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ABSTRACT

In [3], we introduced a framework for querying and updating
probabilistic information over unordered labeled trees, the
probabilistic tree model. The data model is based on trees
where nodes are annotated with conjunctions of probabilis-
tic event variables. We briefly described an implementation
and scenarios of usage. We develop here a mathematical
foundation for this model. In particular, we present com-
plexity results. We identify a very large class of queries for
which simple variations of querying and updating algorithms
from [3] compute the correct answer. A main contribution
is a full complexity analysis of queries and updates. We also
exhibit a decision procedure for the equivalence of proba-
bilistic trees and prove it is in co-rp. Furthermore, we study
the issue of removing less probable possible worlds, and that
of validating a probabilistic tree against a DTD. We show
that these two problems are intractable in the most general
case.

Categories and Subject Descriptors

F.2.0 [Analysis of Algorithms and Problem Complex-

ity]: General; H.2.1 [Database Management]: Logical
Design

General Terms

Algorithms, Theory

Keywords

XML, probabilistic databases, semi-structured databases,
complexity

1. INTRODUCTION
Many automatic tasks generate imprecise data, e.g., infor-

mation extraction, natural language processing, data min-
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ing. Moreover, in many of these tasks, information is rep-
resented in a semi-structured way, either because of an in-
herent tree-like structure of the original information, or be-
cause it is natural to represent the derived knowledge in a
hierarchical manner. We thus need the means to manage im-
precise tree information gathered by the system during its
entire life, and in particular evaluate queries and imprecise
updates over such data. In [3], we introduced a probabilistic
tree model for managing imprecise tree data1. A main issue
is the tractability of such a model. In this paper, we discuss
theoretical aspects of the probabilistic tree model, focusing
on complexity issues.

The original motivation of the present work will best il-
lustrate how such issues naturally arise and the nature of
the problem. We are interested in discovering resources in
the Web and more particularly in the Hidden Web. When
we discover a new data source, we have to understand its
semantics for future use. This leads to some analysis of the
source (classification, extraction, semantic tagging, linguis-
tic tools, etc.) that is by nature imprecise. We represent the
information (knowledge) we extract in an XML warehouse.
The various tools interact with the warehouse via updates
and queries. The updates introduce imprecision. The inter-
ested reader can find in [2] a short description of the project.
Updating and querying imprecise data is at its core, which
motivated the present paper.

To model imprecise data, we use the probabilistic tree
model introduced in [3]. The purpose was to design a model
for storing imprecise information, which was both expressive
and concise. Probabilistic trees are unordered trees whose
nodes are annotated by conjunctions of (possibly negated)
event variables, in the style of conditions in [12]. Each event
variable is assigned a probability value. In particular, every
probabilistic update introduces a new event variable (inde-
pendent from the previous ones) that captures the belief the
system has in this particular update. The description of an
implementation and scenarios of usage of such a model can
be found in [3], where we also show that it is as expressive
as the extensive description of all possible worlds.

We identify a large class of queries for which simple varia-
tions of querying and updating algorithms from [3] compute
the correct answer, by using evaluation algorithms devel-
oped for precise data. A main contribution of the paper
is a precise complexity analysis of queries and updates for
probabilistic trees. A large class of queries can be evaluated

1In [3], we referred to it as the fuzzy tree model; we changed
the terminology here at the request of the reviewers, in order
to avoid confusion with works on fuzzy databases.



in ptime. For updates, deletion may be intractable. (Ob-
serve that in settings we are interested in, based on tools
gathering knowledge, deletions are rare.) We also propose
a theoretical foundation for the probabilistic tree model. In
particular, we obtain results on the equivalence of proba-
bilistic trees, which can be determined in polynomial time
with a probabilistic algorithm. We also study the issue of
removing less probable possible worlds, and that of validat-
ing a probabilistic tree against a DTD. We show that these
two problems are intractable in the most general case.

Section 2 presents the probabilistic tree model, recalling
definitions and results from [3]. It also introduces new ma-
terial, in particular about the complexity of queries and up-
dates. In Section 3, a notion of equivalence between two
probabilistic trees is introduced, and its complexity is inves-
tigated. Other issues are investigated in Section 4. Variants
of the probabilistic tree model are discussed in Section 5.
Finally, the conclusion in Section 6 includes some related
works. Appendix A contains technical details about updates
that are not needed to follow the paper.

2. THE PROBABILISTIC TREE MODEL
In this section, we present the basics of the probabilis-

tic tree model. Most of the definitions are from [3], with
some minor changes of notation. Some new material is also
included. In particular, Propositions 1 and 2 are new; Theo-
rem 1 is an extension of Theorem 2 from [3] to a much more
general class of queries.

We first introduce a tree data model and next, the prob-
abilistic tree model.

Definition 1. A data tree t is a 4-tuple t = (A,E, r, ϕ)
where A is a finite set of nodes, E ⊆ A2 a tree rooted in
r ∈ A and ϕ associates a label from some countable set (say,
the set of character strings) to each node in A.

Let t = (A,E, r, ϕ) and t′ = (A′, E′, r′, ϕ′) be two data
trees. We say that t and t′ are isomorphic (denoted t ∼ t′)
if there is a bijection ψ : A→ A′ such that:

(i) For s1, s2 ∈ A, (s1, s2) ∈ E ⇔ (ψ(s1), ψ(s2)) ∈ E′;
(ii) ψ(r) = r′;
(iii) ∀s ∈ A, ϕ′(ψ(s)) = ϕ(s).

The simple data model we use is inspired by XML but
ignores a number of XML features such as the ordering, the
distinction between attributes, labels and text. It should
be observed that it adopts a multi-set semantics. To see
that, consider for instance a data tree with a root node and
two children with the same label. We see it essentially as
different from a data tree with a root node and a single child
with the same label. A model based on a pure set semantics
is briefly considered in Section 5.

