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abstract. We study and give a summary of the complex-
ity of 15 basic normal monomodal logics under the restriction
to the Horn fragment and/or bounded modal depth. As new
results, we show that: a) the satisfiability problem of sets of
Horn modal clauses with modal depth bounded by k ≥ 2 in
the modal logics K4 and KD4 is PSPACE-complete, in K is
NP-complete; b) the satisfiability problem of modal formulas
with modal depth bounded by 1 in K4, KD4, and S4 is NP-
complete; c) the satisfiability problem of sets of Horn modal
clauses with modal depth bounded by 1 in K , K4, KD4, and
S4 is PTIME-complete.

We also study the complexity of the multimodal logics Ln

under the mentioned restrictions, where L is one of the 15 basic
monomodal logics. We show that, for n ≥ 2: a) the satisfia-
bility problem of sets of Horn modal clauses in K5n, KD5n,
K45n, and KD45n is PSPACE-complete; b) the satisfiabil-
ity problem of sets of Horn modal clauses with modal depth
bounded by k ≥ 2 in Kn, KBn, K5n, K45n, KB5n is NP-
complete, and in KDn, Tn, KDBn, Bn, KD5n, KD45n, S5n

is PTIME-complete.

1 Introduction

In the field of modal logics, a lot of works are devoted to monomodal
logics that extend the modal logic K by some of the axioms D, T , B,
4, and 5. The reason is not that those logics are useful in practice,
but because they are basic modal logics. Many useful multimodal
logics, e.g. ones for reasoning about knowledge and belief, are also
formed using the mentioned axioms and are extensions of some basic
monomodal logics.
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Decidability and complexity are important aspects of logics. In
[15], Ladner proved that the complexity of the satisfiability problem
in the modal logics K , T , B , and S4 is PSPACE-complete, and in
S5 is NP-complete. This means that the satisfiability problem is
NP-hard in all of those logics. In order to reduce the complexity to
PTIME, one must focus on fragments of the considered logic. Such
fragments are often specified by restrictions on the language. There
are of course many kinds of restrictions, but the obtained fragments
may be useful or not. The Horn fragment is very useful in logic pro-
gramming, and in many logics it significantly reduces the complexity
of the problem. For modal logics, the restriction of bounded modal
depth is also acceptable, because in practice modal formulas often
have small modal depth. We can also combine these two restrictions.
Given an “acceptable” restriction and a modal logic, one may want
to study the complexity of the satisfiability problem in the obtained
fragment of the logic. The result may be positive (PTIME) or nega-
tive (NP-hard, PSPACE-hard, etc). Both of the cases are useful: the
positive case is good for the fragment itself, while the negative case
implies that every multimodal logic containing the fragment is hard
at least as the fragment.

In this work, we study and give a summary of the complexity of the
satisfiability problem in the basic normal monomodal logics (which
are obtained from the logic K by adding an arbitrary combination
of the axioms D, T , B, 4, and 5) under the restriction to the Horn
fragment and/or bounded modal depth.

In [11], Halpern studied the effect of bounding modal depth on
the complexity of modal logics and showed that the complexity of
the satisfiability problem of formulas with modal depth bounded by
k ≥ 2 in K and T is NP-complete, and in S4 is PSPACE-complete.
His arguments for K and T can also be applied for the logics KB ,
KDB , and B , to obtain the NP-completeness.

In [6], Fariñas del Cerro and Penttonen showed that the satisfi-
ability problem of sets of Horn modal clauses in S5 is decidable in
PTIME. In [4], Chen and Lin showed that the similar problem for a
normal modal logic L being an extension of K5 (write K5 ≤ L) is
also decidable in PTIME. Chen and Lin also proved that for a normal
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(in this column, KD , T K5, KD5, KB5
k ≥ 2) K KB , KDB , B K4, KD4, S4 K45, KD45, S5

no restrictions PS-cp [15] PS-cp [15] PS-cp [15] NP-cp [15]
mdepth ≤ k NP-cp [11] NP-cp [11] PS-cp [11] [∗] NP-cp [15]
mdepth = 1 NP-cp [11] NP-cp [11] NP-cp [?] NP-cp [15]
Horn PS-cp [4] PS-cp [4] PS-cp [4] PT-cp [6, 4]
Horn, mdepth ≤ k NP-cp [?] PT-cp [17] PS-cp [4] [∗] PT-cp [6, 4]
Horn, mdepth = 1 PT-cp [?] PT-cp [17] PT-cp [?] PT-cp [6, 4]

Table 1. The complexity of the satisfiability problem for modal logics

modal logic L such that K ≤ L ≤ S4 or K ≤ L ≤ B, the problem is
PSPACE-hard. They also made a comment that the problem is still
PSPACE-hard for S4 even when the modal depth is restricted to 2.

In [17], we showed that the complexity of the satisfiability problem
of sets of Horn modal clauses with finitely bounded modal depth in
KD , T , KB , KDB , and B is decidable in PTIME. These PTIME
results can further be categorized as PTIME-complete, because the
satisfiability problem of sets of Horn clauses in the classical proposi-
tional logic is PTIME-complete, as proved by Jones and Laaser [13].

