
PROCEEDINGS Open Access

On the complexity of Minimum Path Cover with
Subpath Constraints for multi-assembly
Romeo Rizzi1†, Alexandru I Tomescu2*†, Veli Mäkinen2

From RECOMB-Seq: Fourth Annual RECOMB Satellite Workshop on Massively Parallel Sequencing

Pittsburgh, PA, USA. 31 March - 05 April 2014

Abstract

Background: Multi-assembly problems have gathered much attention in the last years, as Next-Generation

Sequencing technologies have started being applied to mixed settings, such as reads from the transcriptome

(RNA-Seq), or from viral quasi-species. One classical model that has resurfaced in many multi-assembly methods

(e.g. in Cufflinks, ShoRAH, BRANCH, CLASS) is the Minimum Path Cover (MPC) Problem, which asks for the

minimum number of directed paths that cover all the nodes of a directed acyclic graph. The MPC Problem is

highly popular because the acyclicity of the graph ensures its polynomial-time solvability.

Results: In this paper, we consider two generalizations of it dealing with integrating constraints arising from long

reads or paired-end reads; these extensions have also been considered by two recent methods, but not fully

solved. More specifically, we study the two problems where also a set of subpaths, or pairs of subpaths, of the

graph have to be entirely covered by some path in the MPC. We show that in the case of long reads (subpaths),

the generalized problem can be solved in polynomial-time by a reduction to the classical MPC Problem. We also

consider the weighted case, and show that it can be solved in polynomial-time by a reduction to a min-cost

circulation problem. As a side result, we also improve the time complexity of the classical minimum weight MPC

Problem. In the case of paired-end reads (pairs of subpaths), the generalized problem becomes NP-hard, but we

show that it is fixed-parameter tractable (FPT) in the total number of constraints. This computational dichotomy

between long reads and paired-end reads is also a general insight into multi-assembly problems.

Introduction

Background

The last years have witnessed Next-Generation Sequen-

cing technologies applied to mixed settings in which the

input sample consists of different, but highly related,

genomic sequences. A major problem in this setting is

to assemble the NGS reads produced from these differ-

ent sequences, problem called multi-assembly [1].

An emblematic example is the multi-assembly of the

expressed transcripts of a gene from RNA-Seq reads

[2,3]. The RNA transcripts of a gene are concatenations

of exons, which can be shared among them, and whose

length is typically much longer than the short read

length. The RNA-Seq technology has proved essential in

characterizing gene regulation and function, understand-

ing development, disease, and disorders, including cancer

[4-7]. The most popular tool for multi-assembly of RNA-

Seq reads is Cufflinks [8], but the great interest in the

community has led to a recent proliferation of methods

and tools, such as [9-20]. Another example is the multi-

assembly of NGS reads from viral quasi-species [21].

Since many viruses, such as HIV or HCV, encode their

genomes in RNA rather than DNA, they lack DNA poly-

merase and are unable to repair mistakes in their gen-

omes as they reproduce. Over the course of infection, the

mistakes made in the replication of the virus are passed

down to descendants, producing a family of related var-

iants of the original viral genome, referred to as quasi-

species. Among all of the new quasi-species produced,

some may be more virulent than others, and it is of great

* Correspondence: tomescu@cs.helsinki.fi

† Contributed equally
2Helsinki Institute for Information Technology HIIT, Department of Computer

Science, University of Helsinki, Helsinki, Finland

Full list of author information is available at the end of the article

Rizzi et al. BMC Bioinformatics 2014, 15(Suppl 9):S5

http://www.biomedcentral.com/1471-2105/15/S9/S5

© 2014 Rizzi and Tomescu; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly cited. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

mailto:tomescu@cs.helsinki.fi
http://creativecommons.org/licenses/by/4.0
http://creativecommons.org/publicdomain/zero/1.0/


epidemiological interest to identify them. Methods for

this problem include [22-27].

The vast majority of the multi-assembly tools are

genome-guided, in the sense that they have access to one

reference genome. Consequently, the analysis proceeds

by aligning the reads to this reference, and constructing

one of two major graph models. In the first, called an

overlap graph, the nodes stand for reads and the edges

stand for overlaps between reads. This model is

employed both for RNA-Seq reads (by Cufflinks [8]), and

for pyrosequencing reads from a viral population

(ShoRAH [25,26]). In the second model, called a splicing

graph and used mainly for RNA-Seq reads, the nodes

stand for contiguous stretches of DNA present entirely in

some transcript (pseudo-exons); its edges stand for reads

spanning two pseudo-exons and indicate that they are

consecutive in some transcript. This model is employed

by most of the other methods for the multi-assembly of

RNA-Seq reads [9-20]. Since both graph models arise

from alignments to a reference sequence, they are also

directed and acyclic (DAGs). Moreover, the nodes and

the edges of the graph are weighted according to the

observed coverage, and different strategies exist for inte-

grating them into the formulation of the multi-assembly

problem. For example, in Cufflinks [8], the weight of an

edge reflects the belief that its two endpoints originate

from different transcripts, and is computed using the per-

cent-spliced-in metric proposed in [28].

Motivation

Given an overlap or a splicing DAG, many methods

[8,19,20,25-27] model the multi-assembly problem as a

Minimum Path Cover Problem; these include the well-

known tool for RNA-Seq reads Cufflinks [8]. A path

cover in a directed graph G is a set of paths which cover

all the nodes of G. A minimum path cover (MPC) is a

path cover of minimum cardinality. Often, the edges of

the DAG are weighted, and one is then interested in a

minimum weight MPC. Even though this problem is in

general NP-complete (a path cover has cardinality 1 if

and only if the directed graph has a Hamiltonian path),

it is solvable in polynomial time on DAGs [29]. This

fact is one of the main reasons why the MPC Problem

has attracted so much interest. Therefore, it makes

sense to extend it with other biological information,

while maintaining its polynomial-time solvability.

In this paper we consider additional information aris-

ing from paired-end reads or long reads. Observe that,

currently, both graph models and the associated MPC

Problem include constraints only on pairs of nodes

which must be consecutive in the (same) genomic

sequence. However, on the one hand, most sequencers

produce paired-end reads; these two reads correspond

to nodes that must be in the same genomic sequence,

but they are no longer consecutive in it. On the other

hand, Third-Generation Sequencing technologies, like

Pacific Biosciences [30], produce long reads whose

length is in the range of thousands of base-pairs. If

properly error-corrected, they introduce additional con-

straints on the sequences of nodes which must appear as

consecutive in the same assembled genomic sequences.

In the case of a splicing graph, such additional con-

straints can be introduced even from short reads com-

pletely overlapping a short middle pseudo-exon (such as

in the case of alternative donor/acceptor sites [31]).

