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Abstract

Theoretical and practical aspects of the verification of infinite-state systems have at-
tracted a lot of interest in the verification community throughout the last 30 years.
One goal is to identify classes of infinite-state systems that admit decidable deci-
sion problems on the one hand, and which are sufficiently general to model systems,
programs or protocols with unbounded data or recursion depth on the other hand.

The first part of this thesis is concerned with the computational complexity of
verifying counter automata, which are a fundamental and widely studied class of
infinite-state systems. Counter automata consist of a finite-state controller manip-
ulating a finite number of counters ranging over the naturals. A classic result by
Minsky states that reachability in counter automata is undecidable already for two
counters. One restriction that makes reachability decidable and that this thesis pri-
marily focuses on is the restriction to one counter. A main result of this thesis is
to show that reachability in one-counter automata with counter updates encoded in
binary is NP-complete, which solves a problem left open by Rosier and Yen in 1986.
We also consider parametric one-counter automata, in which counter updates can be
parameters ranging over the naturals. Reachability for this class asks whether there
are values of the parameters such that a target configuration can be reached from an
initial configuration. This problem is also shown to be NP-complete. Subsequently,
we establish decidability and complexity results of model checking problems for one-
counter automata with and without parameters for specifications written in EF, CTL
and LTL.

The second part of this thesis is about the verification of programs with pointers
and linked lists in the framework of separation logic. We consider the fragment
of separation logic introduced by Berdine, Calcagno and O’Hearn in 2004 and the
problem of deciding entailment between formulae of this fragment. We improve the
known coNP upper bound and show that this problem can actually be solved in
polynomial time. This result is based on a novel approach in which we represent
separation logic formulae as graphs and decide entailment between them by checking
for the existence of a graph homomorphism. We complement this result by considering
various natural extensions of this fragment which make entailment coNP-hard.
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Chapter 1

Introduction

1.1 Background

One of the greatest achievements in human culture in the 20th century may be the

formalisation, mechanisation and study of the nature of computation. Although there

had been prior attempts to mechanise computation, for example by Leibnitz, who

invented a mechanical calculator called the “Stepped Reckoner”, or by Babbage’s

difference engine, no significant insights into the nature of computation had been

made until the 20th century. The International Congress of Mathematicians at the

Sorbonne in Paris in 1900 can be seen as the starting point of modern developments

in the field of computation theory. At the congress, David Hilbert presented ten of

his famous 23 problems [59] that were unsolved by the time and that he considered

to have a positive influence on the developments of mathematics in the 20th century.

The range of the problems considered was broad and, amongst others, concerned with

problems in number theory and the foundations of mathematics. Two of Hilbert’s

problems played a key role in the development of computation theory. Hilbert’s

second problem deals with the fundamental nature of mathematics as a science and

asks to “set up a system of axioms which contains an exact and complete description

of the relations subsisting between the elementary ideas of that science [..] [and] to

prove that they are not contradictory, that is, that a finite number of logical steps

based upon them can never lead to contradictory results.” Much to the surprise and
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disappointment of Hilbert, Gödel showed in 1931 that no such system can exist [47].

Hilbert’s tenth problem concerned the solvability of polynomial equations. He asked

“to devise a process according to which it can be determined by a finite number of

operations whether the equation is solvable in rational integers.” Implicitly, Hilbert

asked for an algorithm to solve polynomial equations in the integers, although the

concept of an algorithm did not exist by the time. It was in 1970 when Matiyasevich

showed [77] that no such algorithm can exist, a solution that Hilbert probably did

not consider possible at the time he posed the question.

In the spirit of Hilbert’s second problem, researchers in mathematical logic began

investigating the consistency of natural logical theories. Notable progress was for

example made by Tarski, who showed the consistency of the first-order theory of

the reals, and by his student Presburger who proved the consistency of a fragment of

number theory, which is known today as Presburger arithmetic [90]. Another result of

this type was given by Gödel, who showed the consistency of full first-order logic [46]

in 1930 before proving his famous incompleteness theorem [47], which gave an answer

to Hilbert’s second problem. In this environment, a different branch of research was

independently established by Alan Turing and Alonzo Church who independently

proposed formal models of computation. Turing’s “automatic machine” [104], which

is known today as “Turing machine”, is an abstract machine that consists of a finite-

state controller acting on a tape consisting of infinitely many cells and that has a

head which can point to a position on the tape. The contents of the cells of the tape

are symbols from a finite alphabet. The behaviour of a Turing machine is specified

by a finite list of instructions. When the head reads at the current position of the

tape an alphabet symbol in a control state, an instruction determines which symbol

to write on the tape and in which direction to move the head by one cell. Some

of the control states of a Turing machine are designated accepting control states.

Once an accepting control state is entered the machine stops and the computation

is finished. Turing claimed that if a function f can naturally be computed, then it

can be computed by a Turing machine, i.e., for any such function one can construct

a Turing machine such that for any argument to f that is encoded into the tape of a
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Turing machine computing f , the Turing machine reaches an accepting control state

after a finite number of steps with the value of f encoded into the tape. This claim is

known today as the Church-Turing thesis. One can also rephrase this claim and say

that any problem that can algorithmically be computed can also be computed by a

Turing machine. Turing also showed in [104] that there are functions which are not

computable by a Turing machine. In particular, he showed that there does not exist

a Turing machine that decides, i.e., answers yes or no, the problem of determining

whether a given Turing machine is eventually going to stop for a given input. This

problem is known as the halting problem. Problems that cannot be decided by a

Turing machine are called undecidable. Another such problem is to decide the truth

of statements in arithmetic [27]. Finally, Matiyasevich, building upon the work of

Davis, Putnam and Robinson, showed that Hilbert’s tenth problem also belongs to

the class of undecidable problems [77]. With the advent of physical computers in the

1950s, a further line of research started in the 1960s that investigates the complexity

of algorithms. Knowing that a problem can algorithmically be solved does not provide

good information about the actual feasibility of an algorithm solving it. The field of

computational complexity classifies problems according to their inherent requirements

in terms of space and time needed to solve them algorithmically.

The halting problem asks a meta question about computation: given an arbitrary

algorithm encoded in a Turing machine, is this algorithm always going to terminate on

any input? Nowadays, where computers do not only exist as a theoretical construct

but are omnipresent, this is a question of much practical relevance. The question gen-

eralises to deciding arbitrary properties of arbitrary algorithms that are implemented

as programs. Will the autopilot software of this airplane never get stuck? Is it im-

possible that the controller of those traffic lights will switch all traffic lights to green

at some point? Does the controller of this rocket perform unit conversion correctly?

If the answer to any of those questions is “no” lives of humans can be at risk, or huge

financial losses may occur as a consequence. Unfortunately, there is no general way

of answering those questions for arbitrary programs in an automated fashion: Rice’s

theorem [93] states that no algorithm can exist that can algorithmically prove any
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non-trivial specification of an arbitrary program. There are a number of ways out

of this dilemma that can help answering questions similar to those above for arbi-

trary programs, or at least increase the confidence into them. One way is penetrative

testing. Setting up and running a number of test cases for a program can reveal

errors and thus help to improve the correctness of software. As a downside, it can

almost never show the absence of errors and thus its benefit is limited when it comes

to software used in safety-critical areas. Nevertheless, testing is the technology that

is most commonly used in industry to ensure the functional correctness of software.

Another way to overcome Rice’s theorem is semi-automated theorem proving. In this

approach, a program is translated into a logical language of a theorem prover, and a

logic such as Hoare logic [60] is used to reason about the program. A theorem prover

is a program that allows the user to write computer-assisted proofs in some general

purpose logic. Once a program has been translated into the language of a theorem

prover, the user can manually prove the program correct, where the prover assists

the user by providing heuristics that can automate some simple proofs. There exist

a number of sophisticated theorem provers such as PVS [85], Isabelle/HOL [82] or

Coq [42] that have been used to verify programs. A notable recent achievement has

been a formal correctness proof of an L4 micro kernel [70] in Isabelle/HOL. Beyond

that, proofs of classical mathematical theorems such as Gödels incompleteness the-

orem or the four-color theorem have been re-proved inside theorem provers [83, 52].

For the verification of programs, the biggest advantage of theorem provers is that

any arbitrary program can be proven correct with respect to a specification with less

effort than what is needed for paper proofs, if there is a human being capable of doing

so. The latter fact is also its biggest disadvantage. Theorem proving requires a high

level of expertise and a lot of time. Moreover, if software changes, many proofs have

to be reproved. As one of the main properties of software is that it changes, this is

one of the reasons why theorem proving has not yet found its way into a mainstream

industrial context.

An approach to the verification of programs that lies in between testing and

theorem proving, and that this thesis is about, is model checking. Model checking was
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independently proposed by Clarke and Emerson [31], and by Queille and Sifakis [91].

For an account of the history of model checking, see e.g. [30, 3]. Model checking is

not exclusively limited to the verification of programs, but can also be used to prove

properties of hardware, protocols or other abstract systems. In model checking, in

order to prove a program correct with respect to a specification, an abstract model of

the program is constructed and the specification is translated into some specification

logic. A model checking algorithm can then automatically check if the abstracted

program fulfills the specification, i.e., if it is a model of the specification. If this is the

case, the algorithm returns “yes”, otherwise it provides a counter example that shows

how erroneous behaviour of the program occurs. The abstraction step translates

a program into a weaker formalism in which Rice’s theorem does not apply, which

makes automatic verification possible. The biggest advantages of model checking

are that it is fully automatic and that it can actually prove the correctness of the

abstracted model. On the downside, the abstraction step can abstract away errors

that might exist in the original program. Furthermore, the size or state space of

the abstracted model can be too big to allow model checking algorithms to be of

practical use. Another limitation of the practical application of model checking is

that, as in the case of theorem proving, some level of expertise is needed to formulate

specifications in a specification logic. A lot of research has been devoted throughout

the last 30 years to attenuate those problems. Many techniques and heuristics have

been developed that have enabled model checking to find its way from theory into

praxis. One application that highlighted the power of model checking occurred in

1996, when Clarke, Khaira and Zhao showed that the floating point division bug of

the Intel R© Pentium R© processor could have been discovered with the technology that

was available by the time, and that the correction of the bug provably corrected the

bug [29]. Today, a number of plain, general purpose model checking tools exist, but

there are also tools devoted to software verification. They have successfully been used

in the verification of hard and software in academia and industry. Examples of plain

model checkers include SMV, NuSMV [28] or SPIN [62]. Examples of tools devoted

to software model checking include BLAST [57], CBMC [32] and SLAM [4]. Over
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the last 30 years, model checking has evolved as a field of its own inside computer

science and has attracted a broad range of research on its theoretical and practical

aspects. The importance of the field and the contribution made by Clarke, Emerson

and Sifakis has been acknowledged by awarding the 2007 ACM Turing award to the

three researchers.

Model checking as proposed by Clarke and Emerson restricts systems to have

a finite state space. Moreover, its specification language mainly allows for proving

qualitative properties about systems. There are applications domains where this ap-

proach is too coarse. Examples include real-time systems, where it is desirable to

prove quantitative properties of such systems, for example that a certain action is

always performed within a certain amount of time. In order to model such systems,

various formalisms have been developed and the model checking approach has been

applied to them. One such formalism are timed automata, defined by Alur and Dill

in [1]. Starting as a purely theoretical construct, timed automata are nowadays the

standard way to model real-time systems. Tools such as the Uppall model checker [9]

have been developed and successfully been applied to verifying time-critical proper-

ties of real-world systems. Other formalisms that allow for modeling systems in a

more fine-grained way and for reasoning about quantitative properties of systems

include probabilistic, pushdown or counter automata. One of the main challenges

in automatically verifying systems modelled in any of those formalisms is that their

state space is infinite, which can quickly lead to undecidability of model checking

problems. Even when model checking problems are decidable, a high computational

complexity of the model checking algorithms can mean that model checking is prac-

tically infeasible. Research on the theoretical side of model checking infinite-state

systems focuses on determining the decidability status of such problems and their

computational complexity.
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1.2 Scope and Contribution of this Thesis

The two main topics of this thesis are theoretical aspects of algorithms for the verifi-

cation of counter automata and programs with pointers and linked lists. This thesis

deals with the two subjects separately in two separated parts. We are going to discuss

their relationship at the end of this section.

A counter automaton consist of a finite-state controller which manipulates a finite

number of counters ranging over the naturals. At a transition between two control

locations, a counter automaton can add and subtract a natural number to and from

a counter, respectively, and test a counter for zero. Since the counter values are

unbounded, the state space of a counter automaton is infinite. Counter automata

were introduced by Minsky [80] as a formal model of computation. They are also

known as Minsky machines, counter machines, or counter nets. Minsky showed that

two counters are already sufficient for counter automata to be computationally as

powerful as Turing machines. Hence, almost all decision problems about counter

machines are undecidable. In particular, the most basic verification problem, reach-

ability, is undecidable. Given two configurations of a counter automaton consisting

of a control location and values of the counters, reachability asks whether there is a

path between the two configurations in the transition system induced by the counter

automaton. Research has identified several ways of restricting counter automata in

order to retain decidability of the reachability problem. Amongst others, this can be

achieved by restricting the kinds of allowable tests on the counters (e.g. Petri nets [88]

which do not allow for zero tests), the types of computations considered (such as re-

versal boundedness, see e.g. [65, 56]), restrictions on the underlying structure of the

counter automaton (e.g. flatness [34, 73]) and the restriction to only one counter.

Decidable classes of counter automata have found applications in a number of areas

in verification, for example in modelling resource-bounded processes, numeric data

types, programs with lists, recursive or multi-threaded programs, XML query valida-

tion, and parameterised hardware verification, see e.g. [15, 25, 56, 65, 103]. Moreover,

tools such as FLATA [14] exist for manipulating and reasoning about restricted classes
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q • q′ q • q′
+6 zero

−2

+6 zero

−y

γ γ α γ γ α

Figure 1.1: An example of a counter automaton and a parametric one-counter au-

tomaton.

of counter automata.

This thesis is primarily going to focus on the computational complexity of the

verification of one-counter automata, i.e., counter automata with the restriction to

only one counter. Such counter automata can for example be used to model programs

with one variable, protocols with an unbounded integer storage space, or systems

where a transition consumes a resource such as time or money as discussed in [108].

A graphical example of a one-counter automaton is presented on the left-hand side in

Figure 1.1. The one-counter automaton consists of three control locations, q, q′ and

one unnamed location depicted as a bullet, which are labelled with the symbols γ and

α. Starting in location q, the one-counter automaton has a transition to the unnamed

location, which adds 6 to the counter. Next, it can loop an indefinite number of times

subtracting 2 from the counter as long as the counter stays above or equal to 0. Once

the counter reaches counter value 0, a transition to the control location q′ is enabled.

Starting in q, the control location q′ with counter value 0 is reachable from q if, and

only if, we start with a counter value which is divisible by two. From a complexity

perspective, it is important to emphasize that we use the natural binary encoding of

numbers, unlike a lot of work from the literature, which assumes unary encoding of

numbers. One main contribution of this thesis is to show that deciding reachability is

an NP-complete problem. A generalisation of one-counter automata are parametric

one-counter automata, which are one-counter automata that are equipped with a

finite set of parameters. At any transition, a parametric one-counter automaton can

add or subtract the value of a parameter. An example of a parametric one-counter

automaton is given on the right-hand side of Figure 1.1, which is essentially the same
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one-counter automaton as on the left-hand side, but in which the loop subtracts

the value of the parameter y instead of 2 from the counter. The reachability problem

generalises to asking for two given configurations whether there exists an instantiation

of the parameters with natural numbers such that one configuration can be reached

from another. For example, q′ with counter value 0 is reachable from q′ with counter

value 0 for y ∈ {1, 2, 3, 6}. Another result of this thesis is that deciding reachability

in parametric one-counter automata is also NP-complete.

Reachability enables us to verify safety properties of systems as it allows for check-

ing whether a designated good or bad state of a system can be reached. In order to

verify more complex properties of systems, temporal specification logics are being

used in model checking. In this thesis, we deal with the most prominent temporal

logics used in verification, the branching-time logics EF and CTL, and the linear-time

logic LTL. Those logics allow for specifying properties about the relative order of

events on traces in the transition system induced by a one-counter automaton. A

trace is the projection onto the labels occurring on a path in the transition system

induced by a one-counter automaton. For example, γγγγγγα is the trace of the path

that reaches the control location q′ with counter value 0 from q with counter value 0

in the one-counter automaton in Figure 1.1. A specification in CTL could for example

state that there exists a path whose trace ends in a location labelled with α along

which the label γ occurs before. This property is expressed in CTL as follows:

E (γ U α)

Here, the E-operator can be read as “there exists a path” and the part in the brackets

uses the until operator U and can be read as “γ holds until α holds”. This prop-

erty holds, for example, in the control location q with counter value 0, but not with

any counter value that is not divisible by two, as q′ cannot be reached from such

configurations. From an algorithmic perspective, the decidability of model checking

one-counter automata is not trivial. For example, CTL allows to quantify over all

paths leaving a configuration in the transition system induced by a one-counter au-

tomaton, and there can be infinitely many of them. Nevertheless, it has been shown
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in the literature that model checking EF, CTL and LTL on transition systems gener-

ated by one-counter automata is decidable [98, 39]. The contribution of this thesis is

to exhaustively determine the computational complexity of those problems.

The model checking problem generalises to parametric one-counter automata.

Given a parametric one-counter automaton together with a configuration and a spec-

ification in a temporal logic, we aim for determining whether the formula holds in

that configuration in all one-counter automata obtained from all valuations of the

parameters. We are going to show that this problem becomes undecidable for EF and

CTL, but is decidable for LTL.

As a further application of counter automata, the first part of this thesis addition-

ally shows their relationship to the verification of timed systems modeled by timed

automata. Timed automata comprise a finite-state controller with a finite number of

clocks ranging over the positive reals. One main decision problem for timed automata

is reachability. As timed automata are not the main focus of this thesis, we do not give

additional details on them here and refer the interested reader to [1, 3]. What we are

going to show in this thesis is that reachability problems in timed automata are nat-

urally inter-reducible with reachability problems in bounded counter automata. The

latter are counter automata with multiple counters, but each counter is restricted to

have some maximum value. The reductions we provide give some interesting insight

into the connection between the two formalisms. In particular, we are going to show

that reachability in timed automata with two clocks is inter-reducible with reacha-

bility in a counter automaton with precisely one bounded counter. The complexity

of reachability in two-clock timed automata is one of the major open problems in

the theory of timed automata. Although the complexity of reachability in counter

automata with exactly one bounded counter remains an open problem of this thesis,

it provides a much more simplified formalism that might prove helpful in the future

to give an answer to the complexity of reachability in two-clock timed automata.

The second part of this thesis deals with the verification of programs with pointers

and linked lists in the framework of separation logic. Separation logic, proposed by

Reynolds, O’Hearn, Ishtiaq and Yang [66, 92, 84], is an extension of Hoare logic that
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allows for reasoning about pointer manipulating programs in an elegant and concise

way. It extends the syntax of assertions with predicates describing shapes of memory,

which allow for concisely expressing aliasing and disjointness. Full separation logic is

very expressive, and most reasoning tasks in this logic are undecidable, which limits

its usage for the automatic verification of programs. For that reason, fragments of

separation logic with decidable decision problems have been investigated. One such

fragment is the one described by Berdine, Calcagno and O’Hearn in [11]. It can be

used to reason about structural integrity properties of programs with linked lists and

is, for example, the basis of tools like SmallFoot [12]. The fragment described in

[11] allows for two predicates for describing the shape of memory:

x 7→ y ℓs(y, z)

The assertion x 7→ y can be read as “the memory cell of the stack variable x is allo-

cated on the heap and points to the memory cell of the stack variable y.” Moreover,

the predicate ℓs(y, z) asserts that there is a possibly empty linked list of arbitrary

length from the memory cell of the stack variable y to the memory cell of the stack

variable z. The two predicates can then be combined with the star operator in order

to describe complex memory shapes. For example, x 7→ y ∗ ℓs(y, z) describes memory

models, which can be decomposed into disjoint parts, one part in which the memory

cell of the stack variable x points to y and one in which there is a linked list from y

to z. In the part of the heap where x 7→ y holds, y is not required to be allocated and

becomes dangling, which is, informally speaking, the reason why the two parts can

“mention” the stack variable y. Additionally, the fragment also allows for asserting

conjunctions of equality and inequalities of stack variables, e.g., x 6= y asserts that

the stack variables x and y are not equivalent. Since lists have finite but unbounded

length, an assertion of the fragment of separation logic that we consider can describe

an infinite family of memory models.

The decision problem we investigate in this thesis is entailment between assertions.

Given two assertions α and α′, entailment is to decide whether α′ holds in every

memory model in which the assertion α holds. Decidability of this problem was

11



shown in [11] and the authors established a coNP upper bound for this problem. In

this thesis, we are going to show that the problem can be solved in polynomial time

under a slightly different semantics than the one used in [11]. However, we are going to

sketch how this result can be altered in order to give a polynomial-time algorithm for

entailment in the semantic model considered in [11]. Our approach is fundamentally

different from the one used in [11] and based on graph-theoretic concepts. Moreover,

we additionally show that slight adjustments to the syntax of the fragment make

entailment coNP-hard.

Although counter automata and separation logic are treated as separate entities

in this thesis, they have been shown to be closely related in the literature. Bouajjani

et al. show in [15] how to verify programs with linked lists with a specification logic

similar to the separation logic fragment that we consider via a reduction to verification

problems in counter automata. Moreover, Boszga, Iosif and Perarnau have considered

in [19] a quantitative version of the separation logic fragment from [11] for which

decidability of entailment is shown via a translation into bisimilar counter automata.

Both [15] and [11] do not give any complexity bounds of their approaches, and there

is no compelling way to obtain any bounds close to those that are provided in this

thesis since their constructions lead to an exponential blowup.

In summary, this thesis makes the following novel contributions:

• It shows that reachability in one-counter automata with updates encoded in

binary is NP-complete. This solves a problem left open in [95] about the com-

plexity of boundedness in Petri nets with one place and zero tests.

• It shows that reachability in parametric one-counter automata is NP-complete.

• It shows that reachability problems in timed and bounded counter automata

are inter-reducible and establishes a dichotomy of those reductions with respect

to the resources of the timed and bounded counter automata.

• It exhaustively determines the computational complexity of model checking one-

counter automata with updates encoded in binary and parametric one-counter

automata with specifications given in the specification logics EF, CTL and LTL.
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• It shows that entailment in a fragment of separation logic with pointers and

linked lists can be computed in polynomial time, answering a question left open

in [11].

1.3 Structure and Style of this Thesis

The organisation of this thesis is as follows. Chapter 2 introduces basic notation

and concepts that this thesis builds upon. The aim of this chapter is to give all

definitions and results from the literature relevant to this thesis and covers areas

such as computational complexity, automata theory, logic and arithmetic theories.

Definitions relevant to a specific chapter are introduced in the respective chapter.

After Chapter 2, the thesis is broken into two independent parts.

The first part deals with counter automata. Chapter 3 establishes a natural con-

nection between reachability problems in bounded counter automata and timed au-

tomata and shows that both problems are inter-reducible. Chapter 4 then deals with

the computational complexity of reachability problems in counter automata with and

without parameters. Finally, Chapter 5 is devoted to the computational complexity

of model checking one-counter and parametric one-counter automata.

The second part, Chapter 6 of this thesis, is about the verification of programs

with pointers and linked lists in the framework of separation logic. It is shown there

that entailment in the separation logic fragment described in [11] is computable in

polynomial time, and this result is complemented by showing that entailment in

natural extensions of this fragment becomes intractable.

Each chapter closes with a discussion about the results obtained, how they fit

into the literature and possible future work. Since the two parts of this thesis and

the chapters therein are all separate entities, we omit a chapter concluding the whole

thesis as it would just consist of a repetition of this introductory chapter and the

conclusions of the other chapters.

As discussed previously in this chapter, model checking is an established field and

has produced a rich body of literature. Although this thesis is self contained, giving
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a full account on the history, motivation and intuitive meaning of all concepts, defi-

nitions and results used from the literature would go beyond the scope of this thesis.

The reader of this thesis is expected to have some level of familiarity with concepts and

standard results from theoretical computer science. In particular, this thesis requires

some knowledge of standard definitions and results in computational complexity, au-

tomata theory, infinite-state system verification, model checking, graph theory and

arithmetic theories, in particular Presburger arithmetic. Additionally, Chapter 6 re-

quires some level of familiarity with separation logic. The papers by Reynolds [92]

and Berdine et al. [11] give a good introduction to the fragment considered in this

thesis. However, no knowledge of separation logic is required for any of the other

chapters.

Literature used by the author which inspired some of the definitions used in this

thesis amongst others include Sipser’s book on computational complexity [100]; the

books by Clarke et al. [33] and Baier and Katoen on model checking [3]; Schnoebelen’s

paper on the complexity of temporal model checking [97]; and Smorynski’s book on

logical number theory [102].

1.4 Related Work

This section discusses some work from the literature that is related to the main topics

of this thesis. Additional related work will be discussed in the respective chapters.

The relationship between timed automata and counter automata.

The classical undecidability proof of universality of timed automata by Alur and

Dill [1] proceeds via a reduction from the reachability problem of two-counter au-

tomata, which shows a connection between the two formalisms. Recent work [44]

by Figueira, Hofman and Lasota establishes a relationship between timed automata

and register automata. The latter are somewhat similar to counter automata, but

still of a different nature, which means that their result is incomparable to the result

provided in this thesis. Register automata include registers that can store data values
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for later comparison. The paper [44] provides an exponential-time algorithm which

computes a register automaton corresponding to a timed automaton and vice versa.

Runs in the timed automaton can then be simulated by the corresponding register

automaton and vice versa.

Reachability in one-counter automata.

Reachability in counter automata was first investigated by Minsky [80] who showed

that this problem is undecidable in the presence of at least two counters. As discussed

in Section 1.2, there is a large body of work on various restrictions on counter au-

tomata for which reachability becomes decidable. The problem of the complexity of

reachability in one-counter automata with updates encoded in binary has first been

mentioned by Rosier and Yen in a paper on the complexity of the boundedness prob-

lems for Petri nets, where this problem is left open [95]. Related work on reachability

in one-counter automata has also been conducted by Lafourcade et al. [71] who show

that reachability in one-counter automata with updates encoded in unary is decidable

in NL. Based on their work, Demri and Gascon show in [39] that Büchi reachability in

such counter automata with additional sign tests on the counter is NL-complete. As

in this thesis, deep inspection of the structure of runs in one-counter automata is also

the basis of work on the complexity of bisimulation between one-counter automata

with updates encoded in unary [13].

Reachability in parametric one-counter automata.

Work closely related to reachability in parametric one-counter automata is that of

Ibarra et al. [65], which shows decidability of reachability for a subset of the class of

deterministic parametric one-counter automata with sign tests. The decidability of

reachability over the whole class of such automata is stated as an open problem in

[65]. Note that although in this thesis parametric one-counter automata do not allow

negative counter values and sign tests, they allow non-determinism. Thus, the results

of this thesis are incomparable to those from [65]. Bozga, Iosif and Lakhnech [18]

show decidability of the reachability problem for flat parametric counter automata
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with a single loop, by a reduction to a decidable problem concerning quadratic Dio-

phantine equations. Such systems of equations also feature in the work of Ibarra and

Dang [64]. They exhibit a connection between a decidable class of quadratic Dio-

phantine equations and a class of counter automata with reversal-bounded counters.

Model Checking One-Counter Automata

The literature contains a wide range of work on model checking problems of one-

counter automata with updates in unary. Serre [98] establishes a PSPACE upper

bound for model checking the modal µ-calculus on transition systems generated by

such counter automata. A PSPACE lower bound was later established by Göller and

Lohrey [50], who showed that model checking CTL on one-counter automata with

updates encoded in unary is PSPACE-complete. The proof of the lower bound of CTL

model checking on one-counter automata with updates in binary given in this thesis

is inspired by the proof of the lower bound in [50]. Model checking EF on one-counter

automata with updates in unary was first considered by Jančar et al. [68], who showed

that this problem is DP-hard. The precise complexity was later settled by Göller,

Mayr and To in [51], where it is shown that the problem is PNP-complete. Model

checking LTL on one-counter automata with updates in unary has been investigated

by Demri and Gascon in [39] and shown to be PSPACE-complete. Also related is the

work by Walukiewicz, who studied in [107] model checking EF and CTL on transition

systems generated by pushdown automata and showed that the problem is PSPACE-

respectively EXPTIME-complete. A topic slightly more remotely related to this thesis

is model checking Freeze LTL on one-counter automata, which has been investigated

by Demri et al. [40, 41]. Freeze LTL extends LTL by the ability to store a counter

value and to later test it against the current counter value.

Programs with linked lists in the framework of separation logic.

The fragment of separation logic this thesis deals with has been introduced by Berdine,

Calcagno and O’Hearn in [11], where it was shown that entailment in this fragment

is decidable and in coNP. Bozga, Iosif and Perarnau considered in [19] a quantita-
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tive version of this logic, which additionally allows for reasoning about properties of

lengths of lists. Their decidability result also yields a decision procedure for the frag-

ment considered in [11]. However, there are no complexity bounds given in [19] on

the algorithm, which is of at least exponential running time. Bansal, Brochenin and

Lozes also consider in [5] an extension of the fragment of separation logic that this

thesis deals with, which additionally allows for comparing consecutive data in a list.

Finally, Navarro Pérez and Rybalchenko developed in [81] a decision procedure for

an extension of the fragment from [11] based on superposition. However, the authors

do not give complexity bounds of their approach.

1.5 Joint Work

The results presented in this thesis are partly based on peer-reviewed publications

that have been co-authored with a number of collaborators. The content of those

publications is a result of a number of discussions between the author and his collab-

orators, in person or via email. Some of the results in Chapter 4 have been published

in the proceedings of CONCUR’09 [54]. The paper was co-authored by Stephan

Kreutzer, Joël Ouaknine and James Worrell. Results from Chapter 5 have been pub-

lished in the proceedings of ICALP’10 [48] and FoSSaCS’12 [49]. Both papers have

been co-authored by Stefan Göller, Joël Ouaknine and James Worrell. The results

from Chapter 6 have been published in the proceedings of CONCUR’11 [35], the pa-

per was co-authored by Byron Cook, Joël Ouaknine, Matthew Parkinson and James

Worrell.
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Chapter 2

Preliminaries

In this chapter, we are going to introduce general notation and concepts and recall

some results from the literature that this thesis builds upon. The first section provides

general notation on integers and language theory and gives a brief account on some

results from number theory. The next section then introduces transition systems.

Section 2.3 deals with formal languages. In particular, we are going to define regular

languages and complexity classes. Subsequently, we are going to introduce formal

models of finite and infinite state systems, namely finite-state machines, counter au-

tomata and timed automata. The last section deals with theories of integer arithmetic

with a particular focus on Presburger arithmetic.

2.1 General Notation

By R we denote the set of reals, by Q the set of rationals, by Z the set of integers, and

by N
def
= {n ≥ 0 : n ∈ Z} the set of naturals. We denote by R≥0

def
= {r ∈ R : r ≥ 0}

the set of positive reals and by N>0
def
= N\{0} the set of naturals strictly greater than

zero. For any z ∈ Z, |z| is the absolute value of z. Given a set M , we denote by 2M

the power set of M . For a given a set M ⊆ Z with a maximum or minimum element,

we denote by max M the maximum element of M and by min M the minimal element

of M . The size of a finite set M is denoted by #M . Given a relation R ⊆ M ×N and

m ∈ M , R(m)
def
= {n ∈ N : (m,n) ∈ R}. We write M ⊆fin N to say that the set M is
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a finite subset of N . Moreover, we write f : M ⇀fin N to indicate that f is a partial

function from M to N with a finite domain. For M ⊆ R, q ∈ Q and r ∈ R, we define

qM
def
= {qm : m ∈ M} and M + r

def
= {m + r : m ∈ M}. For each i, j ∈ Z, we define

[i, j]
def
= {z ∈ Z : i ≤ z ≤ j} and [i]

def
= [1, i]. Given r ∈ R, we define the floor function

⌊r⌋
def
= max{z ∈ Z : z ≤ r} and the ceiling function ⌈r⌉

def
= min{z ∈ Z : z ≥ r}. For

any n ∈ N, we define lg n
def
= min{i ∈ N : 2i ≥ n}. Throughout this thesis, if not

stated otherwise, we assume binary encoding of numbers, i.e., the size of any z ∈ Z is

lg |z|. Given functions f, g : N → N, we write f = O(g) if there exist m,n0 ∈ N such

that f(n) ≤ mg(n) for all n > n0. Given a function f : M → N , we write f [m0 7→ n0]

to denote the function

f [m0 7→ n0]
def
= m 7→







n0 if m = m0

f(m) otherwise.

