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Abstract. The computational complexity of optimization problems of the min-max form is natu-
rally characterized by ΠP

2
, the second level of the polynomial-time hierarchy. We present a number

of optimization problems of this form and show that they are complete for the class ΠP
2

. We also
show that the constant-factor approximation versions of some of these optimization problems are
also complete for ΠP

2
.

1. Introduction

Consider an optimization problem of the following form:

MAX-A: for a given input x, find maxy{|y| : (x, y) ∈ A},

where A is a polynomial-time computable set such that (x, y) ∈ A only if |y| ≤
p(|x|) for some polynomial p (we say A is polynomially related). For instance, if
A = {(G, Q): G = (V, E) is a graph and Q ⊆ V is a clique in G}, then MAX-A is the
well-known maximum clique problem.1 It is immediate that the decision version of
MAX-A, i.e., the problem of determining whether maxy{|y| : (x, y) ∈ A} is greater
than or equal to a given constant K, is in NP. In the past twenty years, a great
number of optimization problems of this type have been shown to be NP-complete
[3].2

Assume that A ∈ P , A is polynomially related, and that we are given m input
instances x1, . . . , xm and are asked to find

min
1≤i≤m

max
y

{|y| : (xi, y) ∈ A}.

Then, (the decision version of) this problem is still in NP, if the instances x1, . . . , xm

are given as input explicitly. However, if m is exponentially large relative to |x|
and the instances x1, . . . , xm have a succinct representation then the complexity of
the problem may be higher than NP. For instance, consider the following problem
MINMAX-CLIQUE: The input to the problem MINMAX-CLIQUE is a graph G = (V, E)
with its vertices V partitioned into subsets Vi,j, 1 ≤ i ≤ I, 1 ≤ j ≤ J . For any
function t : {1, . . . , I} → {1, . . . , J}, we let Gt denote the induced subgraph of G on

the vertex set Vt =
⋃I

i=1 Vi,t(i).

∗ Research supported in part by NSF grant CCR 9121472.
1 A subsete Q ⊆ V is a clique of a graph G = (V,E) if {u, v} ∈ E for all u, v ∈ Q.
2 Strictly speaking, their decision versions are shown to be NP-complete. In the rest of the paper,

we will however use the term NP-complete for both the decision and the optimization versions of
the problems.
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MINMAX-CLIQUE: given a graph G with the substructures described above, find
fCLIQUE(G) = mint maxQ{|Q| : Q ⊆ V is a clique in Gt}.

Intuitively, the input G represents a network with I components, with each compo-
nent Vi having J subcomponents Vi,1, . . . , Vi,J . At any time t, only one subcompo-
nent Vi,t(i) of each Vi is active, and we are interested in the maximum clique size
of G for all possible active subgraphs Gt of G. For people who are familiar with
the NP-completeness theory, it is easy to see that the problem MINMAX-CLIQUE is
in ΠP

2 , the second level of the polynomial-time hierarchy; i.e., the decision problem
of determining whether fCLIQUE(G) ≤ K, for a given constant K, is solvable by a
polynomial-time nondeterministic machine with the help of an NP-complete set as
the oracle. Therefore, it is probably not in NP. Indeed, we will show in Theorem 10
that this problem is complete for ΠP

2 .
In general, if an input instance x contains an exponential number of subinstances

(x1, . . . , xm) (called a parameterized input), then the problem of the form

MINMAX-A: for a given parametrized input x, find fMINMAX-A(x) =
min1≤t≤m maxy{|y| : (xt, y) ∈ A},

is a natural generalization of the problem MAX-A and its complexity is in ΠP
2 . In

this paper, we present a number of optimization problems of this type and show
that they are complete for ΠP

2 , and hence are not solvable in deterministic polyno-
mial time even with the help of an NP-complete set as the oracle, assuming that
the polynomial-time hierarchy does not collapse to ∆P

2 = PNP . These problems
include the generalized versions of the maximum clique problem, the maximum 3-
dimensional matching problem, the dynamic Hamiltonian circuit problem and the
problem of computing the generalized Ramsey numbers.

We remark that although numerous optimization problems have been known to
be NP-complete, there are relatively fewer natural problems known to be complete
for ΠP

2 (or, for ΣP
2 , the class of complements of sets in ΠP

2 ) (cf. [8, 12, 13, 14]). Our
results here demonstrate a number of new ΠP

2 -complete problems. We hope it could
be a basis from which more ΠP

2 -complete problems can be identified.
In the recent celebrated result of the PCP characterization of NP, Arora et al

[1] showed that the constant-factor approximation versions of many optimization
problems of the form MAX-A, including MAX-CLIQUE, are also NP-complete. It
implies that if P 6= NP , then there is a constant ǫ > 0 such that no polynomial-
time algorithm can find for each input x a solution y of size |y| ≥ (1 − ǫ)|y∗| such
that (x, y) ∈ A, where y∗ is an optimum solution for x. Through a nontrivial
generalization, the PCP characterization of NP has been successfully extended to
ΠP

2 [2, 5, 6]. We apply this characterization to show that some of the problems
of the form MINMAX-A also have similar nonapproximability property. That is, if
ΠP

2 6= ∆P
2 , then there exists a constant ǫ > 0 such that no polynomial-time oracle

algorithm using an NP-complete set as the oracle can compute, for each x, a value
k such that k∗/(1 + ǫ) ≤ k ≤ (1 + ǫ)k∗, where k∗ = fMINMAX-A(x). These problems
include the min-max versions of the maximum clique problem, the maximum 3-
dimensional matching problem and the longest circuit problem.
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2. Definitions

In this section, we review the notion of ΠP
2 -completeness, and present the definition

of the optimization problems. In the following, we assume that the reader is familiar
with the complexity classes P, NP and the notion of NP-completeness. For the
formal definitions and examples, the reader is referred to any standard text, for
instance, [3].

For any string x in {0, 1}∗, we denote by |x| the length of x. Let 〈x, y〉 be any
pairing function, i.e., a one-to-one mapping from strings x and y to a single string
in polynomial time. A well-known characterization of the class NP is as follows:
A ∈ NP if and only if there exists a set B ∈ P such that for all x ∈ {0, 1}∗,

x ∈ A ⇐⇒ (∃y, |y| ≤ p(|x|))〈x, y〉 ∈ B,

where p(n) is some polynomial depending only on A. The complexity class ΠP
2 is a

natural extension of the class NP : A ∈ ΠP
2 if and only if there exists a set B ∈ P

such that

x ∈ A ⇐⇒ (∀y, |y| ≤ p(|x|))(∃z, |z| ≤ p(|x|))〈x, 〈y, z〉〉 ∈ B.

It is obvious that NP ⊆ ΠP
2 . Between the complexity classes NP and ΠP

2 lies the
complexity class ∆P

2 (or, PNP) that consists of all problems that are solvable in
polynomial time with the help of an NP-complete problem as the oracle. Whether
NP = ∆P

2 and/or ∆P
2 = ΠP

2 are major open questions in complexity theory.
A decision problem A is ΠP

2 -complete, if A ∈ ΠP
2 , and for every A′ ∈ ΠP

2 , there is
a polynomial-time computable function f such that for each x ∈ {0, 1}∗, x ∈ A′ ⇐⇒
f(x) ∈ A (f is called a reduction from A′ to A). There are a few natural problems
known to be complete for ΠP

2 . A standard ΠP
2 -complete problem that will be used in

our proofs is the following generalization of the famous NP-complete problem SAT.
Suppose that F is a 3-CNF boolean formula. We write F (X, Y ) to emphasize that
its variables are partitioned into two sets X and Y . For a 3-CNF boolean formula
F (X, Y ), and for any truth assignments τ1 : X → {0, 1} and τ2 : Y → {0, 1}, we
write F (τ1, τ2) to denote the formula F with its variables taking the truth values
defined by τ1 and τ2. We also write tc(F (τ1, τ2)) to denote the number of clauses of
F that are true to the truth assignments τ1 and τ2.

SAT2: for a given 3-CNF boolean formula F (X, Y ), determine whether it is true
that for all truth assignments τ1 : X → {0, 1}, there is a truth assignment
τ2 : Y → {0, 1} such that F (τ1, τ2) = 1.3

Proposition 1 SAT2 is ΠP
2 -complete.