Syntax of Probabilistic Trees. We next present the proba-
bilistic tree model for representing probabilistic semi-struct-
ured information, that is based on annotating the nodes of
a tree with probabilistic conditions in the style of the con-
ditions in [12].

We assume the existence of a countable set W of event
variables. Let W be a finite set of event variables. A condi-
tion over W is a (possibly empty) set of atomic conditions
of the form w or ¬w (for w in W ). This set can also be
seen as a conjunction of these atomic conditions. A proba-
bility distribution π for W assigns probabilities, i.e., values
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Event Proba.
w1 0.8
w2 0.7

Figure 1: Example probabilistic tree

in ]0; 1], to the different event variables in W . We choose
not to allow zero probabilities so that, in particular, updates
with a zero probability will not be performed at all. But this
is only a convention and could be changed without altering
the results presented here. Formally, we have:

Definition 2. A probabilistic tree (abbreviated as prob-
tree) T is a 4-tuple (t,W, π, γ) where t = (A,E, r, ϕ) is a
data tree,W ⊆ W is finite, π is some probability distribution
overW , and γ assigns conditions overW to nodes in A−{r}.

An example of prob-tree is given in Figure 1. We now
define the semantics of a prob-tree, introducing to do that,
the notion of Possible World set.

Semantics of Probabilistic Trees. The real world with
some uncertainty is modeled by a set of possible worlds, each
with its own probability. More precisely, a possible world
(PW) set S is a finite set of pairs (ti, pi) where (i) the ti
are data trees with the same root label, and (ii) each pi is
a positive real number with

Pn
i=1 pi = 1. An example of a

PW set is shown in Figure 2.
As different PW sets may represent the same abstract

possible worlds, we need a notion of isomorphism between
possible world sets. Let S = {(t1, p1) . . . (tn, pn)} and S′ =
{(t′1, p

′
1) . . . (t

′
m, p

′
m)} be two possible world sets. We say

that S and S′ are isomorphic (denoted S ∼ S′) if, for all
data tree t appearing either in S or in S′:

X

16i6n
ti∼t

pi =
X

16j6m

t′j∼t

p′j

This allows defining the notion of normalization of PW
sets: A PW is normalized if it does not contain two possible
worlds with isomorphic data trees. Every PW set can be
normalized by assigning as the probability of each possible
world the sum of the probabilities of possible worlds with
isomorphic data trees.

We sometimes want to study subsets of PW sets. Observe
that in such a subset the sum of the probabilities is not one.
Such a subset arises naturally if we start from a PW set and
introduce some additional integrity constraints that rule out
some of the possible worlds. Another way to think about
it is to cumulate the probabilities that were lost (those of
the trees violating the constraint) and assign them to the
tree consisting simply of a root. In other words, this comes
down to interpreting the root-tree as inconsistent. With
this in mind, we can see a subset of a possible world set as
a possible world set as follows:
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Figure 2: Example Possible World set

Definition 3. Let S = {(t1, p1) . . . (tn, pn)} be a strict
subset of a PW set. Let p =

P

16i6n pi < 1 and t the data
tree consisting of a single node with the same label as root
nodes in ti. By extension, we say that S is isomorphic to
the possible world set S ∪ {(t, 1 − p)}, and we note S ∼sub

S ∪ {(t, 1 − p)}.

We are now ready to define the semantics of probabilistic
trees in terms of possible worlds:

Definition 4. Let T = (t,W, π, γ) be a prob-tree. For
V ⊆W , the value of T in the world V , denoted V (T ), is the
subtree of t where all nodes conditioned by a ‘¬w’ atom for
w ∈ V or by a ‘w’ atom for w /∈ V have been removed (as
well as their descendants). The possible world semantics of
T , denoted JT K, is the PW set defined by:

JT K =
[

V⊆W

˘`

V (T ),
Y

w∈V

π(w)
Y

w∈W−V

(1 − π(w))
´¯

In particular, the PW set shown in Figure 2 is (up to
isomorphism) the semantics of the prob-tree of Figure 1.
A result from [3] is that the probabilistic tree model has
the same expressive power as the possible worlds model.
More precisely, for each PW set S, there exists a prob-tree T
such that S ∼ JT K. The (quite straightforward) construction
of this prob-tree uses as many event variables as there are
possible worlds in S. Thus, the size of the resulting prob-
tree is essentially the size of the original PW set. One could
clearly hope to find more compact representations.

In order to guarantee conciseness of the probabilistic tree
model, we may want to have a polynomial bound on the
size of prob-trees whose semantics only involve data trees of
bounded size (and with probabilities of bounded precision).
A model with such a polynomial bound, the so-called simple
probabilistic model, is presented in [3], but it is shown to be
less expressive than the PW model. Actually, the following
new result shows that neither the probabilistic tree model,
nor any other model as expressive as the PW model, can
guarantee such a bound:

Proposition 1. Let M be a one-to-one mapping send-
ing every normalized possible world set (with probabilities of
bounded precision) to some integer (say, a binary represen-
tation of an element of a model). Then, the average size
of M(S) (that is, logM(S)) for PW sets S in which every
possible world has at most n nodes is at least exponential
in n.

Proof. This results from a simple counting of the num-
ber of possible world sets involving only possible worlds with
at most n nodes. Let us call this number σn. If we forget
about the values of the probabilities and the labels of the
nodes, we get that σn must be greater than the number of
sets of unordered, unlabeled, rooted trees with at most n
nodes. We have the following equality about the number an
of unordered, unlabeled, rooted trees with exactly n nodes
[15, 13]:

an =
αn−1

n

p

β/2πn+O(n−5/2αn)

where α > 2 and β are two constants. We have therefore:

σn > 2
Pn

i=1 an > 2an > Ω(22n

)

Since σn is doubly exponential in n, an element of M(S)
cannot be identified on average with less than Ω(2n) bits.