Let Σ be a set of letters forming an alphabet. A finite word w over Σ of length

n ∈ N is a function w : [n] → Σ, where the empty function is called the empty

word and denoted by ǫ. We write |w| to denote the length of w. Alternatively, we

represent finite words as finite sequences of letters from Σ, i.e., write w = σ1σ2 . . . σn.

An infinite word w over Σ is a function w : N>0 → Σ, and its length is |w|
def
= ω.

Given a word w, for any i ∈ [0, |w|] we denote by w(i) : [|w| − i] → Σ the suffix of w

starting at position i, which is defined as w(i)(j)
def
= w(i+ j) for all j ∈ [|w|− i]. Given

a finite word w1 and a possibly infinite word w2 over Σ, the concatenation w1 · w2 of

w1 and w2 is the word w : [|w1| + |w2|] → Σ, where w(i)
def
= w1(i) for all i ∈ [w1] and

w(j)
def
= w2(j−|w1|) for all j ∈ [|w1|+1, |w1|+ |w2|]. For any finite word w over Σ and

n ∈ N, we inductively define wn as w0 def
= ǫ and wi def

= wi−1 ·w for all i > 0. Moreover,

we inductively define Σ0 def
= {ǫ} and Σi def

= {w · σ : w ∈ Σi−1, σ ∈ Σ}. The set Σ∗ of

all finite words over Σ is defined as Σ∗ def
=

⋃

i∈N
Σi. The set of all infinite words is

denoted by Σω def
= {w : w is a function N>0 → Σ}. A subset L ⊆ Σ∗ or L ⊆ Σω is

called a language. Given languages L1, L2 ⊆ Σ∗, we denote by L1 · L2
def
= {w1 · w2 :

wi ∈ Li, i ∈ {1, 2}} the concatenation of L1 with L2. For languages consisting of a

single word w, we abuse notation and sometimes write w · L instead of {w} · L.

Given x, y ∈ Z, integer division is defined as x div y
def
= ⌊x/y⌋. We write x|y
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if x divides y, i.e., if there exists a k ∈ Z such that y = kx. Let z ∈ Z and

n ∈ N>0, the congruence class of z modulo n is the set zn
def
= {z + in : i ∈ Z}.

Each n ∈ N>0 yields n congruence classes Z/Zn
def
= {0n, . . . , n − 1n}. For x, y ∈ Z,

we write x ≡ y mod n if xn = yn. The greatest common divisor of x, y ∈ Z is

defined as gcd(x, y)
def
= max{n ∈ N : n|x and n|y} and the least common divisor

is lcm(x, y)
def
= xy/ gcd(x, y). Given a non-empty finite set M = {z1, . . . , zn} ⊆ Z,

gcd M
def
= gcd(z1, gcd(z2, . . .)). Likewise, lcm(M)

def
= lcm(z1, lcm(z2, . . .)). A natural

number p > 1 is a prime number if n 6 |p for all n ∈ [2, p − 1]. Let π(n) be the

prime-counting function that counts the number of primes less or equal to n ∈ N.

It follows from the prime number theorem that for all n ∈ N, π(n) ∼ n/(lg n), i.e.,

limn→∞(π(n) lg n/n) = 1. The prime number theorem guarantees that the set of all

natural numbers up to a fixed size asymptotically contains an exponential number of

prime numbers, a fact expolited when proving lower bounds in Chapter 5. In order

to obtain a fixed bound on π(n), one can, for example, use a result by Rosser [96],

which states that for all n ≥ 55, n/(ln n + 2) < π(n) < n/(ln n − 4).

Given i, n ∈ N, biti(n) ∈ {0, 1} denotes the i-th least significant bit of the binary

representation of n, i.e., n =
∑

i∈N
2i biti(n). Moreover, we also represent natural

numbers as bit strings over the alphabet {0, 1}. The binary representation of n

aligned to m ≥ lg n is the word w ∈ {0, 1}m such that n =
∑

i∈[m] 2
i−1w(i) and

denoted by binm(n). Note that we use little-endian representation when representing

numbers in binary as bit strings over {0, 1}. Given i < j ∈ N and n ∈ N, we denote by

n[i, j] the bit string biti(n) biti+1(n) . . . bitj−1(n). Given a bit string w ∈ {0, 1}∗, we

denote by (w)2 the natural number n
def
=

∑

i∈[|w|] 2
i−1w(i). When working in different

bases, given a basis m > 1 and i ∈ N, digi(n) denotes the i-th digit of n in base m.

For example, in base 2 we have dig2(01001) = 1, in base 10 we have dig2(1312) = 1,

and in base 16 we have dig2(BF0D) = 0.
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2.2 Transition Systems

As stated in the introduction in the first chapter, one main aspect of this thesis is

to study the computational complexity of model checking problems for transition

systems generated by certain classes of automata.

Definition 1 A transition system is a tuple T = (S,→), where S is the set of states

and →⊆ S×S is the transition relation. A labeled transition system T = (S,→, Λ, λ)

additionally comprises of a finite set Λ of labels and a labelling function λ : S → 2Λ

that assigns a set of labels to each state.

We prefer to use infix notation and write s → s′ whenever (s, s′) ∈ →. By →∗ we

denote the reflexive transitive closure of →. A finite run ̺ in T of length n is a

finite word ̺ = s1 . . . sn+1 such that si → si+1 for i ∈ [n]. We write ̺ : s →∗ s′ if

s1 = s and sn+1 = s′. An infinite run in T is an infinite word ̺ : N>0 → S such that

̺(i) → ̺(i + 1) for all i > 0. Given a finite run ̺1 of length n and a run ̺2 such that

̺1(n + 1) = ̺2(1), the composition of ̺1 and ̺2 is the run ̺
def
= ̺1 · ̺2

(1), i.e., the run

obtained from concatenating ̺1 and ̺2 without the duplicate first state of ̺2. For

any subset S ′ ⊆ S, an infinite run ̺ is a Büchi run in S ′ if for any i ∈ N there is j > i

such that ̺(j) ∈ S ′, i.e., states from S ′ occur infinitely often along ̺. In a labeled

transition system, the trace τ of a run ̺ of length n is the word τ : [n + 1] → 2Λ

which maps every state along ̺ to its label, i.e., τ(i)
def
= λ(̺(i)) for all i ∈ [n + 1].

One central question that we consider in this thesis is to decide reachability in

transition systems.

Reachability in Transition Systems

INPUT: A transition system T = (S,→) and s, s′ ∈ S.

QUESTION: Does s →∗ s′?

Given two labelled transition systems Ti = (Si,→i, Λ, λi), i ∈ {1, 2}, the product

T = T1 × T2 of T1 and T2 is the transition system T = (S,→, Λ, λ), where

• S
def
= {(s1, s2) ∈ S1 × S2 : λ1(s1) = λ2(s2)};
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• →
def
= {((s1, s2), (s

′
1, s

′
2)) : (s1, s2), (s

′
1, s

′
2) ∈ S, si →i s′i, i ∈ {1, 2}}; and

• λ
def
= (s1, s2) 7→ λ1(s1).

Observe that for any trace τ , we have that τ is the trace of a run ̺ in T if, and only

if, τ is a trace of runs ̺1 and ̺2 in T1 respectively T2.

2.3 Formal Languages and Computational Com-

plexity

In this section we recall some definitions and results from formal language and com-

plexity theory. Sipser’s book [100] provides the basis for most of our definitions.

2.3.1 Regular Languages

Regular languages are languages consisting of finite words that can be accepted by a

finite automaton.

Definition 2 Let Σ be a finite alphabet. A deterministic finite automaton (DFA) is

a tuple A = (Q, Σ, q0, F, δ), where Q is a finite set of control locations , q0 ∈ Q is the

initial state, F ⊆ Q is the set of final states , and δ : Q × Σ → Q is the transition

function.

Let w = σ1 . . . σn be a finite word over Σ. Then A accepts w if there exists a word

r = r0 . . . rn over Q such that

• r0 = q0

• δ(ri, σi+1) = ri+1 for i ∈ [0, n − 1]; and

• rn ∈ F .

The language L(A) accepted by A is the set of all words accepted by A, i.e.,

L(A)
def
= {w ∈ Σ∗ : A accepts w}.
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The class REG of regular languages over Σ is defined as

REG
def
= {L ⊆ Σ∗ : L is accepted by some DFA A}.

2.3.2 Turing Machines

Turing machines (TM) provide a formal model of a computer. The literature contains

a large body of different, though equivalent, definitions of Turing machines. Mainly

for the purpose of technical convenience, in this thesis a Turing machine operates

on one input and one working tape over the alphabet Σ
def
= {0, 1, ⊲, ⊳}. Here, ⊲ and

⊳ are special symbols serving as delimiters to mark the beginning of the input and

working tape and the end of the input tape, respectively. The area to the right of

the ⊲ delimiter of the working tape is assumed to be initially filled with zeros. Let

Υ
def
= {−1, 0, +1} denote the set of head directions, where −1 indicates that a head

moves to the left, 0 that it stays at its current position, and +1 that it moves to the

right.

Definition 3 Let Σ
def
= {0, 1, ⊲, ⊳} be an alphabet. A Turing machine is a tuple

M = (Q, Σ, q0, A,R, ∆), where Q is a finite set of control locations, q0 is the initial

location, A ⊆ S is the set of accepting locations, R ⊆ S \ A is the set of rejecting

locations , and ∆ ⊆ Q × Σ2 × Q × Σ × Υ2 is the transition relation.

In order to capture the intuitive meaning of the delimiters and that of the accepting

and rejecting locations, we impose the following restrictions on the transition relation:

for any (s, σi, σw, s′, σ′
w, di, dw) ∈ ∆

• if σi = ⊲ then di 6= −1, and if σi = ⊳ then di 6= +1;

• if σw = ⊲ then σ′
w = ⊲ and dw 6= −1; and

• s /∈ A ∪ R.

The first constraint ensures that the input head does not move beyond the delim-

iters, the second that the working head does neither move beyond nor overwrite the
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left delimiter, and the third that the Turing machine stops whenever it reaches an

accepting or rejecting location. Moreover, we require that for any q ∈ Q\ (A∪R) and

σi, σw ∈ Σ, there exists one tuple (q, σi, σw, q′, σ′
w, di, dw) ∈ ∆ for some q′, σ′

w, di, dw.

We call M deterministic if there is exactly one such tuple, otherwise M is called

non-deterministic. A configuration C of M is a tuple (q, hi, hw, wi, ww), where q ∈ Q

is the current state of M; wi ∈ ⊲ · {0, 1}∗ · ⊳, ww ∈ ⊲ · {0, 1}∗ are the contents of the

input respectively working tape; and hi ∈ [|wi|], hw ∈ [|ww|] are the current positions

of the heads on the input respectively working tape. Denote by C(M) the set of all

configurations of M. Then M induces the transition system T (M) = (C(M),→M)

where for C = (q, hi, hw, wi, ww) and C ′ = (q′, h′
i, h

′
w, w′

i , w
′
w), we have C →M C ′ if,

and only if, there exists (q, σi, σw, q′, σ′
w, di, dw) ∈ ∆ such that

• wi(hi) = σi, ww(hw) = σw

• h′
i = hi + di, h′

w = hw + dw

• w′
i = wi

• w′
w = ww[hw 7→ σ′

w] if hw + dw < |ww|, and w′
w = ww[hw 7→ σ′

w] · 0 otherwise.

The latter condition implies that the working tape can be seen to be initially filled

with zeros. Also notice that the above restrictions on ∆ ensure that T (M) is well-

defined.

Let Σi
def
= {0, 1} be the input alphabet and w ∈ Σ∗

i an input word to M. The

configuration C = (q, hi, hw, wi, ww) is called the initial configuration if q = q0, wi =

⊲ · w · ⊳, ww = ⊲ · 0, and hi = hw = 2. We call C an accepting configuration if q ∈ A,

and a rejecting configuration if q ∈ R. A configuration is terminating if it is accepting

or rejecting. Given an input w, a run r : C →∗
M C ′ is a computation of M on w if

C is the initial configuration and C ′ is a terminating configuration. The length of a

computation r of M is |r|. We say M accepts w if there exists a computation ending

in an accepting configuration. The language accepted by M is

L(M)
def
= {w ∈ Σ∗

i : M accepts w}.
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Note that in general the input alphabet may contain an arbitrary number of symbols,

since an arbitrary input alphabet can be encoded into Σi by using standard construc-

tions. The characteristic function χM : Σ∗
i → {0, 1} of M is defined as χM(w)

def
= 1 if

w ∈ L(M), and χM(w)
def
= 0 otherwise. We call M a decider if for any w ∈ Σ∗

i there

is no infinite run in T (M) starting in the initial configuration.

2.4 Computability and Computational Complex-

ity

Let Σ be an alphabet. The set of recursively enumerable languages, also known as

the set of languages in the first level of the arithmetic hierarchy, is defined as

Σ0
1

def
= {L ⊆ Σ∗ : L = L(M) for some TM M}.

A language L ⊆ Σ∗ is decidable if L ∈ Σ0
1 and Σ∗ \ L ∈ Σ0

1, or alternatively if

L = L(M) for some decider M. A language is called undecidable if it is not decidable.

We now define time and space complexity classes. In what follows, all Turing

machines we consider are deciders. The running time of a Turing machine M is

a function f : N → N such that for any input word w ∈ Σn, the length of any

computation of M on w is at most f(n). We call such a Turing machine an f(n)-time

Turing machine. In particular, we call M a deterministic polynomial-time Turing

machine if M is a deterministic f(n)-time Turing machine for some polynomial f .

The space complexity of M is the function f : N → N such that for any input word

w ∈ Σn, the position of the working head on any computation of M on w is at most

f(n). We call such a Turing machine a f(n)-space Turing machine.

The classes of languages decided by time- and space-bounded Turing machines

25



P
def
=

⋃

i≥0

DTIME
(
ni

)
NP

def
=

⋃

i≥0

NTIME
(
ni

)

EXPTIME
def
=

⋃

i≥0

DTIME
(

2ni
)

NEXPTIME
def
=

⋃

i≥0

NTIME
(

2ni
)

L
def
= DSPACE (lg n) NL

def
= NSPACE (lg n)

PSPACE
def
=

⋃

i≥0

DSPACE
(
ni

)
EXPSPACE

def
=

⋃

i≥0

DSPACE
(

2ni
)

Table 2.1: Time and space complexity classes relevant for this thesis.

are defined as follows. Let f : N → N,

DTIME(f(n))
def
= {L ⊆ Σ∗ : L = L(M) for a deterministic O(f(n))-time TM M}

NTIME(f(n))
def
= {L ⊆ Σ∗ : L = L(M) for a non-deterministic O(f(n))-time TM M}

DSPACE(f(n))
def
= {L ⊆ Σ∗ : L = L(M) for a deterministic O(f(n))-space TM M}

NSPACE(f(n))
def
= {L ⊆ Σ∗ : L = L(M) for a non-deterministic O(f(n))-space TM M}.

Building upon those definitions, Table 2.1 defines the time and space complexity

classes relevant for this thesis. We do not explicitly define NPSPACE and NEXPSPACE

since by Savitch’s theorem they are equivalent to PSPACE respectively NEXPSPACE.

For a given complexity class C, we denote by coC
def
= {Σ∗ \L : L ∈ C} the complement

class of C, e.g., coNP and coNEXPTIME are the complement classes of NP respectively

NEXPTIME. The complement class of Σ0
1 is Π0

1.

Non-deterministic Turing machines give rise to non-deterministic algorithms. Such

algorithms can at any point during their execution branch into a finite number of child

processes. A non-deterministic algorithm accepts an input if at any branching one

child process accepts. When providing pseudo algorithms in thesis, we are going

to use the additional primitive operation existential move in order to indicate the

invocation of such a branching.

We close this section with the definition of reducibility between languages and

languages that are complete for a complexity class. A function f : Σ∗ → Σ∗ is a

polynomial-time computable function if there exists a deterministic polynomial-time

26



Turing machine M such that on any input w ∈ Σ∗, M accepts w and the content of

the working tape of the accepting configuration is ⊲ · f(w). We say that a language

L ⊆ Σ∗ is polynomial-time reducible to L′ ⊆ Σ∗ if there exists a polynomial-time

computable function f : Σ∗ → Σ∗ such that for any w ∈ Σ∗, w ∈ L if, and only if,

f(w) ∈ L′. Given a language L and a complexity class C, we say L is complete for C

with respect to polynomial-time reductions if, and only if, L ∈ C and every L′ ∈ C is

polynomial-time reducible to L.

2.4.1 Results from Structural Complexity Theory

In this section, we briefly introduce and recall results on alternative characterisa-

tions of PSPACE and EXPSPACE in terms of alternating Turing machines (ATM) and

serialisability.

Alternation

A generalisation of non-deterministic Turing machines are alternating Turing ma-

chines, which were independently defined by Kozen and Chandra and Stockmeyer [24].

They give rise to alternating algorithms. Such algorithms can at any point during

their execution branch into a finite number of child processes. There are two possible

branching modes, existential and universal branching. Just as in the case of non-

deterministic algorithms, in existential branching it is required that one of the child

processes accepts, whereas in the universal mode the requirement is that all child

processes accept. When providing pseudo-algorithms in this thesis, we are going to

use the additional primitive operations existential move and universal move in order

to indicate the invocation of branching of the respective type.

We do not give a formal definition of alternating Turing machines here as their

precise definition does not have any direct relevance for this thesis. Informally speak-

ing, an alternating Turing machine M is a non-deterministic Turing machine whose

set of control locations is partitioned into a set Q∀ of universal and a set Q∃ of ex-

istential control locations. A configuration C = (q, hi, hw, wi, ww) is accepting if q is
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from the set of accepting configurations, or

• if q ∈ Q∃ then C is accepting if there is C ′ such that C →M C ′ and C ′ is

accepting; or

• if q ∈ Q∀ then C is accepting if C ′ is accepting for all C ′ such that C →M C ′.

Given the initial configuration C of M for an input word w ∈ Σ∗, we say M

accepts w if C is accepting. The complexity classes alternating time and alternating

polynomial time are defined as follows:

ATIME(f(n))
def
= {L ⊆ Σ∗ : L = L(M) for an O(f(n))-time ATM M}

AP
def
=

⋃

i≥0

ATIME(ni).

The following theorem shows that the languages in PSPACE coincide with lan-

guages in AP.

Theorem 2.4.1 ([24]) AP = PSPACE.

Serialisability

In this section, we provide an alternative characterisation of EXPSPACE in terms of

serialisability. Let us begin with a generic notion of serialisability that is tailored to

the needs of this thesis.

Definition 4 Let C be a complexity class and R ⊆ {0, 1}∗. A language L ⊆ Σ∗ is

exponentially C-serialisable via R if there exists a polynomial p and a language U ∈ C

such that for all w ∈ Σn and m = exp(p(n)),

w ∈ L ⇔ χU(w · binm(0)) · χU(w · binm(1)) · · ·χU(w · binm(exp2(p(n)) − 1)) ∈ R.

♦

Informally speaking, a language L is exponentially C-serialisable via R if deciding

whether w ∈ L can be reduced to a doubly exponential number of queries to a

language U ∈ C with the requirement that the string of results of those queries,
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also known as the leaf language, is a word of some language R. This definition of

serialisability is adopted from [50] and differs slightly from the standard notion that

is used in [109, 58, 106].

The following theorem is due to Göller and provides a serialisability result for

EXPSPACE. The proof of the theorem relies on results from [50] and has only been

published in an informal technical report accompanying [48]. In order to keep this

thesis self-contained, we repeat the proof in the appendix.

Theorem 2.4.2 (Göller) For every L ∈ EXPSPACE there is a regular language R

such that L is exponentially L-serialisable via R.

2.5 Models of Finite and Infinite-State Systems

This section introduces finite-state machines, counter automata and timed automata

as mathematical models of finite and infinite state systems.

2.5.1 Finite-State Machines

Finite-state machines are a prominent mathematical model used for describing the

behaviour of systems in the area of formal verification.

Definition 5 A finite-state machine (FSM) is a tuple A = (Q, Λ, q0, F, ∆, λ), where

Q is a finite set of control locations, Λ is a finite set of labels, q0 ∈ Q is the initial

location, F ⊆ Q is the set of final locations, ∆ ⊆ Q×Q is the transition relation, and

λ : Q → 2Λ is the locating labelling function.

The definition of a finite-state machine is very similar to the finite automaton in-

troduced in Section 2.3.1. The main difference is that we are not interested in

a language accepted by a finite-state machine but rather in the words generated

by traces of the labelled transition system that it induces. A finite-state machine

A = (Q, Λ, q0, F, ∆, λ) induces the labelled transition system TA = (SA,→A, Λ, λA),

where SA
def
= Q, →A

def
= ∆ and λA

def
= λ.
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2.5.2 Counter Automata

Counter automata (CA) extend finite-state machines with a finite number of counters

ranging over the naturals. At any transition, a counter automaton can increment a

counter, decrement a counter provided that the resulting counter value is at least

zero, or test if the value of a counter is zero.

Definition 6 Let k ∈ N>0 and Op
def
= {addi(z) : i ∈ [k], z ∈ Z}∪{zeroi : i ∈ [k]} be a

set of operations. A k-counter automaton is a tuple A = (Q, Λ, q0, F, ∆, λ, ξ), where

all components are the same as in Definition 5, except for ξ : ∆ → Op, which is an

additional transition labelling function.

A k-counter automaton is called zero-test free if ξ(q, q′) 6= zeroi for all (q, q′) ∈ ∆

and i ∈ [k]. We denote by C(A)
def
= Q × Nk the set of all configurations of A. The

transition system generated by a k-counter automaton A is T = (SA,→A, Λ, λA),

where SA
def
= C(A), λA(q, ~n)

def
= λ(q), and for ~n = (n1, . . . , nk) and ~n′ = (n′

1, . . . , n
′
k),

(q, ~n) →A (q′, ~n′) if, and only if, (q, q′) ∈ ∆ and there exists an i ∈ [k] such that

• n′
j = nj for all j ∈ [k] \ {i}; and

• ξ(q, q′) = addi(z) and n′
i = ni + z; or

• ξ(q, q′) = zeroi and ni = n′
i = 0.

One of the earliest results about counter automata was obtained by Minsky who

showed that reachability in counter automata is undecidable even when restricted to

two counters only.

Counter-Automata Reachability

INPUT: A counter automaton A and C,C ′ ∈ C(A).

QUESTION: Does C →∗
A C ′?

Proposition 2.5.1 ([80]) Reachability in k-counter automata is Σ0
1-complete for

k ≥ 2.
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Note that for any counter automaton A, it is easily seen that an arbitrary instance

(q, ~n) →∗
A (q′, ~n′) of a reachability problem can be reduced in polynomial time to a

reachability instance (q,~0) →∗
A′ (q′,~0) in some counter automaton A′. Reachability

becomes decidable when we deal with zero-test free counter automata. This class of

systems is also known as vector addition systems with states or Petri nets.

Proposition 2.5.2 ([78]) Reachability in zero-test free counter automata is decid-

able.

Another problem about counter automata that we consider in this thesis is the

existence of a Büchi run or Büchi path. Given an infinite run ̺ : (q1, ~n1)(q2, ~n2) . . . of

a counter automaton A in T (A), let inf (̺)
def
= {q ∈ Q : for all i ∈ N such that qi = q

there is a j > i such that qj = q}. A run ̺ is a Büchi run in T (A) if inf (̺) ∩ F 6= ∅.

Büchi Run of a Counter Automaton

INPUT: A counter automaton A and C ∈ C(A).

QUESTION: Does there exist a Büchi run ̺ in T (A) such that ̺(1) = C?

A more constrained class of counter automata are bounded counter automata in

which an upper bound on the maximum value of each counter is imposed.

Definition 7 A bounded k-counter automaton is a tuple A = (Q, Λ, q0, F, ∆,~b, λ, ξ),

where all components are the same as in Definition 6 except for ~b ∈ Nk which is a

vector of bounds.

The set C(A) of configurations of a bounded k-counter automaton with bounds

~b = (b1, . . . , bk) is C(A) = Q × [0, b1] × . . . × [0, bk]. Apart from that, the definition

of the transition system induced by a bounded counter automaton is the same as

for counter automata without bounds. Note that we can without loss of generality

assume that no zeroi-labelled transitions occur in a bounded one-counter automaton,

since any such transition can be replaced by two consecutive transitions that first add

to and then subtract from the counter i the upper bound imposed on counter i.
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A further class of counter automata that we consider are parametric counter

automata. For example, in order to model underspecified systems, they generalise

counter automata to allow for updates of the counter by some parametric value.

Definition 8 Let Y be a finite set of parameters. A parametric k-counter automaton

is a tuple A = (Q, Y, Λ, q0, F, ∆, λ, ξ), where all components are the same as in Defini-

tion 6, but where the set of operations additionally allows for adding and subtracting

parametric values, i.e., Op
def
= {addi(z) : i ∈ [k], z ∈ Z} ∪ {addi(y), addi(−y) : i ∈

[k], y ∈ Y } ∪ {zeroi : i ∈ [k]}.

The set C(A) of configurations of a parametric k-counter automaton A is defined

in the same way as for k-counter automata, i.e., C(A)
def
= Q × Nk. A parametric

counter automaton represents an infinite family of counter automata, each of which

is obtained from a valuation of the parameters, which is a function ν : Y → N. Given

a valuation ν and a parametric counter automaton A = (Q, Y, Λ, q0, F, ∆, λ, ξ), the

counter automaton Aν is Aν def
= (Q, Λ, q0, F, ∆, λ, ξ′), where for all q, q′ ∈ Q, ξ′(q, q′)

def
=

addi(◦ν(y)) if ξ(q, q′) = addi(◦y) for y ∈ Y and ◦ ∈ {+,−}, and ξ′(q, q′)
def
= ξ(q, q′)

otherwise. We call Aν the counter automaton obtained from A under the valuation

ν. Reachability in parametric counter is now defined as follows:

Parametric Counter-Automata Reachability

INPUT: A parametric counter automaton A with parameters Y and C,C ′ ∈

C(A).

QUESTION: Does there exist a valuation ν : Y → N such that C →∗
Aν C ′?

For convenience, given a parametric counter automaton A and configurations C,C ′ ∈

C(A), we write C →∗
A C ′ if there exists a valuation ν such that C →∗

Aν C ′.

Let us fix a parametric counter automaton A = (Q, Y, Λ, q0, F, ∆, λ, ξ). The size

|A| of A is defined as follows: for the transition labels, z ∈ Z and y ∈ Y , we set

|addi(z)|
def
= lg |z|, |addi(◦y)| = |zeroi|

def
= 1, and finally

|A|
def
= |Q| + |∆| + max{|ξ(q, q′)| : (q, q′) ∈ Q}.
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Figure 2.1: The one-counter automaton Am,i used for testing a bit of a number

n ∈ [2m+1 − 1].

Thus, our definition of size assumes binary encoding of numbers. If all counter updates

are from the set {−1, 0, 1}, we call A a unary counter automaton. Otherwise, if

we wish to emphasize binary encoding of numbers, we call A a succinct counter

automaton.

In this thesis, we are going to establish a number of results on succinct one-counter

automata and parametric one-counter automata. In this setting, it is always clear on

which counter an operation is performed. For that reason we label, for example,

an edge with “+5“ or “+y“ instead of “add1(5)” respectively “add1(y)”, and with

“zero” instead of “zero1”. Given a run ̺ : (q1, n1)(q2, n2) . . . in T (A) of a one-counter

automaton A such that no zero test occurs along ̺, i.e., ξ(qi, qi+1) 6= zero for all

i ∈ [|̺| − 1], for technical convencience we denote for any n ∈ N by ̺ + n the run

̺ + n : (q1, n1 + n)(q2, n2 + n) . . .. Reachability and checking for the existence of a

Büchi path for a unary one-counter automaton are known to be complete for NL.

Proposition 2.5.3 ([39]) Reachability and checking for the existence of a Büchi run

in unary one-counter automata is NL-complete.

We are now going to consider an example of an instance of a reachability problem

in a one-counter automaton and a parametric one-counter automaton. We are going

to use the two examples in order to explain the way we graphically depict counter

automata and how we represent and use gadgets. Let m ∈ N, i ∈ [0,m] and let us

consider the one-counter automaton Am,i presented in Figure 2.1. It consists of the

control locations qi, qz and a number of further control locations, which are depicted

as •, © and
⊙

. A control location is labelled with the label(s) next to it, e.g., qi is

labelled with {γ}, and if there is no label next to a control location it is implicitly
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Figure 2.2: The parametric one-counter automaton Am,i,j, which illustrates the way

gadgets are depicted in this thesis.

labelled with ∅. Transitions between control locations are depicted as arrows and

are labelled with the operation that is performed along the transition. In Figure 2.1,

there is a transition between qz and
⊙

which is labelled with zero. If there is no label

along a transition, it is implicitly labelled with +0.

Let us now discuss the functionality of Am,i. Suppose we wish to analyse for which

values of n ∈ N, we have (qi, n) →∗
A (qz, 0). Starting in (qi, n), each triangle of Am,i

allows for non-deterministically subtracting 2j once from the counter for each j 6= i,

and when reaching the control location qz it is required that 2i has been subtracted

from the counter. Thus, in order to be able to reach the configuration (qz, 0) starting

in (qi, 0), n must not exceed
∑

i∈[0,m] 2
m = 2m+1 − 1 and the coefficient of 2i in the

binary representation of n must be 1. Hence the set of counter values n such that

(q, n) →∗
Am,i

(qz, 0) can be characterised as follows:

{

n ∈ N : (qi, n) →∗
Am,i

(qz, 0)
}

=
{
n ∈ [2m+1 − 1] : biti(n) = 1

}
.

Next, we discuss an example of a parametric one-counter automaton. Figure

2.2 depicts the parametric one-counter automaton Am,i,j, which uses the previously

discussed one-counter automaton Am,i respectively Am,j as a gadget. The way this

is graphically depicted is as follows: the grey-shaded boxes represent the whole Am,i

respectively Am,j and the control locations © and
⊙

are the control locations ©

and
⊙

of Am,i respectively Am,j. So, for example, Am,i,j has a transition from q to

© from Am,i which adds the value of the parameter y to the counter. When dealing

with gadgets, the control locations © and
⊙

are always going to be used to mark

the entrance respectively exit of a gadget, or initial and final location of the gadget.

Since we can only reach
⊙

in Am,i and Am,j when the value of the counter is zero, we

can characterise the set of values of parameters for y such that (q, 0) →∗
Am,i,j

(q′, 0)
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as follows:

{

n ∈ N : ν(y) = n, (q, 0) →∗
Aν

m,i,j
(q′, 0)

}

=
{
n ∈ [2m+1 − 1] : biti(n) = 1, bitj(n) = 1

}
.

2.5.3 Timed Automata

Timed automata extend finite-state machines with a finite set of clocks ranging over

the positive real numbers and were introduced by Alur and Dill [1]. While traces

of paths in the transition system generated by a finite-state machine only allow for

reasoning about the relative order of events, timed automata additionally incorporate

timing information between them.

Let X be a finite set of clock variables. A clock valuation is a mapping ϑ : X →

R≥0, and we denote by CV (X)
def
= {ϑ : ϑ is a clock valuation} the set of all clock

valuations. Given r ∈ R≥0, we denote by ϑ+r the clock valuation ϑ+r
def
= x 7→ ϑ(x)+r

for all x ∈ X. An atomic clock constraint is a term of the form x ∼ n, where x ∈ X,

∼ ∈ {<,≤, =, 6=,≥, >} and n ∈ N. A clock constraint φ is a finite conjunction

of atomic clock constraints φ = x1 ∼ n1 ∧ . . . ∧ xm ∼ nm. The set of all clock

constraints over clocks X is denoted by CC(X). A clock valuation maps an atomic

clock constraint x ∼ n to a Boolean value ϑ(x) ∼ n and hence also a clock constraint

φ to a Boolean value. We write ϑ |= φ whenever ϑ makes φ true.

Definition 9 A timed automaton is a tuple A = (Q,X,Λ, q0, F, ∆, λ, ξ), where all

components are the same as in Definition 5, except for X, which is a finite set of

clock variables and ξ : ∆ → CC(X) × 2X which is the transition labelling function

labelling each transition with a guard.

