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ABSTRACT

We study the dynamic and complexity of the generalized Q2R automaton. We show the existence of
non-polynomial cycles as well as its capability to simulate with the synchronous update the classical
version of the automaton updated under a block sequential update scheme. Furthermore, we show
that the decision problem consisting in determine if a given node in the network changes its state is
P-Hard.

Keywords Q2R networks, computational complexity, limit cycles, P-Complete

1 Introduction

In this paper we study the reversible cellular automata Q2R rule, introduced by G. Vichniac in the mid-80’s [1] as a
representation of the two-dimensional Ising model for ferromagnetism [2, 3, 4]. The Q2R rule is defined as follows.
Consider a two-dimensional finite grid of even size, with periodic boundaries and von-Neumann neighborhood. Each
cell has one over two possible states, namely −1 and 1, which evolve according to the following dynamic. The cells
are divided in two blocks, consisting in the white and black cells of a checkerboard. On each time-step, all cells in
black squares are iterated, and after that, is the turn of the cells in white squares. An iteration means to update the
current state according to the following rule: if the number of neighbors in state 1 equal the number of neighbors
in state −1, the cell switches its current state to the opposite one. Otherwise, the cell remains in its current state.
Formally, the local transition function f of Q2R is:
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fi(x) =

 1− xi, if
∑

j∈N(i)

xj = 0

xi, otherwise
,

where x ∈ {−1, 1}n is a configuration of n cells, i is a cell and N(i) represent the set of cells in the von-Neumann
neighborhood of i.

Several studies have carried out concerning the Q2R [1, 5, 6, 7, 8, 9, 10, 11, 12]. Remarkably, the Q2R dynamic
preserves an Ising-like energy [5], appealing the analogy with the continuous dynamics of Hamiltonian systems.
Indeed, let us consider the following energy operator:

E(x) = −1

2

∑
ij

wijxixj

where x is a grid configuration of states, and wij is equal to 1 if cell i is adjacent to cell j, and 0 otherwise. Let us
call x′ the configuration obtained after the iteration of one of the two parts (cells in black squares or cells in white
squares), then

∆E = E(x′)− E(x) = −1

2

∑
i

(x′i − xi)
∑

j∈N(i)

xj = 0,

which implies that the energy is preserved during the dynamics of Q2R. Besides, since the dynamics of Q2R is
reversible, every configuration has a unique predecessor. In particular, the dynamics does not exhibit a transient state.
Thus, each configuration is in some attractor, i.e., the configurations are fixed points or they belong to a limit cycle of
some period.

Recently, in an attempt to establish general mathematical properties, a full characterization and combinatorial results
of the attractors associated to the Q2R model were proposed in [12]. In tune with this mathematical approach, in this
paper we tackle an analytical study of the dynamics and complexity of Q2R. In this case, we consider a generalized
version of Q2R, extending its definition to a topology more general than the two-dimensional grid.

An automata network is a natural generalization of a finite (or periodic) cellular automata, where the topology rep-
resenting the interactions on the cells is generalized into an arbitrary graph. We extend the Q2R in this direction.
Nevertheless, to preserve the reversibility of the system and a coherent definition of the local rule, we do not extend
this rule into an arbitrary topology, but into a graph that is bipartite and where each node has an even number of
neighbors.

Formally, we consider the family of graphs G, such that each graphG ∈ G is a bipartite graph with partitionsA andB,
and each vertex has even degree. Over each of these graphs G, we define the generalized Q2R as follows. Each node
of G is assigned a state in {−1, 1}, which evolves according to the following rule. On each time-step, all the nodes in
A are synchronously iterated, and after that, all the nodes in B are synchronously iterated. In other words, the sets A
and B play the role of black and white squares in the chessboard. The iteration of a node consists in the application
of the local rule, that switches the current state of the node when the number of neighbors in state −1 is the same than
the number of neighbors in state +1.

