shout cut and receive the leftmost piece.
Players A and B happily split the rest of the cake equally.

1We should normalize them for consistency but did not for simplicity of presentation.

25

Now, we will slightly perturb the utility function of C. At a point 1/10 ≤
x ≤ 3/10 perturb the utility function of C in the following way: increase the
utility of C for the interval (x − δ, x) by δ/2 and decrease his utility for the
interval (x, x + δ) by the same amount. Call the player with this perturbed
utility function Cx.

Now, it is easy to see that if we are running the Stromquist’s method,
player Cx will shout cut at the time referee’s knife reaches x. It is also
not hard to see that any value query asking for the value of an interval can
not distinguish C from Cx unless one end points of the interval for which
it is querying the value is in (x − δ, x + δ). Therefore, it is not possible to
distinguish Cx from C with queries of order polylogarithmic in 1/δ.

26

	Introduction
	Triangulation and Index
	Kuhn's Triangulation

	Finding a Sperner Simplex under Oracle Function Model
	Envy-Free Cake Cutting and Sperner Lemma
	Utility functions and envy-free solutions

	Complexity of Discrete Cake Cutting
	A Fully PTAS for 3 Players with Monotone Utility Functions
	Discussion and Conclusion