The problem SAT2 may be viewed as (a subproblem of) the decision version of
the following optimization problem:

MINMAX-SAT: for a given 3-CNF boolean formula F (X, Y ), find fSAT(F ) =
minτ1 :X→{0,1} maxτ2 :Y →{0,1} tc(F (τ1, τ2)).

3 Throughout the paper, we identify 1 with true and 0 with false.
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In the following, we introduce some new optimization problems of the min-max
form. For each optimization problem, we also list its corresponding decision version.
First, we consider the problem MINMAX-SAT in the restricted form.

MINMAX-SAT-B: for a given 3-CNF boolean formula F (X, Y ) in which each
variable occurs in at most b clauses where b is a constant independent of the
size of F , find fSAT(F ). (Decision version: for an additional input K > 0, is
fSAT(F ) ≥ K?)

In addition to the problem MINMAX-CLIQUE defined in Section 1, we introduce
a few more min-max optimization problems that are the generalizations of some fa-
mous NP-complete optimization problems based on the idea of parameterized inputs.
Recall that for a graph G = (V, E) with its vertex set V partitioned into subsets
Vi,j, 1 ≤ i ≤ I, 1 ≤ j ≤ J , and for a function t : {1, . . . , I} → {1, . . . , J}, we let

Vt =
⋃I

i=1 Vi,t(i) and let Gt be the induced subgraph of G on the vertex set Vt. The
following generalized vertex cover problem is a dual problem of MINMAX-CLIQUE. For
a graph G = (V, E), we say that a subset V ′ ⊆ V is a vertex cover if V ′ ∩ {u, v} 6= ∅
for all edges {u, v} ∈ E.

MAXMIN-VC: given a graph G with its vertex set V partitioned into subsets
{Vi,j}1≤i≤I,1≤j≤J, find fVC(G) = maxt minV ′{|V ′| : V ′ ⊆ Vt is a vertex cover of
Gt}. (Decision version: Is fVC(G) ≤ K?)

The following problem is the generalization of the Hamiltonian circuit problem.
For a graph G = (V, E) and a subset V ′ ⊆ V , we say G has a circuit on V ′ if there is
a cycle of G going through each vertex of V ′ exactly once. We say G is Hamiltonian
if G has a circuit on V .

MINMAX-CIRCUIT: given a graph G with its vertex set V partitioned into subsets
{Vi,j}1≤i≤I,1≤j≤J, find fCIRCUIT(G) = mint maxV ′{|V ′| : V ′ ⊆ Vt, Gt has a
circiut on V ′}. (Decision version: Is fCIRCUIT(G) ≥ K?)

The next problem is the generalization of the maximum 3-dimensional matching
problem. Let W be a finite set and S be a collection of 3-element subsets of W . Let
W ′ be a subset of W . A subset S′ ⊆ S is called a (3-dimensional) matching in W ′

if all sets s ∈ S′ are mutually disjoint, and are contained in W ′. In the following,
if W =

⋃I
i=1

⋃J
j=1 Wi,j , and t is a function from {1, . . . , I} to {1, . . . , J}, we write

W (t) to denote the set
⋃I

i=1 Wi,t(i).

MINMAX-3DM: given mutually disjoint finite sets Wi,j , 1 ≤ i ≤ I, 1 ≤ j ≤ J ,

and a set S of 3-element subsets of W =
⋃I

i=1

⋃J
j=1 Wi,j, find f3DM(W, S) =

mint maxS′{|S′| : S′ ⊆ S, S′ is a matching in W (t)}, where t ranges over all
functions from {1, . . . , I} to {1, . . . , J}. (Decision version: Is f3DM(W, S) ≥ K?)

In addition to the above problems based on the idea of parameterized inputs,
we consider several natural problems in ΠP

2 . First, we consider the problem of
computing the Ramsey number. For any graph G = (V, E), a function c : E → {0, 1}
is called a coloring of G (with two colors). For any complete graph G with a two-
color coloring c, a set Q ⊆ V is a monochromatic clique if all edges between vertices
in Q are of the same color. Ramsey theorem states that for any positive integer K,
there exists an integer n = RK such that for all two-colored complete graph G of
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size n, there is a monochromatic clique Q of size K. To study the complexity of
computing the Ramsey function mapping K to the minimum RK , we consider the
following generalized version. In the following, we say a function c : E → {0, 1, ∗} is
a partial coloring of a graph G = (V, E) (c(e) = ∗ means the edge e is not colored
yet). A coloring c′ : E → {0, 1} is a restriction of a partial coloring c, denoted by
c′ � c, if c′(e) = c(e) whenever c(e) 6= ∗.

GENERALIZED RAMSEY NUMBER(GRN): given a complete graph G = (V, E) with
a partial coloring c, find fGRN(G, c) = minc′�c maxQ{|Q| : Q is a monochromatic
clique under c′}. (Decision version: Is fGRN(G, c) ≥ K?)

Notice that the Ramsey number RK can be found by a binary search for the
graph G of the minimum size that has fGRN(G, c0) ≥ K with respect to the empty
coloring c0 (i.e., c0(e) = ∗ for all edges e).

The next two problems are the variations of the Hamiltonian circuit problem.
The first problem is to find, from a given digraph and a subset of alterable edges,
the length of the longest circuit in any alteration of those edges. Let G = (V, E) be
a digraph and D a subset of E. We let GD denote the subgraph of G with vertex
set V and edge set (E − D) ∪ inv(D), where inv(D) = {(s, t) : (t, s) ∈ D}.

LONGEST DIRECTED CIRCUIT (LDC): given a digraph G = (V, E) and a subset
E′ of E, find fLDC(G, E′) = minD⊆E′ maxV ′{|V ′| : V ′ ⊆ V, GD has a circuit on
V ′}. (Decision version: Is fLDC(G, E′) ≥ K?)

The next problem is similar to the above problem, but is about the longest circuits
in undirected graphs. For simplicity, we formulate it as a special case of its decision
version.

DYNAMIC HAMILTONIAN CIRCUIT (DHC): given a graph G = (V, E), and a subset
B of E, determine whether GD = (V, E −D) is Hamiltonian for all subsets D of
B with|D| ≤ |B|/2.

3. ΠP
2 -Completeness Results

All the problems defined in Section 2 can be easily seen belonging to ΠP
2 . In this

section, we show that MINMAX-CIRCUIT, GRN and DHC are actually ΠP
2 -complete.

The problems MINMAX-CLIQUE and MINMAX-3DM will be shown to be ΠP
2 -complete

in Section 5 together with the stronger results that their contant-factor approxi-
mation versions are also ΠP

2 -complete. The ΠP
2 -completeness of MAXMIN-VC is a

corollary of that of MINMAX-CLIQUE. The proofs for the ΠP
2 -completeness of the

problems MINMAX-SAT-B and LDC are much more involved; we prove them in a
separate paper [7].

Theorem 2 MINMAX-CIRCUIT is complete for ΠP
2 .

Proof. We construct a reduction from SAT2 to (the decision version of) MINMAX-
CIRCUIT. The construction is a modification of the reduction from SAT to the
Hamiltonian circuit problem. Let F be a 3-CNF boolean formula over variables
X = {x1, . . . , xr} and Y = {y1, . . . , ys}. Assume that F = C1 ∧C2∧ · · ·∧Cn, where
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each Cj is the OR of three literals. We will define a graph G over 18n + 4r + 2s
vertices.

For each clause Cj, we define a subgraph Hj of 18 vertices as shown in Figure 1.
This subgraph Hj will be connected to other parts of the graph G only through the
vertices labeled αk[j] and βk[j], k = 1, 2, 3. Thus, it has the following property: if a
Hamiltonian circuit of G enters Hj through αk[j] for some k = 1, 2, 3, then it must
exit at βk[j], and visit either one or two or all three rows of Hj.

In addition to subgraphs Hj, we have some more vertices: For each variable xi

in X, we define four vertices: ui,0, ui,1, ūi,0, ūi,1. For each variable yi in Y , we define
two vertices: vi,0, vi,1.

s
s
s

s
s
s

s
s
s

s
s
s

s
s
s

s
s
s

�
�

�
��❍❍❍❍❍❛❛❛❛❛❛

❅
❅

❅
❅❅

✟✟✟✟✟

✦✦✦✦✦✦

α1[j]

α2[j]

α3[j]

β1[j]

β2[j]

β3[j]

Fig. 1. The subgraph Hj for a clause Cj .

