

On the complexity of minimum-link path problems

Citation for published version (APA):
Kostitsyna, I., Löffler, M., Polishchuk, V., & Staals, F. (2017). On the complexity of minimum-link path problems.
Journal of Computational Geometry, 8(2), 80-108. https://doi.org/10.20382/jocg.v8i2a5

DOI:
10.20382/jocg.v8i2a5

Document status and date:
Published: 01/01/2017

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 25. Aug. 2022

https://doi.org/10.20382/jocg.v8i2a5
https://doi.org/10.20382/jocg.v8i2a5
https://research.tue.nl/en/publications/ffd7e1da-0444-4b71-b8d3-14c6e3c0a909

JoCG 8(2), 80–108, 2017 80

Journal of Computational Geometry jocg.org

ON THE COMPLEXITY OF MINIMUM-LINK PATH PROBLEMS∗.

Irina Kostitsyna,†Maarten Löffler,‡Valentin Polishchuk,§ and Frank Staals¶

Abstract. We revisit the minimum-link path problem: Given a polyhedral domain and two
points in it, connect the points by a polygonal path with minimum number of edges. We
consider settings where the vertices and/or the edges of the path are restricted to lie on the
boundary of the domain, or can be in its interior. Our results include bit complexity bounds,
a novel general hardness construction, and a polynomial-time approximation scheme. We
fully characterize the situation in 2 dimensions, and provide first results in dimensions 3 and
higher for several variants of the problem.

Concretely, our results resolve several open problems. We prove that computing
the minimum-link diffuse reflection path, motivated by ray tracing in computer graphics, is
NP-hard, even for two-dimensional polygonal domains with holes. This has remained an open
problem [28] despite a large body of work on the topic. We also resolve the open problem
from [41] mentioned in the handbook [29] (see Chapter 27.5, Open problem 3) and The Open
Problems Project [17] (see Problem 22): “What is the complexity of the minimum-link path
problem in 3-space?” Our results imply that the problem is NP-hard even on terrains (and
hence, due to discreteness of the answer, there is no FPTAS unless P=NP), but admits a
PTAS.

✶ ■♥tr♦❞✉❝t✐♦♥

The minimum-link path problem is fundamental in computational geometry [5, 27, 30, 33,
35, 38, 41, 49]. It concerns the following question: given a polyhedral domain D and two
points s and t in D, what is the polygonal path connecting s to t that lies in D and has as
few links as possible?

In this paper, we revisit the problem in a general setting which encompasses several
specific variants that have been considered in the literature. First, we nuance and tighten
results on the bit complexity involved in optimal minimum-link paths. Second, we present and
apply a novel generic NP-hardness construction. Third, we extend a simple polynomial-time
approximation scheme.

Concretely, our results resolve several open problems. We prove that computing the
minimum-link diffuse reflection path in polygons with holes [28] is NP-hard, and we prove

∗An abridged version of this paper appeared in the proceedings of the 32nd International Symposium on
Computational Geometry in 2016.

†Université libre de Bruxelles, irina.kostitsyna@ulb.ac.be
‡Utrecht University, m.loffler@uu.nl
§Linköping University, valentin.polishchuk@liu.se
¶Aarhus University, f.staals@cs.au.dk

http://jocg.org/

JoCG 8(2), 80–108, 2017 81

Journal of Computational Geometry jocg.org

t

s
s

t

s

t

Figure 1: Left: MinLinkPath2,2 in a polygon with holes. Middle: MinLinkPath1,2 on a
polyhedron. Right: MinLinkPath0,3 on a polyhedral terrain.

that the minimum-link path problem in 3-space [29] (Chapter 27.5, Open problem 3) is
NP-hard (even for terrains). In both cases, there is no FPTAS unless P=NP, but there is a
PTAS.

We use terms links and bends for edges and vertices of the path, saving the terms
edges and vertices for those of the domain (also historically, minimum-link paths used to be
called minimum-bend [51–53]).

✶✳✶ Pr♦❜❧❡♠ ❙t❛t❡♠❡♥t✱ ❉♦♠❛✐♥s ❛♥❞ ❈♦♥str❛✐♥ts

Due to their diverse applications, many different variants of minimum-link paths have been
considered in the literature. These variants can be categorized by two aspects. Firstly, the
domain can take very different forms. We select several common domains, ranging from a
simple polygon in 2D to complex scenes in full 3D or even in higher dimensions. Secondly,
the links and bends of the solution paths are sometimes constrained to lie on the boundary
of the domain, or bends may be restricted to vertices or edges of the domain. We now survey
these settings in more detail.

Pr♦❜❧❡♠ ❙t❛t❡♠❡♥t✳ Let D be a closed connected d-dimensional polyhedral domain. For
0 ≤ a ≤ d we denote by D|a the a-skeleton of D, that is, its a-dimensional subcomplex. For
instance, D|d−1 is the boundary of D; D|0 is the set of vertices of D. Note that D|a is not
necessarily connected.

Definition 1. We define MinLinkPatha,b(D, s, t), for 0 ≤ a ≤ b ≤ d and 1 ≤ b, to be the
problem of finding a minimum-link polygonal path in D between two given points s and t,
where the bends of the solution (and s and t) are restricted to lie in D|a and the links of the
solution are restricted to lie in D|b.

Figure 1 illustrates several instances of the problem in different domains.

❉♦♠❛✐♥s✳ We recap the various settings that have been singled out for studies in compu-
tational geometry. We remark that we will not survey the rich field of path planning in
rectilinear, or more generally, C-oriented worlds [1]; all our paths will be assumed to be
unrestricted in terms of orientations of their links.

http://jocg.org/

JoCG 8(2), 80–108, 2017 82

Journal of Computational Geometry jocg.org

One classical distinction between working setups in 2D is simple polygons vs. polygonal
domains. The former are a special case of the latter: simple polygons are domains without
holes. Many problems admit more efficient solutions in simple polygons—loosely speaking,
the golden standard is running time of O(n) for simple polygons and of O(n log n) for
polygonal domains of complexity n. This is the case, e.g., for the shortest path problem
[31, 32]. For minimum-link paths, O(n)-time algorithms are known for simple polygons [27,
33, 49], but for polygonal domains with holes the fastest known algorithm runs in nearly
quadratic time [41], which may be close to optimal due to 3SUM-hardness of the problem [38].
Even more striking is the difference in the watchman route problem (find a shortest path
to see all of the domain), which combines path planning with visibility: in simple polygons
the optimal route can be found in polynomial time [15, 19] while for domains with holes the
problem cannot be approximated to within a logarithmic factor unless P=NP [40]. Finding
minimum-link watchman route is NP-hard even for simple polygons [4].

In 3D, a terrain is a polyhedral surface (often restricted to a bounded region in the
xy-projection) that is intersected only once by any vertical line. Terrains are traditionally
studied in GIS applications and are ubiquitous in computational geometry [11, 39]. Minimum-
link paths are closely related to visibility problems, which have been studied extensively on
terrains [8, 9, 22, 34, 36, 48]. One step up from terrains, we may consider simple polyhedra
(surfaces of genus 0), or full 3D scenes. Visibility has been studied in full 3D as well [20,
42, 50]. To our knowledge, minimum-link paths in higher dimensions have not been studied
before (with the exception of [10] that considered rectilinear paths).

❈♦♥str❛✐♥ts✳ In path planning on polyhedral surfaces or terrains, it is standard to restrict
paths to the (terrain) surface. Minimum-link paths, on the other hand, have various
geographic applications, ranging from feature simplification [30] to visibility in terrains [22].
In some of these applications, paths are allowed to live in free space, while bends are still
restricted to the terrain. In the GIS literature, out of simplicity and/or efficiency concerns, it
is common to constrain bends even further to vertices of the domain (or, even more severely,
the terrain itself may restrict vertices to grid points, as in the popular digital elevation map
(DEM) model; this, however, may lead to an arbitrarily high increase in the link distance).

In a vanilla minimum-link path problem the location of vertices (bends) of the path are
unconstrained, i.e., they can occur anywhere in the free space. In the diffuse reflection model
[5–7, 12, 28, 45] the bends are restricted to occur on the boundary of the domain. Studying
this kind of paths is motivated by ray tracing in realistic rendering of 3D scenes in graphics,
as light sources that can reach a pixel with fewer reflections make higher contributions
to intensity of the pixel [11, 23]. Despite the 3D graphics motivation, all work on diffuse
reflection has been confined to 2D polygonal domains, where the path bends are restricted
to edges of the domain.

✶✳✷ ❘❡♣r❡s❡♥t❛t✐♦♥ ❛♥❞ ❈♦♠♣✉t❛t✐♦♥

In computational geometry, the standard model of computation is the real RAM, which
represents data as an infinite sequence of storage cells which can store any real number or

http://jocg.org/

JoCG 8(2), 80–108, 2017 83

Journal of Computational Geometry jocg.org

integer. The model supports standard operations (such as addition, multiplication, or taking
square-roots) in constant time. The real RAM is preferred for its elegance, but may not
always be the best representation of physical computers. For example, the floor function
is often allowed, which can be used to truncate a real number to the nearest integer, but
points at a flaw in the model: if we were allowed to use it arbitrarily, the real RAM could
solve PSPACE-complete problems in polynomial time [47]. In contrast, the word RAM
stores a sequence of w-bit words, where w ≥ log n (and n is the problem size). Data can
be accessed arbitrarily, and standard operations, such as Boolean operations (and, xor,
shl, . . .), addition, or multiplication take constant time. There are many variants of the
word RAM, depending on precisely which instructions are supported in constant time. The
general consensus seems to be that any function in AC0 is acceptable.1 However, it is always
preferable to rely on a set of operations as small, and as non-exotic, as possible. Note that
multiplication is not in AC0 [25]. Nevertheless, it is usually included in the word RAM
instruction set [24]. The word RAM is much closer to reality, but complicates the analysis of
geometric problems.