Queries and Updates.
We now look at the way to perform both queries and up-

dates on prob-trees. The first step is to define more precisely
the type of queries we consider. The goal is to be able to
evaluate efficiently query answers. Indeed, in practice, one
would ideally like to rely on a standard query processor to
do most of the work. In [3], some efficient query process-
ing was exhibited for the class of tree-pattern queries with
joins. After extending these results in a number of direc-
tions, we realized that a similar approach can be followed
for the following very large class of queries, namely the lo-
cally monotone queries. To define it, we need the auxiliary
notion of sub-datatree. Note that we only consider subtrees
which have the same root as the original trees, obtained by
pruning some of its branches.

Definition 5. Let t = (A,E, r, ϕ), t′ = (A′, E′, r′, ϕ′)
be two data trees. t′ is a sub-datatree of t (denoted t′ 6 t)
if: (i) A′ ⊆ A; (ii) if n1 ∈ A′ and (n2, n1) ∈ E, n2 ∈ A′;
(iii) E′ = E ∩A′2; (iv) r′ = r; (v) ϕ′ = ϕ|A′ . The set of all
sub-datatrees of a data tree t is denoted Sub(t).

The sub-datatree relation is clearly a partial order, which
justifies the notation t′ 6 t.

The queries we consider return subtrees of the data tree.
This greatly simplifies the management of probabilities: In-
tuitively, we return pieces of the original tree, but always
keep the path from these pieces to the root. This notion is
defined formally next, together with the large class of queries
for which we will be able to generalize the query evaluation
algorithm of [3].

Definition 6. A query Q is a function over the set of
data trees, such that for each data tree t, Q(t) is a (possibly
empty) set of sub-datatrees of t.

A query Q is locally monotone if either of the following
two equivalent conditions holds:

(i) for any three data trees u 6 t′ 6 t, u ∈ Q(t) ⇐⇒ u ∈
Q(t′)

(ii) for any two data trees t′ 6 t, Q(t′) = Q(t) ∩ Sub(t′)

Locally monotone queries are precisely the queries for
which, given an algorithm to compute the query on data
trees, we can compute easily the answers on a prob-tree.



A large class of queries are locally monotone, including tree-
pattern queries with joins (which was the framework of [3]),
but excluding negative queries. We now present the way
queries are defined on PW sets and prob-trees, and state
that these two definitions are consistent.

Definition 7. Let Q be a query and S = {(ti, pi)} a PW
set. The result of Q for S, denoted Q(S), is

[

(ti,pi)∈S

[

t∈Q(ti)

{(t, pi)}

Observe that the answer to a query is not strictly speaking
a possible world set, since the probabilities do not sum to
1. To obtain one, one might group all the answers for the
same ti under a common root node.

Definition 8. Let Q be a locally monotone query. The
result of Q on a prob-tree T = (t,W, π, γ), denoted Q(T ), is

[

u∈Q(t)

˘`

u, eval
`

[

n node of u

γ(n)
´´¯

where eval(cond) returns 0 if there is an event w such that
both ‘w’ and ‘¬w’ are in cond, and is otherwise defined as:

Y

w∈cond

π(w) ·
Y

¬w∈cond

(1 − π(w))

The following result states the consistence between the
way queries are performed on prob-trees and the possible
world semantics.

Theorem 1. Let T be a prob-tree and Q be a locally
monotone query. Then, with a little abuse of notation since
the probabilities in Q(T ) and Q(JT K) do not sum to 1, we
have Q(T ) ∼ Q(JT K).

Proof. Let Q(T ) = {(u1, p1) . . . (un, pn)} and Q(T ′) =
{(u′

1, p
′
1) . . . (u

′
m, p

′
m)}. For a data tree u, the proof is done

in two steps:
1. If u appears in Q(T ), u appears in Q(JT K) and

X

16i6n
ui∼u

pi 6
X

16j6m

u′

j∼u

p′j

2. If u appears in Q(JT K), u appears in Q(T ) and
X

16i6n
ui∼u

pi >
X

16j6m

u′

j∼u

p′j

Both steps are technical but not complicated.

We have similar results for updates. For simplicity, we
only consider here elementary operations (insertions and
deletions); see [3] for the extension to simultaneous arbi-
trary sets of insertions and deletions. Typically, one wants
to perform an update operation based on the result of a
query. An insertion will add to a data tree some subtree at
positions specified by a query. A deletion will delete from
a tree all nodes at positions specified by a query. It is easy
enough to extend this notion of insertions and deletions to
PW sets: The probabilistic updates, built from an update
operation and a probability value, which is the confidence
in the update operation, are simply performed on each pos-
sible world. We showed in [3] how to perform updates on

prob-trees in a consistent way with the possible world se-
mantics. To facilitate the reading of the paper, technical
details about updates are relegated to Appendix A.