We define the edges between these components as follows.
(1) For each i, 1 ≤ i < r, we define edges {ui,1, ui+1,0}, {ui,1, ūi+1,0},

{ūi,1, ui+1,0}, {ūi,1, ūi+1,0}. For i = r, we have two edges {ur,1, v1,0}, {ūr,1, v1,0}.
(2) For each i, 1 ≤ i < s, we define an edge {vi,1, vi+1,0}. For i = s, we have two

edges {vs,1, u1,0}, {vs,1, ū1,0}.
(3) For each literal z and for k = 0, 1, let

w(z)k =







ui,k if z = xi,
ūi,k if z = x̄i,
vi,k if z = yi or ȳi.

Then we define edges to form a path from w(z)0 to w(z)1: assume that z occurs
as the k1th, k2th, . . ., kmth literal in clauses Cj1 , Cj2, . . . , Cjm

, respectively, with
j1 < j2 < · · · < jm. Then we add edges {w(z)0, αk1

[j1]}, {βkm
[jm], w(z)1}, and for

each ℓ = 1, . . . , m − 1, {βkℓ
[jℓ], αkℓ+1

[jℓ+1]}. (Note that for each pair (ui,0, ui,1) or
(ūi,0, ūi,1), there is a path between them, and for each pair (vi,0, vi,1) there are two
paths between them, corresponding to the occurrences of two literals yi and ȳi.)

The above completes the definition of all edges. To complete the reduction, we
let I = r +1, J = 2, and for each 1 ≤ i ≤ r, Vi,0 = {ūi,0, ūi,1} and Vi,1 = {ui,0, ui,1},
and all other vertices are in Vr+1,0 = Vr+1,1. (For convenience, we define Vi,0 and
Vi,1 instead of Vi,1 and Vi,2.) Finally, we let K = 18n + 2r + 2s, which is equal to
the size of |Vt| for all functions t : {1, . . . , I} → {0, 1}.

The correctness of this reduction is very easy to see. We only give a short
sketch here. First, assume that for each truth assignment τ1 on X, there is a truth
assignment τ2 on Y satisfying all clauses Cj in F . Let t : {1, . . . , r + 1} → {0, 1}
be any function. Then, t defines a truth assignment τ1(xi) = t(i), and all vertices
in Vi,t(i) corresponds to “true” literals under τ1. From this τ1, there is a truth
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assignment τ2 on Y that satisfies all clauses. Now, for each “true” literal z under τ1

and τ2, we have a path from w(z)0 to w(z)1 in Gt. Connecting these paths together
forms a Hamiltonian circuit for Gt, since each subgraph Hj is visited by at least one
such paths.

Conversely, assume that for any t : {1, . . . , I} → {0, 1}, there is a Hamiltonian
circuit Πt in Gt. Then, by the basic property of subgraphs Hj, this circuit Πt

defines, for each pair of nodes (w(z)0, w(z)1) in Vt, a path from w(z)0 to w(z)1.
That is, for each τ1 on X such that τ1(xi) = t(i), we can define a truth assignment
τ2 on Y by τ2(yi) = 1 (or, τ2(yi) = 0) if the path of Πt from vi,0 to vi,1 visits
nodes corresponding to the literal yi (or, respectively, ȳi). Since each subgraph Hj

is visited by at least one of such paths, the assignments τ1 and τ2 together must
satisfy each clause Cj . ✷

Theorem 3 GRN is complete for ΠP
2 .

Proof. We construct a reduction from SAT2 to GRN. Let F be a 3-CNF formula over
variables X = {x1, . . . , xr} and Y = {y1, . . . , ys}. Assume that F = C1∧C2∧· · ·∧Cn,
where each Ci is the OR of three literals. We further assume that r ≥ 2 and n ≥ 3.
Let K = 2r+n. The graph G has N = 6r+4n−4 vertices. We divide them into three
groups: VX = {xi,j, x̄i,j : 1 ≤ i ≤ r, 1 ≤ j ≤ 2}, VC = {ci,j : 1 ≤ i ≤ n, 1 ≤ j ≤ 3}
and VR = {ri : 1 ≤ i ≤ 2r + n − 4}. The partial coloring c on the edges of G is
defined as follows (we use colors blue and red instead of 0 and 1):

(1) The edges among xi,1, xi,2, x̄i,1 and x̄i,2, for each i, 1 ≤ i ≤ r, are colored by
red, except that the edges ei = {xi,1, xi,2} and ēi = {x̄i,1, x̄i,2} are not colored (i.e.,
c(ei) = c(ēi) = ∗).

(2) All other edges between two vertices in VX are colored by blue; i.e., c({xi,j,
xi′,j′}) = c({xi,j, x̄i′,j′}) = blue if i 6= i′.

(3) All edges among vertices in VR are colored by red.
(4) For each i, 1 ≤ i ≤ k, the three edges among ci,1, ci,2 and ci,3 are colored by

red.
(5) The edge between two vertices ci,j and ci′,j′, where i 6= i′, is colored by red if

the jth literal of Ci and the j′th literal of Ci′ are complementary (i.e., one is xq and
the other is x̄q , or one is yq and the other is ȳq for some q). Otherwise, it is colored
by blue.

(6) The edge between any vertex in VR and any vertex in VX is colored by red,
and the edge between any vertex in VR and any vertex in VC is colored by blue.

(7) For each vertex ci,j in VC , if the jth literal of Ci is yq or ȳq for some q,
then all edges between ci,j and any vertex in VX are colored by blue. If the jth
literal of Ci is xq for some q, then all edges between ci,j and any vertex in VX ,
except x̄q,1 and x̄q,2, are colored by blue, and c({ci,j, x̄q,1}) = c({ci,j, x̄q,2}) = red.
The case where the jth literal of Ci is x̄q for some q is symmetric; i.e., all edges
between ci,j and any vertex in VX , except xq,1 and xq,2, are colored by blue, and
c({ci,j, xq,1}) = c({ci,j, xq,2}) = red.

The above completes the construction of the graph G and its partial coloring c.
Notice that the partial coloring c has c(e) 6= ∗ for all edges e except ei and ēi, for
1 ≤ i ≤ r. Now we prove that this construction is correct. First assume that for



8 KER-I KO AND CHIH-LONG LIN

each assignment τ1 : X → {0, 1}, there is an assignment τ2 : Y → {0, 1} such that
F (τ1, τ2) = 1. We verify that for any two-coloring restriction c′ of c, there must be
a size-K monochromatic clique Q.

We note that if c′(ei) = c′(ēi) = red for some i ≤ r, then the vertices xi,1,
xi,2, x̄i,1, x̄i,2, together with vertices in VR, form a red clique of size |VR| + 4 = K.
Therefore, we may assume that for each i, 1 ≤ i ≤ r, at least one of c′(ei) and
c′(ēi) is blue. Now we define an assignment τ1 on X by τ1(xi) = 1 if and only if
c′(ei) = blue. For this assignment τ1, there is an assignment τ2 on Y such that each
clause Ci has a true literal. For each i, 1 ≤ i ≤ k, let ji be the least j, 1 ≤ j ≤ 3,
such that the jth literal of Ci is true to τ1 and τ2. Let QC = {ci,ji

: 1 ≤ i ≤ n}
and QX = {xi,j : c′(ei) = blue, 1 ≤ j ≤ 2} ∪ {x̄i,j : c′(ei) = red, 1 ≤ j ≤ 2}. Let
Q = QC ∪ QX . It is clear that Q is of size 2r + n. Furthermore, Q is a blue clique:
(i) every two vertices in QC are connected by a blue edge because they both have
value true under τ1 and τ2 and so are not complementary; (ii) every two vertices in
QX are connected by a blue edge by the definition of QX , and (iii) if a vertex ci,ji

in QC corresponds to a literal xq, then τ1(xq) = 1 and so x̄q,1, x̄q,2 6∈ QX and hence
all the edges between ci,ji

and each of xi′,j′ or x̄i′,j′ ∈ QX are colored blue.
Conversely, assume that there exists an assignment τ1 on X such that for all

assignments τ2 on Y , F (τ1, τ2) = 0. Then, consider the following coloring c′ on
edges ei and ēi: c′(ei) = blue and c′(ēi) = red if τ1(xi) = 1, and c′(ei) = red and
c′(ēi) = blue if τ1(xi) = 0. By the definition of c′, the largest red clique in VX is
of size 3. Also, the largest red clique in VC is of size 3, since every edge connecting
two noncomplementary literals in two different clauses is colored by blue. Thus, the
largest red clique containing VR is of size K−1, and the largest red clique containing
at least one vertex of VC is of size ≤ 6 < K.