In many cases, the difference between the models is unimportant, as the real numbers
involved in solving geometric problems are in fact algebraic numbers of low degree in a
bounded domain, which can be described exactly with constantly many words. Path planning
is notoriously different in this respect. Indeed, in the real RAM both the Euclidean shortest
paths and the minimum-link paths in 2D can be found in optimal times. On the contrary,
much less is known about the complexity of the problems in other models. For L2-shortest
paths the issue is that their length is represented by the sum of square roots and it is not
known whether comparing the sum to a number can be done efficiently (if yes, one may hope
that the difference between the models vanishes). Slightly more is known about minimum-link
paths, for which the models are provably different: Kahan and Snoeyink [35] observed that
the region of points reachable by k-link paths may have vertices needing Ω(k log n) bits to
describe. One of the results in this paper is the matching upper bound on the bit complexity
of minimum-link paths.

Relatedly, when studying the computational complexity of geometric problems, it is
often not trivial to show a problem is in NP. Even if a potential solution can be verified in
polynomial time, if such a solution requires real numbers that cannot be described succinctly,
the set of solutions to try may be too large. Recently, there has been some interest in
computational geometry in showing problems are in NP [21] (see also [46]).

A common practical approach to avoiding bit complexity issues is to approximate the
problem by restricting solutions to use only vertices of the input. In minimum-link paths,
this corresponds to MinLinkPath0,b. In this case, one can easily compute a minimum-link
path by a breadth-first search in the visibility graph of the vertices. This results in an O(n2)
time algorithm in 2D (using [43]), and an O(n7/3 polylog n) time algorithm in 3D (using [2];
for terrains this can be improved slightly [16]). In both cases the running time is dominated

1AC0 is the class of all functions f : {0, 1}∗ → {0, 1}∗ that can be computed by a family of circuits
(Cn)n∈N with the following properties: (i) each Cn has n inputs; (ii) there exist constants a, b, such that Cn

has at most anb gates, for n ∈ N; (iii) there is a constant d such that for all n the length of the longest path
from an input to an output in Cn is at most d (i.e., the circuit family has bounded depth); (iv) each gate has
an arbitrary number of incoming edges (i.e., the fan-in is unbounded).

http://jocg.org/

JoCG 8(2), 80–108, 2017 84

Journal of Computational Geometry jocg.org

v

s

v

s
t

v

s t

i

Figure 2: MinLinkPath0,b may be a factor Ω(n) worse than MinLinkPath1,b. Left: A construc-
tion of a “trench”. The only vertices visible from the vertices in layer i are in the previous layer,
i− 1, and in the next layer, i+ 1.; Middle: A polygon with two trenches; horizontal edges
are wide enough such that the ends of the top edge are not visible from the inner vertices
in the trenches. MinLinkPath0,2(s, t) requires Ω(n) vertices whereas MinLinkPath1,2(s, t) has
two links; Right: The 3D construction of the trenches: MinLinkPath0,3(s, t) requires Ω(n)
vertices whereas MinLinkPath1,3(s, t) has two links.

by the time it takes to construct the visibility graph. However, a simple example in Figure 2
shows that the number of links in MinLinkPath0,b may be a linear factor higher than when
considering less restricted geometric versions.

In this paper we explore the computational and algebraic complexity of the minimum-
link path problems in 2D and 3D under the word RAM computational model, and the issues
rising from the clash of geometry and the limited capacity of the word RAM for storing
precise numbers.

✶✳✸ ❘❡s✉❧ts

We give hardness results and approximation algorithms for various versions of the minimum-
link path problem. Specifically,

• In Section 2 we give an Ω(n log n) lower bound on the bit complexity of some bends
of minimum-link paths in 2D. In Section 2 we show a general lower bound on the bit
complexity of minimum-link paths of Ω(n log n) bits for some coordinates. (This was
previously claimed, but not proven, by Kahan and Snoeyink [35].) We show that the
bound is tight in 2D and we argue that this implies that MinLinkPatha,2 is in NP. In
Section 5, we argue that in 3D the boundary of the region reachable with k links can
consist of k-th order algebraic curves, potentially leading to exponential bit complexity.

• In Section 3.1 we present a blueprint for showing NP-hardness of minimum link
problems. We apply it to prove NP-hardness of the diffuse reflection path problem

http://jocg.org/

JoCG 8(2), 80–108, 2017 85

Journal of Computational Geometry jocg.org

MinLinkPatha,b b = 1 b = 2 b = 3

a = 0 O(n) O(n2) O(n7/3 polylog n)

a = 1 O(n) Simple Polygon: O(n9) [5]
Full 2D: NP-hard⋆
PTAS⋆

NP-hard⋆ (even in terrains)
PTAS⋆

a = 2 N/A Simple Polygon: O(n) [49]
Full 2D: O(n2α(n) log2 n) [41]
PTAS⋆

NP-hard⋆ (even in terrains)
PTAS⋆

a = 3 N/A N/A Terrains: O(n)
Full 3D: NP-hard⋆
PTAS⋆

Table 1: Computational complexity of MinLinkPatha,b for a ≤ b ≤ 3. Results presented in
this paper are marked with ⋆.

(MinLinkPath1,2) in 2D polygonal domains with holes in Section 3.2. In Section 6, we
use the same blueprint to prove that all interesting versions of minimum-link problems
in 3D are weakly NP-hard. The two remaining versions are MinLinkPath0,3, which can
be solved using the simple visibility graph approach sketched above, and MinLinkPath3,3
on terrains, which is trivial: any pair of points can be connected by a path with a
single bend at height ∞, so we only have to check if the points are pairwise visible.
We also note that the minimum-link problems that we prove NP-hard have no FPTAS
and no additive approximation (unless P=NP).

• In Section 4 we extend the 2-approximation algorithm from [29, Ch. 27.5], based on
computing weak visibility between sets of potential locations of the path’s bends, to
provide a simple PTAS for MinLinkPath2,2, which we also adapt to MinLinkPath1,2.
In Section 7 we give simple constant-factor approximation algorithms for higher-
dimensional minimum-link path versions, which can then be used in the same way to
show that all versions admit PTASes.

• In Section 7.3 we focus on MinLinkPath2,3 (diffuse reflection in 3D) on terrains—the
version that is most important in practice. We give a 2-approximation algorithm
that runs faster than the generic algorithm from [29, Ch. 27.5]. We also present an
O(n4)-size data structure encoding visibility between points on a terrain and argue
that the size of the structure is asymptotically optimal.

Our results are charted and compared to existing results in Table 1.

✷ ❆❧❣❡❜r❛✐❝ ❈♦♠♣❧❡①✐t② ✐♥ ✷❉

✷✳✶ ▲♦✇❡r ❜♦✉♥❞ ♦♥ t❤❡ ❇✐t ❝♦♠♣❧❡①✐t②

Kahan and Snoeyink [35] claim to “give a simple instance in which representing path vertices
with rational coordinates requires Θ(n2 log n) bits”. In fact, they show that the boundary

http://jocg.org/

JoCG 8(2), 80–108, 2017 86

Journal of Computational Geometry jocg.org

s
′
= b0

b1

b2

b...

bk−1

bk
ak = t

′

ak−1

a...

a2

a1

a0

Figure 3: (a) A spiral, as used in the construction by Kahan and Snoeyink. It uses integer
coordinates with O(log n) bits. (b) The general idea.

of the region reachable from s (a point with integer coordinates specified with O(log n)
bits) with k links may have vertices whose coordinates have bit complexity k log n. Note
however, that this does not directly imply that a minimum-link path from s to another
point t with low-complexity (integer) coordinates must necessarily have such high-complexity
bends (i.e., if t itself is not a high-complexity vertex of a region reachable with k links,
one potentially could hope to avoid placing the internal vertices of a minimum-link path
to t on such high-complexity points as well). Below we present a construction where the
intermediate vertices must actually use Ω(k log n) bits to be described, even if s and t can be
specified using only log n bits each. We first prove this for the MinLinkPath1,2 variant of the
problem, and then extend our results to paths that may bend anywhere within the polygon,
i.e., MinLinkPath2,2.

Lemma 1. There exists a simple polygon P , and points s and t in P such that: (i) all the
coordinates of the vertices of P and of s and t can be represented using O(log n) bits, and (ii)
any s-t minimum-link path that bends only on the edges of P has vertices whose coordinates
require Ω(k log n) bits, where k is the length of a minimum-link path between s and t.

Proof. We will refer to numbers with O(log n) bits as low-complexity. The general idea in
our construction is as follows. We start with a low-complexity point s′ = b0 on an edge e0 of
the polygon. We then consider the furthest point bi+1 on the boundary of P that is reachable
from bi. More specifically, we require that any point on the boundary of P between s′ and bi
is reachable by a path of at most i links, and that any point on the boundary of P beyond bi
requires at least i+ 1 links. We will obtain bi+1 by projecting bi through a vertex ci. Each
such step will increase the required number of bits for bi+1 by Θ(log n). Eventually, this
yields a point bk on edge ek. Let t′ be the point on ek that is closest to bk among the points
reachable with k links and having low complexity. Since all points along the boundary from
s′ to bk are reachable, and the vertices of P have low complexity, such a point is guaranteed

http://jocg.org/

JoCG 8(2), 80–108, 2017 87

Journal of Computational Geometry jocg.org

wi
Θ(n)

Θ(wi/n
2)

1

1

hi

Ri

Figure 4: The interval Ii of length wi produces an interval Ii+1 of length at most wi+1 =
hi/Θ(n) = Θ(wi/n

2), where hi = wi/(wi + Θ(n)). When the ith link can be anywhere in
region Ri (shown in yellow), it follows that Ri has height at most hi, and width at most wi.

to exist. We set ak = t′ and project ai through ci−1 to ai−1 to give us the furthest point
(from t′) reachable by k − i links. See Figure 3 for an illustration.

The points in the interval Ii = [ai, bi], with 1 ≤ i < k, are reachable from s′ by
exactly i links, and reachable from t′ by exactly k − i links. So, to get from s′ to t′ with
k links, we need to choose the ith bend of the path to be within the interval [ai, bi]. By
construction, the intervals for i close to 1 or close to k must contain low-complexity points.
We now argue that we can build the construction in such a way that the (k/2)th interval
contains no low-complexity points.