In what follows, we assume given a locally monotone query
language Lq and an algorithm to answer queries over trees
that are “lifted” to queries/updates over prob-trees. We next
analyze the complexity of the algorithms for querying and
updating prob-trees. Observe that in the following proposi-
tion, the complexity of the operations on prob-trees is stated
in terms of the complexity of the corresponding operation
on data trees. So, for instance, since the data complex-
ity of tree-pattern queries with join is ptime, an immedi-
ate consequence of the proposition is that over prob-trees,
it is also ptime. More precisely, let | · | denote the size
(number of nodes, of literals) of a prob-tree (or of a set
of possible worlds), and time denotes the time it takes to
evaluate the query or operation. Then the complexity of the
algorithms presented for querying and updating, that is, an
upper bound on the complexity of the associated problems
(based on an algorithm to answer Lq queries), is as follows:

Proposition 2. Let T be a probabilistic tree with under-
lying data tree t. Let Q be a query over T , and iQ and dQ
be respectively an insertion and deletion on T , with Q as
defining query.

time(Q(T )) 6 time(Q(t)) +O(|Q(t)| · |T |)
time(iQ(T )) 6 time(Q(T )) +O(|Q(t)| · |T |)
|iQ(T )| 6 |T | +O(|Q(t)| · |T |)

time(dQ(T )) 6 time(Q(T )) +O(|Q(t) · 2|T |)

|dQ(T )| 6 |T | +O(|Q(t)| · 2|T |)

Proof. These follow from the analysis of the evaluation
algorithms and from the definitions. The combinatorial ex-
plosion of deletions happens when a query has multiple re-
sults (essentially because, in this case, we need to express
the negation of a disjunction of conjunctions in terms of a
disjunction of conjunctions), and as we shall see in Theo-
rem 3, this complexity is inherent to the problem of deletion
in prob-trees.

3. EQUIVALENCE OF PROB-TREES
One defines the notion of equivalence between prob-trees

directly based on data tree isomorphism. It essentially states
that two prob-trees talk about the same event variables and
that for each assignment of values to the event variables,
they define the same possible world.

Definition 9. Let T = (t,W, π, γ), T ′ = (t′,W, π, γ′) be
two prob-trees (over the same event variables and distribu-
tion). Then T and T ′ are structurally equivalent (denoted
T ≡struct T

′) if for each V ⊆W,V (T ) ∼ V (T ′).

Note that an alternative definition of equivalence of prob-
trees, based on their possible world semantics, is discussed
in Section 5. We have a simple complexity upper bound
about structural equivalence:

Proposition 3. Determining if two prob-trees (over the
same event variables and distribution) are structurally equiv-
alent is co-np.

Proof. The complement of this problem can be solved
with the following np algorithm:



INPUT: two prob-trees T1 and T2 on the same
event variable set W and with the same probability
distribution π
OUTPUT: true if T1 6≡struct T2

(a) Guess a subset V of W .
(b) Compute V (T1) and V (T2) in linear time.
(c) If V (T1) 6∼ V (T2), return true. (Isomorphism

of labeled unordered data trees can be deter-
mined in linear time, cf [4] and the algorithm
in the proof of Theorem 2.)

We will also show a more precise result in Theorem 2, that
this problem is co-rp [16]. To do it, we will use some bridge
to (i) the number of disjuncts satisfied by valuations of DNF
formulas and (ii) multivariate polynomials.

Definition 10. Let ψ and ψ′ be two propositional for-
mulas in disjunctive normal form. We say that ψ and ψ′

are count-equivalent, denoted ψ
+

≡ ψ′, if, for any valuation ν
of the variables appearing in ψ and ψ′, the same number of
disjuncts is satisfied by ν in ψ and in ψ′.

We note that this is a stronger notion than simple propo-
sitional formula equivalence. For instance, the formulas
A∨ (A∧B) and A are equivalent but not count-equivalent.
We indicate next how we can relate count-equivalence of
formulas in DNF with equality of multivariate polynomials.

Definition 11. Let ψ be a propositional formula in dis-
junctive normal form, over variables X1 . . . Xn. Let ψ′ be
a formula in DNF obtained from ψ by removing every dis-
junct containing incompatible atomic conditions or False,
and by removing duplicate atomic conditions from each dis-
junct and True from conjunctions with other literals. The
characteristic polynomial of ψ, denoted Pψ, is the multivari-
ate polynomial in X1 . . . Xn with integer coefficients, ob-
tained from ψ′ in the following manner: (i) Positive literals
Xi are left as is. (ii) Negative literals ¬Xi are replaced by
(1−Xi). (iii) Disjunction is replaced by addition. (iv) Con-
junction is replaced by multiplication. (v) True is replaced
by 1 and False by 0.

Lemma 1. Let ψ and ψ′ be two propositional formulas

in disjunctive normal form. Then, ψ
+

≡ ψ′ if and only if
Pψ = Pψ′ .

Proof. One direction is obvious, i.e., if Pψ = Pψ′ then

ψ
+

≡ ψ′. For that, just observe that the number of conjuncts
satisfied by some valuation ν in ψ is the value of Pψ for this
valuation. Now to consider the converse, first observe that
Pψ and Pψ′ are polynomials with degree at most 1 in every
variable (this comes from the normalization of the formula in

DNF used in Definition 11). Suppose that ψ
+

≡ ψ′. Consider
the development of Pψ:

Pψ(X1 . . . Xn) =
X

V⊆J1;nK

αV
Y

i∈V

Xi

and similarly for Pψ′ with coefficients α′
V .

We have, for each tuple (x1 . . . xn) of {0, 1}n,

Pψ(x1 . . . xn) = Pψ′(x1 . . . xn),

that is to say,

X

U⊆{i|xi=1}

αU =
X

U⊆{i|xi=1}

α′
U .

We can then prove by induction on the cardinality of V that
this implies that ∀V ⊆ J1;nK, αV = α′

V , which means that
Pψ = Pψ′ .

One can “clean” a probabilistic tree by removing (in linear
time) superfluous atomic conditions, i.e., conditions implied
by some condition on an ancestor; and pruning nodes with
inconsistent conditions, i.e., conditions that are intrinsically
inconsistent or that contradict condition imposed by an an-
cestor. We call such trees clean prob-trees. The following
result gives an inductive definition of structural equivalence
on clean prob-trees; the proof is straightforward.