Next, assume by way of contradiction that there is a blue clique Q of G of size
K. From our coloring, it is clear that, for each i, 1 ≤ i ≤ r, Q contains exactly two
vertices in {xi,1, xi,2, x̄i,1, x̄i,2}, and for each i, 1 ≤ i ≤ n, Q contains exactly one
ci,ji

, for some 1 ≤ ji ≤ 3. Define τ2 : Y → {0, 1} by τ2(yq) = 1 if and only if the
jith literal of Ci is yq for some i, 1 ≤ i ≤ k. Then, there is a clause Ci such that Ci

is not satisfied by τ1 and τ2. In particular, the jith literal of Ci is false to τ1 and τ2.
Case 1. The jith literal of Ci is xq for some q. Then, τ1(xq) = 0, and so c′(eq) =

red, and the edges between ci,ji
and each of x̄q,1 and x̄q,2 are red. This contradicts

the above observation that Q contains two vertices in {xq,1, xq,2, x̄q,1, x̄q,2}
Case 2. The jith literal of Ci is x̄q for some q. This is symmetric to Case 1.
Case 3. The jith literal of Ci is yq for some q. This is not possible, because by

the definition of τ2, τ2(yq) = 1, but by the property that Ci is not satisfied by τ1

and τ2, τ2(yq) = 0.
Case 4. The jith literal of Ci is ȳq for some q. Then, τ2(yq) = 1, and hence, by

the definition of τ2, there must be another i′ ≤ n, i′ 6= i, such that ci′,j
i′

is in Q and
the ji′th literal of Ci′ is yq. So, the edge between ci,ji

and ci′,j
i′

is colored by red.
This is again a contradiction.

The above case analysis shows that there is no blue clique in G of size K either.
So the theorem is proven. ✷

Theorem 4 DHC is ΠP
2 -complete.
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Proof. We reduce SAT2 to DHC. Let F = C1 ∧ C2 ∧ · · · ∧ Cn be a boolean formula
over variables in X = {x1, . . . , xr} and Y = {y1, . . . , ys} where Ci’s are three-literal
clauses. We construct a graph G from F . A basic component of the graph G is a
NOT device as shown in Figure 2(a). (It was first introduced in [9], and was called
an exclusive-OR device in [11]). Schematically, the two horizontal line paths are
represented by two broadened line segments, one designated as input and the other
output to the device, and the four vertical paths are “condensed” into one arrow ,
running from input to output (see Figure 2(c)). As shown in [9], there are only two
ways for a Hamiltonian circuit to traverse such a device, one of them indicated in
Figure 2(a) by thicker line segments. For convenience, if a NOT device is traversed
as shown in Figure 2(a), we say that the NOT device has input true.

r r r r
r r r r

r r r r
rrrr
rrrrrrrrr rc e

❡

❡

❡❡❡

❡

in1 in2

(b)

(d)

r
r
r

r
r
r

r
r
r

r
r
r

✍✌✎☞✍ ✌✲ ✛

❄

❡ ❡

❡❡

in

in

out

out

out

in1 in2

out

✍ ✌✚ ✙
(a)

(c)

N

❄

Fig. 2. The NOT and NAND devices.

Using two NOT devices, we also have the NAND device as shown in Figure 2(b)
and 2(d). Here, in order for a Hamiltonian circuit to traverse from c to e or vice
versa, at least one of the two input NOT devices have to be false. When using
these devices, we require that connections to other parts of the graph G can only go
through circled vertices.

The graph G we are going to construct consists of a set of interconnected sub-
graphs:

(1) For each xi ∈ X, we have a variable subgraph Gx(i) as shown in Figure 3(a),
and for each yj ∈ Y , a Gy(j) as in Figure 3(b). The number of NOT devices
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used in each variable subgraph will be defined in (3) below. In addition, we have a
component subgraph Gw, which is a concatenation of n+ r NOT devices as shown in
Figure 3(c). Note that each variable or component subgraph has some extra labeled
vertices. They are not part of any NOT devices, except that c and e of Gx(i) are
precisely those in the NAND device shown in figure 2(b).

rc

d b

ra

...
...

☎

❄
to xi

in GC

(a) (b)

×

...

r

r
to w

in GC

(c)

c

d

✍✌✎☞N ✛ ☞
✌✻

✎ ☞

✍ ✌r
❄

to x̄i

in GC

☎
✛
✎ ☞
✆

r
b

ra

...
...

☎

✎ ☞

✍ ✌r

☎✡

❄
to yi

in GC

❄
to ȳi

in GC

❄

☞

e′0 e′1

r

re

e

Fig. 3. The variable subgraphs: (a) Gx(i), (b) Gy(i) and (c) Gw .

(2) For each clause Ck, 1 ≤ k ≤ n, we have a clause subgraph GC(k)as shown in
Figure 4. In addition, we have r extra clause subgraphs GC(n + 1), . . . , GC(n + r),
each of which is a triangle version of Figure 4. Note that if the four conner vertices
are further connected as a clique, then any graph containing such a clause subgraph
is Hamiltonian only if at least one of the four (or three) NOT devices has its input
true.

r r

rr ❄

✆✛

✻✡ ✠

✡✲

from Gx and Gyfrom Gw

Fig. 4. The clause subgraph GC(i) that has two literals from X and one from Y .
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(3) Arrows (of NOT devices) run from variable subgraphs to clause subgraphs as
follows:
(a) If literal x̄i (or xi) occurs in m clauses, then there are m + 2 NOT devices

on the negative (or, respectively, positive) path, the path containing e′0 (or,
respectively, e′1), of Gx(i). The inputs of the first NOT devices on both paths
serve as inputs to a NAND device as shown in Figure 3(a).

(b) The numbers of NOT devices in Gy’s are defined analogously except that no
NAND devices are involved.

(c) An arrow runs from the input of a NOT device in a variable subgraph to the
output of a NOT device in a clause subgraph if and only if the corresponding
variable, either positive or negative, occurs in that clause. For example, if
Ck = (xi ∨ · · ·), then there is an arrow running from the input of a NOT
device on the positive path of Gx(i) to the output of a NOT device in GC(k).
Furthermore, for each GC(n+ i), 1 ≤ i ≤ r, we have two inputs from Gx(i), one
corresponding to xi and the other x̄i, and another input from one of the NOT
devices in Gw.

(4) Let ax(i) denote the vertex of Gx(i) labeled with a in Figure 3(a). Let bx(i),
cx(i), dx(i), ex(i), ay(j), by(j), e′0(i), e′1(i), cw, ew and dw be defined analogously.
Then, in addition to those arrows going to GC from Gx, Gy and Gw, these subgraphs
are further connected by the following edges (see Figure 5):

〈bx(i), ax(i + 1)〉, 〈cx(i), ax(i + 1)〉 and 〈dx(i), cx(i + 1)〉 for 1 ≤ i ≤ r − 1;
〈by(j), ay(j + 1)〉 for 1 ≤ j ≤ s− 1;
〈bx(r), ay(1)〉 and 〈cx(r), ay(1)〉;
〈dx(r), cw〉, 〈cw, ax(1)〉 and 〈dw, cx(1)〉;
edges that connect all the corner vertices of all clause subgraphs into a clique;
〈by(s), aC〉, 〈bC , ew〉, and 〈bC , ax(1)〉, where aC and bC are two distinguished
corner vertices in two different clause subgraphs.

The graph G is now completed. Finally we define B to be the set of edges e′0(i) and
e′1(i) in Gx(i), for all 1 ≤ i ≤ r. This finishes the construction.