In this work, we show that the satisfiability problem of sets of Horn
modal clauses with modal depth bounded by k ≥ 2 in the modal
logics K4 and KD4 is PSPACE-complete, and in K is NP-complete.
We also show that the satisfiability problem of modal formulas with
modal depth bounded by 1 in K4, KD4, and S4 is NP-complete; the
satisfiability problem of sets of Horn modal clauses with modal depth
bounded by 1 in K , K4, KD4, and S4 is PTIME-complete.

In Table 1, we summarize the complexity of the basic monomodal
logics under the mentioned restrictions. There, mdepth stands for
“modal depth”; PS-cp, NP-cp, and PT-cp respectively stand for
PSPACE-complete, NP-complete, and PTIME-complete. The marks
[?] and [∗] indicate the results of this work, where [∗] involves with
K4 and KD4.

As an extension to the preliminary version, we also study the com-
plexity of the multimodal logics Ln under the mentioned restrictions,
where L is one of the basic monomodal logics. Some results were
established by Halpern and Moses [12] and Halpern [11]. Some of
our results are:
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• The satisfiability problem of sets of Horn modal clauses in K5n,
KD5n, K45n, and KD45n is PSPACE-complete.

• The satisfiability problem of sets of Horn modal clauses with
modal depth bounded by k ≥ 2 in Kn, KBn, K5n, K45n, and
KB5n is NP-complete, and in KDn, Tn, KDBn, Bn, KD5n,
KD45n, and S5n is PTIME-complete.

This paper is structured as follows: In Section 2, we give prelimi-
naries for monomodal logics. In Section 3, we present our results for
monomodal logics. In Section 4, we discuss the complexity and give
some results for multimodal logics. We conclude in Section 5.

2 Preliminaries

In this section we give preliminaries for monomodal logics. For ab-
breviation, we will ignore the prefix “mono” in this section and the
next one.

2.1 Syntax and Semantics of Propositional Modal Logics

A modal formula, hereafter simply called a formula, is any finite se-
quence obtained by applying the following rules: any primitive propo-
sition pi is a formula, and if ϕ and ψ are formulas then so are ¬ϕ,
ϕ ∧ ψ, ϕ ∨ ψ, ϕ→ ψ, 2ϕ, and 3ϕ. We use letters p and q to denote
primitive propositions, and Greek letters ϕ, ψ, ζ to denote formulas.

A Kripke frame is a triple 〈W, τ,R〉, where W is a nonempty set of
possible worlds, τ ∈W is the actual world, and R is a binary relation
on W , called the accessibility relation. If R(w, u) holds then we say
that the world u is accessible from the world w.

A Kripke model is a tuple 〈W, τ,R, h〉, where 〈W, τ,R〉 is a Kripke
frame and h is a function mapping worlds to sets of primitive propo-
sitions. For w ∈ W , h(w) is the set of primitive propositions which
are “true” at w.

We call 〈W, τ,R, h〉 a flat model if W = {τ} and R = ∅.

A model graph is a tuple 〈W, τ,R,H〉, where 〈W, τ,R〉 is a Kripke
frame and H is a function mapping worlds to formula sets. We some-
times treat model graphs as models with H being restricted to the
set of primitive propositions.
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Given a Kripke model M = 〈W, τ,R, h〉 and a world w ∈ W , the
satisfaction relation � is defined as follows:

M,w � p iff p ∈ h(w);
M,w � ¬ϕ iff M,w 2 ϕ;
M,w � ϕ ∧ ψ iff M,w � ϕ and M,w � ψ;
M,w � ϕ ∨ ψ iff M,w � ϕ or M,w � ψ;
M,w � ϕ→ ψ iff M,w 2 ϕ or M,w � ψ;
M,w � 2ϕ iff for all v ∈W s.t. R(w, v), M, v � ϕ;
M,w � 3ϕ iff there exists v ∈W s.t. R(w, v) and M, v � ϕ.

We say that ϕ is satisfied at w in M if M,w � ϕ, and that ϕ is
satisfied in M , write M � ϕ and call M a model of ϕ, if M, τ � ϕ.

The size of a finite Kripke model 〈W, τ,R, h〉 is |W |+ |R|+ Σw∈W

|h(w)|. The length of a formula ϕ is the number of occurrences of
connectives and primitive propositions in ϕ. The modal depth of a
formula ϕ is the maximal nesting depth of modalities occurring in ϕ,
e.g. mdepth(p ∧2(3q ∨3r)) = 2.

The following lemma is well known and can be proved easily.

LEMMA 1. Given a finite model M and a formula ϕ, the problem of
checking whether M � ϕ is decidable in polynomial time (in the size
of M and the length of ϕ).

If as the class of admissible interpretations we take the class of
all Kripke models (with no restrictions on the accessibility relations)
then we obtain a normal modal logic which has a standard Hilbert-
style axiomatization denoted by K. Other normal modal logics are
obtained by adding to K certain axioms. The most popular axioms
used for extending K are D, T , B, 4, and 5, whose schemata are
listed in Table 2. These axioms respectively correspond to seriality,
reflexiveness, symmetry, transitiveness, and euclideaness of the acces-
sibility relation. A modal logic L is serial if it contains the axiom D.