A guard is a tuple consisting of a clock constraint and a subset of the clock variables

of A that are supposed to be reset when a transition is taken. We say that A is

a k-clock timed automaton whenever |X| = k. Given a clock x ∈ X, the set of

x-constants Cx is the set

Cx
def
= {n ∈ N : there are q, q′ ∈ Q s.t. ξ(q, q′) = (φ,X ′) and φ has conjunct x ∼ n} ∪ {0}.
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The set C(A) of configurations of A is C(A)
def
= Q × CV (X) and consists of

a control location and a clock valuation. A timed automaton induces a labelled

transition system TA = (SA,→A, Λ, λA), where SA
def
= C(A), λA(q, ϑ) = λ(q) and

(q, ϑ) →A (q′, ϑ′) if one of the following conditions is satisfied:

(i) q = q′ and there exists r ∈ R≥0 such that ϑ′ = ϑ + r; or

(ii) (q, q′) ∈ ∆, ξ(q, q′) = (φ,X ′), ϑ |= φ and ϑ′ is such that ϑ′(x′) = 0 for every

x′ ∈ X ′ and ϑ′(x) = ϑ(x) for every x ∈ X \ X ′.

Transitions of type (i) are called delay transitions and transitions of type (ii) discrete

transitions. The size of a timed automaton is defined as

|A|
def
= |Q| + |∆| + max{lg n : n ∈ Cx, x ∈ X}.

As in the case of counter automata, we are interested in deciding reachability

between configurations of a timed automaton.

Timed-Automata Reachability

INPUT: A timed automaton A with k clocks and C,C ′ ∈ C(A) ∩ Q × Nk.

QUESTION: Does C →∗
A C ′?

Using a technique called region abstraction, Alur and Dill showed the following

theorem.

Theorem 2.5.1 ([1]) Reachability in timed automata is PSPACE-complete.

This result was later refined by Courcoubetis and Yannakakis [37] who showed that

PSPACE-hardness already holds if A comprises of three clocks. The cases with less

than three clocks were left out in [37] and later discussed in [72], where it was shown

that reachability in one-clock timed automata is NL-complete and NP-hard for two

clocks. Closing the complexity gap for the case with two clocks is considered to be

one of the biggest open problems in the theory of timed automata.
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2.6 Integer Arithmetic

In this section, we are going to introduce and recall results on decidable and unde-

cidable theories of number theory. The subsequent sections will in particular focus

on the existential theories of Presburger arithmetic and Presburger arithmetic with

divisibility, which we are going to use in Chapter 4 in order to show decidability

and complexity results for reachability problems in one-counter and parametric one-

counter automata.

The first-order theory of the natural numbers in the structure 〈N, <, +, ·, 0, 1〉 was

shown to be undecidable by Church [27]. Later, Matiyasevich proved Hilbert’s tenth

problem to be undecidable.

Hilbert’s Tenth Problem (HTP)

INPUT: A polynomial p : Rn → R with integer coefficients.

QUESTION: Do there exist a1, . . . , an ∈ Z such that p(a1, . . . , an) = 0?

Theorem 2.6.1 ([77]) Hilbert’s tenth problem is Σ0
1-complete.

Since Hilbert’s tenth problem can be expressed in the existential fragment of the

structure 〈N, <, +, ·, 0, 1〉, it follows that this theory is undecidable as well.

2.6.1 Presburger Arithmetic

Presburger arithmetic (PA) is the first-order theory of natural numbers in the struc-

ture 〈N, <, +, 0, 1〉 and was shown to be decidable by Presburger [90] in 1929.

Let X be a countably infinite set of first-order variables. A linear polynomial over

~x = (x1, . . . , xn) ∈ Xn is given by the syntax rule

p(~x) ::=
∑

i∈[n]

aixi + b,

where the ai and b range over Z and the first-order variables from ~x range over N.

Formulae of Presburger arithmetic are defined by the following grammar where x
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ranges over X:

ϕ ::= p(~x) < p(~x) | ϕ ∧ ϕ | ¬ϕ | ∃x.ϕ.

We define the standard Boolean abbreviations ϕ1 ∨ ϕ2
def
= ¬(¬ϕ1 ∧ ¬ϕ2), ϕ1 → ϕ2

def
=

¬ϕ1 ∨ ϕ2 and ϕ1 ↔ ϕ2
def
= ϕ1 → ϕ2 ∧ ϕ2 → ϕ1. Moreover, we introduce the abbrevia-

tions p1(~x) ≤ p2(~x)
def
= p1(~x) < p2(~x)+1 and p1(~x) = p2(~x)

def
= p1(~x) ≤ p2(~x)∧p2(~x) ≤

p1(~x). Let ~x = (x1, . . . , xn), for brevity we often write ∃x1x2 . . . xn.ϕ(~x) instead of

∃x1.∃x2 . . . ∃xn.ϕ(~x). Moreover, given a finite set X = {x1, . . . , xn} of first-order vari-

ables, we sometimes use a generalised existential quantifier and write ∃x∈X .ϕ(~x) in

order to abbreviate the formula ∃x1 . . . xn.ϕ(~x).

The size |ϕ| of a Presburger formula ϕ is defined by structural induction over

ϕ. For a linear polynomial p(~x), its size |p(~x)| is the number of symbols needed

to write it down, where we assume binary encoding of numbers. Now |p1( ~x1) <

p2( ~x2)|
def
= |p1( ~x1)| + |p2( ~x2)| + 1, |ϕ1 ∧ ϕ2|

def
= |ϕ1| + |ϕ2| + 1, |¬ϕ|

def
= |ϕ| + 1 and

|∃x.ϕ|
def
= |ϕ|+1. Note that binary encoding of numbers is not essential for complexity

considerations since we can “simulate” binary encoding by introducing additional

existentially quantified variables.

The set of free variables fv(ϕ) of a formula ϕ is defined by structural induction

on ϕ:

fv(p(x1, . . . , xn))
def
= {x1, . . . , xn}

fv(p1( ~x1) < p2( ~x2))
def
= fv(p1( ~x1)) ∪ fv(p2( ~x2))

fv(ϕ1 ∧ ϕ2)
def
= fv(ϕ1) ∪ fv(ϕ2)

fv(¬ϕ)
def
= fv(ϕ)

fv(∃x.ϕ)
def
= fv(ϕ) \ {x}.

We write ϕ(x1, . . . , xn) to indicate that {x1, . . . , xn} ⊆ fv(ϕ). Without loss of gen-

erality, we assume that each first-order variable occurs at most once in the scope of

an existential quantifier and that no first-order variable is both free and existentially

quantified. Given ϕ(x1, . . . , xm) and n1, . . . , nm ∈ N, we write ϕ[n1/x1, . . . , nm/xm]

for the formula obtained from replacing each xi with ni in ϕ. If fv(ϕ) = ∅, we write
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〈N, <, +, 0, 1〉 |= ϕ if ϕ is a true statement in Presburger arithmetic, or just |= ϕ if

the structure we are working in is clear from the context.

In this thesis, we are going to show complexity results for reachability problems in

one-counter automata via a translation into the existential or quantifier-free fragment

of Presburger arithmetic (QFPA). This fragment restricts formulae to be of the form

ϕ = ∃x1 . . . xk.ψ(x1, . . . , xk)

and no quantifier is allowed to occur in ψ. Given a set M ⊆ Nk, we say M is QFPA-

definable if there exists a finite set R of QFPA formulae, each with free variables

x1, . . . , xk, such that

M =
⋃

ϕ(x1,...,xk)∈R

{
(n1, . . . , nk) ∈ Nk : 〈N, <, +, 0, 1〉 |= ϕ[n1/x1, . . . , nk/xk]

}
.

Given a QFPA formula ϕ, checking whether |= ϕ, i.e., if ϕ is satisfiable, is NP-

complete.

Theorem 2.6.2 ([86]) Satisfiability in quantifier-free Presburger arithmetic is NP-

complete.

We close this section with an example of a QFPA definable set. Recall the example

of the one-counter automaton Am,i in Section 2.5.2 which allows for testing whether

biti(n) = 1 for n ∈ [0, 2m+1 − 1]. The set {n ∈ N : (qi, n) →∗
Am,i

(qz, 0)} is definable

via the QFPA formula

ϕ(n)
def
= ∃x1 . . . xm.

∧

j∈[0,m]

(xj = 0 ∨ xj = 1) ∧ n −
∑

j∈[0,m]
j 6=i

2jxj − 2i = 0.

2.6.2 Presburger Arithmetic with Divisibility

Presburger arithmetic with divisibility extends Presburger arithmetic with an addi-

tional predicate for divisibility, i.e., it is the first-order theory of natural numbers in

the structure 〈N, 0, 1, <, +, |〉, where a|b if there exists k ∈ Z such that b = ka for

a, b ∈ N. Robinson [94] showed that the multiplication relation can be expressed in

terms of the divisibility relation, which implies that this theory is undecidable due
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to the results discussed in the introduction of this section. However, the restriction

to the existential or quantifier-free fragment of Presburger arithmetic with divisibility

(QFPAD) makes the theory decidable, as independently shown by Lipshitz [74] and

Bel’tyukov[8]. In fact, Lipshitz shows the decidability of formulae of the form

ϕ = ∃x1 . . . xk.
∧

i∈[n]

pi(~x)|ri(~x),

where the pi(~x) and ri(~x) are linear polynomials. However, this result implies the

decidability of the full existential theory 〈N, 0, 1, <, +, |〉 due to the following identi-

ties. Let a, b ∈ Z, we can express the relations = and < in terms of conjunctions of

divisibility relations:

a = b ⇔ a|b ∧ b|a ∧ a + 1|b + 1 ∧ b + 1|a + 1

a < b ⇔ ∃z.a + z + 1 = b.

Next, we consider the non-divisibility relation. First, if |a| > |b| we have a 6 |b. Other-

wise, we have

a 6 |b ⇔ ∃xyz.z|a ∧ z|b ∧ a|x ∧ b|y ∧ z = x − y ∧ 0 < z ∧ (z < a ∨ z < −a).

Assuming |a| < |b|, informally speaking this identity states that a 6 |b if a multiple

z of the greatest common divisor of a and b is strictly less than |a|. In order to

formally express this relation, we employ Bézout’s identity, which states that for any

pair a, b ∈ Z, there are x, y ∈ N such that gcd(a, b) = ax − by and there do not exist

x′, y′ ∈ N such that n = ax′ − by′ for all n ∈ [gcd(a, b) − 1].

The definitions of size and free variables of a QFPAD formula ϕ are derived in a

straight-forward manner from the corresponding QFPA definitions from the previous

section, in particular |p(~x)|r(~x)|
def
= |p(~x)|+ |r(~x)|+ 1. Likewise, given a set M ⊆ Nk,

we say M is QFPAD-definable if there exists a finite set R of QFPAD formulae, each

with free variables x1, . . . , xk, such that

M =
⋃

ϕ(x1,...,xk)∈R

{
(n1, . . . , nk) ∈ Nk : 〈N, 0, 1, <, +, |〉 |= ϕ[n1/x1, . . . , nk/xk]

}
.
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Since QFPA is a notational fragment of QFPAD, satisfiability in this logic is NP-

hard. In a follow-up paper [75], Lipshitz showed that satisfiability in QFPAD is NP-

complete. In particular, he showed that NP-hardness already holds for a formula with

five ∧-connectives. It should however be noted that the paper [75] has been published

in informal workshop proceedings. Although there is no good reason to doubt the

results from [75], we wish to explicitly state at this point that the results therein

have not been published in a peer-reviewed journal or in peer-reviewed conference

proceedings.

Theorem 2.6.3 ([75]) Satisfiability in quantifier-free Presburger arithmetic with di-

visibility is NP-complete and NP-hard already for a fixed number of Boolean connec-

tives.
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Chapter 3

Reachability Problems in Timed

and Bounded Counter Automata

This chapter studies the relationship between reachability problems in classes of timed

and counter automata. In short summary, we are going to show that an instance of a

reachability problem in a timed automaton can be reduced to a reachability problem

in a bounded two-counter automaton and vice versa. Figure 3.1 shows in more detail

the precise relationships that we are going to establish. The arrows should be read as

“reduces to”. Thus, we are going to show that any reachability problem in a k-clock

timed automaton reduces to a reachability problem in a bounded 2k + 2-counter

automaton, etc. A particularly special case that we are going to consider in the

second part of this chapter are two-clock timed automata. We are going to show that

reachability problems in this class are inter-reducible with reachability problems in

bounded one-counter automata. This chapter requires the reader to have some level

of familiarity with the region abstraction technique for timed automata, see e.g. [3]

for an introduction. The general style of this chapter is a bit sketchy, the first part

more, the second part less. We are going to put more emphasis on the presentation

of the main ideas underlying the reductions than on the presentation of a bulk of

otherwise unavoidable technical details. Nevertheless, we will get technical at the

critical points. Knowledge of the region abstraction technique will allow the reader

to develop further technical details if desired.
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k-clock
timed automata

bounded (2k + 2)-
counter automata

bounded two-
counter automata

three-clock
timed automata

Figure 3.1: Polynomial-time inter-reducibility between reachability problems in

classes of timed and counter automata, where k > 2.

For technical convenience, in this chapter we are going to use a slightly modified

version of bounded k-counter automata, which is equivalent with respect to reacha-

bility problems to bounded k-counter automata as defined in Definition 7. First, we

allow for additional labelling of edges with counteri ∼ n,∼ ∈ {≤, <, =, >,≥} with

the obvious semantics, where i ∈ [k], n ∈ N and . For example, an edge labeled with

counteri < n can only be taken if the counter value is strictly less than n ∈ N. Let

~b = (b1, . . . , bk) be the vector of bounds of a k-counter automaton, an edge labeled

with counteri < n can be simulated by two consecutive transitions, where the first

adds bi − n + 1 to the counter and the second subtracts bi − n + 1. Moreover, in the

second part of this chapter we are going to employ bounded one-counter automata

whose counter updates and counter values are from Z ∪ 0.5Z and are bounded by

an upper and a lower bound from Z ∪ 0.5Z. It is easy to see that an instance of a

reachability problem in such a bounded one-counter automaton can be reduced to

standard one-counter automata by multiplying all numbers with two and adjusting

the bounds accordingly.

3.1 From Bounded Counter Automata to Timed

Automata and Back

We are now going to prove the reductions illustrated in Figure 3.1. All reductions and

constructions in this section can be computed in polynomial time, and for readability
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we do not explicitly state this fact in the lemmas given in this section unless necessary.

Polynomial-time computability is going to allow us to transfer complexity results

regarding reachability problems between the classes of automata we consider in this

section. We begin at the top of the figure and show that reachability in bounded k-

counter automata, k > 2, reduces to reachability in bounded two-counter automata.

Let A = (Q, Λ, q0, F, ∆,~b, λ, ξ) be a fixed bounded k-counter automaton for some

k ≥ 2. Our first result is that without loss of generality we can assume uniform

bounds on the counters of A.

Lemma 3.1.1 Let A be a bounded k-counter automaton, let the bounds of A be ~b =

(b1, . . . , bn) and let b̂ ≥ max{b1, . . . , bn}. There exists a bounded k-counter automaton

A′ such that the bounds of A′ are ~b′ = (b̂, . . . , b̂) and for all (q, ~n), (q′, ~n′) ∈ C(A),

(q, ~n) →∗
A (q′, ~n′) if, and only if, (q, ~n) →∗

A′ (q′, ~n′).

Proof. We sketch how to obtain the desired automaton A′ def
= (Q′, Λ, q0, F, ∆′,~b′, λ, ξ′).

For any edge (q, q′) ∈ ∆ such that ξ(q, q′) = addi(z), z ∈ Z, A′ consists of an additional

fresh control location (q, q′), and in order to obtain ∆′ we remove any such transition

(q, q′) from ∆ and add (q, (q, q′)) and ((q, q′), q′) to ∆, i.e., we split the edge (q, q′) from

A. The labelling function ξ′ is obtained by extending ξ such that ξ′(q, (q, q′))
def
= add(z)

and ξ′((q, q′), q′)
def
= counteri ≤ bi. ¤

We now show how we can reduce an instance of a reachability problem in a

bounded k-counter automaton A, k > 2, to a reachability problem in a bounded

two-counter automaton A′.

Lemma 3.1.2 Let A be a bounded k-counter automaton with k > 2. There exists a

bounded two-counter automaton A′ such that for all (q, ~n), (q′, ~n′) ∈ C(A) there exist

~m, ~m′ ∈ N2 such that (q, ~n) →∗
A (q′, ~n′) if, and only if, (q, ~m) →∗

A′ (q′, ~m′).

Proof. By the previous lemma we may assume with no loss of generality that A has

a uniform bound b = exp(g)− 1 for some g ∈ N, hence r
def
= g− 1 bits are sufficient to

represent a counter value. The idea behind our reduction is to simulate the counters
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three to k of A in the upper bits of the second counter of A′, and to use the upper

bits of the first counter of A′ as temporary storage.

The control locations of A′ contain those of A as a subset, however the transitions

of A are going to be replaced with gadgets in A′. We set the bound of the counters

of A′ to exp(r(k − 1) + 1)− 1. In order to make our intuition about the relationship

between configurations of A and A′ formal, we define a mapping h as follows:

h : C(A) → C(A′) = (q, (n1, . . . , nk)) 7→



q,



n1,
∑

i∈[2,k]

2(i−2)rni







 .

Our aim is to construct A′ such that (q, ~n) →∗
A (q′, ~n′) if, and only if, h(q, ~n) →∗

A′

h(q′, ~n′). To this end, any transition (q, q′) of A that adds a positive integer to the first

counter, i.e., is of the form add1(n), n ∈ [0, b], gets replaced in A′ by two consecutive

transitions that first add n to the first counter of A′ and then check that the value of

this counter is less or equal to b. Any transition of A adding a negative number to

the first counter is duplicated in A′. Simulating the addition of integers to a counter

different from the first counter requires some more efforts. Informally speaking, we

have to make sure that we do not under- and overflow. Formally, any transition

(q, q′) labeled with addi(z), i ≥ 2, z ∈ Z, in A gets replaced in A′ with a gadget that

performs the following sequence of actions on the first and second counter of A′ in

this order:

(i) move the bits (i − 1)r + 1 up to (k − 1)r from the second to the first counter;

(ii) add exp((i − 2)r)z to the second counter;

(iii) test that the value of the second counter is less than exp((i − 1)r) + 1;

(iv) move the bits (i − 1)r up to (k − 1)r from the first to the second counter; and

(v) switch to control location q′.

Provided that all operations used in the gadget can be implemented, it is not difficult

to verify that (q, ~n) →A (q′, ~n′) if, and only if, there is a path in T (A′) traversing
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j) add2(−2i) add1(2

i)

counter2 < 2i

Figure 3.2: Gadget Amov(i, j) used in the proof of Lemma 3.1.2 in order to move the

bits from i up to j of the second to the first counter.

locations of the gadget starting in h(q, ~n) and ending in h(q′, ~n′). It thus remains to

discuss how the operations used in the gadget can be implemented.

Regarding (i), a gadget Amov((i − 1)r, (k − 1)r) as sketched in Figure 3.2 can be

used. The gadget non-deterministically subtracts relevant powers of two from the

second counter and immediately adds them to the first counter. A test that the

counter is less than exp((i − 1)r) at the end ensures that all bits have been moved.

The same gadget can be modified to move the same bits back from the first to the

second counter. ¤

We now move one step forward in Figure 3.1 and show that reachability in bounded

two-counter automata can be reduced to reachability in three-clock timed automata.

Given a bounded two-counter automaton A, the idea is to use the clocks x, y, z of

a corresponding three-clock timed automaton A′ in order to encode the value of the

counters. By Lemma 3.1.1, we may assume that A has a uniform bound b. Our

encoding is as follows: for any clock valuation ϑ, whenever ϑ(x) = b the value of the

first counter of A is encoded in ϑ(x)−ϑ(y) and ϑ(x)−ϑ(z) encodes the second counter

of A. A similar encoding has also been used in [2] in order to show undecidability of

reachability in parametric three-clock timed automata.

Lemma 3.1.3 Let A be a bounded two-counter automaton and (q, (n1, n2)), (q
′, (n′

1, n
′
2)) ∈

C(A). There exists a three-clock timed automaton A′ and ϑ, ϑ′ such that (q, (n1, n2)) →
∗
A

(q′, (n′
1, n

′
2)) if, and only if, (q, ϑ) →∗

A′ (q′, ϑ′).
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x := 0
x = b

y := 0
y = b

z := 0
z = b

y := 0
y = n

z := 0
z = b

z := 0
z = b

y := 0
y = n

y := 0
y = b

y := 0
y = n

x = b

Figure 3.3: Gadget Ainc,1 used to simulate incrementing the first counter by n in the

proof of Lemma 3.1.3.

Proof. Without loss of generality, by Lemma 3.1.1 we can assume that A has a

uniform bound b. The clock valuations ϑ, ϑ′ required in the lemma are defined as

ϑ(x) = ϑ′(x)
def
= b, ϑ(y)

def
= b − n1, ϑ(z)

def
= b − n2, ϑ

′(y)
def
= b − n′

1 and ϑ′(z)
def
= b − n′

2.

We are now going to sketch how A′ can be obtained from A. The timed automaton

A′ contains all control locations of A. However, the transitions from A are going to

be replaced by gadgets that manipulate the clocks in a way that simulates the action

of the replaced transition. As an invariant, we are going to ensure that at any time

A′ reaches a control location that exists in A, the value of the clock x is b. Suppose

(q, q′) ∈ ∆ is a transition in A such that ξ(q, q′) = add1(n) for some n ∈ N. In A′, we

are going to replace this transition by the gadget shown in Figure 3.3. In this figure,

transitions are labeled with guards, i.e. with clock constraints such as x = b and with

clocks to be reset at a transition, e.g., x := 0. Since we want to simulate that the

first counter of A increases, we need to increase the difference between the value of

the clock x and the value of the clock y. To this end, Ainc,1 first resets the clock

x. It then non-deterministically guesses the order of the simulated counter values:

it branches upwards if the first counter is less or equal to the second counter and

downwards otherwise. We are only going to discuss the first case here. Ainc,1 waits

until clock y has value b. It then aims at waiting for n time units. However, clock

z could reach value b in the meantime. Thus, again, a non-deterministic choice is

performed to handle the two cases. If z reaches b before y reaches n, the downward
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branch can be taken in Ainc,1, which first resets z as it reaches clock value b and

then y when it reaches clock value n. The converse case can be shown analogously.

Finally, Ainc,1 waits until clock x reaches clock value b in order to establish our agreed

invariant when it reaches
⊙

, which is a control location present in A.

A similar gadget can be constructed for the simulation of incrementing the second

counter. Decrementing the counters can also be simulated in a similar fashion. For

example, if we want to simulate decrementing the first counter by n, instead of waiting

for y to reach clock value b, we wait for y to reach clock value b− n . This concludes

our proof sketch. ¤

The only reduction from Figure 3.1 that remains to be shown is the reduction

from reachability in k-clock timed automata to reachability in bounded (2k + 2)-

counter automata. Let A = (Q,X, q0, F, ∆, ξ) be a timed automaton such that X =

{x1, . . . , xk}. Recall that a configuration of a timed automaton is a tuple consisting

of a control state and clock valuation. In order to deal with the a priori infinite

state space of a timed automaton, the region abstraction as a reachability preserving

equivalence relation on the set of configurations of a timed automaton is defined in

[1], which makes two configurations equivalent if

(a) their control location are the same;

(b) the integral part of the value of each clock with a value below the maximum

constant appearing in A is the same;

(c) the relative order of the fractional parts of the value of the clocks is the same;

and

(d) the clocks with fractional part 0 are the same.

We do not give further details of the region abstraction here and refer to [1, 3] for

further information. Knowledge of this abstraction will however be helpful in under-

standing the reduction provided below as it is heavily inspired by it.

Given a k-clock timed automaton A, we are now going to sketch how to construct

a bounded (2k + 2)-counter automaton A′ such that any reachability problem for
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Figure 3.4: Encoding of the regions of a k-clock timed automaton into 2k+2 counters.

A translates into an instance of a reachability problem in A′. We aim for encoding

(a)-(d) into configurations of A′. Regarding (a), clearly the control locations of A

can be included into A′. However, any of (b)-(d) allows for an exponential number

of possibilities in |A| and is therefore unsuitable to be encoded into control locations

of A′. Instead, we use the 2k + 2 counters for their encoding. Let m ∈ N be

chosen such that m bits are sufficient to represent one plus the maximum integer

constant appearing in A. A′ has bounded counters f1, . . . , fk+1, i1, . . . , ik and t,

where the maximum value for the counters f1, . . . , fk+1 and t is exp(k + 1) − 1 and

exp(m + 1) − 1 for the counters i1, . . . , ik. The bit representation of the counters is

illustrated in Figure 3.4, where the least significant bit of each counter is at the bottom

and the most significant bit on top. The counter t is going to serve as temporary

storage space. In order to represent a configuration (q, ϑ) of A, f1, . . . , fk+1 will be

used to encode the order of the clocks with respect to their fractional parts induced

by ϑ. The counter f1 additionally encodes those clocks that have fractional part 0.

Finally, the counters i1, . . . , ik will be used to store the integral part of the clocks

induced by ϑ. We illustrate the encoding with the help of an example. Consider a

clock valuation ϑ with ϑ(x1) = 4.1, ϑ(x2) = 2.0, ϑ(x3) = 0.8, ϑ(xk−1) = 0.0 and

ϑ(xk) = 3.8. Let l < l′ ∈ [k], whenever the j-th bit of the counter fl is set and the

j′-th bit of the counter fl′ is set, this is supposed to indicate that clock j has a value
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whose fractional part is strictly smaller than the fractional part of the value of clock

j′. Combining our example with Figure 3.4, we see that the second bit of f1 is set and

the first bit of f2, i.e., the fractional part of clock x2 is smaller than the fractional

part of clock x1 as expected. In addition, f1 indicates which clocks have fractional

part 0, which is why the second and the (k − 1)-th bit of f1 are set. Moreover, clock

x3 and xk “reside” on the same counter fk+1 as their fractional part is equivalent in

our example. The counters i1, . . . , ik are used to store the integral part of the clocks

up to exp(m + 1) − 1. In our example, this means that the value of i1 is 4, the value

of i2 is 2, etc. Elapsing of time can now be simulated as follows: first, the value of

the counter fk+1 is moved to the counter t and the value of fk+1 is set to zero. Then,

the value of the counter fk is moved to the counter fk+1 until eventually we move the

value of f1 to f2. We can then copy the value of t to f1. All clocks that “resided” in

fk+1 have now a fractional part zero and their integral part needs to be incremented

by one. This can be simulated by incrementing the respective counter ij, provided

that it has not yet reached its maximum value. If the maximum value has already

been reached, no action is performed. We defer the technical details to the next

paragraph. In order to simulate A, any control location of A is present in A′ and has

a loop which elapses time as described above. It remains to describe how to simulate

a transition between two control locations of A. To this end, checking the truth-value

of the guard of the transition against the currently abstracted clock valuation and

resetting of clocks needs to be simulated. Again, we illustrate the reduction with the

help of an example. Suppose the guard is (x1 < 6 ∧ x2 = 4, {x1}). The constraint

x1 < 6 can be checked in A′ with an edge that is labeled with counteri1 < 6, checking

x2 = 4 can also be simulated with an edge counteri2 = 4, but we additionally need

to check that the second bit of f1 is set. Simulating a reset of x1 is also relatively

straight-forward: we non-deterministically choose the fractional class j of x1, i.e., the

counter fj whose first bit is set. We then set this bit to zero, i.e., remove 20 from fj,

add 20 to the counter f1 and set i1 to zero. The latter can be implemented with the

help of a loop that subtracts 1 from i1 until a zero-test on i1 is successful.

Let us now briefly discuss some of the technical details left out in the previous

51



paragraph. In order to simulate elapsing of time, our reduction requires the possibility

to move the contents between the counters of A′. This task can easily be realised by

a slight adoption of the gadget presented in Figure 3.2. Testing whether the a bit of

a counter fl is set can also be realised in a similar fashion. Using a gadget similar to

the one in Figure 3.2, we first copy the value of the counter fl to the counter t. Next,

we use the gadget from Figure 2.1 in Chapter 2 on counter t in order to check if the

bit is set.

In summary, in order to check (q, ϑ) →∗
A (q′, ϑ′), we construct in polynomial

time A′, compute counter values ~n, ~n′ ∈ N2k+2 that represent the abstraction of

the clock valuations ϑ, ϑ′ and check (q, ~n) →∗
A′ (q′, ~n′). The converse direction follows

straight-forwardly by defining a bijection between configurations (q, ~n) and the region

abstraction of A, we omit further details. We have thus proven the following lemma.

Lemma 3.1.4 Let A be a k-clock timed automaton and (q, ϑ), (q′, ϑ′) ∈ C(A). There

exists a bounded (2k+2)-counter automaton A′ and ~n, ~n′ ∈ N2k+2 such that (q, ϑ) →∗
A′

(q′, ϑ′) if, and only if, (q, ~n) →∗
A (q′, ~n′).

The following theorem combines Lemmas 3.1.2, 3.1.3 and 3.1.4 and summarises

all results obtained in this section.

Theorem 3.1.1 Let k > 2. The following problems are polynomial-time reducible:

• reachability in k-clock timed automata to reachability in bounded (2k+2)-counter

automata;

• reachability in bounded k-counter automata to reachability in bounded two-counter

automata; and

• reachability in bounded two-counter automata to reachability in three-clock timed

automata.

As a byproduct, we obtain the complexity of reachability in bounded k-counter au-

tomata for k ≥ 2.

Corollary 3.1.1 Reachability in bounded k-counter automata is PSPACE-complete

for k ≥ 2.
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3.2 Two-Clock Timed Automata and Bounded One-

Counter Automata

In the previous section, we dealt with timed automata with at least three clocks and

bounded counter automata with at least two counters. In this section, we are going

to consider the special case of two-clock timed automata and show that reachability

for these automata is polynomial-time inter-reducible with reachability in bounded

one-counter automata. This section is slightly more technical than the previous one

since the reduction from reachability in two-clock timed automata to bounded one-

counter automata requires some efforts to make sure that all constructions can be

performed in polynomial time. Nevertheless, we will not sacrifice an understanding

of the main ideas for providing all technical details.

The reduction from reachability in bounded one-counter automata to reachability

in two-clock timed automata is a rather trivial adoption of the two-counter case

presented in the previous section. Recall that in the reduction in Lemma 3.1.3 we

encode the values of the counters into three clocks, the first counter is encoded as

the difference between the clocks x and y, and the second counter as the difference

between the clocks x and z. In the case of only one counter, two clocks are sufficient

to store the value of the counter as the difference between the two clocks x and y.

The rest follows from a straight-forward adaption of Lemma 3.1.3.

Lemma 3.2.1 Reachability in bounded one-counter automata is polynomial-time re-

ducible to reachability in two-clock timed automata.

In the remainder of this section, we are thus going to concentrate on the reduction

in the other direction. As a first step, let us provide a gadget that we will use in our

reduction and that allows for adding numbers in an interval to the counter.

Lemma 3.2.2 Let a < b ∈ N. There exists a one-counter automaton A with control

locations q, q′ such that for all n, n′ ∈ N, (q, n) →∗
A (q′, n′) if, and only if, n′−n ∈ [a, b].
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Figure 3.5: The one-counter automaton Ai used for adding a number in the interval

[2i − 1] to the counter.

Proof. We first consider the case a = 0 from which we are then going to derive the

general case. For any m ∈ N, let k(m)
def
= max{i : m ≥ (2i − 1)}. We define a

sequence m1 ≥ m2 ≥ . . . as follows:

m1
def
= b

mi+1
def
= mi − (2k(mi) − 1) for i > 0.

Let (ki)i>0 be the sequence of the k(mi), we have b =
∑

i>0(2
ki − 1). Since mi+1 ≤

mi/2 for all i > 0, we have kj+1 = 0 for some j ≤ lg b and hence b =
∑

i∈[j](2
ki − 1).

The one-counter automaton A consists of gadgets Aki
, i ∈ [j] as shown in Figure

3.2.2 such that Aki
connects to Aki+1

for i ∈ [j − 1]. For each i ∈ N, on a run from

© to
⊙

, Ai can non-deterministically add a number from the interval [0, 2i − 1] to

the counter where we assume that A0 does not affect the counter at all. Let q be

the initial location of Ak1 and q′ the final location of A′
kj

, it is easily verified that

(q, n) →∗
A (q′, n′) if, and only if, n′ − n ∈ [0, b].