Observe that, if an interval contains no points that can be described with fewer than
m bits, its length can be at most 2−m. So, we have to ensure that the (k/2)th interval has
length at most 2−k logn.

By construction, the interval Ik has length at most one. Similarly, the length of I0
can be chosen to be at most one (if it is larger, we can adjust s′ = b0 to be the closest integer
point to a0). Now observe that in every step, we can reduce the length wi of the interval Ii
by a factor Θ(n2), using a construction like in Figure 4. Our overall construction is then
shown in Figure 5.2

It follows that Ik/2 cannot contain two low-complexity points that are close to each
other. Note however, that it may still contain one such a point. However, it is easy to see
that there is a sub-interval Jk/2 = [ℓk/2, rk/2] ⊆ Ik/2 of length wk/2/2 that contains no points

with fewer than k log n bits. We enforce the (k/2)th bend to occur in Jk/2. This also restricts

the possible positions for the ith bend to an interval Ji ⊆ Ii. We find these intervals by
projecting ℓk/2 and rk/2 through the vertices of P . Note that s′ and t′ may not be contained
in J0 and Jk, respectively, so we pick a new start point s ∈ J0 and end point t ∈ Jk as follows.
Let mk/2 be the mid point of Jk/2 and project mi through the vertices of P . Now, choose
s to be a low-complexity point in the interval [m0, r0], and t to be a low-complexity point
in the interval [ℓk,mk]. Observe that [m0, r0] and [ℓk,mk] have length Θ(1)—as [ℓk/2,mk/2]
and [m,k/2 , rk/2] have length wk/2/4—and thus contain low complexity points. Furthermore,
observe that t is indeed reachable from s by a path with k − 1 bends (and thus k links), all

2The polygon in the figure is not technically simple as it touches itself on the outside. The polygon can
easily be modified to be simple while keeping the same min-link path, but the figure would become more
cluttered.

http://jocg.org/

JoCG 8(2), 80–108, 2017 88

Journal of Computational Geometry jocg.org

s t

Figure 5: An overview of our polygon P and the minimum-link path that has high-complexity
coordinates.

of which much lie in the intervals Ji, 1 ≤ i < k (for example using the path that uses all
points mi). Thus, we have that t is reachable from s by a minimum-link path of k links, and
we need Ω(k log n) bits to describe the coordinates of the vertices in such a path.

Lemma 2. There exists a simple polygon P , and points s and t in P such that: (i) all the
coordinates of the vertices of P and of s and t can be represented using O(log n) bits, and
(ii) any s-t minimum-link path has vertices whose coordinates require Ω(k log n) bits, where
k is the length of a minimum-link path between s and t.

Proof. We extend the construction from Lemma 1 to the case in which the bends may also
lie in the interior of P . Let Bi denote the region in P that is reachable from s′ by exactly i
links, let Ai be the region reachable from t′ by exactly k − i links, and let Ri = Bi ∩Ai. To
get from s′ to t′ with k links, the ith bend has to lie in Ri. Now observe that this region is
triangular, and incident to the interval Ii (see e.g. Figure 4 for an illustration). This region
Ri has width at most wi and height at most hi = wi/(wi +Θ(n)). Therefore, we can again
argue that Rk/2 is small, and thus contains at most one low-complexity point p. We then
again choose a region R′

k/2 ⊆ Rk/2 of diameter wk/2/2 that avoids point p. The remainder of
the argument is analogous to the one before: we can pick points s and t in the restricted
regions R′

0 and R′
k that are reachable by a minimum-link path of k − 1 bends, all of which

have to lie in the regions R′
i. It follows that we again need Ω(k log n) bits to describe the

coordinates of the vertices in such a path.

http://jocg.org/

JoCG 8(2), 80–108, 2017 89

Journal of Computational Geometry jocg.org

✷✳✷ ❯♣♣❡r ❜♦✉♥❞ ♦♥ t❤❡ ❇✐t ❝♦♠♣❧❡①✐t②

We now show that the bound of Kahan and Snoeyink [35] on the complexity of k-link
reachable regions is tight: representing the regions R as polygons with rational coordinates
requires O(n2 log n) for any polygon P , assuming that representation of the coordinates of
any vertex of P requires at most c0 log n bits for some constant c0. Thus, we have a matching
lower and upper bound on the bit complexity of a minimum-link path in 2D.

Consider a simple polygon P with n vertices, and a point s ∈ P . Analogous to [35],
define a sequence of regions R = {R1, R2, R3, . . . }, where R1 is a set of all points in P that
see s, and Ri+1 is a region of points in P that see some point in Ri for i ≥ 1. In other words,
region Ri+1 consists of all the points of P that are illuminated by region Ri.

❈♦♥str✉❝t✐♦♥ ♦❢ r❡❣✐♦♥ Ri+1✳ If P is a simple polygon, then Ri+1 is also a simple polygon,
consisting of O(n) vertices. We will bound the bit complexity of a single vertex of Ri+1. The
vertices of such a region are either

• original vertices of P ,

• intersection points of P ’s boundary with lines going through reflex vertices of P , or

• intersection points of P ’s boundary with rays emanating from the vertices of Ri and
going through reflex vertices of P .

Only the last type of vertices can lead to an increase in bit complexity. Each of these vertices
is defined as an intersection point of two lines: one of the lines passes through two vertices of
P , say a = (xa, ya) and b = (xb, yb), and, therefore, has a O(log n) bit representation. The
other line passes through one vertex of P , say c = (xc, yc), with coordinates of O(log n) bit
complexity, and one vertex of region Ri, say d = (xd, yd), with coordinates of potentially
higher complexity. The coordinates of the intersection can be calculated by the following
formula:

(

x∗

y∗

)

=











(xbya − xayb + xayc − xbyc)xd + (xbxc − xaxc)yd + xaybxc − yaxbxc
(ya − yb)xd − (xa − xb)yd + xayc − yaxc − xbyc + ybxc

(yayc − ybyc)xd + (xbya − xcya − xayb + xcyb)yd + xaybyc − yaxbyc
(ya − yb)xd − (xa − xb)yd + xayc − yaxc − xbyc + ybxc











=









A′
1xd +B′

1yd + C ′
1

E′xd + F ′yd +G′

A′
2xd +B′

2yd + C ′
2

E′xd + F ′yd +G′









, for some constants A′
j , B

′
j , C

′
j , E

′, F ′, and G′.

Point d lies on the boundary of P . Denote the end points of the side it belongs to as u and v.
Then the following relation between the coordinates of d holds:

yd =
(yu − yv)xd + xuyv − yuxv

xu − xv
.

http://jocg.org/

JoCG 8(2), 80–108, 2017 90

Journal of Computational Geometry jocg.org

Thus, the equation for the coordinates of the intersection point can be rewritten as:

(

x∗

y∗

)

=









A1xd +B1

Cxd +D

A2xd +B2

Cxd +D









,

where each of A1, A2, B1, B2, C, and D has bit complexity not greater than c log n for
some constant c (here, it is enough to choose c = 4c0). Let xd be represented as a rational
number p/q, where p and q are relatively prime integers. Then the number of bits required to
represent xd is sp(xd) = ⌈log(p+ 1)⌉+ ⌈log(q + 1)⌉ ≥ log(p+ 1) + log(q + 1) ≥ 2 log(p+ q),
the last inequality holds for all p ≥ 1 and q ≥ 1. Therefore, the number of bits required to
represent x∗ is

sp(x∗) = ⌈log(A1p+B1q + 1)⌉+ ⌈log(Cp+Dq + 1)⌉ ≤ 2⌈log(E(p+ q) + 1)⌉ ≤

≤ 2 logE + 2 log(p+ q) + 2 ≤ 2 + 2c log n+ sp(xd) ,

where E = max{A1, B1, C,D}. Analogously for y∗, sp(y∗) ≤ 2+2c log n+sp(xd). Therefore,
at every step, the bit complexity of the coordinates grows no more than by an additive value
2 + 2c log n. After k steps, the bit-complexity of the regions’ vertices is O(k log n).

Theorem 3. Representing the regions R as polygons with rational coordinates requires
O(nk log n) bits.

Corollary 4. If there exists a solution with k links, there also exists one in which the
coordinates of the bends use at most O(k log n) bits.

Our bounds hold also in polygons with holes, where the reachable regions may have vertices
that are the intersection of two segments whose end points have high complexity. However,
such vertices will be reflex and will not contribute to the next step of projections.

Theorem 5. MinLinkPatha,2 is in NP.

Proof. We need to show that a candidate solution can be verified in polynomial time. A
potential solution needs at most n links. By Corollary 4, we only need to verify candidate
solutions that consist of bends with O(n log n)-bit coordinates. Given such a candidate,
we need to verify pairwise visibility between at most n pairs of points with O(n log n)-bit
coordinates, which can be done in polynomial time.

✸ ❈♦♠♣✉t❛t✐♦♥❛❧ ❈♦♠♣❧❡①✐t② ✐♥ ✷❉

In this section we show that MinLinkPath1,2 is NP-hard. To this end, we first provide a
blueprint for our reduction in Section 3.1. In Section 3.2 we then show how to “instantiate”
this blueprint for MinLinkPath1,2 in a polygon with holes.

http://jocg.org/

JoCG 8(2), 80–108, 2017 91

Journal of Computational Geometry jocg.org

✸✳✶ ❆ ❇❧✉❡♣r✐♥t ❢♦r ❍❛r❞♥❡ss ❘❡❞✉❝t✐♦♥s

We reduce from the 2-Partition problem: Given a set of integers A = {a1, . . . , am}, find a
subset S ⊆ A whose sum is equal to half the sum of all numbers. The main idea behind all
the hardness reductions is as follows. Consider a 2D construction in Figure 6 (left). Let point
s have coordinates (0, 0), and t (not in the figure) have coordinates (

∑

ai/2, 4m− 2). For
now, in this construction, we will consider only paths from s to t that are allowed to bend on
horizontal lines with even y-coordinates. Moreover, we will count an intersection with each
such horizontal line as a bend. We will place fences along the lines with odd y-coordinates in
such a way that an s-t path with 2m− 1 links exists (that bends only on horizontal lines
with even y-coordinates) if and only if there is a solution to the 2-Partition instance.