In this work, we consider all of the 15 basic modal logics that are
obtained from K by adding an arbitrary combination of the above
axioms, namely K, KD, T , KB, KDB, B, K4, KD4, S4, K5, KD5,
K45, KD45, KB5, S5. The names of these logics often consist of
K and the names of the added axioms, e.g. KDB is the logic which
extends K with the axioms D and B. The special cases are T , B,
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Axiom Schema Corresponding Condition on R

D 2ϕ→ 3ϕ ∀w ∃u R(w, u)
T 2ϕ→ ϕ ∀w R(w,w)
B ϕ→ 23ϕ ∀w, u R(w, u)→ R(u,w)
4 2ϕ→ 22ϕ ∀w, u, v R(w, u) ∧R(u, v)→ R(w, v)
5 3ϕ→ 23ϕ ∀w, u, v R(w, u) ∧R(w, v)→ R(u, v)

Table 2. Modal logics and frame restriction

S4, and S5, which stand for KT , KTB, KT4, and KT5, respectively.
For a further reading about modal logics, see, e.g., [2, 3].

We refer to the properties of the accessibility relation of a modal
logic L as the L-frame restrictions. We call a model M an L-model
if the accessibility relation of M satisfies all L-frame restrictions. We
say that ϕ is L-satisfiable if there exists an L-model of ϕ. A formula is
L-valid if it is satisfied in every L-model. We write ϕ �L ψ to denote
that ψ is satisfied in every L-model of ϕ.

2.2 Modal Horn Formulas and Positive Modal Logic

Programs

We call formulas of the form p or ¬p, where p is a primitive proposi-
tion, classical literals and use letters a, b, c to denote them. We call
formulas of the form p, 2p, or 3p atoms and use letters A, B, C to
denote them.

A clause is a formula of the form 2
s(A1∨. . .∨An∨¬B1∨. . .∨¬Bm),

where s,m, n ≥ 0. The sequence 2
s is called the modal context of

the clause1. If s = 0 then the clause is called a simple clause. Note
that the modal depth of a clause is not greater than the length of its
modal context plus 1.

A formula set is sometimes considered as the conjunction of its for-
mulas, in particular when we are talking about length, modal depth,
or satisfiability.

A formula is in negative normal form if it does not contain the
connective →, and the connective ¬ can occur only immediately be-
fore a primitive proposition. Every formula can be transformed to

1Assume that the modal context of 2
s

2p is 2
s+1.
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the equivalent negative normal form in the usual way. A formula is
called negative if in its negative normal form every primitive propo-
sition is prefixed by negation. A formula is called non-negative if it
is not negative, and positive if its negation is a negative formula.

A formula ϕ is a Horn formula if it is of one of the following forms:

• a primitive proposition or a negative formula,

• 2ψ, 3ψ, or ψ ∧ ζ, where ψ and ζ are Horn formulas,

• ψ → ζ, where ψ is a positive formula and ζ is a Horn formula,

• a disjunction of a negative formula and a Horn formula.

A clause is called a Horn clause if it is a Horn formula.
Our definitions of Horn clauses/formulas are different than the one

of Chen and Lin [4]. A Horn clause by our definition is also a Horn
clause by the definition of Chen and Lin, and the latter is a Horn
formula by our definition, but not vice versa. These definitions, how-
ever, are equivalent. As stated by Lemma 2 given below, every Horn
formula ϕ can be translated to a set X of Horn clauses such that for
any normal modal logic L, ϕ is L-satisfiable iff X is L-satisfiable.

A positive propositional modal logic program is a finite set of rules
of the following form: 2

s(B1 ∧ . . . ∧ Bk → A), where s ≥ 0, k ≥ 0,
and A,B1, . . . , Bk are atoms of the form p, 2p, or 3p, where p is a
primitive proposition.

Formula sets X and Y are said to be equisatisfiable in a logic L (or
L-equisatisfiable) iff (X is L-satisfiable iff Y is L-satisfiable).

LEMMA 2. For any formula set X, there exists a clause set Y s.t.:

• X and Y are equisatisfiable in any normal modal logic.

• If X is a set of Horn formulas, then Y is a set of Horn clauses.

• The modal depth of Y is equal to the modal depth of X, and the
length of Y is of quadratic order in the length of X.

Moreover, if X is a set of Horn formulas and Y is divided into P and
Q such that P contains only non-negative clauses and Q contains only
negative clauses, then P can be treated as a positive program, and X



256 Linh Anh Nguyen

is L-satisfiable iff P 2L ¬Q, where L is any normal modal logic. The
translation from X to Y is computable in polynomial time.

The proof for the case when X is a set of Horn formulas can be
found in [17]. The proof for the other case is similar. The translation
technique is based on replacing a complicated formula by a fresh
primitive proposition and “defining” that primitive proposition by
the formula. For example, 2

s(3ϕ ∨ ψ), where s ≥ 0 and ϕ is not a
primitive proposition, is replaced by 2

s(3p ∨ ψ) and 2
s+1(¬p ∨ ϕ),

where p is a fresh primitive proposition.