Interestingly, in a one dimensional grid, the Q2R rule corresponds to the elementary cellular automata 150 on finite
configurations, updated following the bipartite partition induced by the cells in even and odd coordinates. Numerically,
it has been reported that the classical Q2R rule can exhibit a huge number of limit cycles with hypothetic exponentially
long periods [7].

The computational complexity of an automata network can be defined as the amount of resources, like time or space,
needed to make predictions over it. More formally, the prediction problem consists in given an automata network,
an initial condition, an objective node in the network and a fixed time t, to predict if the objective node will change
its state after t time steps. From a classical computational complexity standpoint, the latter problem can be studied
as a decision problem. Since decision problems are classified in complexity classes, with the objective of grouping
problems of similar difficulty, a natural question is in which class we can classify the prediction problem for Q2R
networks. In this sense, the numeric behavior of Q2R represent a great challenge for the simulation of the dynamics of
Q2R. In fact, since the dynamics of Q2R can exhibit long cycles, one might have to simulate a huge number of time-
steps before deciding. Interestingly, up to our knowledge, the computational complexity of the prediction problem for
Q2R is unknown.
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1.1 Our results

During this paper, we focus in studying the dynamical behavior and the complexity of the generalized Q2R model.
First, we give examples of graph topologies in which the generalized Q2R automata network can exhibit super-
polynomial limit cycles. Our construction consists on a specific graph, called cycle-graph, which given a particular
initial configuration reach a limit cycle that is proportional to the number of nodes in the cycle-graph. Then, we show
how to connect two different or more cycle-graphs in such a way that the dynamics of each cycle-graph is preserved.
We obtain this way a new graph on which we define a configuration reaching a limit cycle of a length that is pro-
portional to the least common multiple of the sizes of the cycle-graphs composing it. The result then is obtained by
constructing a graph composed of cycle-graphs of different prime numbers.

We emphasize that, even if numerical evidence suggests that Q2R can exhibit super-polynomial (or even exponential)
limit cycles, our result is the first explicit example of a (generalized) Q2R dynamic where a super-polynomial lower-
bound on the limit cycles can be analytically proven.

Later, we tackle the computational complexity of the rule, showing that the prediction problem is P-hard. This roughly
implies that the best (only) strategy for knowing the future state of a node is to simply simulate the dynamics for a given
number of time-steps. In other words, unless some complexity classes collapse, there are no structural or dynamical
properties of the network that could be algorithmically exploited in order to solve the prediction problem faster than
naive simulation. Our result is obtained by a reduction of the circuit value problem.

Finally, we show that the dynamics of the (generalized) Q2R networks updated by a bipartite partition can be simulated
in another Q2R network with synchronous update. Such a network, that we will call it Parallel Simulator (PS), is
composed by four subnetworks, each one having a specific function. The latter network simulates one step of the
dynamics of the original Q2R network every two time steps.

The paper is organized as follows: Section 2 summarizes the basic mathematical concepts and definitions that we will
use along the manuscript.

In Section 3 we exhibit Q2R networks having non-polynomial limit cycles. We accomplished this task by exhibiting
for each prime number p ∈ N some Q2R network having attractors of period O(n).

In Sections 4 and 5 we study the complexity of the prediction problem. In particular, we show in Section 4 that the
latter problem is P-Hard by constructing a log-space reduction from a version of the classical circuit value problem
(CVP) in which all the gates are only monotone gates (OR and AND gates).

Finally, in Section 6 we show that we can simulate an arbitrary Q2R network (which is defined by bipartite partition)
by some Q2R rule iterated in parallel (every vertex at the same time). This construction uses a polynomial amount of
space in the size of the original network. Finally, we give some conclusions and future developments.