Lemma 2. Let T = (t,W, π, γ) and T ′ = (t′,W, π, γ′) be
two clean prob-trees (over the same event variables and prob-
ability distribution).

Let u1 . . . un be representative elements of the n equiva-
lence classes implied by structural equivalence over the sub-
trees of T and T ′ rooted at each child node of the root of T
and T ′, the condition on the root of which has been removed.
For 1 6 i 6 n, let ψi be the disjunction of the conditions
attached to the children of the root of T whose subtree is
structurally equivalent to ui, and let ψ′

i be the same for T ′.
Then, T ≡struct T

′ if and only if ϕ(r) = ϕ(r′) and, for

each 1 6 i 6 n, ψi
+

≡ ψ′
i.

This leads to our main result on structural equivalence:

Theorem 2. There is a ptime algorithm, that, given two
prob-trees, always returns true if the prob-trees are struc-
turally equivalent and returns false if the prob-trees are not
structurally equivalent with probability at least 1/2 (that is,
determining if two prob-trees are equivalent is a co-rp prob-
lem [16]).

Proof. The algorithm relies on Lemmas 1 and 2, and
uses an algorithm derived from a classical algorithm for
labeled tree isomorphism from [4]. Moreover, we use the
Schwartz-Zippel Lemma [17, 20], which states that the prob-
ability that a multivariate polynomial of degree d is zero on
a point each coordinate of which is randomly chosen in some
finite set S is d/|S|.

The algorithm is presented in Figure 3. We have the fol-
lowing lower bound for the probability that this algorithm is

correct when it returns false:
“

1 −
“

Nl
|S|

”m”N3
n
, where Nl

is the number of literals of T and T ′, and Nn the number
of nodes. This probability is greater than 1/2 as soon as m

and S are chosen such that |S| >
Nl

m
q

1−(1/2)1/N3
n

.

Observe that determining whether a prob-tree is indepen-
dent of some event variable is actually computationally as
complex as deciding equivalence between prob-trees. In-
deed, if T and T ′ are two prob-trees, determining if T is
structurally equivalent to T ′ can be done by determining if
the following tree is independent of w (a fresh variable):



INPUT: two prob-trees T and T ′, a finite set S of integers, a positive integer m
OUTPUT: true if T ≡struct T

′; false if T 6≡struct T
′ with probability 1/2

(a) Clean T and T ′.
(b) Assign to all leaves of T and T ′ with the same label a fresh integer i (and do not assign the same

integer to two leaves with different labels).
(c) Assume inductively that all nodes of T and T ′ at a distance at most k from the leaves have been

assigned an integer. For each pair (n, n′) where n (resp. n′) is a node of T (resp. T ′) at distance k+ 1
from the leaves, and n and n′ have the same label:

(i) Compute the sets A and A′ of the integers assigned to the children of n and n′.
(ii) If A = A′, for each element i of A, compute the formulas in DNF ψi and ψ′

i corresponding to
the conditions on the children of n and n′ assigned with i. Choose at random m points of Sp,
where p is the number of variables of Pψi − Pψ′

i
, and evaluate this polynomial in these points. If

all these evaluations return 0 for each i of A, assign the same integer value to n and n′ (if one
of them is already assigned an integer, take this integer as the assigned value for the other one,
possibly doing some merging of values; otherwise, take a fresh integer).

(d) Assign fresh integers to nodes at distance k+1 from the leaves with no assigned integer, and go to the
previous step with the next value of k.

(e) If the roots have been been assigned the same integer, then return true else return false.

Figure 3: Probabilistic algorithm for structural equivalence

A

T

w

T ′

¬w

4. OTHER ISSUES ABOUT PROB-TREES
In this section, we consider three natural problems about

probabilistic trees that all highlight some inherent complex-
ity in dealing with imprecise data. First we show that some
deletion may cause a combinatorial explosion. We then
prove that similar phenomena arise when we try to restrict
the possible worlds (i) to have at least a threshold proba-
bility and (ii) to be valid with respect to some DTD. The
proofs are very similar.

Deletions. First we consider deletion. In this part, we will
assume that our query language is expressive enough to ex-
press the following deletion: d0 = “If the root has a C-child,
then delete all B-children of the root.” (this is not a strong
assumption, since it is for instance the case with simple tree
pattern queries).

Theorem 3. For all n ∈ N, there exists a prob-tree T , of
size O(n), such that for each prob-tree T ′ such that T ′ ≡struct

d0(T ), the size of T ′ is Ω(2n).

Proof. Consider the following prob-tree T , which has
n + 2 nodes and 2n event variables, each appearing only
once (we take an arbitrary probability distribution π, say
π(n) = 1/2 for all n):

A

B C

w
(0)
1 , w

(1)
1

. . . C

w
(0)
n , w

(1)
n

Let T ′ be a prob-tree such that T ′ ≡struct d0(T ). We
assume that the deletion has a confidence of 1 (that is, it
does not introduce a new event variable).
T ′ is necessarily some prob-tree of height 1 with root node

A, and with a number of B and C children. Let Ψ be the set
of conditions annotating nodes labeled by B. Observe that

for all ψ ∈ Ψ, and for all 1 6 k 6 n, either ¬w
(0)
k or ¬w

(1)
k

appears in ψ (otherwise, there is a possible world for T ′

where both B and C nodes appear, which is a contradiction
with the definition of d0).

Let now {b1 . . . bn} be an arbitrary element of {0, 1}n. Let
ν be the valuation of the event variables such that ∀1 6 k 6

n, ν(w
(bk)
k ) = 0 and ν(w

(1−bk)
k ) = 1. ν(T ) is the subtree

of T with only two nodes labeled by A and B. Therefore,
ν(d0(T )) = d0(ν(T )) = ν(T ). This means that there exists
ψb1...bn ∈ Ψ such that ν |= ψb1...bn .