Call the set of horizontal lines ℓ0 : y = 0, ℓi : y = 4i − 2 for 1 ≤ i ≤ m important
(dashed lines in Figure 6), and the set of horizontal lines ℓ′i : y = 4i − 4 for 2 ≤ i ≤ m
intermediate (dash-dotted lines in Figure 6). Each important line ℓi will “encode” the running
sums of all subsets of the first i integers Ai = {a1, . . . , ai}. That is, the set of points on ℓi
that are reachable from s with 2i− 1 links will have coordinates (

∑

aj∈Si
aj , 4i− 2) for all

possible subsets Si ⊆ Ai.

Call the set of horizontal lines f1 : y = 1, fi : y = 4i− 5 for 2 ≤ i ≤ m multiplying,
and the set of horizontal lines f ′

i : y = 4i − 3 for 2 ≤ i ≤ m reversing. Each multiplying
line fi contains a fence with two 0-width slits that we call 0-slit and ai-slit. The 0-slit with
x-coordinate 0 corresponds to not including integer ai into subset Si, and the ai-slit with
x-coordinate

∑i
1 aj −ai/2 corresponds to including ai into Si. Each reversing line f ′

i contains
a fence with two 0-width slits (reversing 0-slit and reversing ai-slit) with x-coordinates 0 and
∑i

1 aj that “put in place” the next bends of potential minimum-link paths, i.e., into points
on ℓi with x-coordinates equal to running sums of Si. We add a vertical fence of length 1
between lines ℓ′i and f ′

i at x-coordinate
∑i

1 aj/2 to prevent the minimum-link paths that
went through the multiplying 0-slit from going through the reversing ai-slit, and vice versa.

As an example, consider (important) line ℓ2 in Figure 6. The four points on ℓ2
that are reachable from s with 3 links have x-coordinates {0, a1, a2, a1 + a2}. The points
on line ℓ′3 that are reachable from s with a path (with 4 links) that goes through the
0-slit on line f3 have x-coordinates {0,−a1,−a2,−(a1 + a2)}, and the points on ℓ′3 that are
reachable from s through the a3-slit have x-coordinates {a1+a2+a3, 2a1+a2+a3, a1+2a2+
a3, 2a1+2a2 + a3}. The reversing 0-slit on line f ′

3 places the first four points on ℓ3 into
x-coordinates {0, a1, a2, a1 + a2}, and the reversing a3-slit places the second four points on
ℓ3 into x-coordinates {a3, a1 + a3, a2 + a3, a1 + a2 + a3}.

In general, consider some point p on line ℓi−1 that is reachable from s with 2i − 3
links. The two points on ℓ′i that can be reached from p with one link have x-coordinates −px
and 2

∑i
1 aj − ai − px, where px is the x-coordinate of p. Consequently, the two points on

ℓi that can be reached from p with two links have x-coordinates px and px + ai. Therefore,
for every line ℓi, the set of points on it that are reachable from s with a minimum-link path
have x-coordinates equal to

∑

aj∈Si
aj for all possible subsets Si ⊆ Ai. Consider line ℓm and

the destination point t on it. There exists a s-t path with 2m − 1 links if and only if the
x-coordinate of t is equal to

∑

aj∈S
aj for some S ⊆ A. The complexity of the construction

is polynomial in the size of the 2-Partition instance. Therefore, finding a minimum-link path

http://jocg.org/

JoCG 8(2), 80–108, 2017 92

Journal of Computational Geometry jocg.org

ℓ3

ℓ2

ℓ1

ℓ0
s(0, 0)

a
1
+
a
2

a
1

a
2

a
3

a
1
+
a
2
+
a
3

a
1
+
a
3

a
2
+
a
3

ℓ′
2

ℓ′
3

f1

f2

f ′

2

f3

f ′

3

x

y

Figure 6: The first few lines of a 2D construction depicting the general idea behind the
hardness proofs: important lines ℓ0–ℓ3, intermediate lines ℓ′1–ℓ

′
3, multiplying lines f1–f3, and

reversing lines f ′
1–f

′
3. The slits in the fences on multiplying and reversing lines are placed in

such a way that the locations on ℓi that are reachable from s with 2i− 1 links correspond to
sums formed by all possible subsets of {a1, . . . , ai}.

from s to t in our 2D construction is NP-hard.

✸✳✷ ❍❛r❞♥❡ss ♦❢ MinLinkPath1,2

We can turn our construction from Section 3.1 into a “zigzag” polygon (Figure 7); the fences
are turned into obstacles within the corresponding corridors, and slits remain slits—the only
free space through which it is possible to go with one link between the polygon edges that
correspond to consecutive lines ℓ′i and ℓi (or ℓi−1 and ℓ′i). This retains the crucial property
of the 2D construction: locations reachable with fewest links on the edges of the polygon
correspond to sums of numbers in the subsets of A. We conclude:

Theorem 6. MinLinkPath1,2 in a 2D polygonal domain with holes is NP-hard.

Overall our reduction bears resemblance to the classical path encoding scheme [14] used to
prove hardness of 3D shortest path and other path planning problems, as we also repeatedly
double the number of path homotopy types; however, since we reduce from 2-Partition (and
not from 3SAT, as is common with path encoding), our proof(s) are much less involved than
a typical path-encoding one.

◆♦ ❋P❚❆❙✳ Obviously, problems with a discrete answer (in which a second-best solution
is separated by at least 1 from the optimum) have no FPTAS. For example, in the reduction
in Theorem 6, if the instance of 2-Partition is feasible, the optimal path has 2m− 1 links;
otherwise it has 2m links. Suppose there exists an algorithm, which, for any ε > 0 finds a
(1 + ε)-approximate solution in time polynomial in 1/ε. Take ε = 1

2m−1 ; note that 1/ε is

http://jocg.org/

JoCG 8(2), 80–108, 2017 93

Journal of Computational Geometry jocg.org

0

0 a1 0 a1 a2

a
1
+
a
2
+
a
3

a
2
+
a
3

a
1
+
a
2

a
1
+
a
3

a
2

a
3

a
1

0

a
1
+
a
2

ℓ
′

2
ℓ
′

3

Figure 7: There exists an s-t diffuse reflection path with 2m− 1 links iff 2-Partition instance
is feasible.

polynomial, and hence the FPTAS with this ε will complete in polynomial time. For an
infeasible instance of 2-Partition the FPTAS would output a path with at least 2m links,
while for a feasible instance it will output a path with at most (1 + ε)(2m− 1) = 2m− 1/2
links. There is only one such length possible; a path with exactly opt = 2m− 1 links. Hence,
the FPTAS would be able to differentiate, in polynomial time, between feasible and infeasible
instances of 2-Partition.

◆♦ ❛❞❞✐t✐✈❡ ❛♣♣r♦①✐♠❛t✐♦♥✳ We can slightly amplify the hardness results, showing that
for any constant K it is not possible to find an additive-K approximation for our problems:
Concatenate K instances of the construction from the hardness proof, aligning s in the
instance k+1 with t from the instance k. Then there is a path with K(2m−1) links through
the combined instance if the 2-Partition is feasible; otherwise K(2m− 1) +K − 1 links are
necessary, Thus an algorithm, able to differentiate between instances in which the solution
has K(2m− 1) links and those with K(2m− 1) +K − 1 links in poly(mK) = poly(m) time,
would also be able to solve 2-Partition in the same time.

✹ ❆❧❣♦r✐t❤♠✐❝ ❘❡s✉❧ts ✐♥ ✷❉

✹✳✶ ❈♦♥st❛♥t✲❢❛❝t♦r ❆♣♣r♦①✐♠❛t✐♦♥

MinLinkPath2,2 can be solved exactly [41]. For MinLinkPath1,2, [28] gives a 3-approximation.

✹✳✷ P❚❆❙

We describe a (1 + ε)-approximation scheme for MinLinkPath1,2, based on building a graph
of edges of D that are k-link weakly visible.

Consider the set F of all edges of D (that is,
⋃

F = D|1). To avoid confusion between
edges of D and edges of the graph we will build, we will call elements of F features (this
will also allow us to extend the ideas to higher dimensions later). Two features f, f ′ ∈ F are
weakly visible if there exist mutually visible points p ∈ f, p′ ∈ f ′; more generally, we say f, f ′

http://jocg.org/

JoCG 8(2), 80–108, 2017 94

Journal of Computational Geometry jocg.org

are k-link weakly visible if there exists a k-link path from p to p′ (with the links restricted to
D|1).

For any constant k ≥ 1, we construct a graph Gk = (F,Ek), where Ek is the set of
pairs of k-link weakly visible features. Let πk = {f0, f1, . . . , fℓ}, with f0 ∋ s and fℓ ∋ t be a
shortest path in G from the feature containing s to the feature containing t; ℓ is the number
of links of π. We describe how to transform πk into a solution to the MinLinkPath1,2 problem.
Embed edges of π into D as k-link paths. This does not necessarily connect s to t since it
could be that, inside a feature fi, the endpoint of the edge fi−1fi does not coincide with
endpoint of the edge fifi+1; to create a connected path, we observe that the two endpoints
can always be connected by two extra links via some feature that is mutually visible from
both points (or a single extra link within fi if we allow links to coincide within the boundary
of D).

Lemma 7. The number of links in πk
∗ is at most (1 + 1/k)opt.

