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ON THE COMPLEXITY OF LOCAL SEARCH
FOR THE TRAVELING SALESMAN PROBLEM*

CHRISTOS H. PAPADIMITRIOU AND KENNETH STEIGLITZ’I"

Abstract. It is shown that, unless P NP, local search algorithms for the traveling salesman
problem having polynomial time complexity per iteration will generate solutions arbitrarily far from
the optimal.
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1. Introduction. The traveling salesman problem (TSP) can be stated as
follows: given r cities and (r-1)r/2 nonnegative integers denoting the distances
between all pairs of cities, we are required to find a tour, that is, a closed path
passing through each city exactly once, so that the total traversed distance is
minimal. Despite the simplicity of its statement, the TSP is apparently a very hard
problem and has attracted a large number of researchers. Although no efficient
algorithm for its solution has been found (and no nontrivial lower bound of its
complexity has been proved) a number of different lines of attack have been
proposed. A class of heuristics known as local search algorithms [5], [6], [11], [12]
have been particularly successful in generating good solutions for large problems
by a reasonable computational effort. A local search algorithm (to be more
formally defined later) starts with an essentially random tour and, by searching a
set of tours which are considered "neighbors" of the former, either finds a
neighbor with improved cost and uses it as a new starting point or, if this is not
possible, terminates. The solution generated by this technique is called a local
optimum. Tours of minimum length are referred to as global optima. Local optima
may or may not necessarily be global optima, depending on the particular
neighborhood structure used by the algorithm. Local search algorithms generat-
ing only global optima are called exact.

We will be particularly interested in the complexity of the problem of
searching the neighborhood of a tour in order either to find an improvement or
show this tour to be a local optimum. By "complexity of local search" the above
mentioned complexity is understood--and not the complexity of the whole
algorithm, which heavily depends on the number of iterations necessary. In
particular we will examine the computational requirements of local search
algorithms for the TSP, when certain restrictions are imposed on the quality of the
obtained local optima.

The notion of a combinatorial optimization problem with a numerical input
(COPNI) is introduced. This class, which appears to be a restriction of the subset
problems discussed by [10], includes several well-known problems such as the
TSP and instances of the problem of job scheduling with deadlines (JSD). A
particular COPNI is exhibited in which the minimal exact neighborhood, although
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ON THE COMPLEXITY OF LOCAL SEARCH 77

exponential in size, can be searched in linear time. This counterexample shows
that the cardinality of the minimal exact neighborhood is not a lower bound for the
complexity of exact local search.

In fact, if the exact local search problem were of provably exponential
complexity, this would be a rather remarkable result, since exact local search for
the TSP is one of those tasks that are made very easy if nondeterministic
computations are permitted. In the light of this observation we can think of the
question, whether exact local search for the TSP can be done in a polynomial
amount of time per iteration, as a part of the presently unsettled P NP question.
In fact it is shown that, unless P NP, each iteration of an exact local search
algorithm for the TSP requires more than a polynomial number of steps.

A stronger result is also shown along the same lines. It is proved that, if a local
search algorithm requires only a polynomial amount of time per iteration, the
local optima thus obtained can be arbitrarily far from the optimum, unless, of
course, P NP. The above result suggests that a large class of efficient heuristics
[5], [6], [11], [12] yield local optima of no guaranteed accuracy whatsoever.

2. Combinatorial optimization problems with numerical input. The set of
nonnegative integers is denoted by Z+. For n Z/ we shall denote by r7 the set
{1,2,’." ,n}.

DEFINITION. A combinatorial optimization problem with numerical input
(COPNI) is a pair (n, F), where n e Z/ is the dimension of the problem and F, a
subset of 2’, is the set of feasible solutions. We will require that there exists at least
one feasible solution and that no feasible solution is properly contained in
another.

An instance of the COPNI (n, F) is a function (numerical input) c: ri -Z/. In
order to solve an instance c of the COPNI (n, F) we are required to find a feasible
solution f e F such that c(f) .rc(j) is minimal.

Note that the feasibility of a solution is not affected by the numerical input.
On the other hand the noncontainment requirement for the feasible solutions can
be easily seen to be equivalent to the condition, that for each f F there exists an
instance c for which f is uniquely optimal.

There is an interesting geometric interpretation of COPNI’s: every feasible
solution in F corresponds (in the obvious manner) to a vertex of the n-
dimensional hypercube. Hence the convex hull of these vertices is an equivalent
representation of the COPNI. Since an instance of the COPNI is essentially a
linear functional, it follows that solving an instance of a COPNI is equivalent to
minimizing a linear functional over the vertices of a convex polytope. For a further
discussion of this analogy, see [7].