In the general case where a and b take arbitrary values from N, we construct a

one-counter automaton A as above that allows for representing any number in the

interval [0, b − a] and add a new initial location that has a transition to the initial

control location of A that adds a to the counter. ¤

Let A = (Q,X, q0, F, ∆, ξ) be a fixed two-clock timed automaton such that

X = {x, y}. In the following, we will show how to construct in polynomial time

a bounded one-counter automaton A′ = (Q, Λ, q0, F, ∆,~b, λ, ξ) corresponding to A.

Here, we are going to use the modified bounded one-counter automaton described in

the introduction to this chapter which allows for counter values and bounds from the

set Z ∪ 0.5Z.

54



The set of control locations Q′ of A′ is going to contain the control locations of A

paired with abstractions of clock valuations. Thus, let us first define the abstractions

that we are going to use. Let Cx = {x1, . . . , xa} be the ordered set of x-constants

in A, i.e., xi < xi+1 for i ∈ [a − 1], and let Cy = {y1, . . . , yb} the ordered set of

y-constants, where x1 = y1 = 0. We define the augmented sets C∞
x and C∞

y as

C∞
x

def
= Cx ∪ {∞} respectively C∞

y

def
= Cy ∪ {∞}, where xa+1 and yb+1 identify ∞ in

C∞
x and C∞

y , respectively. The set of regions R of A, is defined as

R
def
={(xi, yj, xi+bx

, yj+by
) : xi ∈ Cx, yj ∈ Cy, bx, by ∈ {0, 1}} ⊆ Cx × Cy × C∞

x × C∞
y .

Note that |R| = O(|A|2) and that R is computable in polynomial time. Subsequently,

we will write r to identify a region from R. The abstraction of clock valuations

provided by R can be obtained as follows. With each region r ∈ R, we associate a

set of clock valuations ϑ(r), which is defined as

ϑ(xi, yj, xi, yj)
def
={ϑ : ϑ(x) = xi, ϑ(y) = yj}

ϑ(xi, yj, xi+1, yj)
def
={ϑ : xi < ϑ(x) < xi+1, ϑ(y) = yj}

ϑ(xi, yj, xi, yj+1)
def
={ϑ : ϑ(x) = xi, yj < ϑ(y) < yj+1}

ϑ(xi, yj, xi+1, yj+1)
def
={ϑ : xi < ϑ(x) < xi+1, yj < ϑ(y) < yj+1}.

We observe that the set of regions R partitions the set of all clock valuations. More-

over, any two clock valuations of a region r cannot be distinguished by A, i.e., for

any two ϑ, ϑ′ ∈ ϑ(r) and any clock constraint φ occurring in labels of the transitions

of A, we have ϑ |= φ if, and only if, ϑ′ |= φ.

Figure 3.6 presents an example of the regions of a two-clock timed automaton A

with Cx = {0, 1, 5} and Cy = {0, 1, 3}. The stroked lines in the first quadrant indicate

the regions of A, e.g., (1, 1, 5, 3) and (5, 3,∞,∞) are regions of A.

A further abstraction that we are going to use builds upon the set of clock differ-

ences D of A, which is defined as D
def
= {cx − cy : cx ∈ Cx, cy ∈ Cy}. We write D as

the ordered set D = {d1, . . . , dc}. Our abstraction is the set of clock difference zones

Z of A, which is a set of symbolic intervals on Z defined as

Z
def
={[d, d] : d ∈ D} ∪ {(di, di+1) : di ∈ D, i ∈ [c − 1]} ∪ {[−∞, d1), (dc,∞]}.
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Figure 3.6: Example of the regions and the clock difference zones of a two-clock timed

automaton with Cx = {0, 1, 5} and Cy = {0, 1, 3}.

Here, we also have |Z| = O(|A|2). We will subsequently write z to identify a clock

difference zone from Z. With each z, we associate a set of clock valuations ϑ(z),

which gives us an abstraction:

ϑ(z)
def
={ϑ : ϑ(x) − ϑ(y) ∈ z}.

The set of clock difference zones Z also partitions the set of all clock valuations. Figure

3.6 illustrates the partitioning of the clock valuations by clock difference regions where

each dashed line and the space between them in the first quadrant is a partition.

We can now define a subset of the control locations of A′. Our overall goal is to

represent the set of configurations of A as a finite quotient encoded as configurations

of A′ and then discretely simulate transitions in T (A) as transitions in T (A′). In

order to obtain the control locations Q′ of A′, we pair each q ∈ Q with a region and

a clock difference zone:

Q × {(r, z) ∈ R × Z : ϑ(r) ∩ ϑ(z) 6= ∅} ⊆ Q′.

Each tuple (q, (r, z)) represents a set {(q, ϑ) : ϑ ∈ ϑ(r)∩ϑ(z)} of configurations of A,

and we can associate with each configuration (q, ϑ) a control location (q, ϑ)† of q′ as

follows:

(q, ϑ)†
def
=(q, (r, z)), where r, z are uniquely chosen such that ϑ ∈ ϑ(r) ∩ ϑ(z).
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Given r ∈ R and z ∈ Z such that ϑ(r) ∩ ϑ(z) 6= ∅, in order to discretely simulate

time delay transitions of A in T (A), we now define the successor succ(r, z) of r with

respect to z. Informally speaking, elapsing of time can be simulated by moving from

region to region along the dashed lines in Figure 3.6. Let us first consider the case

z = [d, d] and suppose in the following that i < a and j < b, i.e., xi+1 6= ∞ and

yj+1 6= ∞:

• case r = (xi, yj, x
′
i, y

′
j), and x′

i = xi or y′
j = yj: succ(r, z)

def
= (xi, yj, xi+1, yj+1)

• case r = (xi, yj, xi+1, yj+1), xi+1 − yj+1 = d: succ(r, z)
def
= (xi+1, yj+1, xi+1, yj+1)

• case r = (xi, yj, xi+1, yj+1), xi+1 − yj+1 < d: succ(r, z)
def
= (xi+1, yj, xi+1, yj+1)

• case r = (xi, yj, xi+1, yj+1), xi+1 − yj+1 > d: succ(r, z)
def
= (xi, yj+1, xi+1, yj+1).

The definition of succ can straight-forwardly be extended for the cases in which

xi+1 = ∞ or yj+1 = ∞. Now for the remaining case z = (dk, dk+1), we only sketch

the definition of succ(r, z). Again, suppose in the following that i < a and j < b:

• case r = (xi, yj, xi+1, yj+1), dk+1 ≤ xi+1 − yj+1: succ(r, z)
def
= (xi, yj+1, xi+1, yj+1)

• case r = (xi, yj, xi+1, yj+1), dk ≥ xi+1 − yj+1: succ(r, z)
def
= (xi+1, yj, xi+1, yj+1)

The remaining cases are defined analogously and it is not difficult to check that

succ(r, z) can be computed in polynomial time. In order to simulate time delay steps,

A′ contains transitions from each (q, (r, z)) to (q, (succ(r, z), z)) and to itself, which

perform no action on the counter. Note that we can only simulate delay steps between

regions but not within regions. Elapse of time inside regions only needs to be consid-

ered when resetting clocks and is going to be handled there. In order to handle clock

resets, we are going to define a further abstraction that establishes a correspondence

between clock valuations and counter values of A′. For our construction, we use the

modification discussed in the introduction to this chapter and allow the counter to

take values from a bounded interval in Z ∪ 0.5Z. More precisely, the counter of A′ is
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bounded to take values from the set V = {d1 − 0.5, d1, . . . , dk, dk + 0.5}. We use the

counter to partition the set of clock valuations. For n ∈ V , we define

ϑ(n)
def
=







{ϑ : ϑ(x) − ϑ(y) = n} if n ∈ V ∩ Z

{ϑ : ϑ(x) − ϑ(y) ∈ (n − 0.5, n + 0.5)} if n ∈ V \ (Z ∪ {d1 − 0.5, dk + 0.5})

{ϑ : ϑ(x) − ϑ(y) < d1} if n = d1 − 0.5

{ϑ : ϑ(x) − ϑ(y) > dk} if n = dk + 0.5.

We will use this definition to map configurations of A to configurations of A′. For

any clock valuation ϑ, let ϑ+ denote the unique n ∈ V such that ϑ ∈ ϑ(n). We define:

(q, ϑ)+ def
=((q, ϑ)†, ϑ+).

The partitioning of the clock valuations through the counter value is less coarse than

through clock difference zones. It classifies clock valuations according to whether the

difference between the clocks is a fixed integer, lies strictly in a unit interval between

two consecutive fixed integers, or lies outside the “interesting” integers. While sim-

ulating A through A′, we are going to ensure as an invariant that if we are in a

configuration ((q, (r, z)), n) of A′ then n is compatible with z, i.e., n ∈ z. In fact, it is

easy to construct a gadget that, informally speaking, non-deterministically finds out

the clock difference zone the counter is currently in without destroying the counter

value.

Let us informally justify with the help of an example why we need another ab-

straction of clock valuations through the counter value. Earlier, we have seen that

regions and clock difference zones provide sufficient information to simulate the elapse

of time. However, when it comes to simulating clock resets, the information they offer

is insufficient. For example, consider Figure 3.6 and two clock valuations ϑ1, ϑ2 such

that r = (0, 1, 5, 1), z = (2, 4), n1 = 2.5, n2 = 3.5, ϑ1, ϑ2 ∈ ϑ(r) ∩ ϑ(z), ϑ1 ∈ ϑ(n1)

and ϑ2 ∈ ϑ(n2). If we let time elapse on ϑ1 while staying in r, we cannot reach

a point where, if we reset clock y, the value of the clock x is in the interval (4, 5).

Formally, for any t1 ∈ R such that ϑ1 + t1 ∈ ϑ(r), ((ϑ1 + t1)[y 7→ 0])(x) < 4. This

is however not the case for ϑ2: there exists t2 ∈ R such that ϑ2 + t2 ∈ ϑ(r) and

((ϑ2 + t2)[y 7→ 0])(x) ∈ (4, 5). Even though ϑ1 and ϑ2 reside in the same region and
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clock difference zone, the clock difference zone we can reach through an elapse of time

and by resetting the clock y is not fully determined only by the current region and

zone and needs to take the abstraction through the counter value into account. More-

over, as we are going to see below, the change on the counter we need to perform in

order to correctly simulate a clock reset only depends on the current region and zone,

which is the crucial fact that allows for computing the transitions of A′ in polynomial

time.

We now give the technical details on how to simulate discrete transitions and

clock resets. Throughout the remainder of this section, whenever we consider a con-

figuration ((q, (r, z)), n) of A′ that corresponds to some configuration (q, ϑ) of A, it

is helpful to think of ϑ to lie, if possible, at or, otherwise, infinitesimally close to

the bottom left corner of ϑ(r)∩ ϑ(n). In addition to the control locations mentioned

above, Q′ contains control locations that we are going to use to initiate the simulation

of clock resets:

Q × {(r, z) ∈ R × Z : ϑ(r) ∩ ϑ(z) 6= ∅} × {resetx, resety, resetx,y} ⊆ Q′.

If (q, q′) ∈ ∆, ξ(q, q′) = (φ,X ′) and ϑ |= ξ(q, q′) for all ϑ ∈ ϑ(r)∩ϑ(z) then, depending

on which clocks are required to be reset by X ′, ∆′ contains a transition from (q, (r, z))

to (q′, (r, z), resetx ), (q′, (r, z), resety) or (q′, (r, z), resetx ,y), which perform no action

on the counter. If no clock is required to be reset, i.e., X ′ = ∅, then (q, (r, z)) directly

connects to (q′, (r, z)). Note that checking whether ϑ |= φ for all ϑ ∈ ϑ(r) ∩ ϑ(z) can

be performed in polynomial time. The way we are going to simulating clock resets

through A′ requires a change of the counter value A′. Thus, before we proceed with

the simulation of clock resets, we are first going to relate configurations of A with

configurations of A′.

Let us first consider the simplest case in which we want to simulate a reset

of both clocks x, y. This can be done by setting the counter to 0, changing r to

(0, 0, 0, 0) and z to [0, 0]. Thus, any (q, (r, z), resetx,y) is connected to a gadget that

non-deterministically increases and decreases the counter until the counter value is

0 and then connects to (q, ((0, 0, 0, 0), [0, 0])). If we only want to reset one clock,
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Figure 3.7: Gadget used to simulate a reset of clock y for the case when r =

(xi, yj, xi+1, yj+1) and z = [d, d].

things become slightly more complicated. As stated above, the range of the updated

counter value then depends on the region and the clock difference zone. In the fol-

lowing, we are going to consider three representative cases that show how to simulate

clock resets. The remaining cases follow a similar pattern.

First, suppose r = (xi, yj, xi+1, yj+1), z = [d, d] and that we wish to reset the

clock y of a clock valuation ϑ ∈ ϑ(r) ∩ ϑ(z). Let us illustrate this case with the help

of Figure 3.6, for example with z = [0, 0] and r = (1, 1, 5, 3). In this example, if

we consider a clock valuation ϑ infinitesimally close to (1, 1), if we let time elapse

while staying inside r and then reset clock y, we obtain a new clock valuation ϑ′

such that ϑ′(x) ∈ (1, 3) and hence (q, ϑ′)+ = ((q, (r′, z′)), n′), where r′ = (1, 0, 5, 0),

z′ ∈ {(1, 2), [2, 2], (2, 3)} and n′ ∈ [1.5, 2.5] such that z′ and n′ are compatible. Thus

simulating a reset of clock y boils down to setting the counter to some value in the

interval [1.5, 2.5]. This observation generalises to the following procedure: we pre-

compute the left and right boundaries xl, xr on the x-axis of ϑ(r) ∩ ϑ(z), in our

example 1 and 3 respectively, and connect (q, (r, z), resety) to a gadget that non-

deterministically repeatedly adds 0.5 to the counter, then performs a check that the

counter value is strictly between xl and xr and finally non-deterministically performs

a transition to the correct (q, ((xi, 0, xi+1, 0), z′)) for the new clock difference zone

z′ = [dk, dk] or z′ = (dk, dk+1) (recall that we can verify that we are in the correct

clock difference zone.) The gadget that performs the counter update is illustrated

in Figure 3.7. If we were to reset clock x, we pre-compute the lower and the upper

boundaries yl and yu of ϑ(r)∩ ϑ(z). We then non-deterministically subtract 0.5 from

the counter, then ensure that the counter value is strictly between −yu and yl and

non-deterministically switch to the updated region and clock difference zone.

Next, we consider the case r = (xi, yj, xi+1, yj+1) and z = (dk, dk+1) where we
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wish to reset clock y. Again, we use Figure 3.6 to illustrate this case with the help of

the region r = (1, 1, 5, 3). Our first observation is that this case yields four different

sub-cases. First, if d = (−1, 0) then the boundaries of ϑ(r) ∩ ϑ(z) lie at the left and

the top boundary of r. Second, if d = (0, 2) then the boundaries of ϑ(r) ∩ ϑ(z) lie

at the bottom and the top boundary of r. Third, if d = (2, 4) then the boundaries

of ϑ(r) ∩ ϑ(z) lie at the bottom and the right boundary of r. The fourth sub-case

cannot be found in region (1, 1, 5, 3) but in region (0, 1, 1, 3), it is the case when the

boundaries of ϑ(r) ∩ ϑ(z) lie at the left and the right boundary of r. Subsequently,

we are going to consider the first and the second sub-case. The other sub-cases follow

along similar lines.

Suppose r = (xi, yj, xi+1, yj+1), z = (dk, dk+1) and the boundaries of the intersec-

tion of ϑ(z) and ϑ(r) lie at (xi, yj, xi, yj+1) and (xi, yj+1, xi+1, yj+1), e.g., z = (−1, 0)

in our example. Suppose n ∈ V is the current counter value, since ϑ(y) < yj+1

for any ϑ ∈ ϑ(r) ∩ ϑ(n), we have ϑ(x) < n + yi+1. This implies that when simu-

lating a clock reset, the updated counter must not exceed n + yi+1. On the other

hand, the updated counter value must be above xi. Thus, in this scenario, reset-

ting clock y boils down to connecting (q, (r, z), resety) to a gadget that adds yi+1 to

the counter, non-deterministically subtracts 0.5 from the counter, checks whether the

counter is strictly above xi and then non-deterministically chooses the new z′ that

is compatible with the new counter value and switches to (q, ((xi, 0, xi+1, 0), z′)). If

we were to reset clock x, we proceed analogously: we subtract xi from the counter,

non-deterministically subtract 0.5 and verify that the counter is strictly above −yj+1.

The last case we consider is r = (xi, yj, xi+1, yj+1), z = (dk, dk+1) and ϑ(z) in-

tersects with ϑ(r) at (xi, yj, xi+1, yj) and (xi, yj+1, xi+1, yj+1), e.g., z = (0, 2) in our

example. Let us first consider resetting clock y. Similar to the previous case, we

observe that for any n ∈ z and ϑ ∈ ϑ(r)∩ϑ(n), ϑ(x) < n+ yj+1. Moreover, the lower

bound for ϑ(x) is determined by yj: ϑ(x) > n + yj. Thus, simulating a clock reset on

clock y boils down to adding some number from the interval [yj + 0.5, yj−1 − 0.5] to

the counter, which can be realised with the gadget from Lemma 3.2.2. In summary,

in this case a clock reset on the clock y starting a control location (q, (r, z), resety)
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can be simulated by connecting this control location to a gadget that adds a number

from [yj + 0.5, yj−1 − 0.5] to the counter, then non-deterministically chooses the cor-

rect new clock difference zone z′ and performs a transition to (q, ((xi, 0, xi+1, 0), z′)).

If we were to reset clock x, we observe that the value of clock y always lies in the

interval (yi, yi+1). Thus, starting in (q, (r, z), resetx), the reset can be simulated by

connecting to a gadget that non-deterministically subtracts 0.5 from the counter and

then verifies that the counter is strictly between −yi+1 and −yi.

All remaining cases have a symmetric case that we discussed before. It is not

difficult to check that all constructions can be performed in polynomial time. The

following lemma provides a summary of the properties of the reduction we described

in this section and allows us to reduce reachability in two-clock timed automata to

reachability in bounded one-counter automata.

Lemma 3.2.3 Let A be a two-clock timed automaton, let A′ be its corresponding

bounded one-counter automaton and let C = ((q, (r, z)), n), C ′ = ((q′, (r′, z′)), n′) ∈

C(A′). There exist ϑ, ϑ′ such that (q, ϑ)+ = C, (q′, ϑ′)+ = C ′ and (q, ϑ) →∗
A (q′, ϑ′)

if, and only if, C →∗
A′ C ′.

In order to reduce an arbitrary instance (q, ϑ), (q′, ϑ′) of a reachability problem in a

two-clock timed automaton A to a reachability problem in a bounded one-counter

automaton, we construct A′ as described above, but use the sets Cx ∪ {ϑ(x), ϑ′(x)}

and Cy ∪ {ϑ(y), ϑ′(y)} in order to construct the regions and clock difference zones of

A′. Applying the previous lemma, we obtain the main result of this section.

Theorem 3.2.1 Reachability in two-clock timed automata polynomial-time inter-reducible

with reachability in bounded one-counter automata.

3.3 Discussion

This chapter discussed the relationship between reachability problems in timed au-

tomata and bounded one-counter automata. We have seen that for timed automata

with at least three clocks, reachability reduces to reachability in bounded two-counter
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automata. Conversely, any instance of reachability in bounded two-counter automata

reduces to reachability in three-clock timed automata. All reductions can be per-

formed in polynomial time. We have additionally considered the special case of reach-

ability in two-clock timed automata and shown that this problem is inter-reducible

with reachability in bounded one-counter automata. This dichotomy can even ex-

tend to one-clock timed automata: Laroussinie et al. show [72] that reachability

in this class is reducible in polynomial time to a reachability problem in a directed

graph. The latter can be viewed as an instance of a reachability problem in a counter

automaton with no counters.

It has been observed in the early days of timed automata that there is a rela-

tionship between timed and counter automata. The classical undecidability proof

of the universality problem for timed automata by Alur and Dill [1] proceeds via

a reduction from reachability in two-counter automata. Moreover, Alur, Henzinger

and Vardi use the same problem to show undecidability of reachability in parametric

timed-automata with at least three parameterised clocks [2]. However, to the best of

the author’s knowledge, no direct correspondence between reachability problems in

timed and counter automata has been known, and this gap has been closed in this

chapter.

While timed automata are a useful tool for modeling systems that require explicit

timing information, we believe that algorithmic properties of verification problems

can more easily be analysed for (bounded) counter automata since their definition is

much simpler than the definition of timed automata. In particular with respect to

settling the complexity of reachability in two-clock timed automata, the reduction

to reachability in bounded one-counter automata provided in Section 3.2 consider-

ably simplifies this problem. At this point, it is fair to mention that both problems

have independently been investigated [72] and [16] without observing that they are

essentially the same.

An interesting aspect for future work would be to find a similar correspondence for

reachability problems in parametric timed automata and parametric bounded counter

automata. By parametric bounded counter automata we mean bounded counter au-
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tomata whose counters can be updated by some parametric value and where the

vector of bounds can also contain parameters. In [2], it has been mentioned that the

reachability problem for a rather non-standard class of parametric one-counter au-

tomata reduces to reachability in parametric two-clock timed automata, but not vice

versa. Lifting the correspondence between two-clock timed automata and bounded

one-counter automata to the parametric case by adopting the construction presented

in Section 3.2 of this chapter should be possible if there is a way to construct a pa-

rameterised variant of the gadget constructed in Lemma 3.2.2. This correspondence

might be helpful in order to show that reachability in parametric two-clock timed

automata is decidable, which is an open problem. For the case of parametric timed

automata with more than two clocks, an adoption of the reduction from Section 3.1

should be a rather straight-forward task.
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Chapter 4

Reachability in Counter Automata

This chapter studies the computational complexity of reachability in classes of counter

automata. In particular, we consider reachability for one-counter automata, paramet-

ric counter automata and bounded one-counter automata.

The first section shows that reachability in one-counter automata is NP-complete,

where obtaining the upper bound is the more difficult part. Given a one-counter

automaton A and control locations q, q′, we are going to show that the reachability

set

{
(n, n′) ∈ N2 : (q, n) →∗

A (q′, n′)
}

is definable via a set RA(q, q′) of QFPA formulae, where each formula in RA(q, q′) is of

size polynomial in the size of A and can be guessed in non-deterministic polynomial

time, which yields membership of reachability in NP. The construction of RA(q, q′)

is quite involved. For that reason the section is broken into four parts.

The next section discusses reachability in parametric counter automata. Our

first result is that reachability in parametric counter automata is undecidable in the

presence of four counters even if we disallow zero tests. On the positive side, we sub-

sequently proceed by showing that reachability in parametric one-counter automata

is decidable and in fact NP-complete. This result heavily depends on the results and

techniques obtained in the first section and cannot be understood without having read

the first section. Similar to the first section, membership in NP is shown by showing
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that given a parametric one-counter automaton A with parameters y1, . . . , yk and

control locations q, q′, the reachability set

{

(n1, . . . , nk, n, n′) ∈ Nk+2 : (q, n) →∗
Aν (q′, n′) for a valuation ν such that ν(yi)

def
= ni

}

can be defined via a set RA(q, q′) of QFPAD formulae, where the size of each formula

in RA(q, q′) is polynomial in the size of A and can be guessed in non-deterministic

polynomial time.

The third section then considers reachability in bounded counter automata. In

the previous chapter, we have already shown that reachability in bounded counter

automata with at least two counters is PSPACE-complete. Consequently, this section

focuses on bounded one-counter automata. The precise computational complexity of

reachability in this class remains an open problem of this thesis. We are going to

discuss a very simple class of bounded one-counter automata for which we are unable

to determine the precise complexity of reachability and provide an approach that

might be helpful one day for settling the complexity of this problem.

We close this chapter with a discussion of the results obtained, how they fit into

the existing literature and have been used there, and discuss some directions for future

work.

4.1 One-Counter Automata

In this section we are going to show that reachability in one-counter automata is NP-

complete. As one-counter automata can be viewed as pushdown automata acting on a

singleton alphabet and reachability in pushdown automata is decidable, reachability

in one-counter automata is decidable.

For complexity considerations, it is essential that we assume numbers to be en-

coded in binary. Probably due to their close relationship to pushdown automata, re-

search has mainly focused on one-counter automata with numbers encoded in unary.

Reachability in this class of counter automata is NL-complete, see e.g. [71]. A paper

by Rosier and Yen [95] is one of the first papers to consider one-counter automata
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with numbers encoded in binary, this time from the perspective of vector addition

systems with states. Amongst other things, their paper is concerned with the bound-

edness problem for one-counter automata, which is the question to decide for a given

one-counter automaton A and a configuration (q, n) whether the reachability set

{(q′, n′) ∈ Q × N : (q, n) →∗
A (q′, n′)}

is infinite. The authors leave the precise computational complexity of this problem

open, but claim that it is NP-complete:

“We surmise, but are unable to show, that the aforementioned problem

is solvable in NP. [...] The best we can do, at this time, then, is to deduce

that the problem is doable in PSPACE.”

This section gives a positive answer to their claim. Our result that reachability in one-

counter automata is NP-complete yields, as a corollary, that deciding boundedness

for one-counter automata is NP-complete.

Lafourcade et al. show in [71], Lemma 42, that given a one-counter automaton A,

(q, n) and (q′, n′), if (q, n) →∗
A (q′, n′) then there exists a path ̺ : (q, n) →∗

A (q′, n′) in

T (A) such that no counter value along ̺ exceeds a value polynomial in m,n and n′,

where m is the maximum increment occurring in A. Since numbers are encoded in

binary, this implies that a path witnessing reachability has length at most exponential

in |A| and the binary representation of n and n′. The following example shows that

witnessing paths of exponential length can actually not be avoided. Let m,n ∈ N

and consider the following one-counter automaton A:

q • q′ • q′′
−2m zero −2n zero

+1 +1

Suppose we wish to decide (q, 0) →∗
A (q′′, 0), a path witnessing reachability has to

traverse the self-loop at q 2m times and the self-loop at q′ 2n times, which makes

the length of such a path exponential in |A|. In order to show that reachability in

67



one-counter automata is NP-complete, this rules out the most natural approach of

using a witnessing path as a certificate.

On a technical level, in order to show NP membership of reachability in one-counter

automata, it is more convenient for our purposes to work with weighted graphs instead

of one-counter automata. In order to decide reachability in one-counter automata,

we can restrict ourselves to zero-test-free one-counter automata since each transition

testing for zero only needs to be traversed at most once, and the order in which

those transitions are traversed can be guessed in NP. In the example above, deciding

(q, 0) →∗
A (q′′, 0) reduces to checking (q, 0) →∗

A (q′, 0) and (q′, 0) →∗
A (q′′, 0). Zero-

test-free one-counter automata can then be viewed as weighted graphs.

One of the main techniques to provide a polynomial-size certificate witnessing

reachability is to succinctly describe paths in weighted graphs as path flows. A path

flow assigns a natural number to each transition indicating how often a transition is

traversed on a path witnessing reachability. In the example above, viewing A as two

weighted graphs by deleting the two zero-labelled edges, a path flow asserts that the

self-loop at q is traversed 2m times, the self-loop at q′ 2n times and all other transi-

tions are traversed once. For one-counter automata whose control structure is more

complex, a path flow in its corresponding weighted graph alone is not sufficient to

prove reachability. In this section, we will carefully analyse paths and corresponding

path flows and provide sufficient and necessary conditions on path flows that prove

the existence of a path witnessing reachability in the original transition system of the

one-counter automaton under consideration. We are going to show that checking the

existence of path flows and all necessary conditions can be defined via sets of QFPA

formulae of polynomial size and can each formula can be guessed in NP. Since satis-

fiability in QFPA is NP-complete, this is eventually going to show that reachability

in one-counter automata is NP-complete.

The structure of this section is as follows. The first section establishes NP-hardness

of reachability in one-counter automata. Although this fact has already been shown

in [95], we show that reachability is already NP-hard for a one-counter automaton

with very little structure. Hardness is shown via a generalisation of the Subset-
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Sum problem. The second section then introduces weighted graphs and some related

concepts such as paths and weights of paths. We also show that some properties of

weighted graphs can be expressed in QFPA. The third section introduces path flows

as a way to succinctly represent paths in weighted graphs. We are also going to show

some technical lemmas about decomposition of path flows that we are going to use

in the remainder of this chapter. The fourth section then combines the concepts of

weighted graphs and path flows, applies them to one-counter automata and shows

that reachability relations can be defined via sets of polynomial-size QFPA formulae.

This result is then extended in order to show that checking for the existence of Büchi

paths and determining boundedness is also NP-complete.

As we have to make sure that all constructions can be performed in (non-deterministic)

polynomial time, this section is the lengthiest and most technical section of this the-

sis. Like in the previous chapter, for the sake of lucidity, when giving constructions in

this section we often do not explicitly state that they can be performed in polynomial

time.

4.1.1 The NP Lower Bound

In this section we are going to show that reachability for one-counter automata is NP-

hard. This result follows already as a corollary from similar results in the literature,

e.g. from [95, 72]. However, we would like to emphasize in this section that reachability

is NP-hard even for one-counter automata with an underlying control graph with very

little structure.

The basis for our proof of the lower bound is the well-known NP-complete Sub-

setSum problem, see e.g. [100], which is defined as follows:

SubsetSum

INPUT: A set S = {n1, . . . , nm} ⊆ N and a target t ∈ N.

QUESTION: Does there exist S ′ ⊆ S such that
∑

n∈S′ n = t?

For the NP-hardness of SubsetSum, binary encoding of numbers is essential. For

our purposes, we introduce a slight generalisation of the SubsetSum problem which
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S ′ P Pm · · · P2 P1 Z Dk . . . D2 D1

n′
1 1 0 · · · 0 1 0 digk(n1) · · · dig2(n1) dig1(n1)

p1 1 0 · · · 0 1 0 0 · · · 0 0

n′
2 1 0 · · · 1 0 0 digk(n2) · · · dig2(n2) dig1(n2)

p2 1 0 · · · 1 0 0 0 · · · 0 0
...

...
...

. . .
...

...
...

...
. . .

...
...

n′
m 1 1 · · · 0 0 0 digk(nm) · · · dig2(nm) dig1(nm)

pm 1 1 · · · 0 0 0 0 · · · 0 0

t′ m 1 · · · 1 1 0 digk(t) · · · dig2(t) dig1(t)

Table 4.1: The input to MultiSubsetSum obtained from an input to SubsetSum.

All numbers are encoded in base m + 1.

we call MultiSubsetSum.

MultiSubsetSum

INPUT: A set S = {n1, . . . , nm} ⊆ N and a target t ∈ N.

QUESTION: Does there exist f : S → N such that
∑

n∈S nf(n) = t?

MultiSubsetSum differs from SubsetSum in that an element of the set S can

contribute more than once to the final target value. However, one can construct

instances which prevent any element of S from being picked more than once, which

allows to show NP-hardness of MultiSubsetSum via a reduction from SubsetSum.

Proposition 4.1.1 MultiSubsetSum is NP-complete.

Proof. Membership in NP is trivial. Let S, t be an input to MultiSubsetSum. The

description of a witnessing function is of polynomial size in the size of S and t, since

f(n) ≤ t for each n ∈ S.

In order to show NP-hardness, we reduce from SubsetSum. Let S = {n1, . . . , nm}, t

be an input to SubsetSum. Without loss of generality, we may assume that ni < t for

all i ∈ [m]. From S, t, we construct an input S ′ = {n′
i, pi}i∈[m], t

′ to MultiSubsetSum

such that S ′, t′ has a solution if, and only if, S, t has a solution. The construction is
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given in Table 4.1. Apart from the last row, every row in the table is an n′
i respec-

tively pi, and starting from the second column, every column corresponds to one digit

of ni respectively pi. The last row is the target t′ that we construct. Every n′
i, pi and

t is encoded in base m + 1, and k − 1 is the power of the highest non-zero power of

m + 1 in the base m + 1 representation of t, i.e., t =
∑

i∈[k] di−1(m + 1)i−1 for some

d ∈ {0, . . . ,m}. Each digit of a constructed number is identified by the identifier

at the top row. For example, D1 is the digit of the lowest power of a constructed

number, so D1 of t′ is dig1(t). All n′
i correspond in any Dj to their ni counterpart,

and the pi are all zero there. Each n′
i has two more non-zero digits, Pi and P , which

are also the only non-zero digits of each pi. The Dj digits of t′ also correspond to

those of t, the digit P is m, Z is zero and all other digits are one. It can easily be

seen that S ′, t′ can be computed in polynomial time from S, t.