Proof. Split opt into pieces of k links each (the last piece may have fewer than k links); the
algorithm will find k-link subpaths between endpoints of the pieces. In details, suppose
that opt = mk + r where m, r are the quotient and the remainder from division of opt by
k; let s = v0, v1, . . . , vopt = t be the vertices (bends) of opt, and let fi be the feature to
which the ik-th bend vik belongs. Since the link distance between v(i−1)k and vik is k, our
algorithm will find a k-link subpath from fi−1 to fi, as well as an r-link subpath from fm
to t. The total number of links in the approximate path is thus at most mk + m + r ≤
(1 + 1/k)(mk + r) = (1 + 1/k)opt (if r = 0, our algorithm will find path with at most
mk +m− 1 < (1 + 1/k)mk = (1 + 1/k)opt links; if r > 0, our algorithm will find path with
at most mk + r +m ≤ (1 + 1/k)(mk + r) = (1 + 1/k)opt links).

We now argue that the weak k-link visibility between features can be determined in polynomial
time using the staged illumination: starting from each feature f , find the set W (f) of points on
other features weakly visible from f , then find the set weakly visible from W 2(f) = W (W (f)),
repeat k times to obtain the set W k(f) reachable from f with k links; feature f ′ can be
reached from f in k links iff W k(f) ∩ f ′ 6= ∅. For constant k, building W k(f) takes time
polynomial in n, although possibly exponential in k (in fact, for diffuse reflection explicit
bounds on the complexity of W k(f) were obtained [5–7]). This can be seen by induction:
Partition the set W i−1(f) into the polynomial number of constant-complexity pieces. For
each piece p, each element e of the boundary of the domain and each feature f ′ compute
the part of f ′ shadowed by e from the light sources on p—this can be done in constant time
analogously to determining weak visibility between two features above (by considering the
part of p× f ′ carved out by the occluder e). The part of f ′ weakly seen from W i−1(f) is
the union, over all parts p, of the complements of the sets occluded by all elements e; since
there is a polynomial number of parts, elements and features, it follows that W i(f) can be
constructed in polynomial time.

Theorem 8. For a constant k the path πk
∗ , having at most (1 + 1/k)opt links, can be

constructed in polynomial time.

http://jocg.org/

JoCG 8(2), 80–108, 2017 95

Journal of Computational Geometry jocg.org

pi−1

e1

e2 pi

Ri−1

Ri

Figure 8: The order of the curves on the boundaries of Ri grows with i.

✺ ❆❧❣❡❜r❛✐❝ ❈♦♠♣❧❡①✐t② ✐♥ ✸❉

❖r❞❡r ♦❢ t❤❡ ❜♦✉♥❞❛r② ❝✉r✈❡s✳ Assume the representations of the coordinates of any vertex
of D and s require at most c0 log n bits for some constant c0. Analogous to Section 2, we
define a sequence of regions R = {R1, R2, R3, . . . }, where R1 is the set of all points in D
that see s, and Ri is the region of points in D that see some point in Ri−1 for i ≥ 2, i.e., the
region Ri consists of all points of D that are illuminated by region Ri−1. Note that Ri is a
union of subsets of faces of D. Therefore, when we speak of the boundaries (in the plural
form of the word) of Ri, which we denote as ∂Ri, we mean the illuminated sub-intervals of
edges of D as well as the frontier curves interior to the faces of D.

Unlike in 2D, the boundaries of Ri interior to the faces of D do not necessarily consist
of straight-line segments. Observe that the union of all lines intersecting three given lines in
3D is a hyperboloid, and therefore, illuminating a straight-line segment on the boundaries of
Ri−1 leads to the corresponding part of ∂Ri to be an intersection of a hyperboloid and a
plane, i.e., a hyperbola. Moreover, consider some point pi−1 ∈ ∂Ri−1 interior to some face
fi−1 of D, and two edges e1 and e2 of the domain D which pi−1 sees partially and which will
cast a shadow on some face fi of D (refer to Figure 8). We can express the coordinates of pi
as:





xi
yi
zi



 =

















A1x
2
i−1 +B1y

2
i−1 + C1xi−1yi−1 +D1xi−1 + E1yi−1 + F1

Ax2i−1 +By2i−1 + Cxi−1yi−1 +Dxi−1 + Eyi−1 + F

A2x
2
i−1 +B2y

2
i−1 + C2xi−1yi−1 +D2xi−1 + E2yi−1 + F2

Ax2i−1 +By2i−1 + Cxi−1yi−1 +Dxi−1 + Eyi−1 + F

Uxi + V yi +W

















, (1)

http://jocg.org/

JoCG 8(2), 80–108, 2017 96

Journal of Computational Geometry jocg.org

for some constants A1, A2, A,B1, . . . , U, V,W that depend on the parameters of fi−1, fi, e1,
e2. Denote a polynomial of degree d as polyd(·). We can rewrite the x- and the y-coordinates
of pi as

(

xi
yi

)

=













poly2x,i−1(xi−1, yi−1)

poly2i−1(xi−1, yi−1)

poly2y,i−1(xi−1, yi−1)

poly2i−1(xi−1, yi−1)













=













poly4x,i−2(xi−2, yi−2)

poly4i−2(xi−2, yi−2)

poly4y,i−2(xi−2, yi−2)

poly4i−2(xi−2, yi−2)













=











poly2ix,0(x0, y0)

poly2i0 (x0, y0)

poly2iy,0(x0, y0)

poly2i0 (x0, y0)











,

where point p0(x0, y0, z0) lies on some straight-line segment of ∂D, and we use different
subscripts of the polynomials to distinguish between different expressions. Notice that the
denominators of xi and yi expressed as functions of xj and yj (for all j < i) are always
the same. If we slide p0 along the line segment, and express its coordinates in terms of a
parameter t, we get

xi =
poly2ix (t)

poly2i(t)
, yi =

poly2iy (t)

poly2i(t)
, zi = poly1(xi, yi) .

Thus, the curve that point pi traces on fi is an intersection of a plane in 3D (face fi) and
two surfaces of order 2i+ 1 in 4D space (with coordinates x, y, z, and t). Therefore, the
order of that curve is not greater than 2i+ 1. In fact, as we have mentioned above, for i = 1,
the curve that p1 traces on face f1 is a hyperbola, with order 2, and not 2i+ 1 = 3. The fact
that the denominators of the expressions of x1 and y1 are the same allows us to reduce the
order of the expressions in the following way:

x1 =
poly2x(t)

poly2(t)
= x′1 +

poly1x′(t)

poly2(t)
,

y1 =
poly2y(t)

poly2(t)
= y′1 +

poly1y′(t)

poly2(t)
,

(2)

Therefore,
x1 − x′1
y1 − y′1

=
poly1x′(t)

poly1y′(t)
.

Solving this equation for t and substituting the resulting expression into Equations 2, we
get that the actual order of the curve traced by p1 is 2. For larger i, denominators of the
expressions of xi and yi are also equal, however the explicit formula for the curve traced by
pi cannot be derived in a similar way. We summarize our findings:

Theorem 9. The boundaries of region Ri are curves of order at most 2i+ 1 for i ≥ 2, and
at most 2 for i = 1.

The fact that the order of the curves on the boundaries of Ri grows linearly may give hope
that the bit complexity of representation of Ri can be bounded from above similarly to
Section 2.2. However, following similar calculations we will get that the space required to
store the coordinates of pi grows exponentially with i.

http://jocg.org/

JoCG 8(2), 80–108, 2017 97

Journal of Computational Geometry jocg.org

The parameters A1, A2, A,B1, . . . ,W of Equation 1 have bit complexity not greater
than c log n for some constant c. Let xi−1 be represented as a rational number px/qx, and yi−1

be represented as a rational number py/qy, where px and qx, and py and qy are two pairs of
relatively prime integers. Then the number of bits required to represent xi−1, i.e., sp(xi−1),
is at least max{log px, log qx}. Therefore, the number of bits required to represent xi

sp(xi) ≤ log(A1p
2
xq

2
y +B1q

2
xp

2
y + C1pxqxpyqy +D1pxqxq

2
y + E1q

2
xpyqy + F1q

2
xq

2
y)+

log(Ap2xq
2
y +Bq2xp

2
y + Cpxqxpyqy +Dpxqxq

2
y + Eq2xpyqy + Fq2xq

2
y) ≤

≤2 log(6Mr4) = 2 log 6 + 2 logM + 8 log r ≤

≤6 + 2c log n+ 8max{sp(xi−1), sp(yi−1)} ,

where M = max{A1, B1, . . . , E, F} and r = max{px, qx, py, qy}. Solving the above recurrence
we get sp(xi) ≤ 9i, which implies an exponential upper bound of the space required to store
xi.

Lemma 10. The coordinates of a vertex of Ri can be stored in O(9i) space.

We conjecture that the lower bound for the bit complexity of the vertices of a minimum-link
path in 3D is exponential as well. This would imply that MinLinkPath2,3 in 3D is not in NP.

Conjecture 1. There exists a polyhedral domain D and two points s and t such that: (i)
all the coordinates of the vertices of D and of s and t can be represented using O(log n) bits,
and (ii) any s-t minimum-link path that bends only on the faces of D has vertices whose
coordinates require Ω(ck) bits, where c is some constant and k is the length of a minimum-link
path between s and t.

✻ ❈♦♠♣✉t❛t✐♦♥❛❧ ❈♦♠♣❧❡①✐t② ✐♥ ✸❉

We will now show how to use our blueprint from Section 3.1 to build a terrain for the
MinLinkPath1,2 problem such that a path from s to t with 2m − 1 links will exist if and
only if there exists a subset S ⊆ A whose sum is equal to half the sum of all integers
A = {a1, . . . , am}. Take the 2D construction and bend it along all the lines ℓi and ℓ′i, except
ℓ0 and ℓm (refer to Figure 9). Let the angles between consecutive faces be π − δ for some
small angle δ < π/4m (so that the sum of bends between the first face (between the lines ℓ0
and ℓ1) and the last face (between the lines ℓ′m and ℓm) is less than π). On each face build a
fence of height tan(δ/4) according to the 2D construction. The height of the fences is small
enough so that no two points on consecutive fences see each other. Therefore, for two points
s and t placed on ℓ0 and ℓm as described above, an s-t path with 2m− 1 links must bend
only on ℓi and ℓ′i and pass in the slits in the fences. Finding a minimum-link path on such a
terrain is equivalent to finding a minimum-link path (with bends restricted to ℓi and ℓ′i) in
the 2D construction. Therefore,

Theorem 11. MinLinkPath1,2 on a terrain is NP-hard.