Two different problem formulations have been

recently proposed to better guide the multi-assembly

using paired-end or long reads. In the first [20], a partial

assembly of the RNA transcripts is assumed (transfrags),

and the following problem, which we call Minimum

Path Cover with Subpath Constraints (MPC-SC), is pro-

posed. Given a DAG G and a set of subpaths in G (the

transfrags, or the long reads), we are asked to find a

MPC such that each given subpath is contained comple-

tely in some path of the path cover. In [20], the authors

consider in fact the weighted version of the problem,

and propose a polynomial-time reduction to the classical

weighted MPC Problem. However, their reduction is

incomplete as it does not deal with the case when two

subpaths P1 and P2 are such that a suffix of P1 is a pre-

fix of P2. In the second formulation [19], given a DAG

G and a set of paired-end RNA-Seq read alignments to

the nodes of G, we are asked to find a minimum path

cover whose paths contain all given paired-end reads.

We call this problem Minimum Path Cover with Paired

Subpaths Constraints (MPC-PSC). In [19], the authors

tackle the MPC-PSC Problem by modeling it as the NP-

complete set cover problem.

Results and discussion

In this paper, we solve both the MPC-SC and the MPC-

PSC Problem. Namely, we state the MPC-SC Problem

more generally than in [20], and give a correct and

robust polynomial-time reduction of it to the classical

MPC Problem on a DAG. Denote by n the number of

nodes of the input DAG, by m its number of edges, by c

the total number of subpath constraints, and by N the

sum of their lengths. Constructing this reduction to the

classical MPC Problem requires a pre-processing step,

which, if implemented trivially, takes O(c2n2) time;

however, we can reduce that to O(N + c2) by use of a

suffix tree construction suitable for large alphabets [32],

and of an optimal-time algorithm for computing all

pairs longest suffix-prefix overlaps [33,34]. The com-

plexity of solving Problem MPC-SC thus becomes

O
(

N + c2 +
√

(n + c)
(

n2 + c
))

.

Rizzi et al. BMC Bioinformatics 2014, 15(Suppl 9):S5

http://www.biomedcentral.com/1471-2105/15/S9/S5

Page 2 of 11



We also consider the weighted version of Problem

MPC-SC, and show that it can be solved in time O(N +

(n + c)2 log(n + c) + (n + c)(m + c)) by a reduction to a

min-cost circulation problem on a network with flow

lower bounds only [35]. Moreover, we prove that the

MPC-PSC Problem itself is NP-complete, but we show

that it is fixed-parameter tractable (FPT) in the total

number of constraints on the DAG.

As a side result of this paper, we obtain a simple algo-

rithm for the classical minimum weight MPC Problem

running in time O(n2log n + nm), based on a recent

reduction to a network flow problem [36]. This

improves the current best bound O(n2 log n + nt(G)),

where t (G) ∈
{

m, m + 1, . . . ,

(

n

2

)}

is the number of

edges in the transitive closure of G, arising from the

reduction in [29].

In view of this computational dichotomy between

paired-end reads and long reads/transfrags, an alternative

title of this paper could have been “Long reads are better

than paired-end reads in multi-asssembly problems”.

In fact, in the experiments we conducted for our own

tool for RNA-Seq multi-assembly Traph [37,38], we fed

Cufflinks [8], IsoLasso [10], SLIDE [12] and Traph both

with single-end and paired-end reads, but did not notice

any significant change in the multi-assembly accuracy.

Nevertheless, an immediate solution to the negative

result concerning the complexity of the MPC-PSC Pro-

blem could be to simply transform paired-end reads into

long reads by a local assembly method which fills the gap

between them, such as [39,40].

As a preliminary experiment, in the Supplementary

Material we show the solutions of Problem MPC-SC on

simulated RNA-Seq data from six cancer-related genes.

These results are compared to the ground truth, and to

Cufflinks’ solutions (given that Cufflinks uses the classical

MPC model). These preliminary results indicate that,

thanks to the additional long read constraints to the MPC

problem, Problem MPC-SC reports more transcripts than

Cufflinks, and they are generally more accurate.

Both MPC-SC and MPC-PSC Problems are natural

extensions of the classical MPC problem, and can be

applied to any graph model for multi-assembly, such as

an overlap graph or a splicing graph. The MPC Problem

has received great interest in the multi-assembly commu-

nity, and pair-end reads, long reads, or transfrags are

either already, or expected to be easily available in the

near future. Our positive result concerning the MPC-SC

Problem, and the two proposed solutions for the MPC-

PSC Problem, give efficient ways to incorporate addi-

tional information that an NGS pipeline can provide.

Moreover, all of our solutions are based on easy to imple-

ment reductions, and resort to well-known problems in

combinatorial optimization, for which there are many

existing solvers.

Independently and parallel to this work, [41] gave ana-

logs of our Thm. 4 and Lemma 2 for Problem MPC-

PSC.

Methods

A faster algorithm for the weighted Minimum Path Cover

(MPC) Problem

Given a directed graph G, we say that a family

P = {P1, . . . , Pk} of paths in G is a path cover of G if

every v ∈ V (G) belongs to some Pi. Throughout this

paper, we let n stand for the number of vertices of G

and m stand for the number of edges of G. A minimum

path cover (MPC) of G is a path cover of G of minimum

cardinality. If each edge e of G has a non-negative

weight w(e), then a minimum weight minimum path

cover is a minimum path cover P which minimizes the

sum of the weights of the edges of the paths of P , that

is,
∑

P∈P
Σe∈Pw(e).

A well-known result on path covers in directed acyclic

graphs (DAGs) is Dilworth’s theorem [42], which equates

the minimum number of paths in a path cover to the

maximum cardinality of an anti-chain (this cardinality is

sometimes called width); an anti-chain is a set of nodes

with no directed path between any two of them. A con-

structive proof of this theorem, due to Fulkerson [29],

shows that the MPC problem can be reduced to a maxi-

mum matching problem in a bipartite graph, as follows.

Given a directed graph G, let T(G) denote the transitive

closure of G, that is, the digraph obtained from G by

repeatedly adding, until no longer possible, an edge (u, v)

whenever (u, v) ∉ E(G) but there exist w ∈ V (G) such

that (u, w), (w, v) � E(G); we let t(G) denote the number

of edges of T(G). Note that if G is a DAG, then T(G) can

be computed in time O(t(G)). Fulkerson showed that a

MPC can be obtained by computing a maximum match-

ing in a bipartite graph associated to G, having two

copies of V (G) as nodes and the edges of T(G) as edges

(see Figures 1(a) and 1(b)). Therefore, using the

Hopcroft-Karp maximum matching algorithm, a MPC

can be computed in time O
(√

nt (G)
)

[43]. To compute

a minimum weight MPC, the same bipartite graph can be

constructed, having edge weights induced from path

weights in G. A minimum weight MPC corresponds to a

minimum weight maximum matching on this graph,

which can be computed in time O(n2 log n + nt(G)) [44].

A recent solution for the MPC Problem reduces it

instead to a min-flow problem [36], as follows. Each node

of G is replaced by an arc with lower bound 1 (all other

edges of G have lower bound 0), and a new global source s

and sink t are added to G and connected to all sources

Rizzi et al. BMC Bioinformatics 2014, 15(Suppl 9):S5

http://www.biomedcentral.com/1471-2105/15/S9/S5

Page 3 of 11



and sinks of G, respectively (see Figures 1(a) and 1(c)).