Let S ′′ ⊆ S be a solution to the instance of SubsetSum S, t. For each ni ∈ S ′′,

we set f(n′
i)

def
= 1 and f(pi)

def
= 0. For each ni /∈ S ′′, we set f(n′

i)
def
= 0 and f(pi)

def
= 1.

It can easily be checked that f is a solution to S ′, t′, since by assumption the digits

D1, . . . , Dk sum up correctly, f(n′
i) + f(pi) = 1 for all i ∈ [m], and hence the digits

Pj and P also sum up correctly to 1 respectively m.

Conversely, assume that f is a solution to S ′, t′. We show that f(n′
i) + f(pi) = 1

for all i ∈ [m]. It is clear that this implies that S ′′ def
= {ni : f(n′

i) = 1} is a solution to

S, t. First, we see that
∑

s∈S′ f(s) ≤ m, since otherwise we have a carry over at digit

P . Let r
def
= (m + 1)k and recall that n̄r denotes the residue class of n ∈ N modulo r,

we have
∑

s∈S′ f(s)s̄r < (m + 1)k+1, since

∑

s∈S′

f(s)s̄r ≤ m(m
∑

i∈[k]

(m + 1)i−1)

< (m + 1)(m
∑

i∈[k]

(m + 1)i−1)

= m
∑

i∈[k]

(m + 1)i

< (m + 1)k+1

This implies that every digit greater than k of
∑

s∈S′ f(s)s̄r is zero. Hence f(n′
1) +
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q

q1

q2

qi

qk

+n1

+n2
+ni

+nk

Figure 4.1: The OCA A constructed in the reduction from an input S =

{n1, . . . , nk}, t to MultiSubsetSum such that S, t has a solution if, and only if,

(q, t) is reachable from (q, 0).

f(p′1) ≥ 1, since the digit P1 of t′ is one. Moreover, since f(n′
1)+ f(p1) ≤ m, we must

have f(n′
1) + f(p1) = 1. Iterating this argument for the remaining digits Pi and n′

i

and pi, it follows that f(n′
i) + f(pi) = 1 for all i ∈ [m]. ¤

Proposition 4.1.2 Reachability in one-counter automata is NP-hard.

Proof. We reduce from MultiSubsetSum. Let S = {n1, . . . , nk}, t be an input to

MultiSubsetSum. Figure 4.1 shows the one-counter automaton A constructed from

S and t. For each ni ∈ S, A has a transition from q to qi and back that adds ni

to the counter. Suppose there is ̺ : (q, 0) →∗
A (q, t). Counting the number of times

a transition from q to qi occurs in ̺ gives rise to the required witnessing function f

that shows that S, t has a solution. Conversely, in the same way any such function

allows for constructing a path witnessing ̺ : (q, 0) →∗
A (q, t). ¤

The graph underlying the one-counter automaton from Figure 4.1 has a very

simple structure. In fact, if we would allow for multiple transitions between control

locations, this means that reachability is already NP-hard even for a one-counter

automaton consisting of only one control location. Note that by employing a similar

reduction from SubsetSum used in [72] to show NP-hardness of reachability in two-
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clock timed automata, reachability for one-counter automata is also NP-hard for

one-counter automata whose underlying graph is acyclic.

4.1.2 Weighted Graphs

In order to show an NP-upper bound of the reachability problem, we subsequently

rely on some basic concepts from graph theory which we are going to introduce below.

Let us start with giving a formal definition of weighted graphs.

Definition 10 A weighted graph is a tuple G = (V,E, µ), where V is a finite set of

vertices, E ⊆ V × V is a finite set of edges, and µ : E → Z is a weight function. ♦

Subsequently, we call weighted graphs just graphs. The size |G| of a graph G is

defined as

|G|
def
= |V | + |E| + max{lg |z| : µ(e) = z for some e ∈ E}.

We call G′ = (V ′, E ′, µ′) a subgraph of G if V ′ ⊆ V , E ′ ⊆ E and µ′(e′) = µ(e′) for

all e′ ∈ E ′. For a given graph G = (V,E, µ), any subset E ′ ⊆ E induces a subgraph

G/E ′ def
= (V ′, E ′, µ′), where

• V ′ def
= {v ∈ V : there is v′ ∈ V such that (v, v′) ∈ E or (v′, v) ∈ E}

• µ′(e)
def
= µ(e) for all e ∈ E ′

The skew transpose Gop of a graph G is the graph Gop def
= (V,Eop, µop), which is

obtained from flipping every edge and the sign of every edge of G. Formally,

• Eop def
= {(v, w) : (w, v) ∈ E}; and

• µop(v, w)
def
= −µop(w, v) for all (v, w) ∈ Eop.

Clearly, both a subgraph and the skew transpose of a graph can be computed in

polynomial time. For the remainder of this section, let us fix a weighted graph

G = (V,E, µ).
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Similar to transition systems, an s-t path π in G of length n is a function π :

[n + 1] → V or, alternatively, a non-empty sequence of vertices π = v1v2 . . . vn+1 such

that v1 = s, vn+1 = t and (vi, vi+1) ∈ E for all i ∈ [n]. We write |π| to denote the

length of π. For i ≤ j ∈ [|π|+1], π(i, j) denotes the path π(i, j)
def
= π(i)π(i+1) . . . π(j).

We say t is reachable from s and write s →∗
G t if there is an s-t path in G. Given an

s-u path π = v1 . . . vm and a u-t path π′ = v′
1 . . . v′

n, the s-t path π · π′ is defined as

π · π′ def
= v1 . . . vmv′

2 . . . v′
n.

We say that a graph is connected if for any v, v′ ∈ V , v′ is reachable from v via

some path. The set of edges traversed by a path π is defined to be

edges(π)
def
= {e ∈ E : there is i ∈ [|π|] such that (π(i), π(i + 1)) ∈ E}.

Given a path π = v1 . . . vn−1vn in a graph G, we denote by πop def
= vnvn−1 . . . v1 the

skew transpose of π, which is a path in Gop.

A path π is a simple path if any vertex of a graph occurs at most once along π.

If the first and the last vertex of a path ℓ is the same vertex v, we call it a v-cycle

or a v-loop. Note that in particular a zero-length path consisting of only one vertex

is a cycle. For any v-cycle π and n ∈ N, the v-cycle ℓn is defined by induction on n

as ℓ0 def
= v and ℓn+1 def

= ℓn · ℓ. If v is the only vertex occurring twice along a v-cycle ℓ,

we call ℓ a simple cycle. A graph G is a loop if it is connected and there is exactly

one simple v-cycle between any vertex v of G. We call G a simple s-t path if G is not

connected and a cycle when (t, s) is added to the set of edges.

One central property of a path π in a weighted graph is its weight. It is the sum

over all weights of the edges occurring along π. Formally, for |π| > 0

weight(G, π)
def
=

∑

i∈[|π|]

µ(π(i), π(i + 1)).

If |π| = 0 then weight(G, π)
def
= 0. The minimum accumulated weight of all prefixes

of a path π is called the drop of π, which is formally defined as

drop(G, π)
def
= min{weight(G, π(1, i)) : i ∈ [|π| + 1]}.

If G is clear from the context, we simply write weight(π) and drop(π) to denote the

weight respectively drop of π.
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The next lemma shows that both the weight and the drop of a path in a graph

can be expressed in terms of an open formula in QFPA, which are polynomial time

computable.

Lemma 4.1.1 Given a path π in a graph G, there exist QFPA formulae ϕw(G, π)(c, c′)

and ϕd(G, π)(d, d′) such that

• ϕw(G, π)[n/c, n′/c′] is satisfiable if, and only if, weight(π) = n′ − n, and

• ϕd(G, π)[n/c, n′/c′] is satisfiable if, and only if, drop(π) = n′ − n.

Moreover, |ϕw| = O(|π|) and |ϕw| = O(|π|2).

Proof. It is easily checked that the following two QFPA formulae have the desired

properties:

ϕw(G, π)(c, c′)
def
=

∑

i∈[|π|]

µ(π(i), π(i + 1)) = c′ − c

ϕd(G, π)(c, c′)
def
=

∨

i∈[|π|+1]

ϕw(G, π(1, i))(c, c′)∧

∧
∧

i∈[|π|+1]

(∃d, d′.ϕw(G, π(1, i))(d, d′) ∧ d′ − d ≥ c′ − c) .

¤

If weight(ℓ) > 0 for a given cycle ℓ then we call ℓ a positive cycle, and if weight(ℓ) <

0 then ℓ is called a negative cycle. Likewise, if weight(ℓ) ≥ 0 then ℓ is called a weakly

positive cycle, and if weight(ℓ) ≤ 0 then we call ℓ a weakly negative cycle.

In the remainder of this section, we establish some facts about the properties of

paths, their weight and drop that we are going to use in the remainder of this and the

next chapter. The following technical lemma contains a collection of statements about

the relationship between paths and their weight and drop. These statements will be

helpful when relating paths in weighted graphs to runs in one-counter automata.

Lemma 4.1.2 Given a graph G, paths π, π′, a weakly positive cycle ℓ and n ∈ N, the

following statements hold:
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(i) drop(π ·π′) ≥ −n if, and only if, drop(π) ≥ −n and weight(π)+drop(π′) ≥ −n;

(ii) drop(ℓ) ≥ −n if, and only if, drop(ℓk) ≥ −n for all k > 0; and

(iii) drop(πop) = drop(π) − weight(π).

Proof. (i) The statement follows from the following equalities:

drop(π · π′) ≥ −n

⇐⇒ min{weight(π · π′(1, i)) : i ∈ [|π · π′|]} ≥ −n

⇐⇒ min {weight(π(1, i)),weight(π) + weight(π′(1, j)) : i ∈ [|π| + 1], j ∈ [|π′| + 1]} ≥ −n

⇐⇒ min {drop(π),weight(π) + drop(π′)} ≥ −n

⇐⇒ drop(π) ≥ −n and weight(π) + drop(π′) ≥ −n.

(ii) We show the statement by induction on k. For the induction step, we have that

drop(ℓk+1) ≥ −n

⇐⇒ drop(ℓk · ℓ) ≥ −n

by (i)
⇐⇒ drop(ℓk) ≥ −n and weight(ℓk) + drop(ℓ) ≥ −n

⇐⇒ drop(ℓ) ≥ −n.

(iii) First, it can easily be seen that for all i ∈ [|π| + 1],

weight(π(1, i)) = weight(π) + weight(πop(1, |π| + 2 − i)).

Hence we conclude that

drop(π) = min{weight(π(1, i) : i ∈ [|π| + 1]}

= min{weight(π) + weight(πop(1, |π| + 2 − i)) : i ∈ [|π| + 1]}

= weight(π) + min{weight(πop(1, |π| + i)) : i ∈ [|πop| + 1]}

= weight(π) + drop(πop).

¤
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We devote the remainder of this section to some results on positive cycles in

graphs. Positive cycles can be used to construct paths whose weight exceeds any

natural number, which is a fact we are going to exploit when proving the NP upper

bound of reachability in one-counter automata. We first give some criteria that prove

the existence of positive cycles in a graph. Next, we consider how to algorithmically

determine if there is a positive cycle in a graph.

Given a vertex v, as seen in the introduction to this section, in the worst case a

positive v-cycle can be of exponential length. However, if we are only interested in

witnessing the existence of a positive cycle at v, it is sufficient to give a not-necessarily

positive cycle of linear length as a certificate.

Definition 11 Let ℓ be a v-cycle and n ∈ N. We call ℓ a positive v-cycle template

with respect to n if ℓ decomposes into ℓ = π1 ·π2 ·π3 such that π2 is a positive w-cycle,

drop(π1 · π2) ≥ −n and 0 ≤ |π1|, |π2|, |π3| ≤ |G|. ♦

We are now going to show that a positive cycle template proves the existence of a

positive cycle in a graph.

Lemma 4.1.3 Let v ∈ V and n ∈ N. There exists a positive v-cycle template ℓ with

respect to n if, and only if, there exists a positive v-cycle ℓ′ such that drop(ℓ′) ≥ −n.

Proof. (“⇒”) Since weight(π2) > 0 and drop(π1 · π2) ≥ −n we can always find k > 0

such that for ℓ′
def
= π1 · π2

k · π3 we have weight(ℓ′) > 0. Lemma 4.1.2(i) implies that

drop(ℓ′) ≥ −n.

(“⇐”) Let ℓ′ be a positive v-cycle of length m with drop(ℓ) ≥ −n. Without

loss of generality we may assume that ℓ′ does not contain any negative cycles. Let

i, j be chosen minimal such that π2 = ℓ(i, j) is a simple positive w-cycle for some

vertex w. Let π1 = ℓ(1, i) and π3 be obtained from ℓ(j,m+1) by removing all cycles.

We have that ℓ
def
= π1 · π2 · π3 is a v-cycle and the minimality of i guarantees that

drop(π1 · π2) ≥ drop(ℓ) ≥ −n. Moreover, by construction 0 ≤ |π1|, |π2|, |π3| ≤ |G|. ¤
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We next consider the problem of deciding whether or not a graph contains a cycle

with positive weight.

NoPositiveCycle

INPUT: A weighted graph G.

QUESTION: Are all cycles in G weakly negative?

A näıve approach to this problem would be to enumerate all simple cycles of G and

then to check for each of them whether or not they have positive weight. However,

such an algorithm would not run in polynomial time since there is potentially an

exponential number of simple cycles in a given graph. Instead, Algorithm 1, which is a

variant of the celebrated Bellman-Ford algorithm, see e.g. [36], avoids this exponential

blow-up by using a dynamic programming approach. Let n be the number of vertices

of G, for any vertex v of G, Algorithm 1 contains variables d0
v, . . . , d

n
v , which are all

assumed to be initialised with 0. Each di
v keeps the maximum weight of some path

of length at most i that ends in v. Since the longest simple path in G has length at

most n− 1, dn
v > dn−1

v for some vertex v indicates that there exists a positive cycle in

G. In this case, Algorithm 1 returns false, and true otherwise. Clearly, the running

time of the algorithm is polynomial in n.

Lemma 4.1.4 Given a graph G, Algorithm 1 decides NoPositiveCycle in time

O(|G|2).

We close this section by deriving from Algorithm 1 a sentence in QFPA that

decides NoPositiveCycle. To this end, we construct a formula ϕ(G) such that ϕ

is satisfiable if, and only if, G does not contain any positive cycle. The basic idea is

that ϕ(G) contains first-order variables di
v that represent the same di

v from Algorithm

1 and that we can unravel the for-loops from Algorithm 1. Formally, we first ensure

that all d0
v are initialised with 0:

ϕ0
def
=

∧

v∈V

d0
v = 0

Next, we encode the computation of the di
v in terms of the previously computed values

di−1
v for each i ∈ [n], where n = #V . What makes the formula below look slightly
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Algorithm 1 Variant of the Bellman-Ford algorithm that returns true if, and only

if, the graph G does not contain a positive cycle.

Input: G = (V,E, µ)

n = #V

for i = 1 to n do

for all v ∈ V do

di
v := max ({0} ∪ {di−1

u + µ(u, v) : (u, v) ∈ E})

end for

end for

if there exists v ∈ V such that dn
v > dn−1

v then

return false

else

return true

end if

more complicated is the encoding of the maximum function: we first check if the

edge we are currently considering results in a maximum value for di
v among all other

incoming edges. If this is the case, we check if it improves di−1
v and set di

v accordingly.

ϕi
def
=

∧

v∈V

∧

(u,v)∈E




∧

(w,v)∈E

di−1
w + µ(w, v) ≤ di−1

u + µ(u, v)



 →

→
((

di−1
u + µ(u, v) > di−1

v → di
v = di−1

u + µ(u, v)
)
∧

∧
(
di−1

u + µ(u, v) ≤ di−1
v → di

v = di−1
u

))

Finally, we need to assert that no dn
v improves dn−1

v :

ϕn
def
=

∧

v∈V

dn
v ≤ dn−1

v

We note that |ϕi| = O(|G|3) for each i ∈ [0, n − 1]. The QFPA formula ϕ(G) is now

obtained by taking the conjunction of ϕ0 up to ϕn.

Lemma 4.1.5 Given a graph G, there exists QFPA formula ϕ(G) such that ϕ(G) is

satisfiable if, and only if, G does not contain any positive cycles. Moreover, |ϕ| =

O(|G|4).
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Proof. Let each ϕi be defined as above, it is easily checked that

ϕ(G)
def
= ∃v∈V d0

v, . . . , d
n
v .

∧

i∈[0,n]

ϕi

is a QFPA formula with the desired properties. ¤

4.1.3 Path Flows

In the previous section, we have seen that positive cycle templates allow for providing

a polynomial-size certificate for paths of potentially exponential length. We are now

going to introduce the concept of path flows, which serve a similar purpose. Path flows

enable us to encode sets of paths in a graph in a succinct way. Let G = (V,E, µ) be

a fixed graph.

Definition 12 A flow is a function f : E → N. Given s, t ∈ V , we call f : E → N

an s-t path flow if there exists a corresponding path π starting in s and ending in t

such that for all e ∈ E,

f(e) = #{i ∈ N : e = (π(i), π(i + 1)), i ∈ [|π|]}.

♦

Given a path π, the corresponding path flow abstracts away the order in which edges

are traversed and only keeps information on how often each edge occurs along π. Since

numbers are encoded in binary, we can immediately see that the size to represent a

path flow corresponding to π grows logarithmically in |π|. As a notational convention,

we denote by fπ the path flow corresponding to a path π. For an edge e = (v, w) of

a graph G, we denote by fe the v-w path flow for which f(e)
def
= 1 and f(e′)

def
= 0 for

all e 6= e′.

The weight of a flow f is defined as

weight(G, f)
def
=

∑

e∈E

f(e)µ(e).

If G is clear from the context, we just write weight(f) to denote the weight of f . Note

that weight(G, fπ) = weight(π) for any path π.
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By F (f)
def
= {e : f(e) > 0} we denote the support of the flow f . A support can

be seen as a template of a path flow selecting the set of edges that a corresponding

path traverses. Most of the time, the support of a flow f is clear from the context

and for convenience we denote it by F . We call F ⊆ E an s-t support if the subgraph

G/(F ∪ {(t, s)}) is connected.

An alternative characterisation of path flows in terms of Eulerian path conditions

is provided by the following lemma. In the following, let in(v)
def
= {w : (w, v) ∈ E}

and out(v)
def
= {w : (v, w) ∈ E} denote the set of incoming respectively outgoing

vertices of v for any v ∈ V .

Lemma 4.1.6 A flow f is an s-t path flow, if and only if, f satisfies the following

conditions:

(i) (a) If s = t then

∑

w∈out(v)

f(v, w) =
∑

w∈in(v)

f(w, v) for all v ∈ V. (4.1)

(b) If s 6= t then

∑

w∈out(v)

f(v, w) =
∑

w∈in(v)

f(w, v) for all v ∈ V \ {s, t}, (4.2)

∑

w∈out(s)

f(s, w) =
∑

w∈in(v)

f(w, s) + 1, (4.3)

∑

w∈out(t)

f(t, w) =
∑

w∈in(t)

f(w, t) − 1. (4.4)

(ii) F (f) is an s-t support.

Proof. The proof is by induction on n =
∑

e∈E f(e). For the induction step, suppose

the lemma holds for all k < n.

(“⇒”) Suppose that f comes from a path π = π′ · vt whose length is n. Let f ′

be the s-v path flow corresponding π′. By the induction hypothesis, (i) and (ii) hold

for f ′, and we have f = f ′[(v, t) 7→ f ′(v, t) + 1]. We only consider the case s 6= t

and v 6= s, the remaining cases follow along similar arguments. It is not difficult
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to check that G/(F ′ ∪ {(v, t), (t, s)}) is connected. Moreover,
∑

w∈out(s) f(s, w) =
∑

w∈out(s) f ′(s, w) =
∑

w∈in(s) f ′(w, s) + 1 =
∑

w∈in(s))∈E f(w, s) + 1. For v, we have
∑

w∈out(v,w) f(v, w) =
∑

w∈out(v) f ′(v, w) + 1 =
∑

w∈in(v) f ′(w, v) =
∑

w∈in(v) f(w, v).

Finally,
∑

w∈out(t) f(t, w) =
∑

w∈out(t,w) f ′(t, w) =
∑

w∈in(t) f ′(w, t) =
∑

w∈in(t) f(w, t)−

1. It is easily checked that (4.2) holds for the remaining vertices.

(“⇐”) Let f be an s-t path flow. Choose v ∈ in(t) such that f(v, t) > 0.

Set f ′ = f [(v, t) 7→ f(v, t) − 1]. In the following, we assume s 6= t and v 6= s,

the other cases follow similarly. We claim that f ′ is an s-v path flow that fulfills

the conditions (i)(b) and (ii). By the induction hypothesis, it then follows that

there exists an s-v path. Indeed, it is easy to check that (ii) holds. Moreover,
∑

w∈out(s) f ′(s, w) =
∑

w∈out(s) f(s, w) =
∑

w∈in(s)∈E f(w, s) + 1 =
∑

w∈in(s) f ′(w, s) +

1;
∑

w∈out(v) f ′(v, w) =
∑

w∈out(v)∈E f(v, w)−1 =
∑

w∈in(w,v) f(w, v)−1 =
∑

w∈in(v) f ′(w, v)−

1; and
∑

w∈out(t) f ′(t, w) =
∑

w∈out(t) f(t, w) =
∑

w∈in(t) f(w, t)−1 =
∑

w∈in(t) f ′(w, t).¤

In the proof of the “only if” direction of the previous lemma, we choose an arbitrary

incoming vertex v of t with f(v, t) > 0. This non-determinism can be seen as the

cause why in general a path flow does not uniquely determine a path. The benefit

of the characterisation in terms of Eulerian path flow conditions is that it allows for

rephrasing the existence of a path flow with a certain weight into a sentence in QFPA.

Lemma 4.1.7 Let s, t ∈ V , n, n′ ∈ N and F be an s-t support, there exists a QFPA

formula ϕ(G,F, s, t)(c, c′) such that ϕ[n/c, n′/c′] if, and only if, there exists an s-t

path flow f with support F and weight(f) = n′ − n. Moreover, |ϕ| = O(|G|2).

Proof. First, we observe that if we treat each f(e) as a first-order variable in the Eu-

lerian path flow conditions in Lemma 4.1.6, each condition (4.1)–(4.4) yields a QFPA

formula open in f(e1), . . . , f(ek). Denote by ψ(f(e1), . . . , f(ek)) the appropriate con-

junction of QFPA formulae derived from these conditions depending on whether or

not s = t. We have ψ = O(|G|2).

Next, we need an additional formula fixing the weight of f and ensuring that all
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edges not in F have zero flow:

ψ′(f(e1), . . . , f(ek))
def
=

∑

e∈F

f(e)µ(e) = c′ − c ∧
∧

e∈E\F

f(e) = 0.

We set ϕ(G,F, s, t)
def
= ∃e∈Ef(e).ψ ∧ ψ′, which by Lemma 4.1.6 has the desired prop-

erties. ¤

A nice property of path flows is that they are additive. Given flows f, f ′, we define

f + f ′ def
= e 7→ f(e) + f ′(e).

Addition of path flows can be seen as the operation corresponding to concatenation

of paths.

Lemma 4.1.8 Let f, f ′ be paths flows, then f + f ′ is an s-t path flow if there exists

v ∈ V such that

(i) f is an s-v path flow and f ′ is an v-t path flow; or

(ii) f is an s-t path flow, f ′ is a v-v path flow and F ∪ F ′ is an s-t support.

Proof. The lemma follows in both cases from a straightforward application of Lemma

4.1.6. ¤

In the remainder of this section, we look at different ways to decompose path flows

into sequences of path flows. Those decompositions are later going to be used for our

results on reachability in one-counter automata. We first show that any path flow

corresponding to a cycle can be decomposed into path flows whose supports induce

subgraphs that are loops.

Lemma 4.1.9 A flow f is a v-v path flow if, and only if, there are path flows

f1, . . . , fj, j ∈ [|G|] such that each G/Fi is a loop and f =
∑

i∈[j] fi.
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Proof. (“⇒”) We show the lemma by induction on the number of edges in G/F . For

the induction step, choose some subset of edges E ′ of the edges of G/F such that

G/E ′ is a loop and there is some e′ ∈ E ′ such that f(e′) is minimal among all edges

from F . Define f1 such that f1(e)
def
= f(e′) if e ∈ E ′ and f1(e)

def
= 0 otherwise. By

definition, G/F1 is a cycle. Moreover, let f ′ be a flow such that f = f1 + f ′, such

a flow exists due to our choice of e′. Now f ′ is not necessarily a path flow, since

G/F ′ may consist of several disjoint strongly connected components. However, by

restricting f ′ to each of these strongly connected components and by applying the

induction hypothesis on each of these restricted flows, we obtain the required path

flows f2, . . . , fj that give f =
∑

i∈[j] fi.

(“⇐”) It is easily checked that the conditions (i)(a) and (ii) in Lemma 4.1.6 are

fulfilled for f . Hence f is a v-v path flow for some vertex v of G/F . ¤

Using the previous lemma, we now show that an arbitrary path flow can be de-

composed into a path flow whose support induces a subgraph that is a simple path

and a number of path flows whose supports induce subgraphs that are simple cycles.

Lemma 4.1.10 A flow f is an s-t path flow if, and only if, there are j path flows fi

with j = O(|G|2) and a path flow f0 such that f = f0 +
∑

i∈[j] fi, G/F0 is a simple

s-t path, each G/Fi is a simple cycle, and G/(
⋃

i∈[0,j] Fi) is connected.

Proof. If s = t then the lemma directly follows from Lemma 4.1.9. Thus, we subse-

quently assume s 6= t.

(“⇒”) Let π be a path corresponding to f , and let π0 be obtained from π by

deleting all cycles. Define f0 such that f0(e)
def
= 1 if e ∈ edges(π0) and f0(e)

def
= 0

otherwise. Let f ′ be the flow such that f = f ′+f0, which is not necessary a path flow.

However, by successively restricting f ′ to each of the strongly connected components

in G/F ′ and applying Lemma 4.1.9 to each component, we obtain the required path

flows fi.

(“⇐”) It is easily checked that the conditions (i)(b) and (ii) in Lemma 4.1.6 are

fulfilled for f . Hence f is an s-t path flow. ¤
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We close this section by introducing edge decompositions of path flows. An edge

decomposition of a path flow f is a sequence of tuples (fi, ei)i∈[m] consisting of a

path flow and an edge such that the edge ei has zero flow in any fj for j > i and

all the components of the decomposition sum up to f . By sorting the edges a path

π traverses in the order of their last appearance in π, each path π gives rise to a

canonical edge decomposition of fπ. We first define edge decompositions for supports

and then for path flows.

Definition 13 Given an s-t support F , a support-edge decomposition of F is a se-

quence of tuples (Fi, vi, wi, ei)i∈[m] with Fi ⊆ F , v1 = s, vm+1
def
= t such that

• Fi is a vi-wi support, ei = (wi, vi+1), i ∈ [m],

• ei 6∈ Fj for all 1 ≤ i < j ≤ m,

• F =
⋃

i∈[m]{ei}.

An edge decomposition of a path flow f is a sequence of tuples (fi, ei)i∈[m], where each

fi is vi-wi path flow, v1 = s, vm+1 = t and ei = (wi, vi+1) such that f =
∑

i∈[m] fi +fei

and (Fi, vi, wi, ei)i∈[m] is a support-edge decomposition. ♦

Figure 4.2 gives an example of an edge decomposition of a path flow. The path

flow f is decomposed into (fi, ei)i∈[4] and it is easily verified that f =
∑

i∈[4] fi + fei
.

An example of a path inducing this edge decomposition is a path that traverses the

following edges in this order:

e1e1e3e4e2e1e1e1
︸ ︷︷ ︸

f1

e1 e3e4e4e2e3e4
︸ ︷︷ ︸

f2

e2e3 e4e4e4
︸ ︷︷ ︸

f4

e4.

4.1.4 The NP Upper Bound

Using the concepts introduced and developed in the previous sections, we are now

going to show that reachability in one-counter automata is in NP.

In the first part of this section, we will only consider one-counter automata without

zero tests. This allows us to view one-counter automata as weighted graphs. For
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f f1 f2

f3 f4

v w v w v w

v w v w

e3/4

e2/3

e1/6 e4/7

e3/1

e2/1

e1/5 e4/1

e3/2

e2/1

e1/0 e4/2

e3/0

e2/0

e1/0 e4/0

e3/0

e2/0

e1/0 e4/3

Figure 4.2: An example of an edge decomposition of a path flow. Each path flow is

determined by the number next to the edges of each graph, e.g., f(e2) = 3. Here, the

decomposition of the path flow f is given by (f1, e1)(f2, e2)(f3, e3)(f4, e4).

now, let us fix a zero-test free one-counter automaton A = (Q, Λ, q0, F, ∆, λ, ξ). The

weighted graph corresponding to A is GA
def
= (Q, ∆, λ). Just as we can relate A with

GA, we can relate runs in T (A) with paths in GA: the path corresponding to a run

(q1, c1)(q2, c2) · · · (qn, cn) in T (A) is the path q1q2 . . . qn in GA, i.e., the projection on

the control locations visited.

However, the converse does not hold in general: a path in GA does not necessarily

correspond to a run between two configurations in T (A). Informally speaking, if the

counter value we start with is not large enough, a path in G might force the counter

to drop below zero. The following lemma provides the connection between paths in

GA and runs in T (A).

Lemma 4.1.11 Let π be a q-q′ path in GA and n, n′ ∈ N. There is a run (q, n) →∗
A

(q′, n′) that π corresponds to if, and only if, drop(π) ≥ −n and weight(π) = n′ − n.

Proof. We show the statement by induction on |π|.

(“⇒”) Suppose ̺ = ̺′ · (q′′, n′′)(q′, n′) is a run that π corresponds to for some

n′′ ∈ N. By the induction hypothesis, drop(π′) ≥ −n and weight(π′) = n′′ − n,

where π′ is the path corresponding to ̺′. Moreover, n′ = n′′ + µ(q′′, q′), hence
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weight(π) = weight(π′) + µ(q′′, q′) = n′′ − n + µ(q′, q′′) = n′ − n and drop(π) =

min{drop(π′),weight(π)} ≥ −n.

(“⇐”) Let π = π′ · q′′q′ be a path in GA such that drop(π) ≥ −n and weight(π) =

n′ − n. By the induction hypothesis, there is a run ̺′ : (q, n) →∗
A (q′′, n′′), where

n′′ = weight(π′) + n. As n′ = n′′ + µ(q, q′) ≥ 0, ̺
def
= ̺′ · (q′′, n′′)(q′, n′) is the desired

run. ¤

As already discussed earlier, a path witnessing reachability might become exponential

in the size of A and is for that reason unsuitable for providing an NP upper bound.

However, the size of a path flow corresponding to a witnessing path π is logarithmic

in the size of π and hence can be guessed in NP. The only drawback is that given

a path flow we cannot reconstruct a witnessing path, and thus we cannot be sure

whether a given path flow is induced by a witnessing path. For that reason, given

two configurations in T (A), we have to look for suitable conditions on path flows that

guarantee the existence of a path witnessing reachability. We call these conditions

reachability criteria.

Definition 14 Let G be a graph, f an s-t path flow and n, n′ ∈ N. Then (G, f, n, n′)

fulfills the

(i) type-1 reachability criteria if

• G/F does not contain positive cycles

• weight(f) = n′ − n

• f has an edge decomposition (fi, ei)i∈[m] such that
∑

i∈[j] weight(fi +fei
) ≥

−n for all j ∈ [m];

(ii) type-2 reachability criteria if

• (Gop, f op, n′, n) fulfills the type-1 reachability criteria;

(iii) type-3 reachability criteria if

• weight(f) = n′ − n
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• there is a positive s-cycle template ℓ in G with respect to n

• there is a positive t-cycle template ℓ′ in Gop with respect to n′. ♦

We call (G, f, n, n′) a type-i reachability certificate if (G, f, n, n′) fulfills the type-i

reachability criteria.

Our aim now is to show that given counter values n, n′ and a q-q′ path flow f , if

(GA, f, n, n′) is a reachability certificate then (q′, n′) is reachable from (q, n) in T (A).

Before we begin with the formal part, let us explain on an intuitive level why this is

the case.