✻

Gx(2)

r
r r
r r
r r
r r
r

· · · r
r· · ·

a ba b

dc

a b
✎
✍
☞
✌
✎
✍
☞
✌
✎
✍
☞
✌

Gx ✓
✒
✏
✑
✓
✒
✏
✑r r r rGy GCr r

★ ✥✓ ✏
❄ ❄

✻

Gw

✏
✑

✓
✒

✏
✑

✓
✒✤

✣ ✢
dc

r r r r✟✟✟✟

✟✟✟✟✟✟ ✟✟✟

Fig. 5. The interconnection among subgraphs.

We now show that the above construction is a reduction from SAT2 to DHC.
First suppose that F ∈ SAT2. We claim that GD is Hamiltonian for any D ⊆ B with
|D| ≤ |B|/2. Consider the following two cases:
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Case 1. For some i, 1 ≤ i ≤ r, neither e′0(i) nor e′1(i) is in D. We show
the existence of a Hamiltonian circuit H in this case. Let i be the smallest index
affirming the case. Starting from ax(1), H visits all vertices in GD in the following
order:

(i) H first visits ax(1), bx(1), ax(2), bx(2), . . . , ax(i − 1), bx(i − 1) and then ax(i).

(ii) It clockwisely visits all the NOT devices on the “loop” of Gx(i), making the
inputs to these NOT devices true, take the edge marked with × (see Figure 3(a))
to ex(i) and leaves at dx(i).

(iii) It then proceeds to visit cx(i + 1), dx(i + 1), . . . , cx(r), dx(r), cw, dw, cx(1),
dx(1), . . . , cx(i − 1), dx(i − 1), cx(i). While going from each cx(k) to dx(k),
k 6= i, it traverses the NAND device in between (and so sets both inputs false),
and from cw to dw, sets all the NOT devices in between true.

(iv) It then visits ax(i + 1), bx(i + 1), . . . , ax(r), bx(r), and then sets all yj to false
(i.e., visits all the NOT devices on the left half of each Gy(j)).

(v) H finally visits GC completely, starting at aC and leaving via bC , and returns
to ax(1). Note that we are able to do so because all clause subgraphs contain
the output of a NOT device whose input is in Gw, which had been set to true
previously; further, all NOT devices in variable subgraphs not traversed before
are visited here.

Case 2. Exactly one of e′0(i) and e′1(i) is in D for all i, 1 ≤ i ≤ r. The Hamiltonian
circuit H in this case is as follows. It starts from ax(1).

(i) It chooses the positive (negative) path of Gx(i) if e′1(i) (respectively, e′0(i)) is
not in D, and visits all the NOT devices on the path.

(ii) Since the edges e′0(i) or e′1(i) not in D correspond to a truth assignment τ1 on X
(i.e., τ1(xi) = 1 if and only if e′1(i) is not in D), there exists a truth assignment
τ2 on Y such that F (τ1, τ2) is true. H sets each yj accordingly by traversing the
positive (or negative) path of Gy(j) if yj is set to true (or, respectively, false).

(iii) H then traverses GC completely, leaving via bC . We are able to do so because
F (τ1, τ2) is true and so each GC(j), 1 ≤ j ≤ n, has at least one NOT device
having the true input. Further, for each GC(n + i), 1 ≤ i ≤ r, one of the NOT
devices corresponding to xi or x̄i has its input true. All NOT devices in variable
subgraphs not traversed previously are done at this stage.

(iv) It visits ew, then visits dw, cx(1), dx(1), . . . , cx(r), and finally dx(r), traversing
each NAND device between cx(k) and ex(k), since exactly one input has been
set true. It leaves via cw and finishes at ax(1).

Since |D| ≤ |B|/2, we cannot have e′0(i) and e′1(i) both in D without having e′0(i
′)

and e′1(i
′) both not in D for some i′. Therefore, the above two cases are exhaustive.

Suppose on the other hand that for some truth assignment τ1 on X, F (τ1, Y ) is
not satisfiable. We let e′0(i) ∈ D if t(xi) = 1, and e′1(i) ∈ D otherwise. We need
to show that GD is not Hamiltonian. Suppose, for the sake of contradiction, that
GD has a Hamiltonian circuit H . First we can exclude the possibility that H enters
and leaves a NOT device (including those within an NAND device) on different
sides. Thus we can virtually “ignore” those arrows as far as H is concerned. As a
consequence, either all the NOT devices in Gw are set to true by H or all set to false
by H . We consider these two cases separately.
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Case 1. All NOT devices in Gw are set to true by H . Orientation ignored, we
assume that H starts from cw, visiting all NOT devices, and then ew. H then has
to take dw since taking bC will leave dw unvisited. Next it must visit cx(1), the only
choice.

To visit other parts of GD, H eventually has to leave the bottom loop which
contains all the distinguished vertices labeled with c, e or d. It cannot leave from a
vertex ex(j) since this would keep dx(j) out of the reach. Therefore, it must leave
at cx(k) for some 1 ≤ k ≤ r. It then has to visit ex(k) later. It means that the two
inputs to the NAND device between cx(k) and ex(k) must be set to true, which is
impossible because only one of e′0(k) and e′1(k) is in GD.

Case 2. All of the NOT devices in Gw are set to false by H . Orientation ignored,
we assume that H starts at ax(1), visiting each variable subgraph. There are two
possibilities:

(a) If during traversing Gx(i), H enters the bottom loop at either cx(i) or ex(i),
then it has to leave the loop before visiting dx(r); otherwise, it would have to visit
cw and then either ends its journey prematurally or visits Gw, contradictary to our
assumption. A contradiction can be derived as in Case 1.

(b) H visits all variable subgraphs in a normal manner (i.e., not going to the
bottom loop from Gx(i)’s). Then H defines a truth assignment on X and Y which
is consistent with τ1 when restricted to X. By asumption, at least one of the clause
Ck of F is not satisfied, meaning that none of the NOT devices of GC(k) has true
input. As indicated previously, H then cannot traverse GC(k) completely, which is
a contradiction. ✷

4. Approximation Problems and Their Hardness

We first formalize the notion of approximating optimization problems. Garey and
Johnson [3] have defined the notion of approximating optimization problems of the
form MAX-A. Since our min-max optimization problems have two parameters, their
definition is not suitable to our case. In the following, we define a simple notion of
approximating a function. Let Q+ be the set of positive rationals and R+ the set of
positive reals.

Definition 5 Let f, g : {0, 1}∗ → Q+ and c : N → R+, c(n) > 1 for all n, be given.
We say that g approximates f to within a factor of c (c-approximates f in short) if
for all x ∈ {0, 1}∗, we have f(x)/c(|x|) < g(x) < c(|x|) · f(x). The c-approximation
problem of f is to compute a function g that c-approximates f.

To define the notion of completeness of c-approximation problem of a function f ,
we generalize the notion of reductions between decision problems. In the following,
we write 〈A, B〉 to denote a pair of sets over {0, 1} with A ∩ B = ∅.

Definition 6 (a) A pair 〈A, B〉 is polynomial-time separable (or, simply, 〈A, B〉 ∈
P) if there exists a set C ∈ P such that A ⊆ C and B ⊆ C.

(b) For any two pairs 〈A, B〉 and 〈A′, B′〉, we say that 〈A, B〉 is G-reducible to
〈A′, B′〉 if there is a polynomial-time computable function f such that f(A) ⊆ A′
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and f(B) ⊆ B′. Let C be a complexity class. We say that 〈A, B〉 is C-hard if there
exists a set C that is C-hard and 〈C, C〉 is G-reducible to 〈A, B〉.

It is clear that if P 6= C and that 〈A, B〉 is C-hard, then 〈A, B〉 is not polynomial-
time separable.

For any functions s, l : {0, 1} → Q+ such that s(x) < l(x), we write 〈f : l(x), s(x)〉
to dentoe the pair of sets 〈{x | f(x) ≥ l(x)}, {x | f(x) ≤ s(x)}〉. The following propo-
sition relates the hardness of approximating functions to that of pairs of decision
problems.

Proposition 7 Let c : N → Q+, c(n) > 1 for all n ≥ 0, be polynomial-time com-
putable. Let s, l : {0, 1}∗ → Q+ be two polynomial-time computable functions sat-
isfying c(|x|)s(x) < l(x)/c(|x|). If 〈f : l(x), s(x)〉 is not polynomial-time separable,
then the c-approximation problem of f is not computable in polynomial time.