A min-flow on this digraph is a flow of minimum value

satisfying all lower bounds. The value of the min-flow on

this network equals the maximum size of an anti-chain of

G, and any decomposition of it into paths gives a MPC

[36]. A decomposition of a flow on a DAG into paths can

be computed in time linear in the number of edges, by tra-

versing the edges used by the flow [45]. A min-flow pro-

blem can be solved by two applications of a max-flow

algorithm [45]. Therefore, using the recent result on max-

flows [46], this approach finds a MPC in time O(nm).

If in the unweighted case, the complexity of the

method of [36] is incomparable with the complexity of

solving the MPC Problem by a maximum matching pro-

blem, in the weighted case, the method of [36] leads to

one of improved complexity. This is obtained by an

algorithm for the following restricted variant of the

min-cost circulation problem [45,47]: given a directed

graph, and a flow lower bound for each edge and a cost

per flow unit for each edge, the task is to find a circula-

tion of minimum total cost satisfying all lower bounds.

A circulation is a function assigning a flow value to

each edge such that the flow conservation property is

satisfied for all nodes; consequently, the flow network

cannot have sources or sinks.

To solve the minimum weight MPC Problem, we

extend the reduction in [36] by associating to the edges

either cost 0, if they correspond to the nodes of G or are

incident to s or t; or their weight in G, if they correspond

to edges of G. Moreover, we add a new edge from t to s

with lower bound 0 and having as cost the sum of all

edge weights (plus a positive constant if all are 0). This

implies that all min-cost circulations induce a min-flow

(removing the edge from t to s), and thus, by [36], induce

also a MPC that is of minimum weight; obviously, vice

versa, a minimum weight MPC induces a min-cost circu-

lation on the constructed flow network.

There are many algorithms and solvers for the min-

cost circulation problem, with various time complexity

upper bounds [47], for example O(nm log log C log

(nK)) [48], where C is the maximum edge bound, and K

is the maximum cost. If edges have only lower bounds,

as in our case, the min-cost circulation problem can be

solved in time O(n log C(m + n log n)) [35]; since we

have C = 1, this reduces to O(n2 log n + nm). Therefore,

we have the following theorem.

Theorem 1 A minimum weight MPC of a DAG with n

nodes and m edges can be computed in time O(n2log n +

nm), by a reduction to a min-cost circulation problem.

The new problem formulations

We first consider the problem arising from long reads, or

from transfrags. We introduce a slight generalization of a

path cover of a DAG G, namely a set of paths which

cover only a given subset V ′ of the nodes. We are also

given a subset E′ of the edges of G, and a family of sub-

paths P in in G that all have to be entirely covered by

some path of the path cover. We could have modeled

each edge constraint in E′ as a path of length 1 in P in ,

but for clarity, we keep these separate. Formally, we have:

Minimum Path Cover with Subpath Constraints (MPC-SC)

Problem INPUT: A DAG G and

1 A subset V ′ of V (G)

2 A subset E′ of E(G)

3 A family P in =
{

Pin
1 , . . . , Pin

t

}

of directed paths

in G

Figure 1 In Fig. 1(a), an input DAG G. In Fig. 1(b), the reduction to the maximum matching problem: a bipartite graph B(G) having as vertices

two copies of V(G) and an edge between the first copy of v1 ∈ V(G) and the second copy of v2 ∈ V(G) iff there is a directed path in G from v1 to

v2. The edges of a maximum matching of B(G) are highlighted, and a MPC for G is obtained by putting v1 and v2 in the same path there is an

edge between v1 and v2 and is selected by the maximum matching. In Fig. 1(c), a network flow N(G) corresponding to G; the labels ‘1’ on some

edges are the lower bounds on that edges; all other edges have lower bound 0. The min-flow on N(G) has value 2; the edges with flow value 1

are highlighted; any decomposition of this flow into paths gives a MPC.

Rizzi et al. BMC Bioinformatics 2014, 15(Suppl 9):S5

http://www.biomedcentral.com/1471-2105/15/S9/S5

Page 4 of 11



TASK: Find a minimum number k of directed paths

Psol
1 , . . . , Psol

k
in G such that

1 Every node in V ′ occurs in some Psol
i

2 Every edge in E′ occurs in some Psol
i

3 Every path Pin � P in is entirely contained in some

Psol
i

We call the elements of the sets V ′ ,E′ , P in con-

straints, and we say that the k paths in a solution satisfy

these constraints.

Let us briefly argue that the solution in [20,

Sec. 2.4.1. and 2.4.2] for MPC-SC Problem (without

the generalization at points 1 and 2) is not complete.

(Actually, [20] tackles the Minimum Weight MPC with

Subpath Constraints Problem–see below–, but the

weights are not relevant for this discussion.) The idea

of [20] is to reduce this problem to the classical MPC

problem. Consequently, each subpath constraint P is

modeled by a single edge having the same endpoints

as P , which is subdivided by introducing a node vP in

the middle (which must be covered by the MPC). The

connections between the first or last node of P and the

other nodes of the DAG are maintained, but since the

internal nodes of P can no longer be required to be

covered by the path cover, they are removed. More-

over, for all nodes v1 and v2 such that there is a path

between v1 and v2 in the DAG using a proper subpath

of P, a new transitive edge (v1, v2) is added. However,

this reduction is missing the case in which two sub-

path constraints P1 and P2 are such that a suffix of P1
is a prefix of P2. As a matter of fact, our proof will

show that the most problematic case is when also a

suffix of different length of P1 is a prefix of some

other subpath constraint P3 (see Figure 2 and the

proof of Lemma 1).

In the second problem, we consider the weighted case,

with one further generalization, as follows. As also noted

by [20], in practice the paths in the path cover should

start only in source nodes or in a specific subset of other

nodes of G; similarly for their ending nodes. For example,

in our method for the multi-assembly of RNA-transcripts

[37,38], these nodes are identified when there is a sharp

increase/decrease in read coverage in the middle of an

exon, indicating the start/end of a transcript.