Suppose that (G, f, n, n′) is a type-1 reachability certificate. Since G/F does

not contain any positive cycles, the weight of a path that corresponds to f always

decreases whenever it repeatedly traverses an edge. The constraints on the edge

decomposition of f make sure that the last time we traverse an edge the weight of

a corresponding path does not go below −n. Hence for any fixed edge, at any time

we traverse it the weight of the current path segment is above −n. Since the edge

decomposition ranges over all edges that have flow greater than zero, it is guaranteed

that a path exists that fulfils the conditions from Lemma 4.1.11. The case of type-

2 reachability certificates reduces to the type-1 case. The definition of a type-3

reachability certificate can be read as requiring the existence of a suitable path flow

f together with a suitable positive and negative cycle at the source s respectively

target t of f . The positive cycle at s whose drop is above −n guarantees that starting

from a configuration (q, n) we can reach a configuration (q,m′) such that m′ > m for

any m > n. If π is some path that f corresponds to, we can thus “pump up” the

counter value as high as we need in order to ensure that starting from this counter

value π does not force the counter to drop below 0. Once some configuration (t,m′′)

is reached, we can use the negative cycle at t to bring the counter value down to n′.

Consequently, we can reach (t, n′) from (q, n) in T (A). The following lemma makes

our intuition formal.

Lemma 4.1.12 Let (q, n) and (q′, n′) be configurations of a one-counter automaton

A, GA the graph corresponding to A and f a q-q′ path flow. We have that
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(i) if (GA, f, n, n′) is a type-1 reachability certificate;

(ii) if (GA, f, n, n′) is a type-2 reachability certificate; or

(iii) if (GA, f, n, n′) is a type-3 reachability certificate

then f = fπ for some path π corresponding to a run ̺ : (q, n) →∗
A (q′, n′) in T (A).

Proof. (i) Let (fi, ei)i∈[m] be the edge decomposition of f from Definition 14(i), where

we identify ei as (vi, wi). For each fi choose some arbitrary path πi such that fi = fπi

for i ∈ [m] and set π
def
= π1 · v1w1 ·π2 · v2w2 · . . . ·πm · vmwm. By assumption, G/F does

not contain a positive cycle and consequently there is no positive cycle in π. Hence

for two prefixes π′
1 · vjwj and π′

2 · vjwj of π with |π1| ≤ |π2| that traverse the same

last edge, we have weight(π′
1 · vjwj) ≥ weight(π′

2 · vjwj). It follows that we can obtain

the drop of π by just considering the segments of π in which each edge is visited the

last time. We deduce that

drop(π) = min {weight(π1 · v1w1 · . . . · πj · vjwj) : j ∈ [m]}

= min







∑

i∈[j]

weight(πi · vjwj) : j ∈ [m]







= min







∑

i∈[j]

weight(fi + fei
) : j ∈ [m]







≥− n.

The application of Lemma 4.1.11 yields that the desired run ̺ : (q, n) →∗
A (q′, n′)

in T (A) exists.

(ii) By (i), we have that there exists a path πop in Gop such that weight(πop) =

n − n′ and drop(πop) ≥ −n′. Using Lemma 4.1.2(iii), it follows that

drop(πop) ≥ −n′

⇐⇒ drop(π) − weight(π) ≥ −n′

⇐⇒ drop(π) − n′ + n ≥ −n′

⇐⇒ drop(π) ≥ −n.
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By applying Lemma 4.1.11, it follows that a desired run ̺ : (q, n) →∗
A (q′, n′) in

T (A) exists.

(iii) Let π be some path with the corresponding flow f , and let ℓ be the positive

s-cycle template with respect to n and ℓ′ the positive t-cycle template in Gop with

respect to n′. By Lemma 4.1.3, ℓ induces a positive v-cycle ℓ1 with drop(ℓ1) ≥ −n,

and ℓ′ induces a positive ℓ2 in Gop such that drop(ℓ2) ≥ −n′. We use ℓ1 and ℓop
2

in order to appropriately “pump up” and “pump down” π. Let m = weight(ℓ1)

and m′ = weight(ℓ2). Choose a ∈ N such that a · m · m′ ≥ drop(π) and define

π′ = ℓ1
a·m′

· π · (ℓ2
a·m)op. Clearly, we have weight(π′) = weight(ℓ1

a·m′

) + weight(π) +

weight((ℓ2
a·m)op) = weight(π). Thus, it remains to show that drop(π′) ≥ −n, which

allows us to apply Lemma 4.1.11 and to conclude that π′ has corresponding run

̺ : (q, n) →∗
A (q′, n′). Subsequently, we make implicit use of the statements from

Lemma 4.1.2. We have that

drop(π′) ≥ −n

⇐⇒ drop(ℓ1
a·m′

· π) ≥ −n and weight(ℓ1
a·m′

· π) + drop((ℓ2
a·m)op) ≥ −n

⇐⇒ drop(ℓ1
a·m′

) ≥ −n and weight(ℓ1
a·m′

) + drop(π) ≥ −n and

weight(ℓ1
a·m′

· π) + drop((ℓ2
a·m)op) ≥ −n.

By Lemma 4.1.2(ii) and by the choice of a, we have drop(ℓ1
a·m′

) ≥ −n and

weight(ℓ1
a·m′

) + drop(π) ≥ −n. Thus, it remains to show that weight(ℓ1
a·m′

· π) +

drop((ℓ2
a·m)op) ≥ −n. It follows that

weight(ℓ1
a·m′

· π) + drop((ℓ2
a·m)op) ≥ −n

⇐⇒ weight(ℓ1
a·m′

· π) + drop(ℓ2
a·m) − weight(ℓ2

a·m) ≥ −n

⇐⇒ drop(ℓ2
a·m) + weight(π) ≥ −n

⇐⇒ drop(ℓ2
a·m) + n′ − n ≥ −n

⇐⇒ drop(ℓ2
a·m) ≥ −n′

By assumption, drop(ℓ2) ≥ −n′ and hence by Lemma 4.1.2(ii) we get drop(ℓ2
a·m) ≥

−n′. ¤
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Thus, any reachability certificate guarantees the existence of a path in GA that cor-

responds to a run. However, the converse direction does not hold. An arbitrary run

does in general not yield a path flow that fulfills some reachability criterion. As we

are now going to show, it is however possible, starting from an arbitrary run, to con-

struct a run that decomposes into at most three runs that all yield path flows that

give reachability certificates. Before showing this fact, we need to prove the following

technical lemma.

Lemma 4.1.13 Let ̺ : (q, n) →∗
A (q′, n′) be a run in T (A) with the corresponding

path π in GA and let F be the support of fπ. If π does not contain any positive cycle

then either GA/F does not contain any positive cycles or there is a path π′ in GA

that factors as π′ = π1 ·π2 ·π3 and corresponds to a run ̺′ : (q, n) →∗
A (q′, n′) in T (A)

such that |π1| < |π| and π2 is a positive cycle.

Proof. Suppose that GA/F contains a positive cycle ℓ. Let p be the first vertex of ℓ

that occurs in π, and let m ∈ N be such that the configuration (p,m) is first reached

by ̺. We claim that there is a positive cycle at p in GA that corresponds to a run

(p,m) →∗
A (p,m′) in T (A) for some m′ > m.

If ℓ does not correspond to such a run starting from (p,m) we argue as follows.

Factor ℓ as ℓ = π′
1 ·π

′
2 with π′

1 : p →∗
GA

r, π′
2 : r →∗

GA
p such that r is the node with the

maximum decrement in ℓ, i.e., weight(π′
1) = drop(ℓ) and whence weight(π′

1) < −m.

Since p is the first vertex of ℓ visited by π, r is visited by π sometime after the first

visit of p. So there is a p-r path π′
3 in GA such that weight(π′

3) ≥ drop(π′
3) ≥ −m >

weight(π′
1). Consider now the cycle ℓ′

def
= π′

3 · π
′
2. It follows that ℓ′ is a positive cycle,

since

weight(ℓ′) = weight(π′
3) + weight(π′

2)

> weight(π′
1) + weight(π′

2)

= weight(ℓ).

91



Moreover, by our choice of r we have drop(π′
2) ≥ 0 and hence we conclude that

drop(ℓ′) ≥ drop(π′
3) + drop(π′

2)

≥ −m + 0

= −m.

Hence, Lemma 4.1.11 implies that ℓ′ corresponds to a run from (p,m) →∗
A (p,m′) in

T (A).

Next we observe that the first occurrence of p in π actually lies on a negative cycle

in π. This is because π must visit p in π again, otherwise ℓ would not exist in fπ.

By assumption all cycles in π are negative. Thus, we can decompose ̺ as ̺1 · ̺2 · ̺3

with ̺1 : (q, n) →∗
A (p,m), ̺2 : (p,m) →∗

A (p,m′′) and ̺3 : (p,m′′) →∗
A (q′, n′)

with m′′ < m. Denote by π′′
1 , π′′

2 and π′′
3 the path corresponding to ̺1, ̺2 and ̺3

respectively.

In order to obtain the path π = π1 ·π2 ·π3 required in the lemma, we reuse an idea

from the proof of Lemma 4.1.12(iii). Let i = weight(ℓ′) and j = |weight(π′′
2)|. Define

π1 = π′′
1 , π2 = (ℓ′)j and π′

3 = π′′
2

i+1 · π′′
3 . Clearly, |π1| < π and π2 is a positive cycle

as required. Since the positive cycle (ℓ′)j is canceled out by the negative cycle (π′′
2)

i,

and by applying Lemma 4.1.11, the required run ̺′ exists. ¤

We can now use this lemma in order to show that if (q, n) →∗
A (q′, n′) then there exists

a run that can be decomposed into three components whose corresponding paths each

yield reachability certificates.

Lemma 4.1.14 There is a run ̺ : (q, n) →∗
A (q′, n′) in T (A) if, and only if, there is

a q-q′ path π in GA that can be written as π = π1 ·π2 ·π3 such that there are n1, n2 ∈ N

such that

• if |π1| > 0 then (GA, fπ1 , n, n1) is a type-1 reachability certificate;

• if |π2| > 0 then (GA, fπ2 , n1, n2) is a type-3 reachability certificate; and

• if |π3| > 0 then (GA, fπ3 , n2, n
′) is a type-2 reachability certificate.
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Proof. (“⇒”) If ̺ : (q, n) →∗
A (q′, n′) is a run with a corresponding path π whose

corresponding path flow has support F such that GA/F does not contain any positive

cycle then π induces a unique vertex decomposition and hence (G, fπ, n, n′) fulfills the

type-1 reachability criteria.

Otherwise, let π′ be a path in GA corresponding to some run ̺ : (q, n) →∗
A (q′, n′).

By repeatedly applying Lemma 4.1.13 to π′, we can obtain π1 ·π
′
2 ·π

′
3 from π′ such that

π1 : q →∗
GA

p, GA/Fπ1 does not contain any positive cycles and π′′ = π′
2 · π

′
3 is a p-q′

path with π′
2 being a positive cycle. If GA/Fπ′′ does not contain any negative cycles,

by setting π3 = π′′ and n1 = n + weight(π1), we can easily see that (GA, fπ1 , n, n1)

and (GA, fπ3 , n1, n
′) are type-1 respectively type-2 reachability certificates. It follows

that π = π1 · π3 is the required path.

Otherwise, by repeatedly applying Lemma 4.1.13 to (π′′)op in Gop

A we obtain a

path that decomposes into πop
3 · (π′′

2)
op · (π′′

1)
op such that π2 = π′′

1 · π′′
2 is a p-p′ path

with (π′′
2)

op being a positive cycle in Gop

A and Gop

A /Fπ
op
3

does not contain any positive

cycle. Let n1 = n + weight(π1) and n2 = n′ − weight(π3). Both π′
2 and π′′

2 witness

the existence of a positive cycle in GA respectively Gop

A with drop(π′
2) ≥ −n1 and

drop((π′′
2)

op) ≥ −n2. Thus, (GA, fπ2 , n1, n2) fulfills the type-3 reachability criteria.

As above, (GA, fπ1 , n, n1) and (GA, fπ3 , n2, n
′) fulfill the type-1 respectively type-2

reachability certificates, and hence π = π1 · π2 · π3 is the required path.

(“⇐”) This direction follows by combining the statements from Lemma 4.1.12. ¤

We have thus shown that deciding reachability in T (A) can be reduced to checking

for the existence of at most three reachability certificates in GA. We now proceed

by showing that checking the existence of a reachability certificate can be phrased

in terms of an open formula in QFPA. To begin with, we take the conditions re-

quired by the type-1 reachability criteria in Definition 14 and translate them into

an open formula in QFPA for a fixed edge decomposition. Suppose we are given G,

vertices s, t, a support F and a support edge decomposition (Fi, vi, v
′
i, ei)i∈[m]. For

i ∈ [m], let ϕ(G,Fi, vi, v
′
i)(ci, c

′
i) be the path flow formulae from Lemma 4.1.7 such

that ϕi[n/ci, n
′/c′i] if, and only if, there exists a vi-v

′
i path flow fi in G with support Fi

such that weight(fi) = n′ −n. Furthermore, let ϕ(G/F ) be the formula from Lemma
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4.1.5 guaranteeing that there are no positive cycles in G/F . The type-1 reachability

criteria for a fixed edge decomposition can now be expressed by the following QFPA

formula ϕ(G,F, (Fi, vi, v
′
i, ei)i∈[m])(c, c

′), which is computable in polynomial time:

ϕ
def
= ∃i∈[m]ci, c

′
i. ϕ(G/F )

︸ ︷︷ ︸

no positive cycles

∧
∧

i∈[m]

ϕ(G,Fi, vi, v
′
i)(ci, c

′
i)

︸ ︷︷ ︸

there are path flows fi with weight c′i−ci

∧

∧
∧

i∈[m]

∑

j∈[i]

c′i − ci + µ(ei) ≥ −c

︸ ︷︷ ︸

weights of the edge decomposition sum up correctly

∧
∑

i∈[m]

c′i − ci + µ(ei) = c′ − c

︸ ︷︷ ︸

total weight matches

(4.5)

We can now prove the following lemma.

Lemma 4.1.15 Given a graph G and vertices s, t, the sets

{(n, n′) : there exists an s-t path flow f such that (G, f, n, n′) is a

type-1 reachability certificate}

{(n, n′) : there exists an s-t path flow f such that (G, f, n, n′) is a

type-2 reachability certificate}

are definable via sets R1(G, s, t) and R2(G, s, t) of QFPA formulae, where |ϕ| =

O(|G|4) for each ϕ ∈ R1(G, s, t) ∪ R2(G, s, t).

Proof. For each possible s-t support F and each support edge decomposition (Fi, vi, v
′
i, ei)i∈[m]

of F , R1(G, s, t) is the smallest set containing a formula ϕ(G,F, (Fi, vi, v
′
i, ei)i∈[m]) as

in Equation (4.5). As |ϕ(G/F )| = O(|G|4) dominates every other conjunct and by

combining Lemmas 4.1.5 and 4.1.7, it is easily checked that R1 has the desired prop-

erties. The set R2 can be defined as R2(G, s, t)
def
= R1(G

op, t, s). ¤

We now proceed by proving a similar statement for type-3 reachability certificates.

First, we show how to express the conditions on positive cycle templates in QFPA.

Recall that a v-cycle ℓ is a positive v-cycle template with respect to n if it factors

into π1 · π2 · π3 such that drop(π1 · π2) ≥ −n and weight(π2) > 0. Define the QFPA
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formula ϕ(G, π1, π2) as follows, where ϕd and ϕw are the QFPA formulae defining the

drop and the weight of a path as defined in Lemma 4.1.1:

ϕ(G, π1, π2)(c)
def
= ∃d, d′.(ϕd(G, π1 · π2)(d, d′) ∧ d′ − d ≥ −c)∧

∧ ∃d, d′.(ϕw(G, π2)(d, d′) ∧ d′ − d > 0) (4.6)

It follows from Lemma 4.1.1 that |ϕ(G, π1, π2)(c)| = O(|G|2). By applying the same

lemma it is easily checked that ϕ(G, π1, π2)[n/c] holds if, and only if, ℓ = π1 · π2 · π3

is a positive v-cycle template with respect to n. The type-3 reachability criteria for

fixed cycle templates ℓ = π1 · π2 · π3 in G and ℓ′ = π′
1 · π

′
2 · π

′
3 in Gop and a fixed s-t

support F can now be expressed as follows, where ϕ(G, π1, π2) and ϕ(G, π′
1, π

′
2) are

the formulae from (4.6) and ϕ(G,F, s, t)(c, c′) is the formula from Lemma 4.1.7:

ϕ(G,F, s, t, ℓ, ℓ′)(c, c′)
def
= ϕ(G, π1, π2)(c)

︸ ︷︷ ︸

suitable positive cycle at s

∧ ϕ(Gop, π′
1, π

′
2)(c

′)
︸ ︷︷ ︸

suitable positive cycle at t in Gop

∧

ϕ(G,F, s, t)(c, c′)
︸ ︷︷ ︸

suitable path flow with weight c′−c

(4.7)

Note that ϕ(G,F, ℓ, ℓ′)(c, c′) is computable in polynomial time.

Lemma 4.1.16 Given a graph G and vertices s, t the set

{(n, n′) : there exists an s-t path flow f such that (G, f, n, n′) is a

type-3 reachability certificate}

is definable via a set R3(G, s, t) of QFPA formulae, where |ϕ| = O(|G|2) for each

ϕ ∈ R3(G, s, t).

Proof. For each positive s- and t-cycle template ℓ and ℓ′ in G respectively Gop and

for each s-t support F , R3 is the smallest set containing a formula ϕ(G,F, s, t, ℓ, ℓ′)

as defined in Equation (4.7). It is easily verified that each formula in ϕ ∈ R3 has size

|ϕ| = O(|G|2) and using Lemma 4.1.7 and our reasoning above it is easily checked

that R3 has the desired properties. ¤

Putting the pieces together, we can now show that the reachability set for zero-test

free one-counter automata is definable via a set of QFPA formulae.
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Lemma 4.1.17 Let A be a zero-test free one-counter automaton, the set

{(n, n′) : (q, n) →∗
A (q′, n′)}

is definable via a set Rz
A(q, q′) of QFPA formulae, where |ϕ| = O(|GA|

4) for each

ϕ ∈ RA(q, q′).

Proof. For any q1, q2 ∈ Q, Rz
A(q, q′) is defined as the smallest set consisting of

QFPA formulae open in c, c′ of the form ∃c1, c2.ϕ1(c, c1)∧ϕ3(c1, c2)∧ϕ2(c2, c
′) where

ϕ1 ∈ R1(q, q1), ϕ3 ∈ R3(q1, q2) and ϕ2 ∈ R2(q2, q
′). Lemma 4.1.14 states that

(q, n) →∗
A (q′, n′) if, and only if, there is a path π that can be written as π = π1 ·π2 ·π3

and n1, n2 ∈ N such that in the most general case (GA, fπ1 , n, n1), (GA, fπ2 , n1, n2)

and (GA, fπ3 , n2, n
′) each yield type-1, type-3 respectively type-2 reachability certifi-

cates. Thus, assuming (q, n) →∗
A (q′, n′), by Lemma 4.1.15 there exists ϕ1(c, c1) ∈

R1(GA, q, q1) such that ϕ1[n/c, n1/c1]. By the same lemma, there exists ϕ2(c2, c
′) ∈

R2(GA, q, q1) such that ϕ2[n2/c2, n
′/c′]. Finally, Lemma 4.1.16 yields that there ex-

ists ϕ3(c1, c2) ∈ R3(GA, q1, q2) such that ϕ3[n1/c1, n2/c2]. Hence, ϕ[n/c, n′/c′] for

some ϕ(c, c′) ∈ Rz
A(GA, q, q′).

Conversely, if ϕ[n/c, n′/c′] for some ϕ(c, c′) ∈ Rz
A(q, q′) then by the Lemmas 4.1.15

and 4.1.16 the reachability certificates required in Lemma 4.1.14 exist. ¤

It is now an easy task to generalise this approach to one-counter automata with

zero tests. The main idea is that any edge testing the counter for zero is traversed

at most once on a run ̺ : (q, n) →∗
A (q′, n′). Indeed, if ̺ can be factored as ̺ = ̺1 ·

(p, 0)(p′, 0)·̺2 ·(p, 0)(p′, 0)·̺3 where ξ(p, p′) = zero then clearly ̺′ def
= ̺1 ·(p, 0)(p′, 0)·̺3

is a run in which the transition (p, p′) is traversed one time less than in ̺.

Lemma 4.1.18 Let A be a one-counter automaton, the set

{(n, n′) : (q, n) →∗
A (q′, n′)}

is definable via a set RA(q, q′) of QFPA formulae, where |ϕ| = O(|GA|
5) for each

ϕ ∈ RA(q, q′).
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Proof. We obtain from A zero-test free one-counter automata A1, . . . ,Ai with i ∈

[|A|] such that any run ̺ factors into ̺ = ̺1 · (q
′
1, 0)(q2, 0) · ̺2 · . . . · (q

′
i−1, 0)(qi, 0) · ̺i

where ξ(q′i, qi+1) = zero and each ̺i is a run only involving control locations from

the zero-test free one-counter automaton Ai. Hence, for any possible combination of

zero-test free automata A1, . . . ,Ai and locations qi, q
′
i, RA(q, q′) is the smallest set

containing a formula

ϕ(c, c′)
def
= ∃j∈[i]cj.

∧

j∈[i]

cj = 0 ∧ ϕ1(c, c1) ∧ ϕj(cj, c) ∧
∧

j∈[2,i−1]

ϕ(cj, cj+1),

where ϕ1(c, c1) ∈ Rz
A1

(q, q′1), ϕi(ci, c
′) ∈ Rz

Ai
(qi, q

′) and ϕj(cj, cj+1) ∈ Rz
Aj

(qj, q
′
j) for

j ∈ [2, i−1]. Here, Rz
Aj

are the sets of QFPA formulae from Lemma 4.1.17. It is easily

verified that the statement of the lemma follows as a straightforward consequence from

Lemma 4.1.17. ¤

The previous lemma now immediately gives us one of the main results of this

chapter.

Theorem 4.1.1 Reachability in one-counter automata is NP-complete.

Proof. Let A be a one-counter automaton and (q, n) and (q′, n′) be configurations

of A. By Lemma 4.1.18, (q, n) →∗
A (q′, n′) if, and only if, there exists ϕ(c, c′) ∈

RA(q, q′) such that ϕ[n/c, n′/c′]. An NP-algorithm that decides reachability non-

deterministically guesses all components needed to compute such a formula ϕ(c, c′) ∈

RA(q, q′), i.e., the order in which zero-edges from A are traversed and the implied

zero-test free automata, the support-edge decompositions for the type-1 and type-2

reachability certificates, and the positive cycle templates and support required for

type-3 reachability certificates. It then computes ϕ(c, c′) in polynomial time, checks

in NP satisfiability of ∃c, c′.ϕ(c, c′) ∧ c = n ∧ c′ = n′ and returns the result of the

satisfiability check. ¤

We close this section with considering deciding the existence of Büchi paths in

T (A) and boundedness of one-counter counter automata. For both problems, we

construct sets of QFPA formulae that characterise the set of configurations for which

97



a Büchi path exist respectively for which the reachability set is unbounded. To this

end, we incorporate the reachability sets RA(q, q′) defined previously.

We begin with Büchi paths and provide sufficient and necessary criteria for the

existence of Büchi paths. In the following, let F be the set of final locations of A.

Lemma 4.1.19 A one-counter automaton A has a Büchi path starting in (q, n) if,

and only if, there are qf ∈ F and n′ ∈ N such that

(i) there are n′′ ∈ N and runs ̺1, ̺2 such that n′′ ≥ n, ̺1 : (q, n) →∗
A (qf , n

′),

̺2 : (qf , n
′) →∗

A (qf , n
′′) and ̺2 is zero-test free; or

(ii) there are runs ̺1, ̺3 such that ̺1 : (q, n) →∗
A (qf , n

′) and ̺3 : (qf , n
′) →∗

A (qf , n
′).

Proof. (“⇒”) Suppose A has a Büchi path starting in (q, n) and let ̺ be a run starting

in (q, n) such that qf ∈ inf (̺) ∩ F . Let (qf , n1), (qf , n2), . . . be the qf -configurations

visited in ̺. Our first observation is that for any i ∈ N>0, there is some j > i such that

nj ≥ ni since there are no infinite descending chains in N. If there is a zero-test free

segment (qf , ni) →
∗
A (qf , nj) with j > i and nj ≥ ni in ̺ then the conditions in (i) are

fulfilled by setting n′ = ni and n′′ = nj. Otherwise, some transition testing the counter

value for zero is visited infinitely often. Hence there is some (q′, 0) occurring infinitely

often in ̺ for some q′ ∈ Q. Hence ̺ has a prefix ̺′
1 : (q, n) →∗

A (q′, 0). Moreover,

there are segments ̺′′
1 : (q′, 0) →∗

A (qf , ni) and ̺′
3 : (qf , ni) →∗

A (q′, 0) since qf and

(q′, 0) occur infinitely often in ̺ for some i ∈ N>0. By setting n′ = ni, ̺1 = ̺′
1 · ̺

′′
1

and ̺3 = ̺′′
1 · ̺

′
3 we obtain the runs ̺1 : (q, n) →∗

A (qf , n
′) and ̺3 : (qf , n

′) →∗
A (qf , n

′)

as required in condition (ii).

(“⇐”) We define an infinite run ̺ on which qf occurs infinitely often. In case (i),

since ̺2 is zero-test free, we have (qf , n
′ + d) →∗

A (qf , n
′′ + d) for any d ≥ 0. Hence,

we can define the required run to be ̺ : ̺1 · ̺2 · (̺2 + n′′ − n′) · (̺2 + 2(n′′ − n′)) . . ..

In case (ii), we obviously have that ̺ : ̺1 · ̺3 · ̺3 · ̺3 . . . is a suitable run in T (A). ¤

It is now clear that we can translate the conditions from the previous lemma into a

sentence in QFPA, which gives us NP membership of checking for the existence of a

Büchi path. Hardness for NP easily follows from an adoption of Proposition 4.1.2.
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Lemma 4.1.20 Let A be a one-counter automaton and q ∈ Q, the set

{n : there is a Büchi path starting at (q, n) in T (A)}

is definable via a set RB
A(q) of QFPA formulae, where |ϕ| = O(|GA|

5) for each ϕ ∈

RB
A(q).

Proof. We encode the conditions from Lemma 4.1.19 into a sentence in QFPA. Let

A′ be obtained from A by removing all edges labelled with zero. The set RB
A(q) is

the smallest set containing for each pair qf ∈ F and q ∈ Q a formula ϕ(c) such that

ϕ(c)
def
= ∃c′. ((∃c′′.c′′ ≥ c′ ∧ ϕ1(c, c

′) ∧ ϕ2(c
′, c′′)) ∨ (ϕ3(c, c

′) ∧ ϕ4(c
′, c))) ,

where ϕ1(c, c
′) ∈ RA(q, qf ), ϕ2(c

′, c′′) ∈ RA′(qf , qf ), ϕ3(c, c
′) ∈ RA(q, qf ) and ϕ4(c

′, c′) ∈

RA(qf , qf ). The correctness of the lemma is an immediate consequence of the lemmas

4.1.18 and 4.1.19. ¤

Theorem 4.1.2 Deciding the existence of a Büchi path for one-counter automata is

NP-complete.

Finally, we provide a solution to the problem left open by Rossier and Yen in [95]

and show that boundedness for one-counter automata is NP-complete. Recall that

for a given one-counter automaton A and a configuration (q, n), boundedness is to

decide whether the set

{(q′, n′) ∈ Q × N : (q, n) →∗
A (q′, n′)}

is infinite. As observed in [95], deciding boundedness boils down to checking if we can

reach a configuration from which we can loop with a strictly positive counter incre-

ment. We define the set BA(q) of QFPA formulae to be the smallest set containing

for each q′ ∈ Q a QFPA formula

ϕ(c)
def
= ∃c′, c′′.ϕq,q′(c, c

′) ∧ ϕq′,q′(c
′, c′′) ∧ c′′ > c′,

where ϕq,q′(c, c
′) ∈ RA(q, q′) and ϕq′,q′ ∈ RA(q′, q′). Clearly, for any n ∈ N and

ϕ(c) ∈ BA(q), ϕ[c/n] is satisfiable if, and only if, the reachability set at (q, n) is

infinite. Moreover, |ϕ| = O(|A|5) for each ϕ ∈ BA(q).

Theorem 4.1.3 Deciding boundedness for one-counter is NP-complete.
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4.2 Reachability in Parametric Counter Automata

In this section, we are going to establish the complexity of reachability in parametric

counter automata. As discussed in Chapter 2, reachability in k-counter automata with

k ≥ 2 is undecidable, but decidable for any k if we consider zero-test-free k-counter

automata. The first result of this section is that even if we restrict ourselves to zero-

test-free parametric k-counter automata, the reachability problem is undecidable for

k ≥ 4.

Theorem 4.2.1 The reachability problem for zero-test-free parametric k-counter au-

tomata is Σ0
1-complete for k ≥ 4.

Proof. Regarding hardness, we reduce from the reachability problem for two-counter

automata. Given a two-counter automaton A, we derive from A a zero-test-free

parametric four-counter automaton A′ with one parameter y such that for any two

control locations q, q′ of A we have (q, 0) →∗
A (q′, 0) if, and only if, (q0,~0) →∗

A′ (q′0,~0)

for some designated control locations q0, q
′
0 of A′.

Suppose that there is a run ̺ starting in (q, 0) and ending in (q′, 0) in T (A). Since

r is finite, each counter of A does not grow above some m ∈ N. Our aim is to use

the parameter y in order to guess this maximum value m so that we can simulate a

run of A by A′. We adopt an idea introduced by Lipton [76]. During an emulation

of a run of A, the first counter of A′ stores the value n1 of the first counter and

the second counter of A′ stores m − n1, ensuring as an invariant that the sum of

the value of the first and the second counter is m. Likewise, the third counter of A′

stores the value n2 of the second counter of A and the fourth counter of A′ stores

m − n2. Performing a zero-test on the first respectively second counter of A can

then be simulated by adding and subtracting y from the second respectively fourth

counter of A′. Thus, for any instantiation of y, provided that the above invariants

hold, A′ can correctly simulate all runs of A in which the counter value does not

exceed the value of y. In order to construct A′ from A we introduce an extra control

location in between all transitions of A, as shown by the replacement rules in Figure

4.3: any addi(z)-operation on the i-th counter of A is replaced by two consecutive
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A A′ A A′

q q

q′

•

q′

q q

q′

•

q′

=⇒ =⇒addi(z)

add2i−1(z)

add2i(−z)

zeroi(z)

add2i(−y)

add2i(+y)

Figure 4.3: Replacement rules for the reduction from reachability in a two-counter

automaton A to reachability in zero-test free parametric four-counter automaton A′.

Here A′ is obtained by replacing each transition on the left-hand side of the =⇒-arrow

by the transitions on the right-hand side of =⇒ arrow.

add-operations on the (2i−1)-th and the 2i-th counter of A′, and any zeroi-operation

on counter i is replaced by consecutively subtracting and adding y to the counter

2i− 1. The only missing piece is the initialisation part of A′ that initially establishes

the invariant between the counters of A′. But this is trivially done by introducing

a new control location q0 and by adding y to the second and fourth counter along a

unique path connecting q0 to q. Likewise, we connect q′ to a new location q′0 and along

the transition from q′ to q′0 we subtract y from the second and the fourth counter.

Clearly, (q, 0) →∗
A (q′, 0) if, and only if, (q0,~0) →∗

A′ (q′0,~0).

Regarding membership in Σ0
1, we can enumerate all possible valuations ν of the

parameters and check whether (q, ~n) →∗
A (q′, ~n′), which is decidable by Theorem

4.1.1. ¤

In contrast to this negative result, we show in the remainder of this section that

reachability is decidable for parametric one-counter automata with zero tests. This

result is shown by generalising the concepts and techniques from Section 4.1. Reach-

ability relations in parametric one-counter automata are not definable in QFPA, but,

as we are going to show below, definable in QFPAD. Deciding reachability and related
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problems for various classes of counter machines via a reduction to QFPAD is a tool

that has extensively been used in the literature, see e.g. [64, 38, 63].

Before we begin, we provide a reduction in the converse direction and show that

satisfiability in QFPAD is reducible to reachability in parametric one-counter au-

tomata. This reduction serves two purposes. First, it is an interesting fact that sat-

isfiability in QFPAD can be rephrased in automata-theoretic terms. It is known [21]

that satisfiability in QFPA is reducible to emptiness in non-deterministic finite-state

automata, and thus we produce here a result in a similar spirit for QFPAD. Second,

the reduction provided strengthens the NP-hardness result for reachability. Recall

that satisfiability in QFPAD is already NP-complete for a QFPAD formula with a

fixed number of Boolean connectives. The subsequent result shows that shows that

reachability in parametric one-counter automata is already NP-hard for a fixed num-

ber of control locations.