Proof. Assume that g is a function c-approximating f . Then, for any x, |x| = n, if
f(x) ≥ l(x), then g(x) > l(x)/c(n); if f(x) ≤ s(x), then g(x) < c(n)s(x) < l(x)/c(n).
Thus, from g(x) and l(x)/c(|x|), we can tell an instance in {x : f(x) ≥ l(x)} from
an instance in {x : f(x) ≤ s(x)}. ✷

Based on the above proposition, we define the notion of hardness of C-
approximation problems as follows:

Definition 8 Let f : {0, 1}∗ → Q+ be a given function and c : N → Q+, c(n) > 1 be
a polynomial-time computable function. We say that the c-approximation problem of
f is C-hard if there exist polynomial-time computable functions s, l : {0, 1}∗ → Q+,
s(x) < l(x), such that
1. for all x of length n, c(n)s(x) < l(x)/c(n); and
2. 〈f : l(x), s(x)〉 is C-hard.

We say the c-approximation problem of MINMAX-A is ΠP
2 -complete if the decision

version of MINMAX-A is in ΠP
2 and the c-approximation problem of fMINMAX-A is

ΠP
2 -hard.
Remark. In practice, we often prove C-hardness of 〈f : l(x), s(x)〉, where l(x) =

l · size(x), s(x) = s · size(x) for some simple function size(x) and constants 0 < s <
l ≤ 1. From Proposition 7, it follows that the (l/s)1/2-approximation problem for
f is C-hard. The function size(x) is not necessarily the natural size of the instance
x. Rather, it is a measure designed to prove the hardness of approximation. In the
case of MINMAX-SAT, a 3-CNF boolean formula F has size(F ) = |F |, the number of
clauses in F .

The recent breakthrough of Arora et al [1] on the NP-hardness of many optimix-
ation problems in the form of MAX-A is based on a characterization of NP in terms
of the notion of probabilistically checkable proofs (PCP). Through a generalization of
the notion of PCP, this characterization has been extended to the class ΠP

2 (it was
implicit in [2], and explicit in [6] and [5]). A consequence of this characterization
is that the c-approximation problem of MINMAX-SAT is ΠP

2 -complete for some con-
stant c > 0. This will be our basis for proving other ΠP

2 -complete c-approximation
problems.
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Proposition 9 There exists a constant 0 < ǫ < 1 such that 〈fSAT : |F |, (1−ǫ)|F |〉 is
ΠP

2 -hard. Therefore, there is a constant c > 1 such that the c-approximation problem
for fSAT is ΠP

2 -complete.

5. Nonapproximability Results

Our proofs of the ΠP
2 -completeness results for c-approximation problems MINMAX-A

will be done by G-reductions from MINMAX-SAT to MINMAX-A. More precisely, we
will construct G-reductions from 〈fSAT : |F |, (1 − ǫ)|F |〉 to a pair 〈fMINMAX-A :
(1 − ǫ2)size(x), (1 − ǫ1)size(x)〉, where ǫ1 > ǫ2 ≥ 0. For the proofs below, ǫ2 are
always 0. However, in [7], the G-reductions from MINMAX-SAT to MINMAX-SAT-B
and LDC have ǫ2 > 0.

We first present the proof that the decision version of the problem
MINMAX-CLIQUE is ΠP

2 -complete. The result on the approximation version follows
as a corollary.

Theorem 10 MINMAX-CLIQUE is ΠP
2 -complete.

Proof. We reduce the problem SAT2 to MINMAX-CLIQUE. Let F be a 3-CNF formula
over variables X = {x1, . . . , xr} and Y = {y1, . . . , ys}. Let F = C1 ∧ . . .∧Cn, where
each Ci is the OR of three literals. We may assume that each clause Ci has at most
one literal in {x1, . . . , xr, x̄1, . . . , x̄r} (called X-literals). Otherwise, we can convert
a clause Ci of two X-literals to two clauses each with one X-literal without changing
the membership in SAT2. For instance, if Ci = x1 ∨ x2 ∨ y1, then we replace Ci with
Ci,1 = x1 ∨ y1 ∨ z and Ci,2 = x2 ∨ y1 ∨ z̄, where z is a new variable not in X ∪ Y ,
and it can be checked that the resulting formula F ′(X, Y ∪ {z}) is in SAT2 if and
only if F (X, Y ) is in SAT2. (A clause Ci with 3 X-literals is trivially false for some
τ1.) We now describe the construction of the graph G.

The vertex set V of G is partitioned into 2n subsets Vi,j , 1 ≤ i ≤ n, j = 0, 1
(i.e., I = n, J = 2). For each 1 ≤ i ≤ n and 0 ≤ j ≤ 1, Vi,j has 3 vertices ai,j[k],
k = 1, 2, 3, corresponding to the 3 literals of Ci, together with n′ = ⌈n/2⌉ other
vertices bi,j[k], k = 1, . . . , n′. Let Bi,j = {bi,j[k] : k = 1, . . . , n′}. Within Bi,j , all
vertices are connected (and so Bi,j is a clique of size n′). There is no other edge
within Vi,j, and there is no edge between Vi,0 and Vi,1.

To define the edges between the vertices in Vi,j and vertices in Vi′,j′ with i 6= i′,
we associate an X-literal xl(Vi,j) to each Vi,j. Each Ci has at most one X-literal.
Suppose Ci has an X-literal; then we let xl(Vi,1) be the literal in Ci and xl(Vi,0) be
its complement. Suppose Ci has no X-literals; then we add a dummy variable xr+1

and let xl(Vi,0) = xl(Vi,1) = xr+1. In addition, we define the following terms on
vertices ai,j[k]: A vertex ai,j[k] is negative if it corresponds to a X-literal in Ci and
j = 0. Two vertices ai,j[k] and ai′,j′ [k′] are complementary if they correspond to two
complementary literals, i.e., one is xk (or, yk) and the other is x̄k (or, respectively,
ȳk) for some k.

Now, we define edges between Vi,j and Vi′,j′ with i 6= i′ as follows:
(1) If xl(Vi,j) and xl(Vi′,j′) are complementary, then we connect all vertices be-

tween Bi,j and Bi′,j′ . There is no other edge between Vi,j and Vi′,j′.
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(2) If not (1), then there is no edge between Bi,j and Vi′,j′ and no edge between
Bi′,j′ and Vi,j . For any two vertices ai,j[k] and ai′,j′[k′], they are connected by an
edge if and only if they are nonnegative and noncomplementary.

The above completes the graph G. Now we prove that this construction is cor-
rect with respect to the bound K = n. It suffices to prove the following stronger
statement:

Claim. If fSAT(F ) > ⌈|F |/2⌉, then fCLIQUE(G) = fSAT(F ).
Proof of Claim. First assume that for each truth assignment τ1 on X, there is

a truth assignment τ2 on Y that satisfies k∗ clauses of F (i.e., fSAT (F ) = k∗). Let
t be any mapping from {1, . . . , n} to {0, 1}. First, if for some i 6= i′, xl(Vi,t(i)) and
xl(Vi′,t(i′)) are complementary, then we get a clique Bi,t(i) ∪ Bi′,t(i′) that is of size
≥ n ≥ k∗. Second, if for all i 6= i′, xl(Vi,t(i)) and xl(Vi′,t(i′)) are noncomplementary,
then there is a unique truth assignment τ1 on X such that τ1(xl(Vi,t(i))) = 1 for
all i, 1 ≤ i ≤ n. (We always let τ1 on the dummy variable xr+1 be 1.) For this
assignment τ1, there is a truth assignment τ2 on Y that satisfies k∗ clauses. Let
IT = {i : Ci(τ1, τ2) = 1}. For each i ∈ IT , pick a vertex ai,t(i)[k] that corresponds
to a true literal in Ci under τ1 and τ2. Note that if we picked a vertex ai,t(i)[k]
that corresponds to the X-literal in Ci, then t(i) must be equal to 1. Thus, it is
easy to check that these vertices ai,t(i)[k] form a clique of size k∗: (i) if ai,t(i)[k]
corresponds to an X-literal, then as observed above t(i) = 1 and it is nonnegative;
(ii) no two selected vertices are complementary, since the corresponding literals must
be noncomplementary to be satisfied by τ1 and τ2.