2 Preliminaries

An Automata Network is a triple A = (G,Q, (fi : i ∈ V )), where G = (V,E) be an undirected finite bipartite
graph, V = {1, ..., n} is the set of vertices, E the set of edges and Q = {−1, 1} is the set of states. The state 1
means that the vertex is active, while state -1 represents passive vertices; fi : Q|V | → Q is the transition function
associated to the vertex i. The set Q|V | is called the set of configurations, and the automaton’s global transition
function F : Q|V | → Q|V |, is constructed from the local functions (G,Q, (fi : i ∈ V )) such that (F (x))i = fi(x).
Let N(v) be the neighborhood of v, i.e. the set of vertices {u | uv ∈ E}. Suppose that {A,B} is a partition of V such
that for X ∈ {A,B} and for any i, j ∈ X , N(i) ∩ N(j) = ∅ (such partition exists because G is bipartite). Further,
consider that vertices have even degree, i.e., d(v) ≡ |N(v)| is even. We define a Q2R network as the tupleQ = (G =
(V = (B,W ), E), F ) where G is a bipartite graph with bipartition V = (B,W ) and F : {0, 1}V 7→ {0, 1}V is such

that F (x)i = fi(x|N(i)) for all x ∈ {0, 1}V where fi(x) =

 1− xi, if
∑

j∈N(i)

xj = 0

xi, otherwise
, and x|N(i) ∈ {0, 1}V is

such that (x|N(i))v = xv for all v ∈ N(i).

2.1 Elements of computational complexity

The computational complexity of a decision problem is defined as the amount of resources (time or space) needed to
give an answer. The classical complexity theory consider two fundamental classes: P, the class of problems solvable
in polynomial time on a serial computer; and NC, the class of problems solvable in poly-logarithmic time with a
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polynomial amount of processors in a parallel architecture, for instance a PRAM machine [13]. It is easy to prove that
NC ⊂ P [13]. Informally NC is known as the class of problems which have a fast parallel algorithm [14]. It is a well
known conjecture that NC 6= P, and if so, there exist “inherently sequential” problems, this is, that belong to P and do
not belong to NC. The most likely to be inherently sequential are P-Hard problems, to which any other problem in P
can be reduced by an NC-reduction or a logarithmic space reduction. If a P-Complete problem (i.e. a P-Hard problem
contained in P) has a fast parallel algorithm, then P=NC [14, 15].

One of such problems is the Circuit Value Problem (CVP), which consists in predicting the truth value of the output
of a Boolean circuit. This problem is P-complete since any deterministic Turing machine computation of length k can
be converted into a Boolean circuit of depth k; a complete analysis of this reduction can be found in [14]. Given a
circuit, we define the layer of a gate v, denoted layer(v), as follows: it is zero for the input gates and the length of the
longest path from an input to v. A circuit is synchronous if all inputs to a gate v come from gates at precedent layer.
Furthermore, we require that all output vertices be on the same layer, namely the highest [14]. A circuit is monotone if
there are no negations gates (only AND and OR gates); it is alternating when the the gates alternate between OR and
AND gates layer by layer, and the inputs are connected only to OR gates, and the outputs being OR gates.

The CVP remains P-complete when the circuit is restricted to be synchronous, monotone, alternating and all vertices
have in degree (fan in) and out degree (fan out) exactly two, with the obvious exceptions of the input with in degree
zero, and the outputs with out degree zero [14]. We call AS2MCVP this restriction of the CVP.

2.1.1 Prediction problem

We start by providing a formal definition for the prediction problem in Q2R networks.

PRED
INPUT: A Q2R network Q = (V = (B,W ), E, F ), an initial condition x ∈ {0, 1}n, a time step t ∈ N and
an objective node v ∈ V.
QUESTION: F t(x)v 6= xv?

Observe that a possible solution for PRED is just to simulate the system in order to compute F t(x)v and see if it has
changed its state. Thus, a natural question is if one can do better than simple simulation. As we will see in Section
4, the problem PRED is P-hard, which suggest, together with the fact that Q2R networks may have limit cycles of
non-polynomial period, that there is unlikely that a better solution than direct simulation exists.

3 Non polynomial limit cycles for Q2R

In this section we construct a family of simple one dimensional networks (rings) which admits a prime cycle depend-
ing of the ring size. Further by connecting those networks we determine periods which are roughly the product of
elementary rings. The following Proposition and consequent Corollary states that Q2R networks can exhibit large
limit cycles.