Lemma 4.2.1 Let ϕ(~y) be a QFPAD formula. There exists a parametric one-counter

automaton A with control locations q, q′ such that ϕ is satisfiable if, and only if,

(q, 0) →∗
A (q′, 0).

Proof. Let ~y = (y1, . . . , yn), for our purposes we may assume with no loss of gener-

ality that y1, . . . , yn are all variables occurring in ϕ, i.e., no ∃-quantifier occurs in

ϕ. Moreover, we assume that no negation symbol occurs in ϕ. Any QFPAD for-

mula can be transformed into negation normal form and by applying the procedure

described in Section 2.6.2, i.e., by introducing additional first-order slack variables,

non-divisibilities in ϕ can be eliminated. Furthermore, we may assume that co-

efficients in ϕ are encoded in unary. Moreover, we subsequently assume that the

first-order variables in any linear polynomial p from ϕ are ordered in a way such that

variables with positive coefficient are written first and variable with negative coeffi-

cients last, i.e., any p is written as p = yi,1 + . . . + yi,j + z − yi,j+1 − . . .− yi,m, where

z ∈ Z.

Figure 4.4 shows the gadgets that are the building blocks of our reduction. On

top, the parametric one-counter automaton Ap for a single linear polynomial p(~y) is
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⊙
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⊙zero

Aϕ1∧ϕ2 : Aϕ1 Aϕ2
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⊙
©

⊙ ⊙

Aϕ1∨ϕ2 :

Aϕ1

Aϕ2

©

©

©

⊙

⊙

⊙

Figure 4.4: Gadgets of the parametric one-counter automaton constructed in the

reduction from QFPAD to a reachability instance.

given. One row below is the automaton Ap|p′ used to handle divisibilities p|p′ from ϕ.

The automaton Ap|p′ first non-deterministically chooses to add the valuation of the

linear polynomial p′ or −p′ to the counter. It then repeatedly subtracts either p or

−p from the counter until the counter value is 0. Since under any valuation we have

p|p′ ⇔ p| − p′ ⇔ −p| − p′ ⇔ −p|p′ it follows that under any valuation, whenever we

can reach the location
⊙

from © then the value of p divides the value of p′. Here, it

is important that the parameters in the linear polynomials are ordered according to

their sign, roughly speaking, in order to prevent the automaton from getting stuck.

Boolean connectives are handled in a straightforward fashion, i.e., the automaton

Aϕ1∧ϕ2 first runs through the automaton that corresponds to ϕ1 and then through

the automaton corresponds to ϕ2. Likewise, disjunction is handled by Aϕ1∨ϕ2 via

branching. It is now clear how to define the automaton Aϕ by structural induction

for any ϕ and that Aϕ has the desired properties. ¤
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Corollary 4.2.1 Reachability in parametric one-counter automata is NP-hard al-

ready for a fixed number of control locations.

We now show that for any reachability problem in a parametric one-counter au-

tomaton we can construct a QFPAD formula ϕ such that reachability holds if, and

only if, ϕ is satisfiable. To this end, we generalise the approach taken in Section

4.1. For the remainder of this section, let us fix a parametric one-counter automaton

A = (Q, Y, Λ, q0, F, ∆, λ, ξ) with Y = {y1, . . . , yk}. Given an instance (q, n), (q′, n′) of

a reachability problem and let ~y = (y1, . . . , yk), we are going to show that the set

{(ν(~y), n, n′) ∈ Nk+2 : ν(~y) = (m1, . . . ,mk), (q, n) →∗
Aν (q′, n′)}

is QFPAD-definable. Here, we have lifted valuations to vectors, i.e., ν(~y)
def
= (ν(y1), . . . , ν(yk)).

As a first step, we generalise weighted graphs to parametric weighted graphs, which

we sometimes just call parametric graphs. Similar to a weighted graph, a parametric

graph is a tuple G = (V, Y,E, µ), where µ can additionally label a transition with a

parameter from Y , i.e., µ : E → Z ∪ {◦y : ◦ ∈ {+,−}, y ∈ Y }. Given a valuation

of the parameters ν : Y → N, we denote by Gν the weighted graph obtained from

replacing every label ◦y ∈ Y of G by ◦ν(y). All other definitions from weighted graphs

carry over straightforwardly and parameters are treated symbolically. For example,

given a path flow f : E → N, the weight of f becomes a linear polynomial in ~y instead

of an integer:

weight(G, f)(~y)
def
=

∑

e∈E

f(e)µ(e).

Recall that for a weighted graph G and an s-t support F , in Lemma 4.1.1 we gave

a QFPA formula ϕ(G,F, s, t)(c, c′) such that for all n, n ∈ N, ϕ(G,F, s, t)[n/c, n′/c′]

is satisfiable if, and only if, there exists an s-t path flow f with support F such

that weight(G, f) = n′ − n. For a parametric graph G, the analogous question is to

decide whether there exists a valuation of the parameters such that there is an s-t

path flow with a certain weight. This problem is expressible in the existential theory

〈N, <, +, ·, 0, 1〉, where as in Section 4.1 we treat the weights f(e) of f as first-order
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variables:

ϕ(G,F, ~y, s, t)(c, c′)
def
= ∃y1, . . . , yk.∃e∈Ef(e).ψ(G, s, t)∧

∧
∑

e∈F

f(e)µ(e) = c′ − c ∧
∧

e∈E\F

f(e) = 0.

Here, ψ(G, s, t) is the QFPA formula open in f(e), e ∈ E corresponding to the Eu-

lerian path flow conditions from Lemma 4.1.6. The drawback is of course that the

existential theory of 〈N, <, +, ·, 0, 1〉 is undecidable. However, using the decomposi-

tion of path flows as loops and simple paths given in Section 4.1.3, we obtain a set of

equi-satisfiable QFPAD formulae. We thus now consider those two types of graphs

separately.

Let G be a graph with parameters ~y = (y1, . . . , yk), let F be a v-v support such

that G/F is a loop and let n, n′ ∈ N. By the Eulerian path flow conditions given

in Lemma 4.1.6, any path flow f assigns the same weight to each of the edges in F .

Consequently, if we are asking for the existence of a valuation of the parameters and

a v-v path flow f with support F and a weight z = n′−n, the valuation and the path

flow exist if the total weight of the loop G/F divides z. This expresses in QFPAD

as follows, where the last conjunct ensures that loops with negative weight can only

contribute to a total negative weight and vice versa:

ϕℓ(G,F )(~y, c, c′)
def
=

∑

e∈F

µ(e)|c′ − c ∧
∑

e∈F

µ(e) > 0 ↔ c′ − c > 0. (4.8)

It follows that for any valuation ν, ϕℓ(G,F )[ν(~y)/~y, n/c, n′/c′] holds if, and only if,

there exists a v-v path flow f in Gν such that weight(Gν , f) = n′ − n.

Next, we consider the case when G/F is a simple s-t path. This case is trivial,

since any s-t path flow can only assign weight one to each edge in F . We set

ϕp(G,F )(~y, c, c′)
def
=

∑

e∈F

µ(e) = c′ − c. (4.9)

Clearly for any valuation ν, ϕ(G,F )[ν(~y)/~y, n/c, n′/c′] holds if, and only if, there

exists an s-t path flow f such that weight(Gν , f) = n′ − n.

We can now use the decomposition provided in Lemma 4.1.10 in order to show

that the existence of path flows in parametric graphs is definable in QFPAD.
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Lemma 4.2.2 Given a parametric graph G, vertices s, t and an s-t support F , the

set

{(ν(~y), n, n′) : there exists an s-t path flow f with support F

such that weight(Gν , f) = n′ − n}

is definable via a set P (G,F, s, t) of QFPAD formulae, where |ϕ| ∈ O(|G|3) for each

ϕ ∈ P (G, s, t).

Proof. For any sequence of supports ~F = (F0, F1, . . . , Fj), j ∈ [|G|2] such that G/F0

is a simple s-t path, G/Fi is a simple loop and F =
⋃

i∈[0,j] Fi, P (G,F, s, t) is the

smallest set containing a QFPAD formula

ϕ(G, ~F )(~y, c, c′)
def
= ∃i∈[0,j]ci, c

′
i.ϕp(G,F0)(~y, c0, c

′
0) ∧

∧

i∈[j]

ϕℓ(G,Fi)(~y, ci, c
′
i)∧

∧
∑

i∈[0,j]

c′i − ci = c′ − c,

where ϕp and ϕℓ are defined as in Equation (4.9) respectively (4.8). Both |ϕp| =

O(|G|) and |ϕℓ| = O(|G|), hence |ϕ(G,F, s, t)| = O(|G|3).

Suppose ϕ(G, ~F )[ν(~y)/~y, n/c, n′/c′] holds for some ϕ(G, ~F ) ∈ P (G, s, t), a valua-

tion ν and n, n′ ∈ N. Applying the semantics of ϕp and ϕℓ, we conclude that there

are path flows f0, f1, . . . , fj and ni, n
′
i ∈ N such that weight(Gν , fi) = n′

i − ni and
∑

i∈[0,j] weight(Gν , fi) = n′ − n. It follows from Lemma 4.1.8 that f
def
=

∑

[0,j] fi is a

path flow. Moreover, weight(Gν , f) = n′ − n as required.

Conversely, assume that f is an s-t path flow such that weight(Gν , f) = n′ −

n for some valuation ν and n, n′ ∈ N. By Lemma 4.1.10 there exist path flows

f0, f1, . . . , fj, j ∈ [|G|2] such that G/F0 is a simple s-t path and each G/Fi is a loop

for i ∈ [j]. By construction of P (G, s, t), there exists some ϕ(G, ~F ) that is satisfiable

for this particular decomposition. ¤

This lemma is basically all that is needed in order to show that reachability in

parametric one-counter automata is in NP. Everything else is just a straightfor-

ward adaption of the proof given for one-counter automata without parameters, since
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through the parameters, most formulae constructed in Section 4.1 just become open

formulae in those parameters. The lemmas 4.1.15 and 4.1.16 which construct sets of

QFPA formulae that guarantee the existence of type-1, type-2 and type-3 reachabil-

ity certificates need to be adjusted to cater our needs. We defer details to the end

of this section and, for now, assume that there exist sets R1(G, s, t), R2(G, s, t) and

R3(G, s, t) that define the sets

Mi(G, s, t)
def
= {(ν(~y), n, n′) ∈ Nk+2 : there exists an s-t path flow f such that

(Gν , f, n, n′) is a type-i reachability certificate}

for each i ∈ [3]. In order to show that reachability in parametric one-counter automata

is in NP, instead of repeating the proof given in Section 4.1, we now only sketch

differences and slight adjustments to the key lemmas in Section 4.1.

• The definition of the formulae given in Lemma 4.1.1 which express in QFPA the

weight and the drop of a path can be reused in order to obtain QFPA formulae

ϕw(G, π)(~y, c, c′) and ϕd(G, π)(~y, c, c′) such that for any path π,

ϕw(G, π)[ν(~y)/~y, n/c, n′/c′] ⇔ weight(Gν , π) = n′ − n; and

ϕd(G, π)[ν(~y)/~y, n/c, n′/c′] ⇔ drop(Gν , π) = n′ − n.

• Building upon the generalization of ϕw and ϕd, we obtain an analogue to the

QFPA formula defined in Equation (4.6) that allows for determining if a path

π that can be factored as π = π1 · π2 · π3 yields a positive cycle template with

respect to some n ∈ N. More specifically, we can construct a QFPA formula

ϕ(G, π1, π2)(~y, c) such that ϕ(G, π1, π2)[ν(~y)/~y, n/c] holds if, and only if, π is a

positive cycle template in Gν with respect to n.

• The encoding of the Bellman-Ford algorithm in QFPA in Lemma 4.1.5 can

directly be used for parametric graphs such that we obtain a formula ϕ(G)(~y)

such that ϕ(G)[ν(~y)/~y] holds if, and only if, Gν does not contain any positive

cycle.
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• Assuming we have shown the analogue statements to the lemmas 4.1.15 and

4.1.16 and thus have sets Ri(G, s, t) as described above, we can easily adopt the

proof of Lemma 4.1.17 in order to obtain a set Rz
A(q, q′) of QFPAD formulae

that defines the set

{(ν(~y), n, n′) ∈ Nk+2 : (q, n) →∗
Aν (q′, n′)}

for zero-test free parametric one-counter automata.

• Finally, by guessing the order in which zero-test transitions are traversed in A

and using the sets Rz
A(q, q′) constructed above, we get the analogue to Lemma

4.1.18 and can construct for an arbitrary parametric one-counter automaton A

and control locations q, q′ a set RA(q, q′) of QFPAD formulae that defines the

set

{(ν(~y), n, n′) ∈ Nk+2 : (q, n) →∗
Aν (q′, n′)}.

Moreover, since the size of the constructed formulae do not change in our gen-

eralisation, we have |ϕ| = O(|GA|
5) for all ϕ ∈ RA(q, q′).

Since by Theorem 2.6.3 satisfiability in QFPAD is NP-complete, we obtain the main

result of this section.

Theorem 4.2.2 Reachability in parametric one-counter automata is NP-complete.

As in the case of one-counter automata without parameters, this result allows us

to conclude that checking the existence of a Büchi path in parametric one-counter

automata is NP-complete as well via a straightforward adoption of the proof of Lemma

4.1.20.

Theorem 4.2.3 Deciding the existence of a Büchi path in parametric one-counter

automata is NP-complete.

We close this section with the deferred construction of the sets R1(G, s, t), R2(G, s, t)

and R3(G, s, t) for a parametric graph G and vertices s and t. The construction is
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analogue to the construction in Section 4.1. The main difference is that we have to

incorporate Lemma 4.2.2.

Regarding R1, suppose we are given G and vertices s, t. Let us fix an s-t support

F and a support-edge decomposition (Fi, vi, v
′
i, ei)i∈[m]. For each Fi, by Lemma 4.2.2

there exists a set P (G,Fi, vi, v
′
i) of QFPAD formulae that defines the set of valuations

for which a vi-v
′
i path flow fi exists. Each QFPAD formula in such a set P (G,Fi, vi, v

′
i)

is determined by supports Fi,0, Fi,1, . . . , Fi,ji
for some ji ∈ [|G|2] which give the decom-

position of Fi in simple paths and cycles. Thus, for any fixed s-t support F , any fixed

support-edge decomposition (Fi, vi, v
′
i, ei)i∈[m] of F and any fixed decomposition of all

Fi into a simple path and loops ~Fi = (Fi,0, Fi,1, . . . Fi,ij), R1(G, s, t) is the smallest set

containing a QFPAD formula

ϕ
def
= ∃i∈[m]ci, c

′
i. ϕ(G/F )(~y)

︸ ︷︷ ︸

no positive cycles

∧

∧
∧

i∈[m]

ϕ(G, ~Fi)(~y, ci, c
′
i)

︸ ︷︷ ︸

there are path flows fi with weight c′i−ci for the fixed decompositions Fi,0,...,Fi,ji

∧

∧
∧

i∈[m]

∑

j∈[i]

c′i − ci + µ(ei) ≥ −c

︸ ︷︷ ︸

weights of the edge decomposition sum up correctly

∧
∑

i∈[m]

c′i − ci + µ(ei) = c′ − c

︸ ︷︷ ︸

total weight matches

.

Here, ϕ(G/F )(~y) is the QFPAD formula ensuring that no positive cycles exist and

ϕ(G, ~Fi)(~y, ci, c
′
i) is the QFPAD formula from Lemma 4.2.2 for the fixed decomposition

of each Fi. Since the size of ϕ(G/F )(~y) dominates the size of all other conjuncts, we

have |ϕ| = O(|G|4) for each ϕ ∈ R1(G, s, t).

As in Section 4.1, the set R2 can be defined as R2(G, s, t)
def
= R1(G

op, t, s).

Finally, we are going to sketch the construction of the set R3(G, s, t). To this end,

we fix a support F and cycle templates ℓ = π1 · π2 · π3 and ℓ′ = π′
1 · π

′
2 · π

′
3. As in

the case of R1, there is no single formula QFPAD that expresses the existence of a

valuation ν and a path flow f with support F , and for that reason R3 also needs to

contain a formula for each formula in P (G,F, s, t). Thus, for all fixed s-t supports

F , all s-cycles ℓ that decompose as ℓ = π1 · π2 · π3, all t-cycles ℓ′ that decompose as

ℓ′ = π′
1 · π

′
2 · π

′
3 and all decompositions of F into a single path ~F = (F0, F1, . . . , Fj)

109



q

a1

a2

ai

ad

Figure 4.5: A simple bounded one-counter automaton.

for some j ∈ [|G|2], R3(G, s, t) is the smallest set containing a QFPAD formula

ϕ(G,F, s, t, ℓ, ℓ′)(~y, c, c′)
def
= ϕ(G, π1, π2)(~y, c)

︸ ︷︷ ︸

suitable positive cycle at s

∧ ϕ(Gop, π′
1, π

′
2)(~y, c′)

︸ ︷︷ ︸

suitable positive cycle at t in Gop

∧

ϕ(G, ~F )(~y, c, c′)
︸ ︷︷ ︸

there is an s-t path flow for the fixed decomposition F0,...,Fj of F

4.3 Bounded One-Counter Automata

The precise complexity of reachability in bounded one-counter automata remains an

open problem of this thesis. Recall that bounded one-counter automata are one-

counter automata in which the counter has to stay between zero and some upper

bound b ∈ N on every run. At first sight, it might seem surprising that adding

an additional constraint makes determining the complexity of reachability harder.

However, a crucial observation in Section 4.1 was that we can use type-3 reachability

certificates in order to pump up and down the counter as necessary. It is obvious that

this approach does not work when there is an a priori upper bound on the counter.

In the remainder of this section, we are going to investigate aspects of reachability

in a simple class of bounded one-counter automata for which in the general case we

are unable to determine the precise complexity of reachability. However, we provide

some indications that the problem might still be in NP. We call the class we are

dealing with simple bounded one-counter automata. A simple bounded one-counter

automaton is presented in Figure 4.5. For simplicity, we allow for multiple edges

between control locations. Thus, a simple bounded one-counter automaton consists

of one control location q and d self loops at q labelled with ai ∈ Z and a bound b ∈ N.

It follows from Proposition 4.1.1 that the reachability problem for simple bounded
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one-counter automata is NP-hard. However, even if we are given the path flow of

a run, there is no apparent upper bound below PSPACE to verify the existence of a

run. Simple bounded one-counter automata thus provide the simplest instance of a

class of bounded one-counter automata for which we cannot determine the precise

complexity of reachability. The contribution of this section is that for d = 2 and a

given path flow, we are subsequently going to show that it is possible to check for

the existence of a run in polynomial time without actually constructing it as it is of

potentially exponential length.

Our main idea is to associate with every reachability instance and a given path flow

a polyhedron in a d-dimensional space. Checking reachability then reduces to checking

for the existence of a lattice path to some designated point inside this polyhedron

that corresponds to the path flow. For the special case d = 2, the existence of a

lattice path can be related to the number of integral points inside the polyhedron,

which is computable in polynomial time for the polyhedron that we obtain.

Definition 15 Given a simple bounded one-counter automaton A as depicted in

Figure 4.5 with edges labelled with ~a = (a1, . . . , ad) ∈ Zd, a bound b ∈ N and ~c ∈ Nd,

the polyhedron PA(~c) ⊆ Rd corresponding to A is defined as

PA(~c)
def
={~x ∈ Rd : 0 ≤ ~a · ~x ≤ b, 0 ≤ xi ≤ ci, i ∈ [d]},

where ~x ·~a is the inner product of ~x and ~a, and xi and ci denote the i-th component

of ~x respectively ~c. ♦

The grey shaded area in Figure 4.6 shows an example of a polyhedron PA(~c) corre-

sponding to a simple bounded one-counter automaton with two transitions such that

~a = (−5, 7), with bound b = 11 and ~c = (5, 4). The vector ~c can be thought of as

a path flow and, as we are going to show below, reachability in A reduces to asking

for the existence of a lattice path in P that starts in ~0 and ends in ~c. Formally, let

d ∈ N>0 and for i ∈ [d] let ~ui ∈ {0, 1}d denote the i-th unit vector, i.e., the i-th

component of ~ui is equal to one and all other components are equal to zero.
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x1 = c1

x2 = c2

~a · ~x = 0

~a · ~x = b

x1

x2

P1

P2P3

P ′
2

P ′
3P ′

1

P4

P

Figure 4.6: Example of a polyhedron PA(~c) and a lattice path from ~0 to ~c, where

~c = (5, 4) and ~a = (−5, 7) and b = 11.

Definition 16 Let P ⊆ Rd be a convex polyhedron and ~c ∈ Nd, a lattice path ρ

of length m starting in ~0 and ending in ~c in P is a finite sequence of unit vectors

~ui,1 . . . ~ui,m such that
∑

k∈[j] ~ui,k ∈ P for all j ∈ [0,m] and
∑

k∈[m] ~ui,k = ~c. ♦

Here, the empty sum is defined to be zero. An example of a lattice path can be found

in Figure 4.6. The following lemma relate runs in T (A) to lattice paths inside PA(~c).

Lemma 4.3.1 Let A be a simple bounded one-counter automaton with bound b ∈ N,

there exists a run ̺ : (q, 0) →∗
A (q, n) with the corresponding path π in GA if, and

only if, there exists a lattice path ρ starting in ~0 and ending in ~c in PA(~c), where

~c = (fπ(e1), . . . , fπ(ed)).

Proof. Let ̺ : (q, 0) →∗
A (q, n) be a run and let π = ei1ei2 . . . eim be its corresponding

path in GA
1. Define the desired lattice path as ρ

def
= ~ui,1 ~ui,2 . . . ~ui,n. We have 0 ≤

k ≤ b for all configurations (q, k) visited along ̺ and hence
∑

j∈[i] ~uij ∈ PA(~c) for all

i ∈ [0,m]. The converse direction follows analogously. ¤

1As we allow for multiple edges between control locations, here a path is a sequence of edges

rather than a sequence of vertices.

112



We remark, but do not prove, that by intersecting PA(~c) with the linear flow con-

straints from the equations (4.1) to (4.4) this lemma can be generalised such that

given a path flow of a run in an arbitrary bounded one-counter automaton corre-

sponds to the problem of deciding the existence of lattice paths in the corresponding

convex polygon.

As stated earlier, in the case of two dimensions it is possible to decide the existence

of a lattice path in terms of the discrete volume of PA(~c). In the following, let

D(P)
def
= #(P ∩ Z2) denote the discrete volume of a polyhedron P .

Lemma 4.3.2 Let PA(~c) be the polyhedron corresponding to a simple bounded one-

counter automaton A with ~c = (c1, c2) ∈ N2 and let n = c1 + c2. There exists a lattice

path ρ from ~0 to ~c in PA(~c) if, and only if, D(P) ≥ n + 1.

Proof. (“⇒”) Let ρ = ~ui,1 . . . ~ui,n be a lattice path in PA(~c). We have that
∑

k∈[j] ~ui,k ∈

PA(~c) ∩ Z2 for j ∈ [0, n] and since each ~ui,k 6= ~0 we conclude that D(PA(~c)) ≥ n + 1.

(“⇐”) If there is a point (c′1, c
′
2) ∈ PA(~c) such that (c′1 − 1, c′2) ∈ PA(~c) and

(c′1, c
′
2 − 1) ∈ PA(~c) then we have |a1| + |a2| ≤ b. Hence, any point in PA(~c) has a

predecessor in PA(~c) and thus every point in PA(~c) is reachable via a lattice path

starting from the origin.

It remains to consider the case in which each ~c ∈ PA(~c) ∩ Z2 has at most one

predecessor. For i ∈ N, set Di
def
= {x : (x, i) ∈ PA(~c) ∩ Z2}. We have #(Di ∩ Di+1) ≤

1 since otherwise some point in PA(~c) has two predecessors. Since D(PA(~c)) =
∑

i∈[0,c2] #Di ≥ c1 + c2 + 1 this implies #(Di ∩Di+1) = 1 for all i ∈ [0, c2 − 1]. Thus,

every pair of Di and Di+1 contains a point with the same x1-coordinate, which allows

us to construct a unique lattice path from ~0 to ~c. ¤

Considering the example in Figure 4.6, we see that the polyhedron PA(~c) contains

10 integral points, which by the previous lemma proves the existence of a lattice

path from ~0 to (5, 4). It remains to show that the discrete volume D(PA(~c)) of

PA(~c) can be computed in polynomial time. Our first observation is that D(PA(~c))

can be expressed as a sum of simpler polyhedra. Let us denote by △(P1, P2, P3)

and △(P ′
1, P

′
3, P

′
2) the triangles with endpoints P1, P2, P3 respectively P ′

1, P
′
3, P

′
2, by
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¤(P ′
1, P

′
3, P4, P3) the rectangle with endpoints P ′

1, P
′
3, P4, P3, and by P1P2 and P ′

1P
′
2

the lines between P1 and P2 respectively P ′
1 and P ′

2 in Figure 4.6. Since all endpoints

lie at the intersection of linear functions with rational coefficients, all endpoints are

rational. The discrete volume of PA(~c) can now be expressed as

D(PA(~c)) = D(¤(P ′
1, P

′
3, P4, P3)) − D(△(P1, P2, P3)) − D(△(P ′

1, P
′
3, P

′
2))

+ D(P1P2) + D(P ′
1P

′
2). (4.10)

We have that D(¤(P ′
1, P

′
3, P4, P3)) = (c1 + 1)(c2 + 1), which clearly is computable

in polynomial time. Regarding D(P1P2) and D(P ′
1P

′
2) we observe that given a linear

function f(x) = (mx+n)/l with gcd(m,n, l) = 1, f(x) ∈ Z for x = kl−n/m, k ∈ Z. It

follows that the number of lattice points of f(x) in an interval [x0, x1] can be obtained

by evaluating ⌊(x1 + n/m)/l⌋ − ⌈(x0 + n/m)/l⌉ + 1, which clearly can be computed

in polynomial time. Finally, by giving a generalisation of Pick’s theorem, Beck shows

[7] that the discrete volume of triangles with rational endpoints is computable in

polynomial time. Summing up, it follows that D(PA(~c)) is computable in polynomial

time via Equation (4.10). Hence by Lemma 4.3.2, the existence of a lattice path in

PA(~c) can be decided in polynomial time.

4.4 Discussion

This chapter established previously unknown complexity results about reachability

problems in various classes of counter automata. We showed that reachability in

one-counter automata is NP-complete, and, based upon that result, that reachabil-

ity in parametric one-counter automata is NP-complete as well. For the latter class,

we showed an interesting connection with satisfiability in quantifier-free Presburger

arithmetic with divisibility. We have also proved that reachability in k-counter au-

tomata with no zero tests is undecidable for k ≥ 4. Finally, we discussed reachability

in bounded one-counter automata, which remains an open problem of this thesis.

Our result on reachability in one-counter automata solves a problem left open by

Rosier and Yen about boundedness in one-counter automata [95]. It can also be seen
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to generalise a result by Plandowski and Rytter who show in [89] that deciding mem-

bership of compressed unary words in regular expressions with compressed constants

is NP-complete. Together with the inter-reducibility result between reachability in

two-clock timed automata and bounded one-counter automata in Chapter 3, our re-

sult on reachability in one-counter automata also gives some hints that reachability

in two-clock timed automata might be in NP. The result on reachability in para-

metric one-counter automata is closely related to work by Ibarra et.al. [65], which

shows decidability of reachability for a subset of the class of deterministic parametric

one-counter automata with sign tests. The decidability of reachability over the whole

class of such automata is stated as an open problem in [65]. Note that although we

do not allow negative counter values and sign tests, we allow for nondeterminism.

Thus, our result is incomparable with this open problem. From a language-theory

perspective, it is interesting to mention that parametric one-counter can generate

traces of the form anbncn, which cannot be generated by pushdown systems [6]. The

result that reachability in parametric one-counter automata is decidable has recently

been used by Demri and Sangnier in order to show decidability of model checking a

fragment of freeze LTL over one-counter automata [41].

With regard to future work, the status of reachability in bounded one-counter

automata is a compelling problem that remains to be solved, in particular due to its

connection to reachability in two-clock timed automata. It is not clear at the moment

whether the lattice-path approach presented in Section 4.3 can be generalised for

simple bounded one-counter automata with more than two transitions. If this were the

case, employing similar decomposition techniques that have been used in Section 4.1

could then possibly help to solve the general problem. We have seen that determining

the complexity of reachability in one-counter automata almost immediately yields

decidability of reachability in parametric one-counter automata. It seems conceivable

that determining the complexity of reachability in bounded one-counter automata is

going to give a similar result for parametric bounded one-counter automata, which in

turn might give a result for reachability in parametric two-clock timed automata as

discussed at the end of Chapter 3.
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A further direction for future work would be to consider synthesis problems for

parametric one-counter automata that ensure that no Büchi paths exist in the one-

counter automaton obtained under a valuation. There is no obvious way to obtain a

solution to this problem via a straightforward adoption of the techniques developed in

Section 4.3. Without going into too much detail, in particular QFPAD does not seem

to be expressive enough to capture such a problem, since we ask whether there exists a

valuation to the parameters such that all paths are no Büchi paths, which essentially

involves one quantifier alternation. Although the first-order theory of 〈N, <, +, ·, 0, 1〉

is already undecidable with one ∃∀ quantifier alternation [75], there exist syntactic

fragments of the first-order theory of 〈N, <, +, ·, 0, 1〉, which are decidable [17]. It

should be interesting to investigate whether such a syntactic fragment allows for

encoding and solving this synthesis problem.
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Chapter 5

Model Checking One-Counter

Automata

This chapter is about model checking traces of transition systems generated by one-

counter automata and families of transition systems generated by parametric one-

counter automata. Model checking a labelled transition system T = (S,→, Λ, λ) is

to determine whether a formula ϕ given in some temporal specification logic holds

in a state s ∈ S of T , which we write as (T, s) |= ϕ. Generally speaking, a formula

holds in a state if the traces that begin in this state are a model of this formula.

The precise semantics depend on the type of specification logic under consideration

and mainly differ depending on whether we deal with branching-time or linear-time

logics. Details are going to be provided in the respective sections of this chapter.

In all generality, this chapter is about the computational complexity of the following

problems.

OCA Model Checking

INPUT: A one-counter automaton A, a formula ϕ in some specification logic

and (q, n) ∈ C(A).

QUESTION: Does (T (A), (q, n)) |= ϕ?

For parametric one-counter automata, we are going to consider model checking the
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family of all transition systems generated by all instantiations of the parameters.

POCA Model Checking

INPUT: A parametric one-counter automaton A with parameters Y , a formula

ϕ in some specification logic and (q, n) ∈ C(A).

QUESTION: Does (T (Aν), (q, n)) |= ϕ for all valuations ν : Y → N?

There are a number of computational challenges involved in solving the above prob-

lems. First, in general, transition systems generated by one-counter automata have

an infinite number of traces leaving from a given state. Second, a parametric one-

counter automaton yields an infinite family of one-counter automata since there are

infinitely many possible instantiations. It should not be surprising that some model

checking problems turn out to be undecidable.

The first part of this chapter deals with the branching-time logics. We are going

to consider computation tree logic (CTL) and its syntactic fragment EF and show that

CTL model checking of one-counter automata is EXPSPACE-complete, whereas it is

PSPACE-complete for EF. For both logics, the model checking problem for parametric

one-counter automata is undecidable. The second part then deals with linear-time

temporal logic (LTL), for which model checking one-counter automata is PSPACE-

complete and coNEXPTIME-complete for parametric one-counter automata. Except

for the EF case, the lower bounds are going to be the most interesting. They rely on

some number-theoretic encoding of information in counter values, and we are going

to construct one-counter automata and formulae in the specification logics under

consideration that allow us to access this information in quite sophisticated ways.

Where possible, we will give a fine-grained analysis of the computational complexity

of the model checking problems and distinguish between their combined and their

data complexity. When establishing the combined complexity of a model checking

problem, the counter automaton and the formula are allowed to vary. When dealing

with the data complexity of a model checking problem, the counter automaton is

allowed to vary but the formula is fixed.

Many of the upper bounds provided in this chapter rely on results from the lit-
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erature on model checking of one-counter automata with updates encoded in unary.

We are now going to describe a procedure, which turns a one-counter automaton

into a unary one-counter automaton and is going to enable us to make use of those

results. The underlying idea is straightforward: we are going to replace every transi-

tion updating the counter by a chain of unary updates. All control locations that are

newly introduced during this process are going to be labelled with some designated

fresh label, which will later allow us to distinguish old from new control locations.