2.3 Ordering Kripke Models

Let M = 〈W, τ,R, h〉 and N = 〈W ′, τ ′, R′, h′〉 be Kripke models. We
say that M is less than or equal to N w.r.t. r ⊆ W ×W ′, and write
M ≤ N w.r.t. r, if the following conditions hold:

1. r(τ, τ ′)

2. ∀x, x′, y R(x, y) ∧ r(x, x′)→ ∃y′ R′(x′, y′) ∧ r(y, y′)

3. ∀x, x′, y′ R′(x′, y′) ∧ r(x, x′)→ ∃y R(x, y) ∧ r(y, y′)

4. ∀x, x′ r(x, x′)→ (h(x) ⊆ h′(x′)).

The first three conditions state that r is a bisimulation of the frames
of M and N . Intuitively, r(x, x′) states that the world x is less than
or equal to x′.

We say that a model M is less than or equal 2 to N , and write
M ≤ N , if M ≤ N w.r.t. some r. This relation is a pre-order [17].
Also see [17] for the proof of the following lemma.

LEMMA 3. Suppose that M ≤ N . Then M � ϕ implies N � ϕ for
every positive formula ϕ.

Let P be a positive program in a normal modal logic L. We say
that M is a least L-model of P if M is an L-model of P and M is less
than or equal to every L-model of P . Observe that if P is a positive
program in a normal modal logic L, and M is a least L-model of P ,
then for any positive formula ϕ, M � ϕ iff P �L ϕ.

2This kind of “equality” is induced by the pre-order ≤. By Lemma 3, if M ≤ N

and N ≤ M then for every positive formula ϕ, M � ϕ iff N � ϕ.
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A model M is called the least flat model of a positive program P if
it is a flat model of P and is less than or equal to any flat model of P .
In [17], we showed that any positive modal logic program that has
some flat model has the least flat model, which can be constructed
in polynomial time and has polynomial size.

3 New Results for Monomodal Logics

We first consider the complexity of the satisfiability problem of sets
of Horn formulas with modal depth bounded by k ≥ 2 in the logics
K4, KD4, and S4.

If X and Y are formula sets then we write X;Y to denote the
union of them. We write X;ϕ for X; {ϕ}. We need the two following
auxiliary lemmas. The first one is used to reduce lengths of modal
contexts of clauses.

LEMMA 4. In the following, let p and q be new primitive propositions
(i.e. p and q occur only at the indicated positions) and ϕ a simple
clause. Then the following pairs of formula sets are equisatisfiable in
any normal modal logic that is an extension of K4.

(1) X; 22ϕ and X; 22p; 2(¬p ∨ ϕ)
(2) X; 22kϕ and X; 2kq; 2(¬q ∨2

kϕ) where k ≥ 2
(3) X; 22k+1ϕ and X; 2k+1q; 2(¬q ∨2

kϕ) k ≥ 1
(4) X; 2(a ∨2

2kϕ) and X; 2(a ∨2
kq); 2(¬q ∨2

kϕ) k ≥ 1
(5) X; 2(a ∨2

2k+1ϕ) and X; 2(a ∨2
k+1q); 2(¬q ∨2

kϕ) k ≥ 0

Proof. →) Choose one of the pairs. Suppose that the LHS set is
satisfied in a model M = 〈W, τ,R, h〉. Let M ′ = 〈W, τ,R, h′〉 with
x ∈ h′(u) iff x ∈ h(u) for x 6= p and x 6= q, p ∈ h′(u) iff M,u � ϕ,
and q ∈ h′(u) iff M,u � 2

kϕ, where p and q are the new primitive
propositions. It is easily seen that the RHS set is satisfied in M ′.

←) Choose one of the pairs. We show that the RHS formula set
implies the LHS set in any modal logic that is an extension of K4.

The assertion holds for the pair (1) because that the formulas
2(¬p ∨ ϕ) → 2

2(¬p ∨ ϕ) and 2
2p ∧ 2

2(¬p ∨ ϕ) → 2
2ϕ are K4-

valid.
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The assertion holds for the pair (2) because that the formulas
2(¬q ∨ 2

kϕ) → 2
k(¬q ∨ 2

kϕ) and 2
kq ∧ 2

k(¬q ∨ 2
kϕ) → 2

2kϕ

are K4-valid.
The assertion holds for the pair (4) because the following formulas

are K4-valid: 2(¬q ∨2
kϕ)→ 2

k+1(¬q ∨2
kϕ) and

2(a ∨2
kq) ∧2

k+1(¬q ∨2
kϕ)→ 2(a ∨2

2kϕ)
Analogously, the assertion holds for the pairs (3) and (5). �

LEMMA 5. Let L be a normal modal logic that is an extension of K4.
Every formula set X can be translated to an L-equisatisfiable set Y
of clauses with modal depth bounded by 2. Furthermore, if X is a set
of Horn formulas then Y is a set of Horn clauses. The translation
can be done in polynomial time and the length of Y is bounded by a
polynomial in the length of X.

Proof. By Lemma 2, we can translate X in polynomial time to a
clause set Z such that: X and Z are L-equisatisfiable; if X is a set of
Horn formulas then Z is a set of Horn clauses; the modal depth of Z
is equal to the modal depth of X, and the length of Z is of quadratic
order in the length of X.