(r) and with F beingExamples. The TSP with r cities is a COPNI with n
2

the set of all possible tours represented as sets of r intercity links.
The problem of job scheduling with deadlines (JSD) [4] is a COPNI. Here we

have a set ri of jobs and for each job ] ti we have the deadline Dj and the
execution time T.. A subsetf of r7 is feasible if all jobs in ti -f can be executed on a
single processor within their deadlines, and no subset of t7 properly containing
ri-f enjoys this property.

D
ow

nl
oa

de
d 

03
/2

0/
14

 to
 1

28
.1

12
.1

39
.1

95
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



78 CHRISTOS H. PAPADIMITRIOU AND KENNETH STEIGLITZ

In the case of JSD the values of c can be thought of as rewards obtained for
executing a job within its deadline, and our goal is to minimize the rewards lost. It
should be emphasized that, unlike the formulation in [4], the numbers {Dj} and
{T.} are not considered as a numerical input here.

The Steiner tree problem, the max flow problem, the minimal spanning tree
problem and many others can be formulated as COPNI’s.

DEFINITION. A neighborhood structure for the COPNI (n, F) is a function
N: F+ 21[

Informally, N assigns to each feasible solution f its neighborhood N(f). We
wlll also informally describe a local search algorithm for the COPNI (n, F) and the
neighborhood structure N as a deterministic algorithm with input (fo; c), where
fo F and c is an instance of (n, F). The algorithm is described below in terms of
the function IMPROVE (f, c) which, when invoked, returns some s N(f) such
that c(s)< c(f), if such an s exists, and returns ’no’ otherwise.

f:=fo;

while IMPROVE (f, c)--q= ’no’ do

f := IMPROVE (f, c);

return f

The output of this algorithm is called a local optimum with respect to N for
the instance c of (n, F). The performance of a local search algorithm depends on
the complexity of the function IMPROVE, the number of iterations (executions
of the while loop) and the quality of the local optima. The neighborhood structure
affects all the above factors. In particular N is exact if all local optima with respect
to N are also global optima. For example, if N(f)- F for all f F, N will be
trivially exact.

The following characterization has been adapted from [10]"
THEORE 1. In a COPNI (n,F) there exists a unique minimal exact

neighborhood structure given by

1Q(f) { s F: for some instance c, s is uniquely
optimal with f second to optimal

The exact nature of the map/Q for the case of the TSP is not known. In fact,
the results in [7] .suggest that there is no concise, algorithmic-oriented characteri-
zation of/Q for the TSP. However, the authors of [13] have shown that for an r city
TSP,/Q consists of sets of cardinality at least ((r- 2)/2)!. They continue by arguing
that the exponential size of N implies that exact enumerative local search for the
TSP must be inefficient. The following fact demonstrates that this argument is not
valid when nonenumerative (data-dependent) search is allowed:

FACT. There exists a COPNI (n, F) and an f Fsuch that N(f) is exponential
in size but can be searched in O(n time.

Proof. Consider the JSD with n odd, Di=(n-1)/2 for i-1, 2,..., n,
T1 (n 1)/2, and T. 1, f 2, 3, , n. The set of feasible solutions is

F={f}UF’,
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ON THE COMPLEXITY OF LOCAL SEARCH 79

where f={2, 3,..., n} and

F’={s subset of ri: 1 s and [sl =(n + 1)/2}.

Consider any s e F’. We can define an instance cs as follows

(N-3)/2 if ]=1,

cs(])= 0 if ]7=land]s,

1 otherwise.

It can be easily verified that, for this instance, s is uniquely optimal (with cost
(n 3)/2) with f second to optimal (cost (n 1)/2):,Hence by Theorem 1, s e (f)
and consequently (f)= F’. The cardinality of N(f) is approximately equal to
.8n-1/22n.

Yet for any instance c, (f) can be searched in linear time. To see this, let t be
the set of jobs in {2, 3, , n} having the (n 1)/2 largest costs. The optimum is
either f or ri- t,depending on whether or not jtc(])<c(1). Consequently in
order to search N(f) we only need to find the (n 1)/2 jobs in {2, 3,. ., n} having
the largest cost, and compare the sum of their costs to c (1). But this can be done in
O(n) time by using the median algorithm of [2]. [3

The idea behind this counterexample is that the minimal exact neighborhood
is a.data-independent set, whereas data can be used very efficiently in order to
facilitate its search. As we will see in the next section there is little hope that
something similar can be done in the case of the TSP.

3. The complexity of exact and approximate local search. For the purpose of
relating the complexity of local search to the P NP question, we now show
certain related languages to be NP-complete. We assume the existence of a
function e mapping graphs, digraphs, paths, TSP tours and instances to strings in
(0, 1)*. A wide variety of "reasonable" encodings wouldsuffice for our purposes.