Minimum Weight Minimum Path Cover with Subpath

Constraints (MW-MPC-SC) Problem

INPUT: A DAG G and

1 A subset V ′ of V (G)

2 A subset E′ of E(G)

3 A family P in =
{

Pin
1 , . . . , Pin

t

}

of directed paths in G

4 A superset S of the sources of G, and a superset T

of the sinks of G

5 A weight w(e) for each e ∈ E(G)

TASK: Find a minimum number k of directed paths

Psol
1 , . . . , Psol

k
in G such that

1 Every node in V ′ occurs in some Psol
i

2 Every edge in E′ occurs in some Psol
i

3 Every path P in
∈ P in is entirely contained in

some Psol
i

4 Every path Psol
i starts in a node of S and ends in a

node of T

5

∑

i∈{1,...,k}

∑

edge e∈Psol
i

w (e)
is minimum among all

tuples of k paths satisfying properties 1-4

When only paired-end reads are available, each such

pair of reads corresponds to a pair of subpaths that

must both be covered by the same path in the path

cover. Formally, we have:

Minimum Path Cover with Paired Subpath Constraints

(MPC-PSC) Problem

INPUT: A DAG G and

1 A subset V ′ of V (G)

2 A subset E′ of E(G)

3 A family P in =
{(

Pin
1,1, Pin

1,2

)

, . . . ,
(

Pin
t,1, Pin

t,2

)}

of

pairs of directed paths in G

Figure 2 In Fig. 2(a), subpath constraint P , in Fig. 2(b) the reduction of [20] which replaces path P by node vP connected to the end points of

P , removes all internal nodes of P , and adds all transitive edges from and to v1 and v2. In Fig. 2(c), a case not covered by the reduction in [20].

Rizzi et al. BMC Bioinformatics 2014, 15(Suppl 9):S5

http://www.biomedcentral.com/1471-2105/15/S9/S5

Page 5 of 11



TASK: Find a minimum number k of directed paths

Psol
1 , . . . , Psol

k
in G such that

1 Every node in V ′ occurs in some Psol
i

2 Every edge in E′ occurs in some Psol
i

3 For every pair
(

Pin
j,1, Pin

j,2

)

∈ P in , there exists such

Psol
i that both Pin

j,1 and Pin
j,2 are entirely contained in

Psol
i

The MPC with Subpath Constraints (MPC-SC) Problem

The unweighted case

In this section, we reduce the MPC-SC Problem to the

classical MPC Problem. We describe our reduction as a

sequence of commented algorithmic steps.

Step 1. for every (u, v) ∈ E′ do: V ′ := V ′\ {u, v};
If the MPC has a path P covering the arc (u, v), then P

also covers both u and v. Therefore, the constraints u, v

can be dropped from V ′ (if present).

Step 2. for every path Pin
j ∈ P in and for every edge

(u, v) ∈ Pin
j do:

V ′ := V ′\ {u, v} ; E′ := E′\ {u, v} ;

Similarly to Step 1, if the MPC has a path P covering a

subpath Pin
j ∈ P in , then P also covers every node and

edge of Pin
j , thus these constraints can be dropped from V ′

and E′ (if present).

Step 3. while there exist two paths Pin
i

and Pin
j in P in

such that Pin
i

is contained in Pin
j do:

P
in := P

in\Pin
i ;

After this step, no subpath constraint is completely

included into another; this is key for the correctness of

Step 4 below.

Step 4. while there exist two paths Pin
i
, Pin

j ∈ P in

such that a suffix of Pin
i is a prefix of Pin

j do:

let Pin
i
, Pin

j ∈ P in be as above and with the common

part (i.e., the suffix of Pin
i which is a prefix of Pin

j )

the longest possible;

let Pin
new := the path Pin

i ∪ Pin
j which starts as Pin

i
and

ends as Pin
j ;

P
in :=

(

P
in\

{

Pin
i , Pin

j

}

∪
{

Pin
new

}

)

;

In this step, we merge paths sharing a suffix/prefix.

We do this iteratively, at each step merging that pair of

paths for which the shared suffix/prefix is longest possi-

ble. The correctness of this step is guaranteed by

Lemma 1 below.

Lemma 1 If the MPC-SC Problem on an instance
(

G, V ′, E′,P in
)

admits a solution with k paths, then also

the problem instance transformed by applying Steps 1-4

admits a solution with k paths, and this solution also

satisfies the original constraints V ′ , E′ , P in .

Proof The correctness of Steps 1-3 was argued next to

their introduction. Assume that G, V ′, E′,P in have been

transformed by these first three steps, and let

Pin
i , Pin

j ∈ P in be such that their common part (i.e., the

suffix of Pin
i which is a prefix of Pin

j ) is longest possible.

Suppose that the original problem admits a solution

P sol =
{

Psol
1 , . . . , Psol

k

}

such that Pin
i , Pin

j are covered by

different solution paths say Psol
a and Psol

b
, respectively.

We show that the transformed problem admits a solu-

tion P∗ =
({

Psol
1 , . . . , Psol

k

}

\
{

Psol
a , Psol

b

}

∪
{

P∗
a , P∗

b

})

, having

the same cardinality as P , in which Pin
i , Pin

j are covered

by the same path P∗
a , and P∗ also satisfies the original

constraints V ′, E′,P in .

Suppose that Pin
i

starts with node ui and ends with

node vi, and that Pin
j starts with node uj and ends with

node vj . Let (cf. Figures 3(a) and 3(b)):

• P∗
a be the path obtained as the concatenation of

the path Psol
a taken from its starting node until vi

with the path Psol
b

taken from vi until its end node

(so that P∗
a covers both Pin

i and Pin
j ).

• P∗
b be the path obtained as the concatenation of

the path Psol
b

taken from its starting node until vi

with the path Psol
a taken from vi until its end node.

We have to show that the path cover

P
∗ =

({

Psol
1 , . . . , Psol

k

}

\
{

Psol
a , Psol

b

})

∪
{

P∗
a , P∗

b

}

satisfies

the original constraints V ′, E′,P in . Since P∗
a and P∗

b use

exactly the same edges as Psol
a and Psol

b
, then V ′ and E′

are satisfied. Moreover, the only two problematic cases

are when there is a subpath constraint Pin
k

which has vi

as internal node and is satisfied only by Psol
a , or it is

satisfied only by Psol
b
. Denote, analogously, by uk and vk

the endpoints of Pin
k
. From the fact that the input was

transformed at Step 3, Pin
i

and Pin
j are not completely

included in Pin
k
.

Rizzi et al. BMC Bioinformatics 2014, 15(Suppl 9):S5

http://www.biomedcentral.com/1471-2105/15/S9/S5

Page 6 of 11



Case 1. Pin
k

is satisfied only by Psol
a (Figures 3(a) and 3(b)).

Since Pin
i is not completely included in Pin

k
, uk is an internal

node of Pin
i
; thus, a suffix of Pin

i
is prefix also of Pin

k
. From

the fact that the common part between Pin
i and Pin

j is long-

est possible, we have that vertices uj , uk , vi appear in this

order in Pin
i
. Thus, Pin

k
is also satisfied by P∗

b , since uk

appears after uj on P
i.

Case 2. Pin
k

is satisfied only by Psol
b
, and it is not satisfied

by P∗
a (Figure 3(c)). This means that Pin

k
starts on Psol

b

before uj and, since it contains vi, it ends on Psol
b

after vi.

From the fact that Pin
j in not completely included in Pin

k
,

vk is an internal node of Pin
j , and thus a suffix of Pin

k

equals a prefix of Pin
j . This common part is now longer

than the common suffix/prefix between Pin
i

and Pin
j ,

which contradicts maximality of the suffix/prefix between

Pin
i

and Pin
j . This proves the lemma.

The remaining steps can be seen as analogous to the

reduction in [20].