Proposition 1. If p ≥ 2 is a prime number, then there exists a connected Q2R network of 2p vertices having, at least,
one limit cycle of length p.

Proof. Let p ≥ 2 be a prime number and considerer the Q2R network of Figure 1 defined by the ECA rule 150 with
2p vertices, where the odd vertices are updated first and, in second place, the even ones.

Let x = 1
−→
0 be the configuration of length 2p, where all its (2p − 1) states are in 0, except for the first one, whose

state is 1. If p = 2 then we obtain the limit cycle of length two: 1000 ←→ 1101. If p ≥ 3, p prime, notice the key
fact: except for vertices 1 and p+ 1, the others ones always are updated in pairs, i.e.,

xk = x2p−(k−2), ∀k ∈ {2, ..., p}.

Thus, at each time step, the active vertices are propagated in pairs (or blocks of pairs) until reach the configuration
in which only the vertex p + 1 is passive and, after that, the passive vertices are propagated until reach the initial
configuration x = 1

−→
0 . Specifically, at t = 1 only vertex 1 is active (the initial configuration x = 1

−→
0 ), at t = 2 also

are activated the vertices 2 and 2p (the configuration x = 11
−→
0 1 of length 2p) but, from t = 3 two pairs of vertices

are activated; the activation of vertices 3 and 4 (consequently, vertices 2p − 1 and 2p − 2) for t = 3, the activation
of vertices 5 and 6 (consequently, vertices 2p − 3 and 2p − 4) for t = 4, and so on, until the activation of vertices

4
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p+1

2p

p+2

2

1

p

Figure 1: Q2R network of 2p vertices (p ≥ 2 a prime number).

p− 2 and p− 1 (consequently, vertices p+ 2 and p+ 3) for t = 2 + p−3
2 . Next, at t = 3 + p−3

2 we have reached the
configuration in which only the vertex p + 1 is passive. This process is repeated by deactivating two pairs of vertices
until reach the last configuration of the limit cycle at t =

(
3 + p−3

2

)
+ p−3

2 (see Figure 2).

p+1

2p

p+2

2

1

p

2p-1 3

2p-2 4

2p-3 5

P+3 P-1

P-2

6

t=1

t=2

t=3

t=4

t=2+(p-3)/2

t=3+(p-3)/2

t=4+(p-3)/2

t=[3+(p-3)/2]+(p-3)/2

Figure 2: Evolution of the initial configuration x = 1
−→
0 (of length 2p) in the Q2R network of Figure 1. The dashed

brackets indicate the vertices involved in the corresponding time step, according to what is detailed in the proof of
Proposition 1.

Therefore, we have a limit cycle of length p.
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Remark 1. Notice the following facts for the Q2R networks of 2p vertices described in the proof of Proposition 1:

(i) In the configuration x = 1
−→
0 , the state of the first vertice always remains fixed to 1 (at every time step, it

never changes to 0) because of the key fact: x2 = x2p. Analogously, the state of the vertice p + 1 always
remains fixed to 0 (at every time step, it never changes to 1) because of the key fact: xp = xp+2.

(ii) They only have four fixed points which are: −→0 , −→1 , −→01 and −→10.

Corollary 1. There exists a connected Q2R network of 2 · (p1 + p2 + · · · + pk) vertices having, at least, one limit
cycle of length p1 · p2 · · · pk, where p1,..,pk are k different prime numbers. In particular, there exists a Q2R network
which exhibits attractors of period T ≥ eΩ(

√
|V (G)| log(|V (G)|))

Proof. Consider the connected network G of Figure 3.

p1+1

p1+2

2p1

p1

1

2

p2+1

p2+2

2p2

p2

1

2

p3+1

p3+2

2p3

p3

1

2

Figure 3: Q2R network composed by the subnetworks Q1,...,Qk as such of the proof of Proposition 1, with prime
sizes p1 < p2 < p3 < ... < pk, respectively, and joined through its first and p+ 1 vertices.