We refer to the pairs of equisatisfiable formula sets given in Lemma
4 as translation rules (with left to right direction of application). We
then apply3 these translation rules to Z. We apply the rule (1) only
when the modal depth of ϕ is 1, and the rule (5) only when k ≥ 1,
or k = 0 and ϕ is not a classical literal. We apply the rules until no
more changes can be made to the set. Let Y be the resulting set.
Observe that the modal depth of Y is bounded by 2.

Observe also that each of the applications decreases the modal
depth of some formula of the set by a half (with an inaccuracy up
to 2) and increases the length of the set by a constant number (of
symbols). Hence there exists a constant h such that we can decrease
the modal depth of the set by a half (with an inaccuracy up to 2)
while the length of the set increases not more than h times. Hence
the process terminates in polynomial time. It is easily seen that the
length of Y is bounded by a polynomial in the size of Z, and Y is a
set of Horn clauses if so is Z.

3Each application of a rule is done for the whole formula set but not a fragment.
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Hence, the translation from X to Y (via Z) is done in polynomial
time, the length of Y is bounded by a polynomial in the length of X,
and Y is a set of Horn clauses if X is a set of Horn formulas. �

As a consequence we have the following result:

THEOREM 6. The complexity of the satisfiability problem of sets of
Horn formulas with modal depth bounded by k ≥ 2 in the logics K4,
KD4, and S4 is PSPACE-complete.

This theorem follows from the above lemma and the reason that the
similar problem without bounding modal depth is PSPACE-complete
[4]. The assertion for S4 has been previously proved by Chen and
Lin [4].

By this theorem, the complexity of the satisfiability problem of for-
mula sets (without the Horn restriction) with modal depth bounded
by k ≥ 2 in K4, KD4, and S4 is PSPACE-complete (the upper bound
follows from [15]).

THEOREM 7. The complexity of the satisfiability problem of sets of
Horn formulas with modal depth bounded by k ≥ 2 in the logic K is
NP-complete.

Proof. The upper bound follows from Halpern [11]. For the lower
bound, we use a reduction from the 3SAT problem, which is known to
be NP-hard. The 3SAT problem is to check satisfiability of a clause
set X = {C1, . . . , Cn}, where Ci = ci1 ∨ ci2 ∨ ci3 and ci1, ci2, ci3 are
classical literals. Given such a set X, we construct in polynomial
time a set Y of Horn formulas with modal depth bounded by 2 such
that X is satisfiable iff Y is K -satisfiable.

Let t and f be new propositions, which informally stand for “true”
and “false”. The presence of the formula 2f (resp. 3t) at a world w
informally says that there are no worlds (resp. there is some world)
accessible from w. Let Y be the set consisting of the formulas

3pi,3qi,¬3(pi ∧ qi),¬3
2f,22t,

3(pi ∧2f) ∧3(qi ∧2f)→ ci1,

3(pi ∧3t)→ ci2,

3(qi ∧3t)→ ci3,
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for 1 ≤ i ≤ n, and pi and qi are new propositions. Denote the set
Y also by π3SAT (X). Note that Y contains only Horn formulas with
modal depth bounded by 2.

Suppose that X is satisfied by a variable assignment V . We show
that Y is K -satisfiable. Let M = 〈W, τ,R, h〉 be a model defined as:
W = {τ, w1p, w1q, . . . , wnp, wnq, u}, h(τ) = {p |V (p)}, h(u) = {t},
and for 1 ≤ i ≤ n, h(wip) = {pi} and h(wiq) = {qi}, and
R = {(τ, wip), (τ, wiq) | 1 ≤ i ≤ n}∪{(wip, u) | 1 ≤ i ≤ n and V (ci2)}

∪ {(wiq, u) | 1 ≤ i ≤ n and V (ci3)}.

It is easy to verify that M � Y . Therefore Y is K -satisfiable.

Now suppose that Y is K -satisfiable. We show that X is satisfiable.
Let M be a model of Y . Let wip, wiq be worlds accessible from τ

such that M,wip � pi and M,wiq � qi, for 1 ≤ i ≤ n. If there
exists a world accessible from wip, then M, τ � 3(pi∧3t), and hence
M, τ � ci2. Similarly, if there exists a world accessible from wiq, then
M, τ � ci3. If there are no worlds accessible from wip or wiq, then
M, τ � 3(pi ∧2f)∧3(qi ∧2f), and hence M, τ � ci1. Consequently,
M, τ � Ci, for 1 ≤ i ≤ n. Hence M, τ � X, and X is satisfiable. �

In the remainder of this section, we study the satisfiability problem
of modal formulas with modal depth bounded by 1. The problem is
NP-complete, and for the Horn fragment it is PTIME-complete, for
all of the monomodal logics considered in this work. Some parts of
these results immediately follow from known ones. We complete the
picture by the two following theorems.

THEOREM 8. The complexity of the satisfiability problem of formu-
las with modal depth bounded by 1 in the logics K4, KD4, and S4 is
NP-complete.