Step 5. for every path Pin
i ∈ P in do:

say Pin
i starts in node s and ends in node t;

P
in := P

in\
{

Pin
i

}

;

E (G) := E (G) ∪ {(s, t)} ;

E′ = E′ ∪ {(s, t)} ;

In this step, we represent each subpath constraint by

an edge constraint. Its correctness is guaranteed by the

fact that by now, no two subpath constraints are such

that a suffix of the first is a prefix of the second. We

should stress out that if there are more paths with the

same endpoints, we may add parallel edges to the DAG.

However, in Step 6 below these parallel edges will be

transformed into parallel paths of length 2, rendering

the DAG simple again.

Step 6. for every edge e ∈ E′ do:

E′ := E′ {e} ;

subdivide the edge e by introducing a node ve in the

middle of it;

V ′ := V ′ ∪ {e} ;

At this point, we have transformed all subpath con-

straints into edge constraints. The edge constraints can

be modeled as node constraints by simply subdividing

each edge and introducing a new node in the middle of

it; this node is then added to V ′ .

Step 7. G:= T(G)

We replace G by its transitive closure, since in Step 8

below we are going to remove from G all vertices not

in V ′ .

Step 8. Remove from G all nodes not in V ′ ;

Since only the nodes in V ′ have to be covered by the

paths in the path cover, we remove all other nodes. This

is correct, since, at Step 7 above, we introduced all

edges between nodes v and V ′ such that V ′ was reach-

able from v through some nodes not in V ′ .

Step 9. Compute a MPC for the resulting graph G;

This can be done by any method discussed previously.

Step 10. Postprocess the paths obtained at Step 9

above by reverting the transformations executed at

Steps 1-8, in reverse order.

Theorem 2 Problem MPC-SC on a graph with n nodes,

m edges, c subpath or edge constraints, and with N being

the sum of subpath constraint lengths, can be solved by sol-

ving the classical MPC Problem in a graph with O(n + c)

nodes and O(n2 + c) edges. This graph can be computed

in time O(N + c2 + n2), thus the complexity of Problem

MPC-SC is O
(

N + c2 +
√

(n + c)
(

n2 + c
)

)

.

Proof The complexity of the pre-processing phase is

dominated by Steps 3 and 4. Step 3 can be solved by first

building a (generalized) suffix tree on the concatenation

of subpath constraints with a distinct symbol #i added

after each constraint sequence Pin
i . This can be done in

O(N) time even on our alphabet of size O(n) [32].

Then one can do as follows during depth-first traver-

sal of the tree: If a leaf corresponding to the suffix start-

ing at the beginning of subpath constraint Pin
i has an

incoming edge labeled by only #i and its parent has still

other children, then the constraint is a substring of

Figure 3 A visual proof of Lemma 1.

Rizzi et al. BMC Bioinformatics 2014, 15(Suppl 9):S5

http://www.biomedcentral.com/1471-2105/15/S9/S5

Page 7 of 11



another constraint and must be removed (together with

the leaf).

For Step 4, we compute all pairs longest suffix-prefix over-

laps between the subpath constraints using an O(N + c2)

time algorithm in [33, Theorem 7.10.1, page 137], [45] with

[32] as a subroutine for the sake of large alphabet. The out-

put can be casted to a double-linked list L containing ele-

ments of the form (i, j, len, previ, nexti, prevj , nextj ) in

decreasing order of the overlap length, len, between con-

straints Pin
i and Pin

j . Pointers previ, nexti, prevj, and nextj

tell the previous/next occurrences of the tuple having i as

the first element and j as the second element, respectively.

Then popping the first tuple from L tells us the first con-

straints to merge, and following prev* and next* pointers we

can remove all overlaps no longer relevant for next mer-

gings; when removing, we need to make sure the nested

double-linked lists formed by the prev* and next* pointers

are also updated. Continuing like this until the list L is

empty gives all the overlaps in total O(c2) time. Notice that

the new merged constraints do not need to be separately

taken into account in overlap computation; no completely

new overlaps can be created due to Step 3.

Merging itself requires a similar linked list structure

being a special case of unionfind: All the constraints are

represented as double-linked lists with node numbers as

elements. Merging can be done by linking the double-

linked lists together, removing the extra overlapping part

from the latter list and redirecting its start pointer to point

inside the newly formed merged list. When finished with

merging, the new constraints are exactly those old con-

straints whose start pointers still point to the beginning of

a node list. The complexity of merging is thus O(N).

The weighted case

To solve the MW-MPC-SC Problem, we build on the

reduction in [36] to a network flow problem. This

reduction will allow the addition of edge weights and of

constraints on the starting/ending nodes of the solution

paths. Note that these constraints S and T cannot be

included in the reduction of the MPC Problem to a

bipartite matching problem. Moreover, the heuristic in

[20, Sec. 2.4.2] of arbitrarily extending the paths in a

minimum weight MPC towards sources/sinks cannot be

proved to be correct.

Given an input
(

G, V ′, E′, S, T, w
)

for the MW-MPC-

SC Problem, we pre-process the graph G by Steps 1-6

of the unweighted case (shown in the previous section).

After this pre-processing, we have correctly modeled all

subpath constraints by node constraints. On the trans-

formed graph G, we then do a similar reduction as for

Thm. 1 (see Figure 4):

1 We replace each node v ∈ V ′ by an edge (v1, v2)

such that all in-neighbors of v are now in-neighbors

of v1, and all out-neighbors of v are now out-neigh-

bors of v2. If node v was introduced at Step 6 to

model an edge coming from a subpath constraint P,

then the cost per unit of flow of (v1, v2) is the sum

of the weights of the edges of P ; otherwise, it is 0.

2. For each edge e of G, if e is an original edge of G,

we set its flow lower bound to 0 and its cost per

unit of flow to w(e); otherwise we set both to 0.

3. The global source s has out-going edges precisely

to the nodes in the set S, and the global sink t has

in-coming edges precisely from the nodes in T; we

also add the edge (t, s). All edges incident to s or t

have flow flower bound 0 and cost 0, except for the

edge (t, s) having as cost the sum of all edge weights

(plus a positive constant if all are 0). This guaran-

tees, like before, that any min-cost circulation is also

a min-flow.

Figure 4 In Fig. 4(a), an input DAG G with two subpath constraints P1 and P2; we take. V ′ = V (G) , E′ = � 0 , S = {a, d, e} and T = {f, c};

weights are not drawn. In Fig. 4(b), the graph transformed by Steps 1-6; the vertices still in V ′ are drawn as circles, other vertices as squares. In

Fig. 4(c), the reduction to a min-cost circulation problem; the edges with flow lower bound 1 are labeled as ‘1’; other edges have flow lower

bound 0. In a min-cost circulation of value 3, all highlighted edges have flow value 1, except for (f, t) with flow value 2, and (t, s) with value 3.

Any decomposition of the min-cost circulation into 3 paths gives the solution for Problem MW-MPC-SC.