Remark. Instead of 0-width slits, we could use slits of positive width w < 1
8m ; since the

width of the light beam grows by 2w between two consecutive creases, on any crease, the

http://jocg.org/

JoCG 8(2), 80–108, 2017 98

Journal of Computational Geometry jocg.org

ℓ1

ℓ2 ℓ3ℓ
′

2
ℓ
′

3

0

a2

a1+a3
a1+a2

a2+a3

a1+a2+a3

a3

a1

0

a1

a3
a1+a2

a1+a2+a3

a1+a3

a2+a3

a2

ℓ0

Figure 9: Right: The terrain obtained by bending the 2D construction along the important
and intermediate lines. The height of the fences is low enough that no two points on
consecutive fences can see each other.

maximum shift of the path due to the positive slits width will be at most (2m− 1)× 2w < 1/2.
Thus, the positive width cannot change the number of links, and the reduction works even in
the case when all slits widths are positive.

Observe that bending in the interior of a face cannot reduce the link distance between s
and t. Hence, our reduction also shows that MinLinkPath2,2 is NP-hard. Furthermore, lifting
the links from the terrain surface also does not reduce the link distance; we ensured that the
fences are low in height, so that fences situated on different faces of the creased rectangle do
not see each other. Therefore, jumping onto the fences is useless. Hence, MinLinkPath1,3 and
MinLinkPath2,3 are also NP-hard.

MinLinkPatha,b ✐♥ ❣❡♥❡r❛❧ ♣♦❧②❤❡❞r❛✳ Since a terrain is a special case of a 3D polyhedra,
it follows that MinLinkPath1,2, MinLinkPath2,2, MinLinkPath1,3, and MinLinkPath2,3 are also
NP-hard for an arbitrary polyhedral domain in 3D. Our construction does not immediately
imply that MinLinkPath3,3 is NP-hard. However, we can put a copy of the terrain slightly
above the original terrain (so that the only free space is the thin layer between the terrains).
When this layer is thin enough, the ability to take off from the terrain and bend in the free
space does not help in decreasing the link distance from s to t. Thus, MinLinkPath3,3 is also
NP-hard.

Corollary 12. MinLinkPatha,b, with a ≥ 1 and b ≥ 2, in a 3D domain D is NP-hard. This
holds even if D is just a terrain.

http://jocg.org/

JoCG 8(2), 80–108, 2017 99

Journal of Computational Geometry jocg.org

f

f ′

p

Figure 10: The weak visibility W (f) restricted to edge f ′ is the union of all visible intervals
(green) over all points p ∈ f . If this region is non-empty, f and f ′ are weakly visible.

✼ ❆❧❣♦r✐t❤♠✐❝ ❘❡s✉❧ts ✐♥ ✸❉

✼✳✶ ❈♦♥st❛♥t✲❢❛❝t♦r ❆♣♣r♦①✐♠❛t✐♦♥

Our approximations refine and extend the 2-approximation for minimum-link paths in higher
dimensions suggested in Chapter 26.5 (section Other Metrics) of the handbook [29] (see also
Ch. 6 in [44]); since the suggestion is only one sentence long, we fully quote it here:

Link distance in a polyhedral domain in R
d can be approximated (within factor 2)

in polynomial time by searching a weak visibility graph whose nodes correspond
to simplices in a simplicial decomposition of the domain.

Indeed, consider D|a, the set of all points where the path is allowed to bend, and decompose
D|a into a set F of small-complexity convex pieces; call each piece a feature. Similar to
Section 4.2, we say two features f and f ′ are weakly visible if there exist mutually visible
points p ∈ f and p′ ∈ f ′; more generally, the weak visibility region W (f) is the set of points
that see at least one point of f , so f ′ is weakly visible from f iff f ′ ∩W (f) 6= ∅ (in terms
of illumination W (f) is the set of points that get illuminated when a light source is put at
every point of f). See Figure 10 for an illustration.

Weak visibility between two features f and f ′ can be determined straightforwardly
by building the set of pairs of points (p, p′) in the parameter space f × f ′ occluded by (each
element of) the obstacles. To be precise, f × f ′ is a subset of R2a. Now, consider D|d−1,
which we also decompose into a set of constant-complexity elements. Each element e defines
the set B(e) = {(p, p′) ∈ f × f ′ : pp′ ∩ e 6= ∅} of pairs of points that it blocks; since e has
constant complexity, the boundary of B(e) consists of a constant number of curved surfaces,
each described by a low degree polynomial. Since there are O(n) elements, the union (and,
in fact, the full arrangement) of the sets B(e) for all e can be built in O(n4a−3+ε) time, for
an arbitrarily small ε > 0, or O(n2) time in case a = 1 [3]. We define the visibility map
M(f, f ′) ⊆ f × f ′ to be the complement of the union of the blocking sets, i.e., the map is
the set of mutually visible pairs of points from f × f ′. We have:

Lemma 13. M(f, f ′) can be built in O(nmax(2,4a−3+ε)) time, for an arbitrarily small ε > 0.

http://jocg.org/

JoCG 8(2), 80–108, 2017 100

Journal of Computational Geometry jocg.org

The features f and f ′ weakly see each other iff M(f, f ′) is not empty. Let G be the graph
on features whose edges connect weakly visible features; s and t are added as vertices of G,
connected to features (weakly) seen from them. Let π = {f0, f1, . . . , fℓ}, with f0 = s and
fℓ = t be a shortest s-t path in G; ℓ is the length of π. Embed edges of π into the geometric
domain, putting endpoints of the edges arbitrarily into the corresponding features. This does
not necessarily connect s to t since it could be that, inside a feature fi, the endpoint of the
edge fi−1fi does not coincide with endpoint of the edge fifi+1; to create a connected path,
connect the two endpoints by an extra link within fi (this is possible since the features are
convex).

Bounding the approximation ratio of the above algorithm is straightforward: Let
opt denote a minimum-link s-t path and, abusing notation, also the number of links in it.
Consider the features to which consecutive bends of opt belong; the features are weakly
visible and hence are adjacent in G. Thus ℓ ≤ opt. Adding the extra links inside the features
adds at most ℓ− 1 links. Hence the total number of links in the produced path is at most
2ℓ− 1 < 2opt.

Since G has O(n) nodes and O(n2) edges, Dijkstra’s algorithm will find the shortest
path in it in O(n2) time.

Theorem 14. (cf. [29, Ch. 27.5].) A 2-approximation to MinLinkPatha,b can be found in
O(n2+max(2,4a−3+ε)) time, where ε > 0 is an arbitrarily small constant.

Interestingly, the running time in Theorem 14 depends only on a, and not on b or d, the
dimension of D (of course, a ≤ d, so the runtime is bounded by O(n2+max(2,4d−3+ε)) as well).

✼✳✷ P❚❆❙

To get a (1 + 1/k)-approximation algorithm for any constant k ≥ 1, we expand the above
handbook idea by searching for shortest s-t path πk in the graph Gk whose edges connect
features that are k-link weakly visible. Similarly to Section 4.2, we obtain the following.

Theorem 15. For a constant k the path πk
∗ , having at most (1 + 1/k)opt links, can be

constructed in polynomial time.

Proof. The approximation factor follows from the same argument as in Section 4.2. To show
the polynomial running time, we argue that the weak k-link visibility between features can
be determined in polynomial time using the staged illumination: starting from each feature
f , find the set W (f) of points on other features weakly visible from f , then find the set
weakly visible from W 2(f) = W (W (f)), repeat k times to obtain the set W k(f) reachable
from f with k links; feature f ′ can be reached from f in k links iff W k(f) ∩ f ′ 6= ∅. For
constant k, building W k(f) takes time polynomial in n, although possibly exponential in k
(in fact, for diffuse reflection explicit bounds on the complexity of W k(f) were obtained [5–7]).
This can be seen by induction: Partition the set W i−1(f) into the polynomial number of
constant-complexity pieces. For each piece p, each element e of the boundary of the domain
and each feature f ′ compute the part of f ′ shadowed by e from the light sources on p—this
can be done in constant time analogously to determining weak visibility between two features

http://jocg.org/

JoCG 8(2), 80–108, 2017 101

Journal of Computational Geometry jocg.org

p
q

q
′p

′

Figure 11: For every pair of points p ∈ fp and q ∈ fq that can see each other, there exist
points p′ and q′ on the edges bounding fp and fq, respectively, that can also see each other.

above (by considering the part of p× f ′ carved out by the occluder e). The part of f ′ weakly
seen from W i−1(f) is the union, over all parts p, of the complements of the sets occluded by
all elements e; since there is a polynomial number of parts, elements and features, it follows
that W i(f) can be constructed in polynomial time.

✼✳✸ ❚❤❡ ❣❧♦❜❛❧ ✈✐s✐❜✐❧✐t② ♠❛♣ ♦❢ ❛ t❡rr❛✐♥

Using the result from Theorem 14 for MinLinkPath2,3 on terrains, we get a 2-approximate
minimum-link path in O(n7+ε) time (since the path can bend anywhere on a triangle of the
terrain, the features are the triangles and intrinsic dimension d = 2). In this section we show
that a faster, O(n4)-time 2-approximation algorithm is possible. We also consider encoding
visibility between all points on a terrain (not just between features, as the visibility map
from Section 7.1 does): we give an O(n4)-size data structure for that, which we call the
terrain’s global visibility map, and provide an example showing that the size of the structure
is worst-case optimal.