DEFINITION. Let V be the set of nodes of a graph (V, E) (resp. a digraph
(V, E’)) and let (v 1, v2, v n) be a permutation of V such that (v , v +a) is an
edge (resp. a directed edge) for 1, 2,..., n- 1. If (v , vx) is an edge (resp.
directed edge), then (Vl, ", v, v) is an undirected Hamiltonian circuit (UHC)
(resp. directed Hamiltonian circuit (DHC)). Otherwise, if (v, v a) is not an edge
(resp. directed edge) then (v , , v") is an undirected Hamiltonian path (UHP)
(resp. directed Hamiltonian path (DHP)). Note that, by the above definition, no
part of a Hamiltonian circuit is a Hamiltonian path.

In [4] the problems of determining whether a given graph (directed or
undirected) has a Hamiltonian circuit are shown to be NP-complete. We show that
they remain NP-complete even if a serious restriction is imposed on their
domains. In particular one would expect that the search for a Hamiltonian circuit
in a graph would be facilitated considerably, if we were given a Hamiltonian path.
The next two theorems suggest that this is not the case.

The restricted directed Hamiltonian circuit problem is the recognition prob-
lem for the following language:

RDHC {e(G); e(P):P is a DHP in G and G has a DHC}.
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80 CHRISTOS H. PAPADIMITRIOU AND KENNETH STEIGLITZ

v,

V
FIG. 1 The digraph H

THEOREM 2. RDHC is NP-complete.
For the proof of Theorem 2, the following lemma is needed"
LEMMA. Let the digraph H (shown in Fig. 1) be a subgraph of a digraph G,

such thatedges ofG HenterHonly at Vl or 123 and leaveHatv4 or v6 only. Then, if
G has a DHC C, one ofthepaths (vl, v3, rE, Vs, v4, v6) or (v3, v6, v5, v2, vl, v4) is a
part of C.

ProofofLemma. Let C enter H at Vl. Then for some node u of G-Hone of
the following six paths is a part of C:

1. (v, 124, U),
2. (v, 124, 126, U),
3. (121, 123, 126,

4. (vx, v3, vz, v5, 124, U),
5. (121, 123, 126, 125, V4, U),
6. (v, v3, v2, vs, 124, 126, U).
In the first five cases it can be easily verified that there is no way for C to pass

through the unvisited nodes of H, contrary to our assumption that C is Hamilto-
nian. Consequently if C enters H at va, (Vl, v3, v2, v5, v4, v6) is a part of C. If C
enters H at v3, then, again, for some node u of G-H one of the following seven
paths is a part of C:

1. (v3, vz, 121, 124, U),
2. (v3, Vz, v, v4, 126, U),

4. (v3, vz, v5, v4, 126,

5. (123, 126, b/),
6. (v3, 126, 125, 124,

Again, if one of the first six paths is indeed a part of C, C cannot visit the
remaining nodes of H. Hence if C enters H at v3, (v3, v6, vs, vz, vl, v4) is a part of
C, which completes the proof of th lemma.
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ON THE COMPLEXITY OF LOCAL SEARCH 81

ProofofTheorem 2. We reduce the DHC problem to RDHC. Let G (V, E)
be an instance of the DHCproblem. We will construct a digraph G’ (V’, E’) with
a DHP P, such that G’ has a DHC iff G has a DHC.

We let V={v 1, v2, v n} and V’={v, v,... v, v,... v}. For each
j _-< n we connect the nodes {V/l, v, , v} as {vl, v2, , v6} are connected inH,
and we call the resulting subgraph Hi. Moreover for each edge (v i, v) E we add
the edge (v g6, v) toE We also addtheedges (v4, v 1, 2, n- 1, toE’.

Obviously G’ has a DHP, namely P= (v, v, v, v, v, v, v], v,.",
vT, v]). Moreover if G has a DHC (W 1, W 2, W 3, W n, wl), then G’ also has a
DHC, namely (w, w3, w, w, w4, w, w,-.., w6, w).

Conversely, suppose that G’ has a DHC C. Suppose that for some i, C enters
v i) is a part of C. Since v +1 is the onlyH at v3. By the lemma, (v3 6 5 V2 1

+1.node in G’-H which succeeds v, it follows that C will enterHg+x
at v Hence

the same argument can be applied to Hg+. Inductively, we can assume that C
enters H" at v3. By the lemma, (v "3, v 6," v ", v, v 1, v) will be a part of C But there
is no node in G-H which succeeds v. Consequently C is not a DHC as
supposed.