Rizzi et al. BMC Bioinformatics 2014, 15(Suppl 9):S5

http://www.biomedcentral.com/1471-2105/15/S9/S5

Page 8 of 11



Note that, by reducing to a flow problem, we do not

have to perform Steps 7 and 8 anymore, since the cover-

age constraints are now modeled as flow lower bound

constraints. As in the case of Thm. 1, we compute a

min-cost circulation on this transformed input G, that

is, a function f : E(G) ® N which satisfies all the flow

conservation property for all nodes, satisfies all edge

lower bounds, and minimizes
∑

e∈E(G) f (e) . We then

decompose the circulation (from which we remove the

edge (t, s)) into paths, and covert these paths into paths

of the original input graph. This is done by reverting

the transformations executed at Steps 1-6, in reverse

order (as done for the MPC-SC Problem). As before,

these paths form a MPC satisfying all constraints, and

they also start and end in vertices of S and T , respec-

tively (because of the way s and t were connected to the

other nodes of the graph). Since these paths arise from

a min-cost circulation, then they also form a minimum

weight MPC satisfying the input constraints. The flow

network has only flow lower bounds, thus we can again

apply the algorithm of [49], to get the following:

Theorem 3 Problem MW-MPC-SC on a graph with

n nodes, m edges, c subpath or edge constraints, and with

N being the sum of subpath constraint lengths, can be solved

by reducing it to a min-cost circulation problem on a network

with O(n + c) nodes and O(m + c) edges, and with flow lower

bounds only. This network can be computed in time O(N +

c2 + m), and the complexity of Problem MW-MPC-SC

becomes O(N + (n + c)2 log(n + c) + (n + c)(m + c)).

The MPC with Paired Subpaths Constraints (MPC-PSC)

Problem

The NP-completeness proof

In this section we show that the MPC-PSC Problem is

NP-complete. Our reduction is from the NP-complete

problem of deciding whether the chromatic number of a

graph G, c(G), is 3 [50]. We will show that it is actually

NP-complete to determine if the MPC-PSC Problem

admits a solution with just 3 paths, even on planar DAGs,

of width 2, series-parallel, when only paired subpath con-

straints are imposed, and all subpaths are just edges.

Let G = (V, E) with V = {v1,..., vn} and E = {e1,..., em}

be any non-bipartite graph; our question is whether

c(G) = 3. We reformulate this question by building up

the DAG P(G) drawn in Figure 5. P(G) consists of a first

stage of n blocks corresponding to the n vertices of G,

and a second stage of m blocks corresponding to each

edge ek = vik vjk of G, k ∈ {1, ..., m}. Only some of the

nodes and edges of P (G) have been labeled; when an

edge is labeled [L], we mean that in the family of paired

subpath constraints we have the constraint (L, [L]).

Theorem 4 Problem MPC-PSC is NP-complete.

Proof We show that the graph G = (V, E) has c(G) = 3

if and only if the DAG P(G) drawn in Figure 5 admits a

solution to Problem MPC-PSC with 3 paths.

(⇒) Suppose that c(G) = 3. Definitely, we need at

least three paths to solve P(G), since the three edges v1,

X1, Y1 exiting from node 0 cannot be covered by the

same path, and each of them is mentioned in some con-

straint. By definition, G is 3 colorable if and only if V

can be partitioned into three sets VA, VB , VC such that

no edge of G is contained in any of them. We use these

three sets to build up the three solution paths for Pro-

blem MPC-PSC as follows: for all X ∈ {A, B, C}, in the

first stage (until node n) path PX picks up all edges

labeled with a node in VX and no edge labeled with a

node in V\VX ; next, in the second stage (from node n

until node n + m), PX picks up those edges
[

vik

]

such

that vik belongs to PX . This is possible, since no edge
ek = vik vjk is contained in the same color class, and con-

sequently the two of edges of P (G) labeled vik and vjk

do not belong to the same path among {PA, PB , PC}.

Thus,
[

vik

]

and
[

vjk

]

do not have to be both covered by

the same solution path. Therefore, the three paths PA,

PB , PC satisfy all paired subpath constraints, and are a

solution to Problem MPC-PSC.

(⇐) Suppose the DAG P(G) drawn in Figure 5 admits

a solution to Problem MPC-PSC with 3 paths PA, PB ,

PC. Then, we partition V into three color classes A, B, C

by setting vi∈ × if and only if the edge of P(G) labeled

by vi (in the first stage from node 0 to node n) belongs

to PX , for all X ∈ {A, B, C}. To see that {A, B, C} is

indeed a partition of V , observe that in each block k of

the first stage of P(G), no two paths in {PA, PB , PC} can

share an edge, since all three edges vk , Xk , Yk appear in

some constraint. Therefore, each edge vk appears in

Figure 5 A reduction from chromatic number 3 to the MPC-PSC Problem.

Rizzi et al. BMC Bioinformatics 2014, 15(Suppl 9):S5

http://www.biomedcentral.com/1471-2105/15/S9/S5

Page 9 of 11



exactly one of {PA, PB , PC }. The proof that the parti-

tion {A, B, C} is also a proper coloring of G encounters

no difficulty, as the rationale behind the reduction was

illustrated in the forward implication.

Corollary 1 For no ε > 0 there exists a
(

4

3
− ∈

)

-approximation algorithm for Problem MPC-

PSC unless P=NP. Moreover, the problem is not FPT

when parameterized on OPT (the minimum number of

paths in a solution).

The FPT algorithm

In the previous section, we obtained the NP-completeness

for the decision problem OPT = 3; this rules out a

Dynamic Programming approach for Problem MPC-PSC.

In this section, we show that if OPT = 2, then the problem

can be solved in polynomial time. This also leads to an

FPT algorithm on the total number of constraints.

For any constraint of the input DAG G that is made up

of a pair (P1, P2) of subpaths of G, we may assume that

there exists a directed path of G completely containing

both P1 and P2, otherwise, the input instance is infeasible.

Given any two constraints X and Y (X and Y can be nodes,

edges, or pairs of subpaths), we say that X and Y are com-

patible if there is a directed path of G completely contain-

ing both X and Y . We exploit the following structural

property:

Lemma 2 Let C be a set of constraints on a DAG G.

There exists a directed path P in G which satisfies all con-

straints in C if and only if any two constraints in C are

compatible.

Proof The forward implication is clear from the defini-

tion. For the backward implication, recall that the width

of a DAG denotes the maximum size of an anti-chain of

it. We claim that the union of the constraints in C is a

DAG of width 1. Indeed, if it were of width 2 it would

contain two nodes v1 and v2 which are pairwise not

reachable by a directed path, thus forming an anti-chain

of size 2. Since we assumed that for all pairs (P1, P2) of

subpaths constraints of G, there exists a directed path

of G completely containing both P1 and P2, this implies

that v1 and v2 belong to two different constraints X and Y

in C. Thus, X and Y are not compatible, a contradiction.