Proof. The lower bound NP-hard follows from the fact that the sat-
isfiability problem in the classical propositional logic is NP-complete.
For the upper bound, let L be one of the logics K4, KD4, S4, and let
X be any L-satisfiable formula set with modal depth bounded by 1.

It can be proved that X has an L-model M = 〈W, τ,R, h〉 such
that for any u and v different to τ , if R(τ, u) and R(u, v) hold, then
u = v. In fact, if M ′ = 〈W, τ,R′, h〉 is an L-model of X, then by
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deleting edges (u, v) with u 6= τ from R′ and adding edges (u, u) for
u 6= τ to the frame, we obtain such a mentioned L-model M of X.

An L-model M of X with the mentioned frame restriction can
be nondeterministically constructed in polynomial time by building
an L-model graph for X (see, e.g., [21, 10, 18] for the technique).
Therefore the satisfiability problem of formulas with modal depth
bounded by 1 in K4, KD4, and S4 belongs to the NP class. �

THEOREM 9. The complexity of the satisfiability problem of sets of
Horn formulas with modal depth bounded by 1 in K, K4, KD4, and
S4 is PTIME-complete.

Proof. The lower bound PTIME-hard follows from that the complex-
ity of the satisfiability problem of sets of Horn formulas in the classical
propositional logic is PTIME-complete (Jones and Laaser [13]).

By the result of [17], every positive modal logic program with
modal depth bounded by 1 has the least KD4-model and the least
S4-model, which can be constructed in polynomial time and have
polynomial size. Consequently, by Lemmas 2 and 1, the problem
of checking satisfiability of sets of Horn formulas with modal depth
bounded by 1 in KD4 and S4 is decidable in PTIME.

It remains to show that the similar problem for the logics K and
K4 is decidable in PTIME. Let L denote K or K4, and P be any
positive modal logic program with modal depth bounded by 1. Let
M = 〈W, τ,R,H〉 be the model graph constructed as follows.

1. Let W = {τ, ρ}, R = {(τ, ρ)}, H(τ) = P , H(ρ) = ∅.

2. For every w ∈W , and every ϕ ∈ H(w),

(a) Case ϕ = (B1 ∧ . . . ∧ Bk → A) : if M,w � Bi for all
1 ≤ i ≤ k, then add A to H(w);

(b) Case ϕ = 2ψ : add ψ to every world u accessible from w;

(c) Case ϕ = 3p : if M,w 2 p then add a new world u with
content {p} toW and connect w to u (i.e. letW = W∪{u},
H(u) = {p}, R = R ∪ {(w, u)}).

3. While some change occurred, repeat step 2.
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Observe that, for any w and u, R(w, u) holds only when w = τ

(since the modal depth is bounded by 1). Hence, the above algorithm
terminates in polynomial time. It can be shown by induction on the
structure of ϕ that for any w ∈ W and any ϕ ∈ H(w), M,w � ϕ.
Hence M is a K -model of P . By the mentioned property of R, M is
also a K4-model of P .

If N = 〈W ′, τ ′, R′, h′〉 is a model of P such that R′ 6= ∅ and for
any x, y, R′(x, y) holds only when x = τ , then M ≤ N . This claim
can be proved by showing that it is an invariant of the loop of the
above algorithm that there exists a relation r ⊆ W ×W ′ such that
the following assertions hold:
r(τ, τ ′)
∀x R(τ, x)→ ∃x′ R′(τ ′, x′) ∧ r(x, x′)
∀x′ R′(τ ′, x′)→ ∃x R(τ, x) ∧ r(x, x′)
∀x, x′ ∀ϕ ∈ H(x) r(x, x′)→ N, x′ � ϕ

Such relations r can be built as follows: After the execution of
step 1, let r = {(τ, τ ′)}∪{(ρ,w′) | R′(τ ′, w′)}, and after each execution
of step 2c, let r = r ∪ {(u, u′) | R′(τ ′, u′) and p ∈ h′(u′)}.

If P has a flat model, then let M ′ be the least flat model of P , else
let M ′ = M . Both M and M ′ can be constructed in polynomial time
and have size bounded by a polynomial in the size of P .

We claim that for any positive formula ϕ with modal depth bounded
by 1, P 2L ϕ iff M 2 ϕ or M ′

2 ϕ. The “if” part clearly holds. For
the “only if” part, suppose that P 2L ϕ, where ϕ is a positive for-
mula with modal depth bounded by 1. It follows that there exists an
L-model N of P such that N 2 ϕ. Let N|1 be the model obtained
from N by deleting all edges not starting from τ . We have N|1 � P

and N|1 2 ϕ, because the modal depths of P and ϕ are bounded by
1. If N|1 is a flat model, then M ′ is the least flat model of P , and
hence M ′

2 ϕ. Otherwise, M ≤ N|1, and hence M 2 ϕ.
By Lemmas 2 and 1, we conclude that checking satisfiability of sets

of Horn formulas with modal depth bounded by 1 in K and K4 is
decidable in PTIME. �

4 On the Complexity of Multimodal Logics

A language for multimodal logics uses n pairs of modal operators 2i

and 3i, for 1 ≤ i ≤ n, where n is a fixed number greater than 1.
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Formulas in multimodal logics are formed in the usual way. Interpre-
tations used for multimodal logics are usually Kripke models with n

accessibility relations (one for each of the pairs 2i and 3i, 1 ≤ i ≤ n).
The satisfaction relation is also defined in the usual way.