Let x be the configuration of length 2 · (p1 + p2 + · · · + pk), where all its states are in 0, except for the first vertices
of each subnetwork Qi, whose states are 1, i ∈ {1, ..., k}. By the proof of Proposition 1 and Remark 1-(i), each
subnetworkQi will produce a limit cycle of length pi, i ∈ {1, ..., k}. Therefore, the whole networkG will have a limit
cycle of length p1 · p2 · · · pk.

To obtain a lower bound of the periods, we follow the arguments developed in [16]. Let m a positive integer, and
let l = π(m) the number of primes not exceeding m. Let G the graph obtained from π(m) subnetworks of sizes
p1, p2 . . . , pπ(m), where {p1, p2 . . . , pπ(m)} the first π(m) primes. We have then that

V (G) ≤
π(m)∑
i=1

2(pi + 1) ≤ 2π(m)(m+ 1) (1)

and

lcm(p1, . . . , pπ(m)) =

π(m)∏
i=1

pi = eθ(m) (2)

6



A PREPRINT

where θ(m) =
∑π(m)
i=1 log(pi). From the Prime Number Theorem [17] we know that π(m) = Θ(m/ log(m)),

furthermore in [17] is shown that θ(m) = Θ(π(m) log(m)), which together with (1) and (2) imply that

lcm(p1, . . . , pπ(m)) ≥ eΩ(
√
|V (G)| log(|V (G)|))

and then the length of the limit cycle of G is not bounded by any polynomial in |V (G)|.

4 Computational Complexity of PRED

We will give now a proof of P-Hardness of the Q2R rule, reducing it to a restricted case of CVP.
Proposition 2. For the Q2R rule, PRED is P-Hard.

Proof. In order to show the result we will reduce S2MCVP to PRED. Since S2MCVP is P-complete, if the reduction
uses only a logarithmic space, then PRED would be P-hard.

More precisely, we show that, given an arbitrary synchronous monotone alternating circuit of fanin and fanout 2, there
exists a Q2R network which simulates the evaluation of the circuit. Since the circuit is monotone, we only have to
simulate the AND and OR gates.

The AND gate (see Figure 5) is simulated by an initially passive middle vertex with degree 4; two of them will be
the inputs, initially active and the other two the outputs, initially passive. By the Q2R rule, this vertex will become
active only if the two input neighbors become active. The OR gate is obtained as a composition of the NOT gate and
the AND gate as it is shown in the next section. Now, consider an instance of S2MCVP given by some circuit C, an
assignation x ∈ {0, 1}n, and some output o. We construct a Q2R network QC = (G = (V = (B,W ), E), F ) which
has for each gate v of C, the correspondent gadget. Let us call (i1, ..., in) to the inputs of C. We identify one gadget
in QC with each of those inputs. Observe that each gadget has its own input nodes as it is shown in the next section.
Thus, (i1, ..., in) can be identified with the inputs of the gadgets representing the first layer of the circuit. We define
an initial condition x ∈ {0, 1}V given by xik = xk for 1 ≤ k ≤ n. and xv = 0 for any other node v. Since each gate
is monotone, each gadget is constant in the number of size of C (and also they simulate each gate in constant time)
and the circuit is synchronous, QC simulates C in time t = nO(1). Finally, as the size of each gadget is constant, the
latter construction can be done in space O(log n). The proposition holds.

5 Gadgets to show the P-hardness of PRED

Wire: the 1s (black nodes) go down following the wire (starting from top left, the first 4 iterations of Figure 4).

Remark: if the wire is finite, say the case of Figure 4 with two squares, when the last “down” is reached, the -1s
works as the 1s “unweaving” the weaving (starting from top left, see the whole cycle of period 8 in Figure 4).

5.1 The AND gate

Consider the wire of Figure 5 where x, y ∈ {−1, 1} are the inputs, z is the output (initially at -1) and the remaining
ten nodes with -1 values (white nodes).