Conversely, assume that the maximum clique size of all Gt for all t : {1, . . . , n} →
{0, 1} is at least k∗. Let τ1 be any truth assignment on X. We need to show that
there is a truth assignment τ2 on Y that satisfies k∗ clauses. Define a mapping t :
{1, . . . , n} → {0, 1} by t(i) = 1 if and only if τ1(xl(Vi,1)) = 1, i.e., τ1(xl(Vi,t(i))) = 1
for all i ≤ n (we assume that τ1(xr+1) = 1). Thus, no two X-literals xl(Vi,t(i)) and
xl(Vi′,t(i′)) are complementary, and so there is no edge between Bi,t(i) and Vi′,t(i′) if
i 6= i′. It follows that the maximum clique Q of Gt must consist of a single vertex
ai,t(i)[k] in Vi,t(i), for k∗ indices i. Let IQ = {i : Q ∩ Vi,t(i) 6= ∅}. Now, we define a
truth assignment τ2 on Y as follows: if yℓ ever occurs as a literal corresponding to
some vertex in the clique Q, then assign τ2(yℓ) = 1; otherwise, assign τ2(yℓ) = 0.
We check that τ1 and τ2 satisfy Ci for all i ∈ IQ. In particular, for each i ∈ IQ, the
literal corresponding to the vertex ai,t(i)[k] in Vi,t(i) ∩ Q must be true to τ1 and τ2:

(1) If ai,t(i)[k] corresponds to an X-literal and it belongs to the clique Q, then
it must be nonnegative and so t(i) = 1. That means the corresponding X-literal is
the same as xl(Vi,1) and has the value 1 under τ1.

(2) If ai,t(i)[k] corresponds to a Y -literal yℓ, then since yℓ occurs in Q, τ2(yℓ) = 1.
(3) If ai,t(i)[k] corresponds to a Y -literal ȳℓ, then yℓ does not occur in the clique

Q, because yℓ and ȳℓ are complementary and so they cannot be connected. This
implies that τ2(ȳℓ) = 1.

The above completes the proof of the claim and hence the correctness of the
reduction. ✷

Corollary 11 There exists a constant c > 1 such that the c-approximation problem
of MINMAX-CLIQUE is ΠP

2 -complete.
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Proof. Let g be the reduction of the above theorem. In the above proof, we showed
that for any 3-CNF formula F , fSAT(F ) = fCLIQUE(g(F )) as long as fSAT(F ) >
⌈|F |/2⌉. For any graph G whose vertex set V is partitioned into Vi,j, 1 ≤ i ≤ I,
1 ≤ j ≤ J . We let size(G) = I. Then the above observation implies that g is a
G-reduction from 〈fSAT : |F |, (1− ǫ)|F |〉 to 〈fCLIQUE : size(G), (1 − ǫ)size(G)〉. ✷

We note that the ΠP
2 -completeness of MAXMIN-VC follows from that of

MINMAX-CLIQUE since they are the dual problems to each other. However, the
c-approximation results do not carry over.

Corollary 12 MAXMIN-VC is ΠP
2 -complete.

Next, we prove that MINMAX-3DM and its c-approximation version are ΠP
2 -

complete. In order to do this, we need the ΠP
2 -completeness result on a stronger

version of the problem MINMAX-SAT.

MINMAX-SAT-YB: given F (X, Y ), with the number of occurrences of each y ∈ Y
bounded by a constant b, find fSAT-YB(F ) = fSAT(F ).

The more general case of MINMAX-SAT-B, in which the number of occurrences of
all variables in X or Y are bounded, is also ΠP

2 -complete. Its proof is more involved
and is given in a separate paper [7]. Here we give a sketch for the ΠP

2 -completeness
of this simpler case MINMAX-SAT-YB.

Theorem 13 MINMAX-SAT-YB is ΠP
2 -complete.

Proof. (Sketch) The proof is a simple modification of the reduction from the maxi-
mum satisfiability problem to the bounded-occurrence maximum satisfiability prob-
lem in [10]. It was shown in [10] that there exist a polynomial-time computable
function f and two integers α, b > 0 such that
(i) for each 3-CNF formula F (X) with m clauses, f(F (X)) = F ′(X′) is a 3-CNF

boolean formula with (α + 1)m clauses in which each variable occurs at most b
times, and

(ii) maxτ′ :X′→{0,1} tc(F ′(τ ′)) = αm + maxτ:X→{0,1} tc(F (τ)),
Now, for each F (X, Y ), we treat all x ∈ X as constants and compute

f(F (X, Y )) = F ′(X, Y ′). Then, we have

min
τ1 :X→{0,1}

max
τ′

2
:Y ′→{0,1}

tc(F ′(τ1, τ
′
2)) = min

τ1 :X→{0,1}

[

αm + max
τ2 :Y →{0,1}

tc(F (τ1, τ2))
]

= αm + min
τ1:X→{0,1}

max
τ2 :Y →{0,1}

tc(F (τ1, τ2)).

Thus, if 〈fSAT : |F |, (1− ǫ)|F |〉 is ΠP
2 -hard, then 〈fSAT-YB : |F |, (1− ǫ/(α + 1))|F |〉

is also ΠP
2 -hard. ✷

Theorem 14 MINMAX-3DM is ΠP
2 -complete.

Proof. We will construct a G-reduction from MINMAX-SAT-YB to MINMAX-3DM. It
is a modification of the L-reduction from the maximum satisfiability problem with
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bounded occurrences of variables to the maximum 3DM problem [4]. We first give
a brief review of that proof.

Let F (X) = C1 ∧ . . . ∧ Cn be a 3-CNF boolean formula over variables Y =
{y1, . . . , ys}. Let di be the number of occurrences of yi or ȳi in F . (Assuming that
each clause Cℓhas exactly 3 literals, we have

∑s
i=1 di = 3n.) We assume that di ≤ b

for all i = 1, . . . , s. Let M be the minimum number greater than 3b/2 + 1 such that
M is a power of 2. We describe below a collection S of 3-element subsets of a set W
(called triples), without explicitly writing down all the names of elements in W .

(1) For each variable yi, define M identical sets of ring triples. For each yi and
each k, 1 ≤ k ≤ M , the ring Ri,k contains two sets of triples:

R1
i,k = {{ȳi[j, k], ai[j, k], bi[j, k]} : 1 ≤ j ≤ di},

R0
i,k = {{yi[j, k], bi[j, k], ai[j + 1, k]} : 1 ≤ j ≤ di},

where j+1 in ai[j+1, k] is the addition modulo di. This ring is the basic component
of the reduction from SAT to 3DM in, e.g., [3]. We show it in Figure 6(a). Here
ai[j, k] and bi[j, k] are local elements and appear in no other triples. Thus, any
complete matching must take all triples in R1

i,k or all triples in R0
i,k, corresponding

to setting all occurrences of yi true or all false.
(2) For each variable yi and each j, 1 ≤ j ≤ di, construct two sets of tree triples:

T 0
i,j and T 1

i,j. Set T 1
i,j forms a tree of size 2M −1 with leaves yi[j, k], 1 ≤ k ≤ M , and

set T 0
i,j with leaves ȳi[j, k], 1 ≤ k ≤ M . We show a tree T 1

i,j in Figure 6(b). All the

internal nodes of the trees, except the roots, are the local elements. The root of T 1
i,j

is called ui[j] and the root of T 0
i,j is called ūi[j]. It is shown in [4] that, a maximum

matching must take, for any i and j, all yi[j, k]’s by ring triples or all by tree triples.
For instance, in Figure 6, with di = 4 and M = 8, a maximum matching must take
all circled triples or all noncircled triples. In other words, for each i, 1 ≤ i ≤ s, the
maximum matching will match all ring triples and tree triples so that only all ui[j]’s
are left free or only all ūi[j]’s are left free. If the matching leaves ui[j]’s free, then
we say it corresponds to the truth assignment that sets yi true. For instance, the
matching taking all circled triples in Figure 6 corresponds to assigning yi false.