Assume now by contradiction there exist b1 . . . bn, b′1 . . . b
′
n

and 1 6 k 6 n, such that ψb1...bn = ψb′
1
...b′n

= ψ and bk 6=

b′k. But we have already noted that ψ contains either ¬w
(0)
k

or ¬w
(1)
k . In the former case, we cannot have either bk = 0

or b′k = 0; in the latter, we cannot have bk = 1 or b′k = 1.
This leads to a contradiction, which means that to each
element of {0, 1}n corresponds a different element of Ψ. T ′

has then more than 2n different literals, which concludes the
proof.

Threshold Probability. We consider next what happens
when some probability threshold is imposed on a probabilis-
tic tree.

Given a prob-tree, one may want to eliminate the possible
worlds that are too improbable. More precisely, consider a
prob-tree T with JT K = {(t1, p1) . . . (tn, pn)}. Let us further
assume that it is normalized, i.e., that there are no i, j
distinct with ti ∼ tj . Suppose we fix some p for a minimum
threshold on probability. Then we define

JT K>p = {(ti, pi) ∈ JT K|pi > p}

Unfortunately, there are cases where there is no compact
prob-tree to represent JT K>p:



Theorem 4. For all n ∈ N, there exist a prob-tree T of
size O(n) and a probability threshold p such that for each
prob-tree T ′ such that JT K>p ∼sub JT ′K, the size of T ′ is
Ω(2n).

Proof. We use the following prob-tree, with 2n+1 nodes
and 2n event variables, each appearing once; we take a uni-
form probability distribution π(wi) = 1/2n and a probabil-
ity threshold p = 1/2:

A

C1

w1

. . . C2n

w2n

The proof is quite similar to that of Theorem 3, and uses
the fact that

`

2n
n

´

= Ω(2n).

Validation. Finally we consider validity with respect to a
DTD.

A Document Type Definition for an XML document de-
fines the constraints applying on the children of a node using
a sequence operator ((A,B)), a disjunction operator ((A|B))
and several repetition operators ((A*), (A+), (A?)). As we
consider only unordered trees, we do not consider the se-
quence operators. To simplify, we will not consider the dis-
junction operator either. The following definition of DTDs
then simply states that a DTD gives a lower and upper
bound for the number of occurrences of nodes with a given
label n′ as children of some node labeled by n.

Definition 12. A Document Type Definition (DTD) D
is a function over some finite subset N ′ of the set of labels
N such that for all n ∈ N ′, D(n) is a finite set of ele-
ments of N × J0; +∞J × J1; +∞K and, if (n1, p1, q1) ∈ D(n)
and (n2, p2, q2) ∈ D(n), either n1 6= n2 or (n1, p1, q1) =
(n2, p2, q2).

We use the following notation, for n ∈ N ′: D−(n)(n′) and
D+(n)(n′) are respectively the unique p and q such that
(n′, p, q) ∈ D(n) if such p and q exist; otherwise, we note
D−(n)(n′) = 0 and D+(n)(n′) = 0.

Definition 13. Let D be a DTD and t = (A,E, r, ϕ) a
data tree. LetN ′ be the domain ofD. We say that t satisfies
D (denoted t |= D) if, for each s ∈ A such that ϕ(s) ∈ N ′,
and for each n′ ∈ N :

D−(ϕ(s))(n′) 6
˛

˛{s′ ∈ A |ϕ(s′) = n′ ∧ (s, s′) ∈ E}
˛

˛

D+(ϕ(s))(n′) >
˛

˛{s′ ∈ A |ϕ(s′) = n′ ∧ (s, s′) ∈ E}
˛

˛

Note that we do not impose any condition on nodes of t
whose label is not in the domain of the DTD. Given a prob-
tree T and a DTDD, three natural questions naturally arise:

1. (DTD Satisfiability)
˘

(t, p) ∈ JT K | t |= D
¯

?

6= ∅

2. (DTD Validity)
˘

(t, p) ∈ JT K | t |= D
¯ ?
∼ JT K

3. (DTD Restriction) How to compute a prob-tree T ′

such that
˘

(t, p) ∈ JT K | t |= D
¯

∼sub JT ′K.

We have the following complexity results about these ques-
tions:

Theorem 5.

1. The DTD Satisfiability problem is np-complete in the
number of event variables (and linear in the number of
nodes in the tree).

2. The DTD Validity problem is co-np-complete in the
number of event variables (and linear in the number of
nodes in the tree).

3. There are instances of the DTD Restriction problem in
which the solution of the DTD Restriction problem is
necessarily exponential in the size of the input.

Proof. The third part is proved in the same way as The-
orem 4, with a DTD requiring that the node A has at most
n children labeled by C. The Ci nodes are replaced by C
nodes with a Di child in order to give them the same label
while keeping them distinguishable.

For the first two parts, we use a reduction of SAT. The
beginning of the construction is the same in both cases.

Let θ be a propositional logic formula, in conjunctive nor-
mal form (i.e., an input to the SAT problem). Let ψ1 . . . ψn
be the terms of ¬θ in disjunctive normal form (the DNF of
¬θ is computed in a linear time from θ which is in CNF).

Let T be the following prob-tree:

A

B

ψ1

. . . B

ψn

1. Consider the DTD D: D(A) = {(B, 0, 0)}.
˘

(t, p) ∈ JT K | t |= D
¯

6= ∅

⇐⇒ ψ1 ∨ · · · ∨ ψn not a tautology

⇐⇒ θ is satisfiable

Since the construction of the reduction is linear in the
size of θ, this proves that the DTD satisfiability prob-
lem is np-hard.