So, it is easy to check that such a wire simulates an AND gate. In fact:

• If x = y = 1 then in 3 time steps z = 1 (see Figure 6).
• If x = 1 and y = −1 then z = −1 always (see Figure 7). Case x = −1 and y = 1 is analogous.
• The case x = y = −1 is straightforward because the initial configuration would be the all -1s fixed point.

5.2 The XOR gate

Consider the wire of Figure 8 where x, y ∈ {−1, 1} are the inputs and z is the output (initially at -1). The idea is to
fix as stable sites two 1s. The inputs x, y comes from two wires as above.

Clearly, x+ y = 1⇔ [(x = 1) ∧ (y = −1)] ∨ [(x = −1) ∧ (y = 1)]. Moreover:

• If x = 1 and y = −1, then z = 1 in 3 time steps.
• If x+ y = 2, i.e., x = y = 1, then the output z remains at -1.

7
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Figure 4: Evolution of a 7 node wire where blacks ones indicate states at 1 and the whites ones at -1. The dashed
circles indicate the nodes that will be updated at each time step.

5.3 The NOT gate

Here we consider the fact ¬x = 1⊕ x, so, it’s enough to adapt the previous gadget, as in Figure 9 (top left) where x is
the input and the output it’s by the wire on the right. In Figure 9 we schematize the dynamics that shows how an input
x ∈ {−1, 1} is transformed into the output ¬x.

5.4 The OR gate

One may use the Morgan law: x ∨ y = ¬(¬x ∧ ¬y) and to use the previous AND and NEGATION gates.

5.5 Cross-Over

Consider the structure of Figure 10., from that, by using previous XOR gate, one constructs the cross-over.

6 Simulating Q2R with parallel update schedule

Let G = (V,E) be a Q2R network with both n = |V (G)| and the degree of each node being even. In Figure 11 we
present the general structure of what we will call the Parallel Simulator (PS), whose function will be to simulate, with
parallel update, the dynamics of the previous Q2R network updated by the block update s = (A)(B), where A and B
are two non-empty subsets of nodes such that V = A ∪B.

Basically, the PS is another Q2R network that also keeps the parity in both, its number of nodes and in its degrees.
Furthermore, it possesses four components, denoted by I , S, F and GE, that are connected in a certain way (see
details in section 6.2) and whose names and characteristics are described below:

1. I , the Input component, it contains the graph to be simulated in parallel.

2. S, the Switching component, is a graph that, for a given initial configuration, always generates the same limit
cycle, regardless of the connections it may have with the other PS components.

8
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x 

y 

z 

Figure 5: Structure of the AND wire described in section 5.1 and which simulates an AND gate.

Figure 6: (Partial) evolution of the AND wire of Figure 5 with input x = y = 1 (black). The dashed circles indicate
the nodes that will be updated at each time step.

3. F , the Fixed component, is a graph that, for a given initial configuration, never changes, regardless of the
connections it may have with the other PS components.

4. GE, the Gear component, is a graph that, for a given initial configuration, makes the PS works out.

Next, we specify the above components as well as their connections and necessary notations to demonstrate that PS
can simulate in parallel the dynamics of the Q2R network G updated by the block update s = (A)(B) of above.

6.1 Specifying the PS components

• The input component will be G, i.e., I = G and we denote by α the half of the maximum degree of G, i.e.,
α = max{d(v): v∈V (G)}

2 .

• The switching component has α identical graphs, denoted by Si, i ∈ {1, ..., α}, of four nodes each. For
i ∈ {1, ..., α}, we denote by si1, si2, si3 and si4 such a nodes. The graph Si and its initial configuration are
showed in Figure 12 a) and b), respectively. Thus, the limit cycle we want to keep will be the one of length
two that alternates between the initial and final configurations showed in Figure 12 b) and c), and that can be
obtained by iterating, in an isolating way, any graph Si.