Multimodal logics can be formed by combining modal logics. The
combination of modal logics has been intensively studied in the last
decade (see, e.g., [1, 7, 14, 9, 16, 5, 22, 19, 8]). A simple way to
combine modal logics is to make their fusion and we can consider
fusions of variants (by renaming modal operators) of the same logic.
Given a monomodal logic L, the fusion Ln is the multimodal logic
axiomatized by the axioms of the classical propositional logic, the
modus ponens rule, the modal axioms and modal rules of L with 2

and 3 replaced respectively by 2i and 3i, for each 1 ≤ i ≤ n. Note
that there are no interaction axioms between different kinds of modal
operators in Ln.

In this section, we discuss the complexity of the multimodal logics
Ln under the restriction to the Horn fragment and/or bounded modal
depth, where L is one of the 15 basic monomodal logics. We show
how Table 1 changes when each logic L is replaced by Ln.

In [12], Halpern and Moses showed that the satisfiability problem
in the multimodal logics Kn, Tn, S4n, KD45n, and S5n is PSPACE-
complete. Halpern in [11] claimed that the PSPACE-complete com-
plexity also holds for K45n, as its proof does not differ much from
the proof for KD45n.

The complexity PSPACE-complete also holds forKDn, K4n, KD4n,
K5n, and KD5n. The reasons are as follows:

• Nondeterministic PSPACE algorithms for checking satisfiability
in KDn, K4n, KD4n, K5n, and KD5n can be developed, e.g.,
in a similar way as for Kn, S4n, and KD45n in [12]. Hence we
have the upper bound PSPACE.

• If Ln ∈ {KDn,K4n,KD4n}, then the lower bound for Ln fol-
lows from the lower bound for L (PSPACE-hard). The lower
bound PSPACE-hard for K5n and KD5n will be shown later
in this section.
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As a corollary (of the upper bound), every PSPACE-completeness
result in Table 1 for L ∈ {K,KD, T,K4,KD4, S4} also holds for Ln.
Note that Theorem 6 is useful here for K4n and KD4n.

We guess that the satisfiability problem in the multimodal logics
KBn, KDBn, Bn, and KB5n is also PSPACE-complete. For KBn,
KDBn, and Bn, it suffices to show the upper bound. If our prediction
is true, then the satisfiability problem of sets of Horn clauses in KBn,
KDBn, and Bn is also PSPACE-complete.

In [11], Halpern showed that the satisfiability problem of formulas
with modal depth bounded by k ≥ 2 in Kn, Tn, K45n, KD45n, and
S5n is NP-complete. (The lower bound NP-hard follows from the
lower bound of the monomodal case, the upper bound NP can be seen
not difficultly.) Using similar argumentations, one can claim that the
assertion also holds for KDn, KBn, KDBn, Bn, K5n, KD5n, KB5n.

Next, we claim that the satisfiability problem of formulas with
modal depth bounded by 1 in Ln is NP-complete for L being any one
the 15 basic monomodal logics. The only point that needs justifica-
tion is the case of K4n, KD4n, and S4n. For this case, use similar
argumentations as the proof of Theorem 8.

We now consider the restriction to the Horn fragment.

Let Horn formulas be defined similarly as in the case of monomodal
logics. A clause is a formula of the form ∆(A1∨ . . .∨Ah∨¬B1∨ . . .∨
¬Bk), where ∆ is a sequence of universal modal operators, Ai and Bj

are atoms of the form p, 2tp, or 3tp. Let Horn clauses and positive
logic programs be defined similarly as in the case of monomodal logics.
It can be seen that Lemma 2 still holds for normal multimodal logics.

In the following, we show that the satisfiability problem of sets
of Horn clauses in K5n, KD5n, K45n, and KD45n is PSPACE-
complete.

Let X be a set of clauses in the language of monomodal logics.
Let πbi(X) be the set of clauses obtained from X as follows: modal
operators at odd modal nesting depths are subscripted by 1, and
modal operators at even modal nesting depths are subscripted by 2.
For example, the clause 222(p∨2q∨3r) is replaced by 212221(p∨
22q ∨32r). It is clear that if X is a set of Horn clauses then πbi(X)
is also a set of Horn clauses.



On the Complexity of Fragments of Modal Logics 265

LEMMA 10. Let X be a set of Horn clauses in the language of
monomodal logics, Ln be either K5n or K45n, and LDn be either
KD5n or KD45n. Then X is K-satisfiable iff πbi(X) is Ln-satisfiable;
and X is KD-satisfiable iff πbi(X) is LDn-satisfiable.

The proof of this lemma is not included due to the lack of space.

THEOREM 11. The satisfiability problem of sets of Horn clauses in
K5n, KD5n, K45n, and KD45n is PSPACE-complete.

Proof. The upper bound PSPACE has been justified earlier (for the
case without restrictions). The lower bound PSPACE-hard follows
from the above lemma and the facts that the satisfiability problem
of sets of Horn clauses in K and KD is PSPACE-complete [4] and
πbi(X) can be obtained from X in linear time and has a linear size
(in the size of X). �

COROLLARY 12. The satisfiability problem (without restrictions) in
K5n and KD5n is PSPACE-complete.