Moreover, here is a np algorithm for the DTD satisfi-
ability problem, which concludes the proof of its np-
completeness: Guess a valuation ν of the event vari-
ables of T , and return true if ν(T ) satisfies the DTD
(which can be checked in linear time).

2. Consider the DTD D: D(A) = {(B, 1,+∞)}.
˘

(t, p) ∈ JT K | t |= D
¯

∼ JT K

⇐⇒ ψ1 ∨ · · · ∨ ψn tautology

⇐⇒ θ is not satisfiable

Since the construction of the reduction is linear in the
size of θ, this proves that the validity problem is co-
np-hard.

Moreover, here is a np algorithm for the complement of
the validity problem, which concludes the proof of its
co-np-completeness: Guess a valuation ν of the event
variables of T and return true if ν(T ) does not satisfy
the DTD.



Observe that the DTDs we used in the proof are all of
constant size.

5. VARIANTS
In this section, we briefly consider variants of the prob-

abilistic tree model presented up to here, and discuss their
complexity. Namely, we consider (i) a tree model with set
semantics, instead of our multi-set semantics; (ii) the notion
of semantic equivalence (in place of structural equivalence);
(iii) a probabilistic tree model where nodes are assigned ar-
bitrary propositional formula (and not simply conjunctions)
as conditions; and (iv) ordered trees.

Set Semantics. In this paper, we use a data model with
a multi-set (or bag) semantics. One can consider instead a
set semantics. One just has to redefine isomorphism be-
tween data trees inductively as follows. Let t, t′ be two
trees. They are isomorphic if their roots have the same la-
bel and if each subtree of the root of t is isomorphic to some
subtree of the root of t′, and symmetrically. Most defini-
tions of this paper can then be applied as is, relying on this
new version of data tree isomorphism. The results about
queries and updates remain, including the exponential com-
plexity of deletions from Theorem 3 (the proofs are almost
unchanged). An important difference, however, is for struc-
tural equivalence, for which there is now a simple way of
proving co-np-completeness: Just observe that we no longer
deal with count-equivalence, but with classical equivalence
of propositional formulas.

Semantic Equivalence. Structural equivalence is only rel-
evant for prob-trees that share the same event variables. If
we want to compare prob-trees with different sets of events,
we can define another kind of equivalence, through their pos-
sible world semantics: T and T ′ are semantically equivalent
(denoted T ≡sem T ′) if JT K ∼ JT ′K. The first natural ques-
tion is that of the relation between structural and semantic
equivalence.

Proposition 4. Let T = (t,W, π, γ), T ′ = (t′,W ′, π′, γ′)
be two prob-trees, with W = W ′ and π = π′. Then

(i) If T ≡struct T
′, then T ≡sem T ′;

(ii) T ≡struct T
′ if and only if, for each probability distri-

bution π′′ over W , (t,W, π′′, γ) ≡sem (t′,W, π′′, γ′).

Proof. (i) is obvious. Now suppose that for each π′′

over W , (t,W, π′′, γ) ≡sem (t′,W, π′′, γ′). To conclude the
proof, it clearly suffices to show that T ≡struct T

′. For each
V ⊆ W , let πV be the probability distribution that maps
w ∈ V to 1 and w ∈ W − V to 0. Then, if TV and T ′

V

denote respectively the prob-trees obtained from T and T ′

by exchanging the original probability distribution π with
πV , JTV K = {(V (T ), 1)} and JT ′

V K = {(V (T ′), 1)} and we
have thus V (T ) = V (T ′).

Note that stricty speaking, we disallowed variables with 0
probability. So to be precise, we should use ε instead of 0
and 1 − ε instead of 1. If ε is chosen so that (1 − ε)n > 2nε
(which is always possible for a sufficiently low value of ε),
V (T ) and V (T ′) will be the elements of highest probability
of, respectively, JT K and JT ′K.

Note that T ≡sem T ′ does not imply T ≡struct T
′. For

instance, if w1, w2, w3 verify π(w3) = π(w1) · π(w2), we
have :

A

B

w1, w2

≡sem

6≡struct

A

B

w3

Clearly, there is an exptime algorithm for determining if
two prob-trees are semantically equivalent (just compute the
possible world sets, normalize them, and check if they are
isomorphic, which can be decided in quadratic time in the
number of possible worlds). It is open whether the problem
also belongs to a lower complexity class. Similarly, it is open
whether Theorem 3 on the complexity of deletions still holds
for semantic equivalence.

Arbitrary Propositional Formula. In prob-trees, the con-
ditions we use are conjunctions of literals. A natural exten-
sion is to allow any propositional formula (including dis-
junctions) as conditions. A question is how this is affecting
the complexity. First, one can show that the evaluation
of boolean queries is np-complete (assuming the underly-
ing query language over data tree is in ptime and includes,
say, tree pattern queries). The fact that it is np is obvious,
and there is a linear-time reduction of SAT to this prob-
lem. Then, the cost of an update operation is now ptime

(again assuming the underlying language on data trees is
ptime). Indeed, we can now simply annotate inserted or
deleted nodes by complex formulas. In particular, Theo-
rem 3 is no longer valid. So this model privileges updates
(that are cheap) against queries (that are expensive). It is
not adapted to the applications that motivated our work.

Order Semantics. By considering ordered trees, we would
move closer to standard XML. The situation is more in-
tricate and would require totally different techniques. The
complexity is higher because of the inherent combinatorics
that is introduced.

6. CONCLUSION
The topic of probabilistic databases has been intensively

studied, see for instance [8, 6, 5, 10], and [7, 19] for more
recent works. The idea of associating probabilistic formulas
to data elements comes from the conditional tables of [12].
A work close in spirit to this one, but in the context of
relational databases, is [1]; the tree structure and multi-set
semantics we use have for consequence that the complexity
results on tables of [1] do not apply to our model.