• The fixed component has α identical graphs, denoted by F i, i ∈ {1, ..., α}, of four nodes each. For i ∈
{1, ..., α}, we denote by f i1, f i2, f i3 and f i4 such a nodes. The graph F i and its initial configuration that we
want to keep without changes are showed in Figure 13 a) and b). Observe that the initial configuration is a
fixed point of any F i dynamics when it is iterated in an isolating way.

9
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Figure 7: Evolution of the AND wire of Figure 5 with input x = 1 (black) and y = −1 (white). The dashed circles
indicate the nodes that will be updated at each time step.

• The gear component will be the same network G but with the negation of all the states of the initial configu-
ration ofG, i.e., if we denote by 1,...,n the nodes of the gear component, then xi = ¬xi, for all i ∈ {1, ..., n}.

6.2 Specifying the PS connections

Let’s consider the Q2R network G updated by the block update s = (A)(B), where A and B are two non-empty
subsets of nodes such that V = A ∪ B. Moreover, we denote A = {u : u ∈ A} and B = {v : v ∈ B}. Besides,
given the nodes u ∈ A and v ∈ B, we denote by k and j the half of its degrees in G, respectively, i.e., k = d(u)

2 and
j = d(v)

2 . Suppose w.l.o.g. that 1 ≤ j ≤ k = α. Then, we consider the following PS connections (see Figure 14):

(a) The edges {u, si3}, {u, si4} and {u, si3}, {u, si4}, for i ∈ {1, ..., k = α}.
(b) The edges {v, si1}, {v, si2} and {v, si1}, {v, si2}, for i ∈ {1, ..., j}.
(c) The edges {u, f i1}, {u, f i4} and {u, f i1}, {u, f i4}, for i ∈ {1, ..., k = α}.
(d) The edges {v, f i2}, {v, f i3} and {v, f i2}, {v, f i3}, for i ∈ {1, ..., j}.

Theorem 1. One time step of the Q2R networkG updated by the block sequential s = (A)(B) correspond to two time
steps of the Q2R network G updated by the PS in parallel.

Proof. Let the PS with its components and connections specified in sections 6.1 and 6.2 at t = 0. In this time step, we
have that:

1. The PS connections defined in (a) and (b) guarantee that the sum of the neighbors of sij is 0, ∀i ∈ {1, ..., α},
∀j ∈ {1, ..., 4}.

2. The PS connections defined in (c) and (d) guarantee that the sum of the neighbors of f ij is different to 0 (more
precise, -2), ∀i ∈ {1, ..., α}, ∀j ∈ {1, ..., 4}.
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Figure 8: Structure of the XOR wire described in section 5.2 and which simulates an XOR gate.

3. The edges {u, si3}, {u, si4}, {u, f i1} and {u, f i4}, i ∈ {1, ...,
d(u)

2 },
d(u)

2 ≤ α, contribute with 0 to the sum of
the neighbors of u, for all u ∈ A, i.e., the update of u only depends on the values of its neighbors in G. The
same occurs if we change the roles of u and A by u and A, respectively.

4. The edges {v, si1}, {v, si2}, {v, f i2} and {v, f i3}, i ∈ {1, ...,
d(v)

2 },
d(v)

2 ≤ α, contribute with −4 ·
(
d(v)

2

)
to

the sum of the neighbors of v, for all v ∈ B. Thus, such a sum will be upper bounded by −d(v), i.e., this
sum will be different to 0. The same occurs if we change the roles of v and B by v and B, respectively.

Hence, at t = 1:

5. All the α graphs of the switching component will change to the final configuration of Figure 12c) (because
of point 1), having again what was said in point 1.

6. All the α graphs of the fixed component will not change, i.e., they will continue with the same values of
Figure 13b) (because of point 2), having again what was said in point 2.

7. Only the nodes of A and A will have been updated (because of point 3) while those of B and B remain
unchanged (because of point 4).