Theorem 5 Given an instance for Problem MPC-PSC,

we can decide in polynomial time if OPT = 2, and if so,

find the two solution paths. Moreover, Problem MPC-

PSC is fixed-parameter tractable (FPT) in the total num-

ber C of input constraints.

Proof We build an incompatibility graph from the

input constraints: every constraint is represented by a

node, and we add an edge between two constraints iff

they are incompatible. Then, OPT = 2 iff this incompat-

ibility graph is bipartite, and the two classes of the

bipartition give the two solution paths; this can be done

in time O(C2). If OPT > 2, then we try all possible ways

of partitioning the set of all input constraints (the num-

ber of these possibilities is a function only on C), and

check that each class of the partition consists of pairwise

compatible constraints.

Competing interests

The authors declare that they have no competing interests.

Authors’ contributions

AT conceived the problems and wrote the manuscript. RR, AT and VM

contributed to the solutions. All authors read and approved the final

manuscript.

Acknowledgements

We thank Anna Kuosmanen and Ahmed Sobih for their prompt help with the

preliminary experiments on RNA-Seq data, which we included as Supplementary

Material. This work was partially supported by the Academy of Finland under

grant 250345 (CoECGR) and by the Finnish Cultural Foundation.

Declarations

Publication of this article was supported by the Academy of Finland under

grant 250345 (CoECGR).

This article has been published as part of BMC Bioinformatics Volume 15

Supplement 9, 2014: Proceedings of the Fourth Annual RECOMB Satellite

Workshop on Massively Parallel Sequencing (RECOMB-Seq 2014). The full

contents of the supplement are available online at http://www.

biomedcentral.com/bmcbioinformatics/supplements/15/S9.

Authors’ details
1Department of Computer Science, University of Verona, Italy. 2Helsinki

Institute for Information Technology HIIT, Department of Computer Science,

University of Helsinki, Helsinki, Finland.

Published: 10 September 2014

References

1. Xing Y, et al: The multiassembly problem: reconstructing multiple

transcript isoforms from EST fragment mixtures. Genome Research 2004,

14(3):426-441.

2. Mortazavi A, et al: Mapping and quantifying mammalian transcriptomes

by RNA-Seq. Nature Methods 2008, 5:621-628.

3. Pepke S, Wold B, Mortazavi A: Computation for ChIP-seq and RNA-seq

studies. Nature methods 2009, 6(11):22-32.

4. Kim E, Goren A, Ast G: Insights into the connection between cancer and

alternative splicing. Trends in genetics: TIG 2008, 24(1):7-10.

5. Lopez-Bigas N, Audit B, Ouzounis C, Parra G, Guigo R: Are splicing

mutations the most frequent cause of hereditary disease? FEBS Letters

2005, 579(9):1900-1903.

6. Wang Z, Gerstein M, Snyder M: RNA-Seq: a revolutionary tool for

transcriptomics. Nature Reviews Genetics 2009, 10(1):57-63.

7. Shah S, et al: The clonal and mutational evolution spectrum of primary

triple-negative breast cancers. Nature 2012, 486(7403):395-399.

8. Trapnell C, et al: Transcript assembly and quantification by RNA-Seq

reveals unannotated transcripts and isoform switching during cell

differentiation. Nature Biotechnology 2010, 28:511-515.

9. Feng J, et al: Inference of isoforms from short sequence reads. In

RECOMB - Research in Computational Molecular Biology. Volume 6044. LNCS;

Berger, B 2010:138-157.

10. Li W, et al: IsoLasso: a LASSO regression approach to RNA-Seq based

transcriptome assembly. Journal of Computational Biology 2011,

18(11):1693-1707.

11. Lin YY, et al: CLIIQ: Accurate Comparative Detection and Quantification

of Expressed Isoforms in a Population. In WABI - 12th Workshop on

Algorithms for Bioinformatics.. Volume 7534. LNCS; 2012:178-189.

12. Li JJ, et al: Sparse linear modeling of next-generation mRNA sequencing

(RNA-Seq) data for isoform discovery and abundance estimation.

Proceedings National Academy of Sciences 2011, 108(50):19867-19872.

Rizzi et al. BMC Bioinformatics 2014, 15(Suppl 9):S5

http://www.biomedcentral.com/1471-2105/15/S9/S5

Page 10 of 11

http://www.biomedcentral.com/bmcbioinformatics/supplements/15/S9
http://www.biomedcentral.com/bmcbioinformatics/supplements/15/S9


13. Guttman M, et al: Ab initio reconstruction of cell type-specific

transcriptomes in mouse reveals the conserved multi-exonic structure of

lincRNAs. Nature Biotechnology 2010, 28(5):503-510.

14. Mezlini AM, et al: iReckon: Simultaneous isoform discovery and

abundance estimation from RNA-seq data. Genome Research 2012,

23(3):519-529.

15. Mangul S, et al: An integer programming approach to novel transcript

reconstruction from paired-end RNA-Seq reads. In ACM Conference on

Bioinformatics, Computational Biology and Biomedical Informatics. ACM, New

York, NY, USA;Ranka, S 2012:369-376.

16. Xia Z, et al: NSMAP: A method for spliced isoforms identification and

quantification from RNA-Seq. BMC Bioinformatics 2011, 12(1):162.

17. Bernard E, et al: Efficient RNA Isoform Identification and Quantification

from RNA-Seq Data with Network Flows. preprint: SU2C-AACR-DT0409; SES-

0835531; CCF-0939370 .

18. Hiller D, et al: Simultaneous Isoform Discovery and Quantification from

RNA-Seq. Statistics in Biosciences 2013, 5(1):1-19.

19. Song L, Florea L: CLASS: constrained transcript assembly of RNA-seq

reads. BMC Bioinformatics 2013, 14(S-5):14, Proceedings paper from

RECOMB-seq: Third Annual Recomb Satellite Workshop on Massively Parallel

Sequencing Beijing, China. 11-12 April 2013.

20. Bao E, Jiang T, Girke T: Branch: boosting rna-seq assemblies with partial

or related genomic sequences. Bioinformatics 2013, 29(10):1250-1259.

21. Beerenwinkel N, Gu¨nthard HF, Roth V, Metzner KJ: Challenges and

opportunities in estimating viral genetic diversity from next-generation

sequencing data. Frontiers in Microbiology 2012, 3:329.

22. Mancuso N, Tork B, Skums P, Mandoiu II, Zelikovsky A: Viral quasispecies

reconstruction from amplicon 454 pyrosequencing reads. Bioinformatics

and Biomedicine Workshops IEEE, Atlanta, GA, USA; 2011, 94-101.

23. O’Neil S, Emrich S: Haplotype and minimum-chimerism consensus

determination using short sequence data. BMC Genomics 2012, 13(Suppl 2):4.

24. Huang A, Kantor R, DeLong A, Schreier L, Istrail S: Qcolors: An algorithm

for conservative viral quasispecies reconstruction from short and non-

contiguous next generation sequencing reads. Bioinformatics and

Biomedicine Workshops IEEE, Atlanta, GA, USA; 2011, 130-136.