We start with connecting approximations of MinLinkPath2,3 and MinLinkPath1,3 on
terrains. Let opt be an optimal solution in an instance of MinLinkPath2,3, let opte be the
optimal solution to MinLinkPath1,3 in the same instance, and let apxe be the 2-approximate
path for the MinLinkPath1,3 version output by the algorithm in Section 7.1 (Theorem 14);
abusing notation, let opt, opte and apxe denote also the number of links in the paths. Clearly,
apxe ≤ 2opte; what we show is that actually a stronger inequality holds (the inequality is
stronger since opt ≤ opte):

Lemma 16. apxe ≤ 2opt.

Proof. Consider some link pq on optimal path opt from s to t. Draw a vertical plane through
p and q and denote as p′ and q′ the uppermost intersections of this plane with the boundaries
of the triangles containing p and q (refer to Figure 11). Then p′ and q′ see each other, and
they lie on edges of the terrain.

Replace every link pq of opt by p′q′, and interconnect the consecutive links by straight
segments. Such interconnecting segments will belong to an edge of the terrain, or go through
the interior of a triangle containing the corresponding vertex of the optimal path. The
resulting chain of edges is a proper path from s to t whose bends lie only on edges of the

http://jocg.org/

JoCG 8(2), 80–108, 2017 102

Journal of Computational Geometry jocg.org

ℓ1 ℓ2 ℓ3

e e
′

Figure 12: Start from an instance of the 3SUM-hard problem GeomBase [26]: Given a set
S of points lying on 3 parallel lines ℓ1, ℓ2, ℓ3, do there exist 3 points from S lying on a line
ℓ /∈ {ℓ1, ℓ2, ℓ3}? Construct an instance of the weak visibility problem for edges e, e′ in a
polygonal domain: ℓ1, ℓ2, ℓ3 become obstacles and each point p ∈ S is a gap punched in the
obstacle; the lines are in a box whose two opposite edges (parallel to the lines) are the edges
e, e′. The edges are weakly visible iff there exist 3 collinear gaps pi, i = 1, 2, 3, such that
pi ∈ ℓi.

terrain. Thus, it has a corresponding path in graph G (refer to Theorem 14). The length
of such a path is at most 2opt− 1, and it is not shorter than apxe (the shortest path in G).
Therefore, apxe ≤ 2opt.

Lemma 16 allows us to use the 2-approximation for MinLinkPath1,3 as a 2-approximation
for MinLinkPath2,3. The former can be found more efficiently: by Theorem 14, apxe can be
found in O(n4) time.

Theorem 17. A 2-approximation for MinLinkPath2,3 in a terrain can be found in O(n4)
time.

The running time of the algorithm in Theorem 17 is dominated by determining weak visibility
between all

(

n
2

)

pairs of edges; the approach from Section 7.1 does it with brute force in
O(n2) time per pair. An obvious question is whether this could be done faster for a single
pair. We now show that this is hardly the case. We start from the analogous result for 2D
polygonal domains:

Theorem 18. Determining weak visibility between a pair of edges in a polygonal domain
with holes is 3SUM-hard.

Proof. The proof is by picture; see Figure 12.

The domain in Figure 12 can be turned into a terrain by erecting the lines ℓ1, ℓ2, ℓ3 into 3
vertical walls (the gaps in the lines become slits in the walls); similarly to the 2D case, the
edges e, e′ weakly see each other iff GeomBase is feasible:

Theorem 19. Determining weak visibility between a pair of edges in a terrain is 3SUM-hard.

The above 3SUM-hardness results are not the end of the story: the fact that determining
weak visibility for a single pair of edges may require quadratic time does not imply that

http://jocg.org/

JoCG 8(2), 80–108, 2017 103

Journal of Computational Geometry jocg.org

determining the visibility between all pairs of edges should require quatric time. In fact, the
3SUM-hardness of the 2D case (Theorem 18) does not preclude existence of an O(n2)-time
algorithm for finding all pairs of weakly visible edges in a polygonal domain with holes—such
an algorithm is used, e.g., in Section 4 of [28]. Moreover, in [13] it is shown that a data
structure of O(n2) size can be built in O(n2) time, encoding visibility between all pairs of
points in a domain; the data structure, which can be called the global visibility map of the
domain, is an extension of the standard visibility graph that encodes visibility only between
the domain’s vertices. An immediate question is whether such a data structure can be built
for terrains; below is our answer.

The global visibility map that encodes all mutually visible pairs of points on a terrain
(or in a full 3D domain) will live in four dimensions—this is because a line in a 3D space has
four degrees of freedom, and our data structure will use the projective dual 4D space Sd to
the primary 3D space Sp where the terrain is located. A line ℓ ∈ Sp will correspond to a
point ℓ∗ ∈ Sd. To build the global visibility map, consider a 5D space S5 where Sp and Sd

are subspaces, and a point O in S5 with coordinates (0, 0, 0, 0, 1). The dual point ℓ∗ ∈ Sd for
a line ℓ ∈ Sp is constructed as follows: Draw a 4D hyperplane in S5 that goes through line ℓ
and point O. A perpendicular line to such hyperplane that goes through O intersects Sd in a
point. This point will be ℓ∗—the dual point to line ℓ.

Now, the visibility map is a partition of Sd into cells, such that each cell contains
points whose duals have the same combinatorial structure, i.e., they intersect the same set of
obstacles’ faces in Sp.

Lemma 20. The global visibility map that encodes all pairs of mutually visible points on
terrain T (or on a set of obstacles O in full 3D model) has complexity O(n4).

Proof. Let L be a set of n lines in Sp. L implies a subdivision W of space Sd into cells that
correspond to lines that touch the same sets of lines in L. W consists of 0-cells (vertices),
1-cells (edges), 2-cells, 3-cells, and 4-cells. The k-cells of W correspond to a set of lines that
intersects exactly 4−k lines of L. There are clearly O(n4) 0-cells, since there are n lines in L.
For each k-cell, the number of incident (k+1)-cells is O(1), since they correspond to the sets
of lines we get by dropping incidence to 1 of the 4−k lines (and 4−k is constant). Therefore,
the number of k-cells is also bounded by O(n4) for all k. Hence, W has complexity O(n4).

Now, consider our terrain T (or a set of obstacles O in full 3D model) in Sp. We are
interested in the subdivision S of Sd into cells that correspond to line segments that are
combinatorially equal (their end points are on the same features of T or O). Then, W is a
sub-subdivision of S (in the sense of subgraph, so something with fewer components). Hence,
S also has complexity O(n4).

Remark. The first part of the above argument (the complexity of the configuration space
of lines among lines in 3-space) is a natural question and it is well-studied. McKenna and
O’Rourke [37] argue quartic bounds on the numbers of 0-faces, 1-faces and 4-faces (although
many proofs in their paper are omitted). They also describe how to compute the complex
consisting of all 0-faces and 1-faces in O(n4α(n)) time.

We now argue that the bound in Lemma 20 is tight: the global visibility map may have

http://jocg.org/

JoCG 8(2), 80–108, 2017 104

Journal of Computational Geometry jocg.org

Figure 13: Every vertex (0-face) in the visibility map corresponds to a line that crosses 4
edges of the terrain. In this example, there is a line that connects any horizontal edge on the
left-hand side with any horizontal segment on the right-hand side, and that also pins two
spikes in the middle. Thus, there are Ω(n4) 0-faces in the visibility map.

complexity Ω(n4). Other then being an interesting result by itself, this implies that the
running time of the algorithm in Theorem 17 may not be improved if one were to compute
the weak visibility between all pairs of edges.

Lemma 21. The global visibility map that encodes all pairs of mutually visible points on
terrain T can have complexity Ω(n4).

Proof. See Figure 13. It is easy to see that this construction yields a visibility map of
complexity Ω(n4).

Lemmas 20 and 21 give tight bounds on the complexity of the visibility map:

Theorem 22. The complexity of global visibility map, encoding all pairs of mutually visible
points on a terrain (or on a set of obstacles in 3D) of complexity n, is Θ(n4).

✽ ❈♦♥❝❧✉s✐♦♥

We considered minimum-link in 2D and 3D, giving bounds on the combinatorial complexity
of the paths and algorithmic complexity of the problems of finding the paths. We showed
that in 3D most of the versions of the problem are hard but admit PTASes; we also obtained
similar results for the diffuse reflection problem in 2D polygonal domains with holes. The
biggest remaining open problem is whether pseudopolynomial-time algorithms are possible
for the problems: our reductions are from 2-PARTITION, and hence do not show strong
hardness (we believe that our techniques can be extended to show strong hardness via more

http://jocg.org/

JoCG 8(2), 80–108, 2017 105

Journal of Computational Geometry jocg.org

sophisticated path-encoding reductions). A related question is exploring bit complexity
of the minimum-link paths in 3D (note that already in simple polygons in 2D finding a
minimum-link path with integer vertices is weakly NP-hard [18]).

❆❝❦♥♦✇❧❡❞❣♠❡♥ts

We thank Joe Mitchell and Jean Cardinal for fruitful discussions on this work and the
anonymous reviewers for their helpful comments. M.L. is supported by the Netherlands
Organisation for Scientific Research (NWO) under grant 639.021.123. The work of I.K. was
supported in part by the Netherlands Organisation for Scientific Research (NWO) under
grant 639.023.208 and by F.R.S.-FNRS. V.P. is supported by grant 2014-03476 from the
Sweden’s innovation agency VINNOVA. F.S. is supported by the Danish National Research
Foundation under grant nr. DNRF84.

❘❡❢❡r❡♥❝❡s

[1] J. Adegeest, M. H. Overmars, and J. Snoeyink. “Minimum-link C-oriented paths: Single-
source queries”. In: International Journal of Computational Geometry & Applications
4.1 (1994).

[2] P. K. Agarwal and J. Matoušek. “Ray shooting and parametric search”. In: SIAM
Journal on Computing 22.4 (1993).

[3] P. K. Agarwal and M. Sharir. “Arrangements and their applications”. In: Handbook of
computational geometry (2000).

[4] M. H. Alsuwaiyel and D. T. Lee. “Minimal link visibility paths inside a simple polygon”.
In: Computational Geometry 3.1 (1993).