From the above contradiction we .deduce, that for no n will C enter H at
v3, and hence C is equal to (w, w, w, w,..., w6, w) for some DHC
(w, w,. , w,, Wx) of G. Consequently G has a DHC iff G’ has a DHC, and the
proof is completed. (The straightfoard verification of the facts that the problem
is in NP and that the reduction is a polynomial-time one has been omitted). 3

Similarly we define the restricted undirected Hamiltonian circuit problem to
be the recognition problem of the language

RUHC {e (G); e (P) P is a UHP in G and G has an UHC}.

THEOREM 3. RUHC is NP-complete.
Proof. We reduce the RDHC to it. The construction is identical to the one

used in the proof of the NP-completeness of the ordinary UHC problem 1], [4]. It
is an elementary observation that the construction preserves the existence of a
Hamiltonian path. [-1

An interesting side problem of the TSP is the following: given an instance c
and an edge (i, j), does (i, ]) appear in some optimal tour? This problem is also
NP-complete. To show this, we define the language

M= e(c); e(i, f)" the edge (i, f) does not appear in any ]
optimal tour of the instance c of the TSPJ"

THEOREM 4. M is NP-complete.
Proof. We reduce the RUHC to it. Let (G; P) be an instance of the RUHC,

where P (wl, w2, , wn) is a UHP. Let c be an instance of the TSP such that
c(wi, wj)= 2 if (wi, wi) is not an edge of G, and c(wi, wi)= 1 otherwise. If
(G, P) RUHC, then G has a UHC and hence (wl, wn) (which, by definition of a
UHP, corresponds to a missing edge of G) will not appear in any optimal tour of c.
Conversely, if (Wx, w,) does not appear in any optimal tour of c, then the tour
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82 CHRISTOS H. PAPADIMITRIOU AND KENNETH STEIGLITZ

corresponding to P is suboptimal and hence G has a UHC. Consequently
(c, (i, j)) M iff (G, P) RUHC. E]

We now define the following language"

Lo {e (c); e (f) f is a suboptimal tour for the instance c}.

It can be argued that Lo adequately captures the complexity per iteration of
the exact local search problem for the TSP, since the recognition problem for Lo
can be solved by one call of the function IMPROVE (c, f) of any exact local search
algorithm. Hence the following result suggests that exact local search for the TSP
could require iterations of complexity more than polynomial"

THEOREM 5. Lo is NP-complete.
Proof. We reduce RUHC to it. Let (G (V,.E); P) be an instance of the

RUHC problem. Let c be an instance of the TSP with ]VI cities, such that
c(v, u) 1 if (v, u) E and c(v, u) 2 otherwise. Let f be the tour corresponding
to the path P. Then (G, P) RUHC if[ (c, f) .Lo.

Let e be any positive real number, and c an instance of the COPNI (n, F),
with optimal feasible solution s. A feasible solution f F is called e-approximate
[9] if (c(f)-c(s))/c(s) <-_ e. Otherwise f is called e-suboptimal. In a similar way to
Lo, the following language is defined for e > 0:

L {e (c); e(f): f is an e-suboptimal tour for the instance c}.

THEOREM 6. L is NP-complete for all e > O.
Proof. Let (G (V, E), P) be an instance of the RUHCproblem. Let c be the

instance of the IVI-city TSP with c(v, u)= 1 if (v, u)E and c(v, u) 2+lv[e
otherwise, f is again the tour corresponding to P. It can be easily seen that
(G,P)6RUHC if[ (c,f)6L. [3

We say that a local search algorithm is e-approximate if all local optima
produced by this algorithm are e-approximate. The following theorem suggests
that local search algorithms for the TSP with iterations requiring only a polyno-
mial amount of time (such as the ones proposed by [5], [6], [11], [12]) will yield
local optima of no guaranteed accuracy.

THEOREM 7. IfP NP, local search algorithms havingpolynomial complex-
ity per iteration cannot be e-approximate for any e > O.

Proof. It suffices to show how, by using the function IMPROVE of an
e-approximate local search algorithm, we can solve the RUHC problem. Given
an instance (G V, E), P) of this problem, we construct, as before, the instance c
of the VI-city TSP with c(u, v) 1 if (u, v) E, and c(u, v) 2 /lvl otherwise,
and f, the tour corresponding to the Hamiltonian path P. f has cost VI(1 + e) +
1; moreover there is no tour of better cost, unless G has a UHC. Hence
(G, P) RUHC iff IMPROVE (f, c) # ’no’. E]

It should be emphasized that Theorem 7 and its implications are valid when
no additional restrictions are imposed on the instances of the TSP considered. For
example, if a "natural" constraintmthe triangle inequalitymholds among the
intercity distances, there are polynomial-time algorithms (not necessarily of
iterative nature) yielding 1-approximate [8] and 1/2-approximate [3] solutions.
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