25. Eriksson N, Pachter L, Mitsuya Y, Rhee SY, Wang C, Gharizadeh B,

Ronaghi M, Shafer RW, Beerenwinkel N: Viral population estimation using

pyrosequencing. PLoS Computational Biology 2008, 4(5).

26. Zagordi O, Bhattacharya A, Eriksson N, Beerenwinkel N: ShoRAH: estimating

the genetic diversity of a mixed sample from next-generation

sequencing data. BMC Bioinformatics 2011, 12(1):119.

27. Westbrooks K, Astrovskaya I, Campo DS, Khudyakov Y, Berman P,

Zelikovsky A: HCV Quasispecies Assembly Using Network Flows. In ISBRA

Lecture Notes in Computer Science. Volume 4983. Springer, Berlin;Mandoiu, I.I.,

Sunderraman, R., Zelikovsky, A 2008:159-170.

28. Wang ET, Sandberg R, Luo S, Khrebtukova I, Zhang L, Mayr C, Kingsmore SF,

Schroth GP, Burge CB: Alternative isoform regulation in human tissue

transcriptomes. Nature 2008, 456(7221):470-476.

29. Fulkerson DR: Note on dilworth’s decomposition theorem for partially

ordered sets. Proceedings of the American Mathematical Society 1956,

7(4):701-702.

30. Schadt EE, Turner S, Kasarskis A: A window into third-generation sequencing.

Human molecular genetics 2010, 19(R2):227-240.

31. Sammeth M, Foissac S, Guig´o R: A General Definition and Nomenclature for

Alternative Splicing Events. PLoS Computational Biology 2008, 4(8):1000147.

32. Farach M: Optimal suffix tree construction with large alphabets. 38th

Annual Symposium on Foundations of Computer Science (FOCS’97) IEEE

Computer Society, Washington, DC, USA; 1997, 137-143.

33. Gusfield D: Algorithms on Strings, Trees, and Sequences - Computer

Science and Computational Biology. Cambridge University Press,

Cambridge UK; 1997.

34. Gusfield D, Landau GM, Schieber B: An efficient algorithm for the all pairs

suffix-prefix problem. Inf Process Lett 1992, 41(4):181-185.

35. Gabow HN, Tarjan RE: Faster scaling algorithms for network problems.

SIAM J Comput 1989, 18(5):1013-1036.

36. Pijls W, Potharst R: Another note on dilworth’s decomposition theorem.

Journal of Discrete Mathematics 2013, 2013:692645.

37. Tomescu AI, Kuosmanen A, Rizzi R, M¨akinen V: A Novel Combinatorial

Method for Estimating Transcript Expression with RNA-Seq: Bounding

the Number of Paths. In WABI 2013 - 13th Workshop on Algorithms for

Bioinformatics. Volume 8126. LNBI; 2013:440-451.

38. Tomescu AI, Kuosmanen A, Rizzi R, M¨akinen V: A Novel Min-Cost Flow

Method for Estimating Transcript Expression with RNA-Seq. BMC

Bioinformatics 2013, 14(Suppl 5):15, Proceedings paper from RECOMB-seq:

Third Annual Recomb Satellite Workshop on Massively Parallel Sequencing

Beijing, China. 11-12 April 2013.

39. Nadalin F, Vezzi F, Policriti A: GapFiller: a de novo assembly approach to

fill the gap within paired reads. BMC Bioinformatics 2012, 13(S-14):8.

40. Boetzer M, Pirovano W: Toward almost closed genomes with gapfiller.

Genome Biology 2012, 13(6):56.

41. Beerenwinkel N, Beretta S, Bonizzoni P, Dondi R, Pirola Y: Covering pairs in

directed acyclic graphs. In: Language and Automata Theory and

Applications. In Lecture Notes in Computer Science. Volume 8370. Springer,

Berlin; 2014:126-137.

42. Dilworth RP: A Decomposition Theorem for Partially Ordered Sets. The

Annals of Mathematics 1950, 51(1).

43. Hopcroft JE, Karp RM: An n
5/2 algorithm for maximum matchings in

bipartite graphs. SIAM J Comput 1973, 2(4):225-231.

44. Fredman ML, Tarjan RE: Fibonacci heaps and their uses in improved

network optimization algorithms. J ACM 1987, 34(3):596-615.

45. Ahuja RK, Magnanti TL, Orlin JB: Network Flows: Theory, Algorithms, and

Applications. Prentice-Hall, Inc., Upper Saddle River, NJ, USA; 1993.

46. Orlin JB: Max flows in O(nm) time, or better. In: Proceedings of the 45th

Annual ACM Symposium on the Theory of Computing. STOC ‘13 ACM,

New York, NY, USA; 2013, 765-774.

47. Schrijver A: Combinatorial Optimization - Polyhedra and Efficiency.

Springer, Berlin; 2003.

48. Ahuja RK, Goldberg AV, Orlin JB, Tarjan RE: Finding minimum-cost flows

by double scaling. Mathematical Programming 1992, 53:243-266.

49. Gabow HN, Tarjan RE: Faster scaling algorithms for general graph

matching problems. J ACM 1991, 38(4):815-853.

50. Garey MR, Johnson DS: Computers and Intractability: A Guide to the

Theory of NP-Completeness. W. H. Freeman & Co., New York, NY, USA;

1979.

doi:10.1186/1471-2105-15-S9-S5
Cite this article as: Rizzi et al.: On the complexity of Minimum Path
Cover with Subpath Constraints for multi-assembly. BMC Bioinformatics
2014 15(Suppl 9):S5.

Submit your next manuscript to BioMed Central
and take full advantage of: 

• Convenient online submission

• Thorough peer review

• No space constraints or color figure charges

• Immediate publication on acceptance

• Inclusion in PubMed, CAS, Scopus and Google Scholar

• Research which is freely available for redistribution

Submit your manuscript at 
www.biomedcentral.com/submit

Rizzi et al. BMC Bioinformatics 2014, 15(Suppl 9):S5

http://www.biomedcentral.com/1471-2105/15/S9/S5

Page 11 of 11


	Abstract
	Background
	Results

	Introduction
	Background
	Motivation

	Results and discussion
	Methods
	A faster algorithm for the weighted Minimum Path Cover (MPC) Problem
	The new problem formulations
	Minimum Path Cover with Subpath Constraints (MPC-SC) Problem INPUT: A DAG G and
	TASK: Find a minimum number k of directed paths P1sol,…,Pksol in G such that
	Minimum Weight Minimum Path Cover with Subpath Constraints (MW-MPC-SC) Problem
	Minimum Path Cover with Paired Subpath Constraints (MPC-PSC) Problem
	The MPC with Subpath Constraints (MPC-SC) Problem
	The unweighted case
	The weighted case

	The MPC with Paired Subpaths Constraints (MPC-PSC) Problem
	The NP-completeness proof
	The FPT algorithm


	Competing interests
	Authors’ contributions
	Acknowledgements
	Declarations
	Authors’ details
	References