[5] B. Aronov, A. R. Davis, J. Iacono, and A. S. C. Yu. “The Complexity of Diffuse
Reflections in a Simple Polygon”. In: 7th Latin American Symposium on Theoretical
Informatics. 2006.

[6] B. Aronov, A. R. Davis, T. K. Dey, S. P. Pal, and D. C. Prasad. “Visibility with
Multiple Reflections”. In: Discrete & Computational Geometry 20.1 (1998).

[7] B. Aronov, A. R. Davis, T. K. Dey, S. P. Pal, and D. C. Prasad. “Visibility with One
Reflection”. In: Discrete & Computational Geometry 19.4 (1998).

[8] B. Ben-Moshe, P. Carmi, and M. J. Katz. “Approximating the Visible Region of a
Point on a Terrain”. In: GeoInformatica 12.1 (2008).

[9] B. Ben-Moshe, M. J. Katz, J. S. B. Mitchell, and Y. Nir. “Visibility preserving terrain
simplification—an experimental study”. In: Computational Geometry 28.2-3 (2004).

[10] M. de Berg, M. J. van Kreveld, B. J. Nilsson, and M. H. Overmars. “Shortest path
queries in rectilinear worlds”. In: International Journal of Computational Geometry &
Applications 3.2 (1992).

[11] M. de Berg. “Generalized hidden surface removal”. In: Computational Geometry 5.5
(1996).

http://jocg.org/

JoCG 8(2), 80–108, 2017 106

Journal of Computational Geometry jocg.org

[12] A. Bishnu, S. K. Ghosh, P. P. Goswami, S. P. Pal, and S. Sarvattomananda. An
Algorithm for Computing Constrained Reflection Paths in Simple Polygon. http :

//arxiv.org/abs/1304.4320. 2013.

[13] K. Buchin, I. Kostitsyna, M. Löffler, and R. Silveira. “Region-based approximation of
probability distributions (for visibility between imprecise points among obstacles)”. In:
17th Workshop on Algorithm Engineering and Experiments. 2015.

[14] J. Canny and J. H. Reif. “New lower bound techniques for robot motion planning
problems”. In: 28th Annual Symposium on Foundations of Computer Science. 1987.

[15] S. Carlsson, H. Jonsson, and B. J. Nilsson. “Finding the shortest watchman route in a
simple polygon”. In: Discrete & Computational Geometry 22.3 (1999).

[16] R. Cole and M. Sharir. “Visibility problems for polyhedral terrains”. In: Journal of
Symbolic Computation 7 (1989).

[17] E. D. Demaine, J. S. B. Mitchell, and J. O’Rourke. The Open Problems Project.
http://maven.smith.edu/~orourke/TOPP/.

[18] W. Ding. “On Computing Integral Minimum Link Paths in Simple Polygons”. In:
European Workshop on Computational Geometry. 2008.

[19] M. Dror, A. Efrat, A. Lubiw, and J. S. B. Mitchell. “Touring a Sequence of Polygons”.
In: 35th Annual ACM Symposium on Theory of Computing. 2003.

[20] A. Efrat, L. J. Guibas, O. A. Hall-Holt, and L. Zhang. “On incremental rendering of
silhouette maps of a polyhedral scene”. In: Computational Geometry 38.3 (2007).

[21] D. El-Khechen, M. Dulieu, J. Iacono, and N. van Omme. “Packing 2×2 unit squares into
grid polygons is NP-complete”. In: Canadian Conference on Computational Geometry.
2009.

[22] L. D. Floriani and P. Magillo. “Algorithms for visibility computation on terrains: a
survey”. In: Environment and Planning B: Planning and Design 30.5 (2003).

[23] J. D. Foley, R. L. Phillips, J. F. Hughes, A. v. Dam, and S. K. Feiner. Introduction to
Computer Graphics. Addison-Wesley Longman Publishing Co., Inc., 1994.

[24] M. L. Fredman and D. E. Willard. “Trans-dichotomous algorithms for minimum
spanning trees and shortest paths”. In: Journal of Computer and System Sciences 48.3
(1994).

[25] M. Furst, J. B. Saxe, and M. Sipser. “Parity, circuits, and the polynomial-time hierarchy”.
In: Mathematical Systems Theory 17.1 (1984).

[26] A. Gajentaan and M. H. Overmars. “On a Class of O(n2) Problems in Computational
Geometry”. In: Computational Geometry 5 (1995).

[27] S. K. Ghosh. “Computing the Visibility Polygon from a Convex Set and Related
Problems”. In: Journal of Algorithms 12.1 (1991).

[28] S. K. Ghosh, P. P. Goswami, A. Maheshwari, S. C. Nandy, S. P. Pal, and S. Sarvat-
tomananda. “Algorithms for computing diffuse reflection paths in polygons”. In: The
Visual Computer 28.12 (2012).

http://jocg.org/
http://arxiv.org/abs/1304.4320
http://arxiv.org/abs/1304.4320
http://maven.smith.edu/~orourke/TOPP/

JoCG 8(2), 80–108, 2017 107

Journal of Computational Geometry jocg.org

[29] J. E. Goodman and J. O’Rourke. Handbook of Discrete and Computational Geometry.
Chapman & Hall/CRC, 2004.

[30] L. J. Guibas, J. Hershberger, J. S. B. Mitchell, and J. Snoeyink. “Approximating
Polygons and Subdivisions with Minimum Link Paths”. In: 2nd International Symposium
on Algorithms. 1991.

[31] L. J. Guibas, J. Hershberger, D. Leven, M. Sharir, and R. E. Tarjan. “Linear-time
algorithms for visibility and shortest path problems inside triangulated simple polygons”.
In: Algorithmica 2 (1987).

[32] J. Hershberger and J. Snoeyink. “Computing minimum length paths of a given homotopy
class”. In: Computational Geometry 4 (1994).

[33] J. Hershberger and J. Snoeyink. “Computing Minimum Length Paths of a Given
Homotopy Class”. In: Computational Geometry: Theory and Applications 4 (1994).

[34] F. Hurtado, M. Löffler, I. Matos, V. Sacristán, M. Saumell, R. I. Silveira, and F. Staals.
“Terrain visibility with multiple viewpoints”. In: 24th International Symposium on
Algorithms and Computation. 2013.

[35] S. Kahan and J. Snoeyink. “On the bit complexity of minimum link paths: Su-
perquadratic algorithms for problems solvable in linear time”. In: Computational
Geometry: Theory and Applications 12.1-2 (1999).

[36] F. Kammer, M. Löffler, P. Mutser, and F. Staals. “Practical Approaches to Partially
Guarding a Polyhedral Terrain”. In: Geographic Information Science. 2014.

[37] M. McKenna and J. O’Rourke. “Arrangements of Lines in 3-space: A Data Structure
with Applications”. In: 4th Annual Symposium on Computational Geometry. 1988.

[38] J. S. B. Mitchell, V. Polishchuk, and M. Sysikaski. “Minimum-link paths revisited”. In:
Computational Geometry 47.6 (2014).

[39] J. S. B. Mitchell and M. Sharir. “New Results on Shortest Paths in Three Dimensions”.
In: 20th Annual Symposium on Computational Geometry. 2004.

[40] J. S. Mitchell. “Approximating watchman routes”. In: 24th Annual ACM-SIAM Sympo-
sium on Discrete Algorithms. SIAM. 2013.

[41] J. Mitchell, G. Rote, and G. Woeginger. “Minimum-link paths among obstacles in the
plane”. In: Algorithmica 8.1 (1992).

[42] E. Moet. “Computation and complexity of visibility in geometric environments”. PhD
thesis. Utrecht University, 2008.

[43] M. H. Overmars and E. Welzl. “New Methods for Computing Visibility Graphs”. In:
4th Annual Symposium on Computational Geometry. 1988.

[44] C. Piatko. “Geometric bicriteria optimal path problems”. PhD thesis. Cornell University,
1993.

[45] D. Prasad, S. P. Pal, and T. Dey. “Visibility with multiple diffuse reflections”. In:
Computational Geometry 10 (1998).

[46] M. Schaefer, E. Sedgwick, and D. Stefankovic. “Recognizing string graphs in NP”. In:
Journal of Computer and System Sciences 67.2 (2003).

http://jocg.org/

JoCG 8(2), 80–108, 2017 108

Journal of Computational Geometry jocg.org

[47] A. Schönhage. “On the power of random access machines”. In: 6th Colloquium on
Automata, Languages and Programming. 1979.

[48] A. J. Stewart. “Hierarchical Visibility in Terrains”. In: Eurographics Rendering Workshop.
1997.

[49] S. Suri. “A linear time algorithm with minimum link paths inside a simple polygon”.
In: Computer Vision, Graphics and Image Processing 35.1 (1986).

[50] G. Viglietta. “Face-Guarding Polyhedra”. In: Canadian Conference on Computational
Geometry. 2011.

[51] C. D. Yang, D. T. Lee, and C. K. Wong. “On bends and distances of paths among
obstacles in 2-layer interconnection model”. In: IEEE Transactions on Computing 43.6
(1994).

[52] C. D. Yang, D. T. Lee, and C. K. Wong. “On bends and lengths of rectilinear paths: a
graph theoretic approach”. In: International Journal of Computational Geometry &
Applications 2.1 (1992).

[53] C. D. Yang, D. T. Lee, and C. K. Wong. “Rectilinear paths problems among rectilinear
obstacles revisited”. In: SIAM Journal on Computing 24 (1995).

http://jocg.org/

	Introduction
	Problem Statement, Domains and Constraints
	Representation and Computation
	Results

	Algebraic Complexity in 2D
	Lower bound on the Bit complexity
	Upper bound on the Bit complexity

	Computational Complexity in 2D
	A Blueprint for Hardness Reductions
	Hardness of MinLinkPath1,2

	Algorithmic Results in 2D
	Constant-factor Approximation
	PTAS

	Algebraic Complexity in 3D
	Computational Complexity in 3D
	Algorithmic Results in 3D
	Constant-factor Approximation
	PTAS
	The global visibility map of a terrain

	Conclusion