(3) Identify ui[j] with the jth occurrence of yi, and identify ūi[j] with the jth
occurrence of ȳi. For each clause Cℓ, define 3 clause triples: {s1[ℓ], s2[ℓ], w}, where
w ranges over the three roots of the trees T 0

i,j and T 1
i,j that are identified as above

to the three literals in Cℓ.
(4) Define garbage triples {g2q−1, g2q, ui[j]} and {g2q−1, g2q, ūi[j]} for all q =

1, . . . , 2n and all i = 1, . . . , s and all j = 1, . . . , di.
The above are all triples. Some simple calculation shows that there are totally

18nM elements in W and the number of matching is at most 6nM that covers all
elements. We let K = 6nM .

We now show that the reduction is correct. From the remarks in (1) and (2)
above, we see that the maximum matchings on ring triples and tree triples corre-
spond one-to-one with the truth assignments on Y . So, if F is satisfied by a truth
assignment τ on Y , then we select disjoint triples from ring triples and tree triples
so that for each yi with τ(yi) = 1, only the nodes ui[j]’s are left free, and for each yi

with τ(yi) = 0, only the nodes ūi[j]’s are left free. It can be checked that there are
(6M − 3)n such triples. For each clause Cℓ, we select the clause triple that covers
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ai[3, k]

Fig. 6. (a) Ring triples with di = 4. (b) Tree triples with M = 8. Each triangle denotes a triple.

the root that corresponds to a true literal in Cℓ. Finally, we cover all other roots by
garbage clauses. This is a complete matching of size 6nM .

Conversely, if there is a matching that covers every element, then it must contain
for each clause Cℓ a clause triple {s1[ℓ], s2[ℓ], w}, where w is a free root note and also
corresponds to a literal in Cℓ. By the property of the maximum matchings discussed
in (2) above, we can define truth assignment τ on Y to make all such literals true
and so to satisfy F .

Now we describe our modification for MINMAX-3DM. First, we divide W into n
groups W1, . . . , Wn, with each Wℓ containing all elements of W that occur in the
ring triples and tree triples related to clause Cℓ. More specifically, suppose the jth
occurrence of yi or ȳi is in Cℓ, then Wℓ contains all elements in the trees T 0

i,j and

T 1
i,j, plus the internal elements ai[j, k] and bi[j, k] for all k ≤ K. In addition, Wℓ

contains s1[ℓ], s2[ℓ] and g4ℓ−p, p = 0, 1, 2, 3. For each ℓ, 1 ≤ ℓ ≤ n, we have some
local triples that contain only elements in Wℓ and inter-group triples that contain
some elements in Wℓ and some not in Wℓ. For instance, all tree triples and clause
triples are local, some ring triples are local and some ring triples and garbage triples
are inter-group.

Now, suppose F (X, Y ) = C1 ∧ . . . ∧ Cn is a 3-CNF formula over two variable
sets X = {x1, . . . , xr} and Y = {y1, . . . , ys}, with each variable yi of Y occurring
in F at most b times. As explained in the proof of Theorem 10, we may assume
that each clause Cℓ contains at most one X-literal. We treat the variables in X as
constants, and define the triples as above from F , and divide them into groups Wℓ,
ℓ = 1, . . . , n. (Note that for each clause Cℓ with an X-literal, it has only 2 clause
triples of the form {s1[ℓ], s2[ℓ], w}.) Next, for each 1 ≤ ℓ ≤ n and each m = 0, 1, we
define Wℓ,m to be a copy of Wℓ ; i.e., for each element in Wℓ, attach an additional
index m to it (so, e.g., s1[ℓ] becomes s1 [ℓ, 0] in Wℓ,0). Then, for each group Wℓ,m, we
add elements αℓ,m[k], βℓ,m[k], γℓ,m[k], for k = 1, . . . , n. If Cℓ has an X-literal which
is positive, we add one more element σℓ to Wℓ,1, else we add it to Wℓ,0. We define
the set S′ as follows:
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(1) For each local triple in Wℓ, we include its copies in both Wℓ,0 and Wℓ,1 in S′.
(2) For each inter-group triple between Wℓ and Wℓ′ , we include all its copies

between Wℓ,m and Wℓ′,m′ , for all m, m′ = 0, 1, in S′.
(3) For each Cℓ, if xi is a literal of Cℓ, then add a triple {s1[ℓ, 1], s2[ℓ, 1], σℓ} to

S′; if x̄i is a literal of Cℓ, then add a triple {s1[ℓ, 0], s2[ℓ, 0], σℓ} to S′;
(4) We say two pairs (ℓ, m) and (ℓ′, m′) are inconsistent if both Cℓ and Cℓ′

have the same X-literal but m 6= m′ or if Cℓ and Cℓ′ have the complementary X-
literal but m = m′. If (ℓ, m) and (ℓ′, m′) are inconsistent, then we add the triples
{αℓ,m[k], βℓ,m[k], γℓ′,m′ [k]} to S′ for all k = 1, . . . , n.

Finally, we let K = 6nM , and claim that the reduction is correct.
First, assume that F (X, Y ) ∈ SAT2, and let t be a function from {1, . . . , n} to

{0, 1}. We check that there are at least 6nM matchings in Wt =
⋃n

ℓ=1 Wℓ,t(ℓ). First,
as in the original reduction (from SAT to 3DM), we can select (6M − 1)n disjoint
triples from ring triples, tree triples and garbage triples. Suppose for some ℓ, ℓ′,
(ℓ, t(ℓ)) and (ℓ′, t(ℓ′)) are inconsistent. Then, we can get from (4) above at least n
disjoint triples to make a matching of at least 6nM triples. Suppose t is consistent.
Then, it defines a truth assignment τ1 on X and for this τ1 there is a truth assignment
τ2 on Y satisfying F . It follows from the analysis of the original reduction that there
is a matching of 6nM triples. Note that for each clause Cℓ if τ1 satisfies Cℓ, then
the corresponding Wℓ,t(ℓ) must contain σℓ and {s1[ℓ, t(ℓ)], s2[ℓ, t(ℓ)], σℓ} must be in
S′.

Conversely, if F (X, Y ) 6∈ SAT2 then there exists a truth assignment τ1 on X such
that F (τ1, Y ) is not satisfiable. Choose the corresponding t, i.e., t(ℓ) = 1 if and only
if τ sets the X-literal in Cℓ true. This function t must be consistent and so there is
no triple from the extra elements such as αℓ,m[k]. The only triples are the copies of
those in the original reduction, and there are less than 6nM disjoint triples. ✷

Corollary 15 There exists a constant c > 1 such that the c-approximation problem
for MINMAX-3DM is ΠP

2 -complete.

Proof. We observe that the original reduction (from SAT to 3DM), preserves the
optimum solution in the following sense: if the maximum number of satisfiable
clauses is β, then the maximum matching has (6M − 1)n + βn triples [4]. The main
idea was that the design of the tree triples forces the maximum matching to make
consistent truth assignments to the different occurrences of yi. In the new reduction,
this property is preserved if the function t is consistent. (If t is not consistent, then
there are always at least 6nM disjoint triples.)

For each instance (W, S) of MINMAX-3DM with W partitioned into subsets Wℓ,m,
with 1 ≤ ℓ ≤ I, 1 ≤ m ≤ J , let size(W, S) = 6MI. Then, the above observation
shows that the new reduction is a G-reduction from 〈fSAT−YB : |F |, (1 − ǫ)|F |〉 to
〈f3DM : size(W, S), (1 − ǫ/6M)size(W, S)〉. ✷

6. Conclusion and Open Questions

We have demonstrated a number of min-max optimization problems to be ΠP
2 -

complete. Using the idea of parameterized inputs, there are apparently many more
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similar results on the generalization of NP-complete problems. For instance, the ΠP
2 -

completeness results also hold for the generalized knapsack problem and the gener-
alized maximum set covering problem. It is hoped that these new ΠP

2 -completeness
results are useful for proving other natural problems such as GRN to be complete
for ΠP

2 or ΣP
2 .

Although the ΠP
2 -completeness results for the min-max optimization prob-

lems appear easy to prove, the corresponding ΠP
2 -completeness results for the c-

approximation problems are harder to get. We were successful only for a few such
problems. It would be interesting to develop techniques for classifying the complexity
of the c-approximation problem of the min-max problems (like the class MAX SNP
for problems of the form MAX-A). In particular, it would be interesting to know
whether the c-approximation problems of fCIRCUIT and fVC are ΠP

2 -complete.
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