We now consider the combination of the restriction to the Horn
fragment and the restriction to bounded modal depth.

THEOREM 13. The satisfiability problem of sets of Horn clauses
with modal depth bounded by k ≥ 2 in the multimodal logics Kn,
KBn, K5n, K45n, KB5n is NP-complete, and in KDn, Tn, KDBn,
Bn, KD5n, KD45n, S5n is PTIME-complete.

The two groups of modal logics mentioned in this theorem differ
at the aspect that logics in the first group are non-serial, while logics
in the second group are serial. For L ∈ {KB,K5,K45,KB5}, the
complexity jumps from PTIME-complete for L to NP-complete for
Ln because that L is almost serial 4 while Ln does not have such a
similar property.

Sketch of the proof Consider the case of Kn, KBn, K5n, K45n,
KB5n. The essential point here is the lower bound NP-hard. Let X

4A frame 〈W, τ, R〉 is connected if W contains only worlds reachable directly or
indirectly from τ via R. A monomodal logic L is almost serial if every connected
L-frame 〈W, τ, R〉 with W 6= {τ} is serial (i.e. ∀x∃y R(x, y)).
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be a set of clauses of the form c1 ∨ c2 ∨ c3, where c1, c2, c3 are clas-
sical literals. We use the translation π3SAT as in the proof of Theo-
rem 7. Consider the set πbi(π3SAT (X)). We claim that for Ln ∈ {Kn,
KBn, K5n, K45n, KB5n}, X is satisfiable iff πbi(π3SAT (X)) is Ln-
satisfiable. The proof of this is more or less the same as the proof of
Theorem 7. Hence the 3SAT problem is reducible to the satisfiability
problem of sets of Horn clauses with modal depth bounded by k ≥ 2
in the multimodal logics Kn, KBn, K5n, K45n, KB5n. Therefore
the latter problem is NP-hard.

For the case of KDn, Tn,KDBn, Bn,KD5n,KD45n, S5n, the es-
sential point is the upper bound PTIME. The proof of this is similar
to the proof given in [17] of that the problem of checking satisfiability
of sets of Horn clauses with modal depth bounded by k ≥ 2 in KD, T,
KDB, and B is in PTIME. The key of the proof is that if P is a posi-
tive logic program (in the language of multimodal logics) consisting of
clauses whose modal depths are bounded by some constant k, then a
least5 Ln-model of P , for Ln ∈ {KDn, Tn,KDBn, Bn,KD5n,KD45n,

S5n}, can be constructed in polynomial time, and has a polynomial
size if Ln ∈ {KDn, Tn,KD5n,KD45n, S5n}, or can be encoded in
polynomial space if Ln ∈ {KDBn, Bn} (similarly as in the case of
KDB and B [17]). �

Analogously as for the proof of Theorem 9, one can show that the
complexity of the satisfiability problem of sets of Horn clauses with
modal depth bounded by 1 in Kn, KBn, K4n, KD4n, S4n, K5n,
K45n, and KB5n is PTIME-complete. The main change is that,
for Kn, KBn, K4n, K5n, K45n, KB5n we need to use 2n models
instead of 2 models as in the proof of Theorem 9. More precisely, for
each set I ⊆ {1, . . . , n}, consider the case when ∃xRi(τ, x) holds iff
i ∈ I and construct a “minimal” model of the considered program for
that case. We conclude that the satisfiability problem of sets of Horn
clauses with modal depth bounded by 1 in Ln is PTIME-complete
for every L being one the 15 basic monomodal logics.

In summary, there are open problems on the complexity of the
satisfiability problem in KBn, KDBn, Bn, KB5n and the satisfia-

5An ordering of Kripke models in multimodal logics is defined similarly as for
the monomodal case. See [20] for details.
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bility problem of sets of Horn modal clauses in KB5n and S5n. It
is probable that these problems are PSPACE-complete. Under this
assumption, Table 1 changes as follows when every logic L in that
table is replaced by Ln:

• The satisfiability problem inK5n, KD5n, K45n, KD45n, KB5n,
S5n is PSPACE-complete for both of the cases: without restric-
tions or with the restriction to the Horn fragment.

• The satisfiability problem of sets of Horn clauses with modal
depth bounded by k ≥ 2 in the multimodal logics KBn, K5n,
K45n, and KB5n is NP-complete.

5 Conclusions

We have summarized the complexity of the satisfiability problem in
all of the 15 basic normal monomodal logics under the restriction to
the Horn fragment and/or bounded modal depth. To fulfill the com-
plexity table, we have given some new results. Our Theorems 6 and 7
show that the modal logics K, K4, and KD4 are hard even under the
mentioned restrictions. The restriction of modal depth to 1 is quite
tight and the corresponding fragments are rather useless. However,
our results for that case are still interesting from the theoretical point
of view.

We have also discussed and given some results on the complexity
of the multimodal logics Ln under the mentioned restrictions, where
L is one of the 15 basic monomodal logics. There remain some open
problems.
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