A relatively small number of works have dealt with the
representation of probabilistic semi-structured data. In [9],
a semi-structured database is used to store complex prob-
ability distributions of data which is essentially relational.
Works closer to ours are [14, 11, 18]. Nierman et al. [14]
describe a very simple model, which does not have full ex-
pressive power, and present strategies for efficient evalua-
tions of logical queries. In [11], a complex model, based on
directed acyclic graphs, is developed, along with an alge-
braic query language. Finally, Keulen et al. [18] present an
approach to data integration using probabilistic trees; their
model is derived from the PW model, and allows both ex-
tensive descriptions of the possible worlds and node-based
factorization. Querying and the way to present data inte-



gration results on this model are also shown. None of these
works touch upon the question of updates.

We have presented a theoretical foundation for the prob-
abilistic tree model, a model for representing probabilistic
semi-structured data. We have provided a complexity anal-
ysis of updates and queries over probabilistic trees, as well as
a probabilistic decision procedure for prob-tree equivalence.
We have shown that other operations on prob-trees are in-
tractable, highlighting the inherent complexity of the model.
Finally, we have discussed how variations in the model affect
the complexity of the various problems.

The present work may be pursued in a number of direc-
tions. A first one is prob-tree simplification. One would
often like to approximate a prob-tree to get a more com-
pact representation, perhaps ignoring less probable worlds
and some of the probabilistic events (some of the prove-
nance/history). Also, probabilities can be used to rank re-
sults. It would be useful to have algorithms obtaining the
most probable results first. Finally, it would be interesting
to also handle aggregate functions. We believe the use of
multi-sets simplifies this last issue.
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APPENDIX

A. UPDATES IN PROBABILISTIC TREES
In this section, we will present technical definitions on the

kind of updates dealt with, and the way they are performed
in probabilistic trees.

We will assume that a query Q defines, for each data tree
t, and for each t′ ∈ Q(t), a mapping µQ from some finite set
NQ to the nodes of t′. If we consider the language of tree
pattern queries, for instance, NQ will be the set of nodes of
the query tree, and µQ will map a node of the query tree to
the corresponding node in the result tree.

Definition 14. An (elementary) update operation is a
pair τ = (Q, v) where Q is a locally monotone query and v
is either:

1. an insertion on NQ, that is, an expression i(n, t′) where
n ∈ NQ and t′ is a tree to insert (as a child of the node
mapped by n);

2. or a deletion on NQ, that is, an expression d(n) where
n ∈ NQ (indicating the node to delete).

Queries are used to select the nodes of the trees where
insertions or deletions are made. Intuitively, when one ap-
plies an update operation (say, a deletion) on a data tree t,
it results in the deletion of a sub-datatree for each valuation
of Q.

Definition 15. Let τ = (Q, v) be an update operation.
Let t be a tree matched by Q, and let µQ1 . . . µQp the map-

pings of Q for t and each element of Q(t). Let n be the node
of NQ appearing in v. The result of the operation τ on t,
denoted τ(t), is:



1. if v = i(n, t′), the result of the insertion of t′ as a child of
all µQk(n) for 1 6 k 6 p (possibly inserting t′ multiple
times at the same place);

2. if v = d(n), the result of the deletion of all µ′
Qk

(n) for
1 6 k 6 p.

A probabilistic update operation is a pair (τ, c) where τ is
an update operation and c ∈]0; 1] is the confidence we have
in the operation.

Definition 16. Let S = {(ti, pi)} be a PW set, (τ, c) a
probabilistic update operation, τ = (Q, v). The result of
(τ, c) on S, denoted (τ, c)(S), is the PW set:

{(t, p) ∈ T | t is not selected by Q}
S

{(τ(t), p · c) | t is selected by Q}
S

{(t, p · (1 − c)) | t is selected by Q}

We can define the result of an update operation on a prob-
tree T = (t,W, π, γ). Consider the case where |Q(T )| = 1,
that is, where the position of update operations is uniquely
defined (the extension when |Q(T )| > 1 is straightforward
and detailed in [2]). Let u be the unique element of Q(T )
and cond =

S

n node of u γ(n); cond is the set of conditions to
be applied to the inserted and deleted nodes. Let µQ be the
mapping defined by Q for t and u, and n the element of NQ
appearing in u. The result of (τ, c) on T , denoted (τ, c)(T ),
is the prob-tree obtained from t by applying the insertion or
deletion of τ in the following way.

Insertions are performed at the position µQ(n). If we de-
note condancestors the union of the conditions on the (strict)
ancestors of n, t′ is inserted and its root is assigned the
condition {w} ∪

`

cond− (γ(µQ(n)) ∪ condancestors)
´

.
Deletions are performed at the position mapped by Q on

t. Let condancestors be the union of the conditions on the
(strict) ancestors of µQ(n). Let condnew = {w} ∪

`

cond −

(γ(µQ(n)) ∪ condancestors)
´

. The original µQ(n) node is re-
placed by as many copies as elements of condnew. Let now
a1 . . . ap be the p elements of condnew. The first copy of
µQ(n) is annotated with condition γ(µQ(n)) ∪ {¬a1}. The
second copy of µQ(n) is annotated with condition γ(µQ(n))∪
{a1,¬a2}. . . The last copy of µQ(n) is annotated with con-
ditions γ(µQ(n)) ∪ {a1 . . . an−1,¬an}.

Then, a result similar to Theorem 1 states that, for a
probabilistic update operation (τ, c) and a prob-tree T , we
have J(τ, c)(T )K ∼ (τ, c)(JT K), that is, the algorithm pre-
sented to perform updates on prob-trees is consistent with
the possible world semantics.