8. The edges {u, si3}, {u, si4}, {u, f i1} and {u, f i4}, i ∈ {1, ...,
d(u)

2 },
d(u)

2 ≤ α, contribute with −4 ·
(
d(u)

2

)
to

the sum of the neighbors of u, for all u ∈ A. Thus, such a sum will be upper bounded by −d(u), i.e., this
sum will be different to 0. The same occurs if we change the roles of u and A by u and A, respectively.

9. The edges {v, si1}, {v, si2}, {v, f i2} and {v, f i3}, i ∈ {1, ...,
d(v)

2 },
d(v)

2 ≤ α, contribute with 0 to the sum of
the neighbors of v, for all v ∈ B, i.e., the update of v only depends on the values of its neighbors in G. The
same occurs if we change the roles of v and B by v and B, respectively.

Therefore, at t = 2, the PS will have exactly the first time step of the Q2R network G updated by the block sequential
s = (A)(B).

11
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Figure 9: (Partial) evolution of the NEGATION wire described in section 5.3 with input x ∈ {−1, 1}. The dashed
circles indicate the nodes that will be updated at each time step.

X Y 

X Y 

Figure 10: Structure of the cross-over.

7 Discussion

In this article we have studied some dynamic and complexity properties of the generalized Q2R automaton. It has been
shown that it admits non-polynomial cycles and, by considering the parallel update, it may simulate the classical Q2R
model (which is based in a block-sequential update scheme, following a bipartite partition of vertices). It is important
to point out that the general structure of Parallel Simulator (PS) can be extended to simulate the dynamics of any other
Q2R network under an arbitrary block-sequential update scheme s′ = (B1) · · · (Bk), 1 < k ≤ n. These latter task can
be accomplished by choosing graphs in the switching component that generate appropriate cycles of length k so that,
at the time step t, the input component of the PS only updates the nodes of Bt for 1 ≤ t ≤ k. Thus, one time step of
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Figure 11: General structure of the Parallel Simulator (PS)

a)

S i 4 

S i 1 

S i 2 

S i 3 
b)

1 

1 

-1 

-1 

c)
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1 

Figure 12: a) A graph Si of the switching component. b) Initial configuration in Si. c) Final configuration in Si.

a)
f i 3 

f i 2 

f i 1 

f i 4 

b)

-1 

-1 

-1 

-1 

Figure 13: a) A graph F i of the fixed component. b) Initial configuration (fixed) of F i.

the Q2R network updated by the block sequential s′ = (B1) · · · (Bk), 1 < k ≤ n, correspond to k time steps of the
Q2R network G updated by the PS.

Furthermore, from a computational complexity standpoint, we shown that the problem of predicting whether the state
of a cell changes in t steps is P-Hard. It should be noted that such complexity is associated with the degree of vertices
in the bipartite graph. In fact, the one dimensional (finite) Q2R cellular automaton corresponds to the elementary
cellular automaton given by the rule 150 (which is defined by a XOR local function depending of the left, center and
right cells) defined over a ring. Since the latter global rule is a linear function (when considered as a function over
({0, 1},+, ·), where + is the XOR function and · is the AND function), it is possible to represent it as a Boolean
matrix (which coincides with the adjacency matrix of the graph). Thus, we can compute efficiently t time steps of the
dynamics (and in particular, the state of a cell) by simply computing the t-th power of this matrix. Nevertheless, the
computational complexity of this prediction problem in the two dimensional grid remains still open. In fact, even when
our wire, AND and OR gadgets can be implemented on such a grid, it is not possible to directly implement the cross
over gadget since it needs the XOR gadget, which in our construction, requires 8 neighbors. However, we observe that,
if the condition on the even degree of each vertex is relaxed, which is equivalent to consider freezing sites (remaining
fixed during the Q2R dynamics because odd degree implies no ties) then, smaller gadgets can be implemented. We
believe that in this case, a XOR gadget can be embedded in a subgraph of the two dimensional grid. Still, even if we
succeed on implementing that latter gadget, it is a very different problem far from the essence of the classical Q2R.
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Figure 14: The specific connections of the PS described in sections 6.1 and 6.2.
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