More formally, given a one-counter automaton A = (Q, Λ, q0, F, ∆, λ, ξ), the unary

one-counter automaton A′ = (Q′, Λ, q0, F, ∆′, λ′, ξ′) corresponding to A is obtained

from A by

• introducing for each transition (q, q′) ∈ ∆ of A labelled with add(z), |z| > 1,

|z|−1 new control locations (q, q′, 1), . . . , (q, q′, |z|−1) ∈ Q′ that are all labelled

by λ′ with a fresh label α;

• removing the transition (q, q′) for any such transition from ∆′;

• introducing new transitions (q, (q, q′, 1)), ((q, q′, |z|−1), q′) ∈ ∆′ and ((q, q′, i), (q, q′, i+

1)) ∈ ∆′ for all i ∈ [|z| − 2] that are all labelled by ξ′ with add(+1) if z > 1 and

labelled with add(−1) if z < −1; and

• otherwise leaving A unchanged.

We have |A′| = O(exp(|A|)). Note that A′ can be constructed from A with a PSPACE

transducer.

5.1 Branching-Time Logics

This section considers model checking formulae of the branching-time logic CTL and

its syntactic fragment EF on transition systems generated by one-counter automata

and families of transition systems generated by parametric one-counter automata.

The syntax of CTL is given by the following grammar, where γ ranges over a set of
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labels Λ:

ϕ ::= γ | ϕ ∧ ϕ | ¬ϕ | EXϕ | E(ϕUϕ) | E(ϕWUϕ).

The size |ϕ| of a CTL formula ϕ is the number of symbols required to write it down.

We define true
def
= ¬(γ ∧ ¬γ) for some γ ∈ Λ. The additional Boolean connectives are

defined as follows: ϕ1 ∨ ϕ2
def
= ¬(¬ϕ1 ∧ ¬ϕ2), ϕ1 → ϕ2

def
= ¬ϕ1 ∨ ϕ2 and ϕ1 ↔ ϕ2

def
=

ϕ1 → ϕ2 ∧ ϕ2 → ϕ1. Moreover, we introduce the following additional modalities:

EFϕ
def
= trueUϕ, AGϕ

def
= ¬EF¬ϕ and AXϕ

def
= ¬EX¬ϕ. The branching-time logic EF is

defined as a syntactic fragment of CTL by the following grammar:

ϕ ::= γ | ϕ ∧ ϕ | ¬ϕ | EXϕ | EFϕ.

An EF formula is in negation normal form (NNF) if all negation symbols only occur in

front of a label. Using standard algorithms and the modal abbreviations introduced

above, any EF formula can be turned into one in negation normal form in polynomial

time.

The semantics of CTL and EF are presented in Table 5.1 and given in terms of a

labelled transition system T = (S,→, Λ, λ) and a state s ∈ S.

In [98], Serre shows that modal µ-calculus model checking of unary one-counter

automata is decidable and in PSPACE. Since CTL can be embedded into the model µ-

calculus [20], it follows that CTL model checking of unary one-counter automata is in

PSPACE. We are going to use this result in order to show that CTL model checking of

one-counter automata is in EXPSPACE. Given a one-counter automaton A, let A′ be

the unary one-counter automaton corresponding to A as described in the introduction

of this chapter. Given an instance A, ϕ and (q, n) of a CTL model checking problem,

the idea is to compute a modified CTL formula ϕ† such that (T (A), (q, n)) |= ϕ if,

and only if, (T (A′), (q, n)) |= ϕ†. Informally speaking, the formula ϕ† needs to ignore

states labelled with the fresh proposition α. It is formally defined as follows:

γ† def
= γ (EXϕ)†

def
= EX(E(αU(¬α ∧ ϕ†)))

(ϕ1 ∧ ϕ2)
† def

= ϕ†
1 ∧ ϕ†

2 (E(ϕ1Uϕ2))
† def

= E((α ∨ ϕ†
1)U(¬α ∧ ϕ†

2))

(¬ϕ)†
def
= ¬ϕ† (E(ϕ1WUϕ2))

† def
= E((α ∨ ϕ†

1)WU(¬α ∧ ϕ†
2))
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(T, s) |= γ ⇐⇒ γ ∈ λ(s)

(T, s) |= ϕ1 ∧ ϕ2 ⇐⇒ (T, s) |= ϕ1 and (T, s) |= ϕ2

(T, s) |= ¬ϕ ⇐⇒ (T, s) 6|= ϕ

(T, s) |= EXϕ ⇐⇒ (T, s′) |= ϕ for some s′ ∈ S with s → s′

(T, s) |= E(ϕ1Uϕ2) ⇐⇒ there are n ∈ N, s1, . . . , sn ∈ S such that s1 = s,

si → si+1, (T, si) |= ϕ1 for all i ∈ [n − 1]

and (T, sn) |= ϕ2

(T, s) |= E(ϕ1WUϕ2) ⇐⇒ (T, s) |= E(ϕ1Uϕ2) or there are s1, s2, . . . ∈ S

such that s1 = s, si → si+1 and (T, si) |= ϕ1

for all i ∈ N>0

Table 5.1: Semantics of CTL.

Note that the size of ϕ† is linear in the size of ϕ. The following lemma establishes

the correspondence between A and ϕ and A′ and ϕ†.

Lemma 5.1.1 Let A, ϕ and (q, n) be an instance of an CTL model checking problem,

and let A′ and ϕ† be defined as above. Then (T (A), (q, n)) |= ϕ if, and only if,

(T (A′), (q, n)) |= ϕ†.

Proof. We sketch a proof by structural induction on ϕ and only consider the inter-

esting cases ϕ = EXϕ′, ϕ = E(ϕ1Uϕ2) and E(ϕ1WUϕ2). For ϕ = EXϕ′, suppose

(T (A), (q, n)) |= ϕ, by the semantic definition there is a (q′, n′) such that (q, n) →A

(q′, n′) and (T (A), (q′, n′)) |= ϕ′. By the induction hypothesis, (T (A′), (q′, n′)) |=

(ϕ′)†. Moreover, there is a (q, n)-(q′, n′) path ̺ in T (A′) such that (T (A′), ̺(i)) |= α

for all i ∈ [2, |̺|]. Consequently, (T (A′), (q, n)) |= EX(E(αU(¬α ∧ ϕ†))).

For ϕ = E(ϕ1Uϕ2), by the semantic definition there exists a (q, n)-(q′, n′) path

̺ in T (A) such that (T (A), (q′, n′)) |= ϕ2 and (T (A), ̺(i)) |= ϕ1 for all i ∈ [|̺|].

By the induction hypothesis, (T (A′), (q′, n′)) |= ϕ†
2 and (T (A′), ̺(i)) |= ϕ†

1 for all
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i ∈ [|̺|]. Moreover, for all i ∈ [|̺|] there are ̺(i)-̺(i + 1) paths ̺i in T (A′) such

that (T (A′), ̺i(j)) |= α for all j ∈ [2, |̺i|]. Consequently, (T (A′), (q, n)) |= E((α ∨

ϕ†
1)U(¬α∧ϕ†

2)). The same argument can be adopted to the case of ϕ = E(ϕ1WUϕ2).

The converse direction follows analogously. ¤

By the results from [98], deciding (T (A′), (q, n)) |= ϕ† is in PSPACE in the sum of

|A′|, |ϕ†| and the unary representation of n. Thus, deciding (T (A), (q, n)) |= ϕ is

in EXPSPACE in the sum of |A|, |ϕ| and the binary representation of n. Moreover,

this immediately gives us Π0
1-membership of CTL model checking on parametric one-

counter automata. Given a parametric one-counter automaton A and a CTL formula

ϕ, in order to decide whether there exists a valuation ν such that (T (Aν), (q, n)) 6|= ϕ,

we can enumerate all possible valuations ν and check (T (Aν), (q, n)) |= ϕ. Enumer-

ating all possible valuations of parameters Y can for example be done by iterating

over every i ∈ N and considering every valuation ν such that
∑

y∈Y ν(y) = i.

Proposition 5.1.1 Model checking CTL on one-counter automata is in EXPSPACE

and in Π0
1 for parametric one-counter automata.

5.1.1 EF Model Checking

We are now going to establish the computational complexity of EF model checking of

one-counter and parametric one-counter automata. For one-counter automata with

updates encoded in unary, this problem has first been considered by Jančar et al. in

[68] who established a DP lower bound1. A couple of years later, Göller, Mayr and

To showed that the problem is actually PNP-complete2 [51].

The first part of this section considers EF model checking of one-counter automata,

where we show that the problem is PSPACE-complete. The more difficult part is

showing membership in PSPACE, which is achieved by a thorough periodicity analysis

of paths in weighted graphs and builds upon and extends the results from Chapter

1A language L is in DP if L = L1 ∩ L2 for languages L1 ∈ NP and L2 ∈ coNP.
2
P

NP is the class of problems solvable by a polynomial-time algorithm that has access to an NP

oracle.
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4. The second part then considers parametric one-counter automata. We are going

to show that EF model checking is Π0
1-complete and provide a lower bound via a

reduction from Hilbert’s tenth problem.

EF Model Checking of One-Counter Automata

We are now going to show that EF model checking of one-counter automata is

PSPACE-complete. For the lower bound, we reduce from validity of quantified Boolean

formulae.

Definition 17 A quantified Boolean formula (QBF) ψ is a formula of the form

ψ = Q1x1.Q2 . . . Qnxn.φ(x1, . . . , xn),

where φ is a Boolean formula and Qi ∈ {∃,∀} for all i ∈ [n]. ♦

The validity of a QBF formula ψ is defined by induction on n. For n = 0, ψ is

a propositional formula φ, and ψ is valid if φ evaluates to true. For n > 0 and

ψ = Q1x1.Q2x2 . . . Qnxn.φ(x1, . . . , xn),

• if Q1 = ∃ then ψ is valid if

– Q2x2 . . . Qnxn.(φ[0/x1])(x2, . . . , xn) or

– Q2x2 . . . Qnxn.(φ[1/x1])(x2, . . . , xn) are valid; and

• if Q1 = ∀ then ψ is valid if

– Q2x2 . . . Qnxn.(φ[0/x1])(x2, . . . , xn) and

– Q2x2 . . . Qnxn.(φ[1/x1])(x2, . . . , xn) are valid.

Checking validity of a quantified Boolean formula is a PSPACE-complete problem [100]

and remains PSPACE-hard if we restrict the matrix formula φ to be in 3-CNF.

QBF 3-SAT

INPUT: A QBF formula ψ = Q1x1 . . . Qnxn.φ(x1, . . . , xn) with φ in 3-CNF.
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Figure 5.1: One-counter automaton A constructed in the proof of PSPACE-hardness

of EF model checking.

QUESTION: Is ψ valid?

We are now going to show PSPACE-hardness of EF model checking of one-counter au-

tomata via a reduction from QBF 3-SAT. Given an instance ψ = Q1x1 . . . Qnxn.φ(x1, . . . , xn)

of QBF 3-SAT, the idea is to encode an assignment of the Boolean variables into the

bits of the counter. The EX and AX modalities can then be used in order to simulate

the quantifiers of ψ, and the gadgets An,i from Section 2.5.2 that allow for testing indi-

vidual bits of the counter in order to check whether an encoded assignment evaluates

φ to true.

Proposition 5.1.2 Model checking EF on one-counter automata is PSPACE-hard.

Proof. Let ψ = Q1x1 . . . Qnxn.φ(x1, . . . , xn) be an instance of QBF 3-SAT. Consider

the one-counter automaton A in Figure 5.1. Starting in q, on any path to q′ the

automaton can non-deterministically add 2i to the counter for each i ∈ [n], where

adding 2i indicates that the Boolean variable xi is set to 1. The control location q′

is then connected to gadgets An,1, . . . ,An,n from the example in Section 2.5.2, which

are such that starting in ©, a location labelled with γi is reachable in An,i if, and

only if, the i-th bit of the counter is set to 1, i.e., if 2i has previously been added to

the counter.

We now show how to derive from ψ an EF formula ψ† such that ψ is valid if, and

only if, (T (A), (q, 0)) |= ψ†. For a literal xi, we define x†
i

def
= EFγi and for a literal ¬xi

we set (¬xi)
† def

= ¬x†
i . For φ = (ℓ1,1 ∨ ℓ1,2 ∨ ℓ1,3) ∧ . . . ∧ (ℓm,1 ∨ ℓm,2 ∨ ℓm,3), we set

φ† def
= (ℓ†1,1 ∨ ℓ†1,2 ∨ ℓ†1,3) ∧ . . . ∧ (ℓ†m,1 ∨ ℓ†m,2 ∨ ℓ†m,3) and for a quantifier Q ∈ {∃,∀}, we
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set ∃† def
= EXEX and ∀† def

= AXAX, and finally define ψ† def
= Q†

1Q
†
2 . . . Q†

n(φ†). It is easily

checked by induction on n that ψ† has the desired properties. ¤

We now turn towards showing that EF model checking of one-counter automata is

in PSPACE. Decidability of the problem already follows from Proposition 5.1.1, but

only gives us an EXPSPACE upper bound. In order to obtain a PSPACE algorithm,

we show a periodicity property of EF formulae. Informally speaking, this is going

to allow us to shrink the search space of counter values to consider when trying to

prove or disprove formulae of the form EFϕ, which a priori require the inspection of

a potentially infinite number of configurations.

To begin with, we state the following lemma. Informally speaking, it says that for

every one-counter automaton we can find constants k and δ polynomial in the size of

A and polynomials p, p′ such that p′(k) serves as a threshold above which whenever

there is a path whose absolute weight is greater than p(k) we can find a path whose

weight increases by the period δ. This gives us a periodicity property for reachability

relations.

Lemma 5.1.2 Let A be a one-counter automaton. There exist constants k, δ =

O(|A|2) and fixed polynomials p, p′ such that for all (q, n), (q′, n′) ∈ C(A),

(i) if n−n′ > p(k) and n′ > p′(k) then (q, n) →∗
A (q′, n′) if, and only if, (q, n+δ) →∗

A

(q′, n′); and

(ii) if n′ − n > p(k) and n > p′(k) then (q, n) →∗
A (q′, n′) if, and only if, (q, n) →∗

A

(q′, n′ + δ).

The proof of this lemma is quite tedious and technical, and we defer it to the end of

this section. In the following, let us fix a one-counter automaton A, the constants

k, δ and the polynomials p, p′ from the Lemma 5.1.2. When proving Lemma 5.1.2,

the construction of the polynomial p will ensure that p(k) is greater than the absolute

maximum increment in A. This ensures that if there is a run ̺ : (q, n) →∗
A (q′, n′)

such that n − n′ > p(k) then this run can be decomposed as ̺ = ̺1 · ̺2 such that
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̺1 : (q, n) →∗
A (q′′, n′′), ̺2 : (q′′, n′′) →∗

A (q′, n′) and n − n′′ < p(k). We will implicitly

use this fact in the subsequent lemmas.

We now show the periodicity property for EF formulae: given an EF formula ϕ,

there exists a threshold polynomial in |A| and |ϕ| such that ϕ holds with period δ.

Lemma 5.1.3 Let ϕ be an EF-formula in negation normal form and n > p(k)|ϕ| +

p′(k). Then (T (A), (q, n)) |= ϕ if, and only if, (T (A), (q, n + δ)) |= ϕ.

Proof. We show the statement by structural induction on ϕ and consider the only

interesting cases ϕ = EXϕ′ and ϕ = EFϕ′. For ϕ = EXϕ′, by the semantic definition

there exists a configuration (q′, n′) such that (q, n) →A (q′, n′) and (T (A), (q′, n′)) |=

ϕ′. Since n′ > p(k)|ϕ′| + p′(k), the induction hypothesis yields (T (A), (q′, n′)) |= ϕ′

if, and only if, (T (A), (q′, n′ + δ)) |= ϕ′, hence (T (A), (q, n)) |= ϕ if, and only if,

(T (A), (q, n + δ)) |= ϕ.

If ϕ = EFϕ′, by the semantic definition there is (q′, n′) such that there is a run

̺ : (q, n) →∗
A (q′, n′) and (T (A), (q′, n′)) |= ϕ′. Let π be the path corresponding to

̺ in GA. We distinguish two cases: (a) the smallest counter value occurring along ̺

is less than n − p(k) and (b) the smallest counter value occurring along ̺ is at most

n− p(k). In the latter case (b), no zero-labelled transition occurs along ̺. Moreover,

n′ > p(k)|ϕ′| + p′(k) and hence by the induction hypothesis, (T (A), (q′, n′)) |= ϕ′

if, and only if, (T (A), (q′, n′ + δ)) |= ϕ′. Consequently, we obtain the run ̺ + δ :

(q, n + δ)) →∗
A (q′, n′ + δ)), which gives (T (A), (q, n + δ)) |= EFϕ′. Otherwise in

case (a), we can decompose ̺ into ̺ = ̺′ · ̺′′ such that ̺′ : (q, n) →∗
A (q′′, n′′),

̺′′ : (q′′, n′′) →∗ (q′, n′), n′′ > p′(k) and n − n′′ > p(k). By Lemma 5.1.2(i), we get

(q, n) →∗
A (q′′, n′′) if, and only if, (q, n + δ) →∗

A (q′′, n′′), hence (T (A), (q, n + δ)) |=

EFϕ′. ¤

We can now provide the EF model checking algorithm. Algorithm 2 is an alternat-

ing algorithm that given a one-counter automaton A, a configuration (q, n) and an

EF formula ϕ in negation normal form returns true if, and only if, (T (A), (q, n)) |= ϕ.

The algorithm proceeds via induction on the structure of ϕ. The first lines deal with

the cases ϕ = γ, ϕ = ¬γ, ϕ = ϕ1 ∧ ϕ2 and ϕ = ϕ1 ∨ ϕ2, which are defined in a

126



Algorithm 2 EF model checking algorithm deciding (T (A), (q, n)) |= ϕ

Input: One-counter automaton A, EF formula ϕ in NNF, (q, n) ∈ C(A)

case ϕ = γ: return γ ∈ λ(q)

case ϕ = ¬γ: return γ /∈ λ(q)

case ϕ = ϕ1 ∧ ϕ2: return (T (A), (q, n)) |= ϕ1 && (T (A), (q, n)) |= ϕ2

case ϕ = ϕ1 ∨ ϕ2: return (T (A), (q, n)) |= ϕ1 ‖ (T (A), (q, n)) |= ϕ2

case ϕ = EXϕ′: existential move:

q′:= choose ∆(q)

case ξ(q, q′) = add(z) && n + z ≥ 0: return (T (A), (q′, n + z)) |= ϕ′

case ξ(q, q′) = zero && n = 0: return (T (A), (q′, 0)) |= ϕ′

otherwise: return false

case ϕ = AXϕ′: universal move:

q′:= choose ∆(q)

case ξ(q, q′) = add(z) && n + z ≥ 0: return (T (A), (q′, n + z)) |= ϕ′

case ξ(q, q′) = zero && n = 0: return (T (A), (q′, 0)) |= ϕ′

otherwise: return true

case ϕ = EFϕ′: existential move:

q′ := choose ∆(q)

n′ := choose {m ∈ N : m ≤ max{n + 2p(k), p(k)|ϕ′|} + p′(k) + δ + 1}

existential move:

if (q, n) →∗
A (q′, n′) then return (T (A), (q′, n′)) |= ϕ′

else return false

case ϕ = AGϕ′: universal move:

q′ := choose ∆(q)

n′ := choose {m ∈ N : m ≤ max{n + 2p(k), p(k)|ϕ′|} + p′(k) + δ + 1}

existential move:

if (q, n) →∗
A (q′, n′) then return (T (A), (q′, n′)) |= ϕ′

else return true
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straightforward way by just expanding the semantic definition of EF formulae. The

cases ϕ = EXϕ′ or ϕ = AXϕ′ are also straightforward. In the former case, a successor

configuration (q′, n′) of (q, n) is non-deterministically chosen, and Algorithm 2 then

recursively determines (T (A), (q′, n′)) |= ϕ′. In the latter case, the algorithm checks

(T (A), (q′, n′)) |= ϕ′ for all possible successor configurations (q′, n′) of (q, n). There

are two cases remaining: ϕ = EFϕ′ and ϕ = AGϕ′. For ϕ = EFϕ′, the algorithm

non-deterministically chooses a configuration (q′, n′), where

n′ ≤ max{n + 2p(k), p(k)|ϕ′|} + p′(k) + δ + 1

It then checks whether (q, n) →∗
A (q′, n′), recursively checks (T (A), (q′, n′)) |= ϕ′ and

returns the result. The algorithm handles the case ϕ = AGϕ′ analogously, but checks

(T (A), (q′, n′)) |= ϕ′ for all (q′, n′) with n′ as above such that (q, n) →∗
A (q′, n′). It

is clear that Algorithm 2 runs in alternating polynomial time, in particular since the

quantification in the EF and AG case is over a set of elements of size polynomial in

the size of A, n and ϕ. Hence by Theorem 2.4.1, the algorithm runs in PSPACE.

The correctness of the algorithm is immediate for all cases except for the EF and AG

modalities.

Proposition 5.1.3 Given a one-counter automaton A, (q, n) ∈ C(A) and an EF

formula ϕ, Algorithm 2 decides (T (A), (q, n)) |= ϕ in PSPACE.

Proof. As discussed above, the algorithm runs in alternating polynomial time and

hence in PSPACE.

Correctness of the algorithm is shown by induction on the structure of ϕ. As

already discussed, we only consider the cases ϕ = EFϕ′ and ϕ = AGϕ′. Sup-

pose (T (A), (q, n)) |= EFϕ′, by the semantic definition there exists (q′, n′) such that

(q, n) →∗
A (q′, n′) and (T (A), (q′, n′)) |= ϕ′. In order to prove Algorithm 2 correct, we

need to show that there is n′′ ≤ max{n + 2p(k), p(k)|ϕ′|} + p′(k) + δ + 1 such that

(q, n) →∗
A (q′, n′′) and (T (A), (q′, n′′)) |= ϕ′. If n′ > max{n+2p(k), p(k)|ϕ′|}+p′(k)+

δ + 1, it follows from Lemma 5.1.3 that (T (A), (q,m)) |= ϕ′ for all

m ∈ {n′ + iδ : i ∈ Z} ∩ {m′ ∈ N : m′ > p(k)|ϕ| + p′(k)}.

128



Moreover, we have (q, n) →∗
A (q′,m) for all

m ∈ {n′ + iδ : i ∈ Z} ∩ {m′ ∈ N : m′ > n + 2p(k) + p′(k)}.

The latter fact follows directly or indirectly from Lemma 5.1.2(ii): if n ≥ p′(k) then

we can directly apply Lemma 5.1.2(ii). Otherwise, there is a run ̺ : (q, n) →∗
A (q′′,m′)

such that m′ > p′(k), n′ − m′ > p(k) and (q′′,m′) →∗
A (q′, n′). It follows that the

required n′′ exists.

The case ϕ = AGϕ′ follows analogously to the EF case. ¤

It remains to prove Lemma 5.1.2. The proof is split into several smaller lemmas

and begins with showing periodicity properties of weights of paths in weighted graphs.

Let us fix a weighted graph G = (V,E, µ). We define a period δ, which is going to

be the least common multiple of the greatest common divisors of all weights of all

simple cycles in all strongly connected components of G. Formally, given a strongly

connected component S of G, we define

M(S)
def
= {z ∈ Z \ {0} : there is a simple v-cycle ℓ s.t. v ∈ S and weight(ℓ) = z} and

gcd(S)
def
=







1 if M(S) = ∅

gcd(M(S)) otherwise

The period δ is now defined as

δ
def
= lcm({gcd(S) : S is a strongly connected component in G}).

Let r ∈ N be the absolute maximum value of all weights occurring as labels in G and

let k
def
= r|V |, i.e., the maximum absolute value that the weight of a simple cycle in

G can be. Since 1 ≤ gcd S ≤ k for any strongly connected component S, we have

1 ≤ δ ≤ |V |k. Thus, the binary representation of δ is O(|G|3).

In order to show a periodicity property of weights of arbitrary paths in weighted

graphs, we are first going to establish a periodicity property for cycles. Recall that

S(v) denotes the strongly connected component of v, our first observation is that

gcd(S(v)) divides the weight of any v-cycle.
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Lemma 5.1.4 Let S be a strongly connected component, v ∈ S and ℓ be a v-cycle

such that g = gcd(S) and z = weight(ℓ), then g|z.

Proof. We show the statement by induction on |ℓ|. For the induction step, let ℓ′ be

obtained from ℓ by removing some simple w-cycle ℓw from ℓ for some w ∈ S. We

have z = weight(ℓ′) + weight(ℓw). By the induction hypothesis, g|weight(ℓ′) and the

definition of gcd(S) yields gcd(S)|weight(ℓw), hence g|z. ¤

The converse is however not true in general. For example, if there were exactly two

simple v-cycles in S with weights 5 and 7 say, no v-cycle can have weight 23 even

though gcd(5, 7) = 1 divides 23. Determining which weights can be achieved by some

cycles relates to the Frobenius problem for which the following result is known. For

a proof, see e.g. [99].

Proposition 5.1.4 Let a1 < . . . < am ∈ N>0, g = gcd{a1, . . . , am} and p(~x) =

a1x1 + . . . + amxm be a linear polynomial with constant term zero. The set

M = {z ∈ Z : there exists ~n ∈ Nm such that z = p(~n)}

can be written as M = U ∪ a + gN, where U ⊆ [0, a2
m] and a = min{n ∈ N : n ≥ a2

m

and g|n}.

In the above example, this proposition implies that for any n ≥ 49 there is a v-cycle

ℓ such that weight(ℓ) = n. Since simple cycles in strongly connected components can

have mixed positive and negative weights, we need a slightly more general version of

this proposition for our purposes.

Lemma 5.1.5 Let a1 < . . . < am ∈ Z, n = maxi∈[m]{|ai|}, g = gcd{a1, . . . , am}, and

let a, p(~x) and M be defined as in Proposition 5.1.4. Then

(i) if a1 > 0 then M = U ∪ a + gN for some U ⊆ [0, n2];

(ii) if am < 0 then M = U ∪ −a − gN for some U ⊆ [−n2, 0]; and

(iii) if a1 < 0 and am > 0 then M = gZ.
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Proof. (i) This case follows immediately from Proposition 5.1.4. (ii) Define a′
i

def
= −ai

for all i ∈ [k]. We have that p′(~x) = a′
1x1 + . . . + a′

mxm is an instance of case (i) with

integral solutions M ′ and M = {−z′ : z′ ∈ M ′} = {−u′ : u′ ∈ U ′} ∪ −a − gN. (iii)

By Euclid’s theorem, there exists ~y = (y1, . . . , ym) ∈ Zm such that g = p(~y). For any

z ∈ M , by setting ~y′ def
= (y1z/g, . . . , ymz/g), we have z = p(~y′). We now show how

to obtain ~n ∈ Nm from ~y′ such that z = p(~n). To this end, we iterate the following

process: for any ai such that ai < 0 and y′
i < 0, let xi ∈ N be chosen such that

y′
i + xiam ≥ 0 and replace y′

i with y′
i + xiam and ym with y′

m + xi|ai|. Once y′
i ≥ 0 for

all i such that ai < 0, we turn towards those ai for which ai > 0 and y′
i < 0. For any

such ai, let xi be chosen such that y′
i + xi|a1| ≥ 0. We replace y′

i with yi + xi|a1| and

y1 with y1 + xiai. After this process has finished, we obtain a vector ~n ∈ Nm such

that p(~n) = p(~y′). ¤

The previous lemmas indicate that once we cross a certain threshold, the converse

direction of Lemma 5.1.4 begins to hold. We are now going to make this intuition

formal. Recall that G = (V,E, µ) is a fixed weighted graph and let k be defined as

above, i.e., the maximum absolute weight that can be achieved on a simple cycle

in G, and let δ be the period as defined above. We define three fixed polynomials

p1, p2, p3 that yield bounds for the periodicity properties that we aim to establish. The

intention behind the polynomials is as follows: whenever there is a v-cycle ℓ such that

weight(ℓ) ≤ −p2(k) we can construct a v-cycle ℓ′ such that weight(ℓ′) = weight(ℓ)−δ,

which yields the desired periodicity property. The analogue relationship holds for

cycles with positive weight. Building upon this result, we then show that for an

arbitrary v-w path π with weight(π) ≤ −p3(k), we can construct a v-w path π′ such

that weight(π′) = weight(π)−δ. In both cases, the drop of ℓ′ and π′ does not decrease

by more than p1(k). The three polynomials are defined as follows:

p1(k)
def
= 2k2 + k p2(k)

def
= 3k2 + k p3(k)

def
= (k + 1)(p2(k) + δ)

We are now going to show the periodicity property for cycles and paths with negative

weights and then use symmetry to lift our results to cycles and paths with positive

weights.
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Lemma 5.1.6 Let v ∈ V and g = gcd(S(v)). For any z ∈ Z such that z ≤ −p2(k),

(i) if there exists a v-cycle ℓ with weight(ℓ) = z then there exists a v-cycle ℓ′ with

weight(ℓ′) = z − δ and drop(ℓ′) ≥ z − δ − p1(k); and

(ii) if there exists a v-cylce ℓ with weight(ℓ) = z − δ then there exists a v-cycle ℓ′

with weight(ℓ′) = z and drop(ℓ′) ≥ z − p1(k).

Proof. We show (i), statement (ii) follows analogously. Let ℓ1, . . . , ℓj be all simple

vi-cycles in the strongly connected component of v. We have ℓi ∈ [−k, k] for all ℓi, and

hence j ∈ [2k]. Let πi denote a simple v-cycle that traverses vi, i.e., πi = πi,1 · πi,2 for

a simple v-vi path πi,1 and a vi-v path πi,2. Since j ∈ [2k], we have
∑

i∈[j] weight(πi) ≥

−2k2 and hence m
def
= z −

∑

i∈[j] weight(πi) ≤ −k2 − k. By Lemma 5.1.4, we have

gcd(S(v))|δ and hence Lemma 5.1.5 guarantees the existence of a1 . . . , aj ∈ N such

that

m − δ = a′
1weight(ℓ1) + . . . + a′

jweight(ℓj).

With no loss of generality, we assume that the weights of the ℓi are ordered, i.e.,

weight(ℓ1), . . . ,weight(ℓg) < 0 < weight(ℓg+1), . . . ,weight(ℓj) for some g ∈ [j]. Set

ℓ′
def
= ℓu · ℓd, where

ℓu
def
=πg+1,1 · ℓg+1

a′
g+1 · πg+1,2 · . . . · πj,1 · ℓj

a′
j · πj,2

ℓd
def
=π1,1 · ℓ1

a′
1 · π1,2 · . . . · πg,1 · ℓg

ag · πg,2.

Thus, ℓu traverses all positive cycles and ℓd all negative cycles. Clearly, weight(ℓ′) =

z − δ. Regarding the drop of ℓ′, since all loops in ℓu are positive, we have drop(ℓu) ≥

−2k2 − k, as this is the minimum total weight that the πi can take. The same

argument yields drop(ℓ†d) ≥ −2k2 − k. In order to estimate drop(ℓ′), using Lemma

4.1.2, we conclude that

drop(ℓ′) = drop(ℓu · ℓd)

= min{drop(ℓu),weight(ℓu) + drop(ℓd)}

= min{drop(ℓu),weight(ℓu) + weight(ℓd) + drop(ℓ†d)}

≥ weight(ℓ′) − 2k2 − k.
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Consequently, drop(π′) ≥ z − δ − p1(k). ¤

As stated earlier, building upon this lemma, we can now show a similar statement for

arbitrary paths with negative weight that exceeds −p3(k).

Lemma 5.1.7 Let v, w ∈ V . For all z ∈ Z such that z ≤ −p3(k),

(i) if there exists a v-w path π with weight(π) = z then there exists a v-w path π′

with weight(π′) = z − δ and drop(π′) ≥ min{drop(π) − δ, z − δ − p1(k)}; and

(ii) if there exists a v-w path π with weight(π) = z − δ then there exists a v-w π′

with weight(π′) = z and drop(π′) ≥ min{drop(π) + δ, z − p1(k)}.

Proof. We show statement (ii). Statement (i) can be shown in a similar way. Suppose

there exists a v-w path π with weight(π) = z − δ. We divide z into k + 1 evenly sized

segments, so each such segment has size at least p2(k) − δ. Since |V | ≤ k, it thus

follows that we can write π as π = π1 ·ℓ·π2 such that π1 is a v-v′ path, drop(π1) ≥ z−δ,

ℓ is a v′-cycle for some v′ ∈ V , weight(ℓ) ≤ −p2(k) − δ, weight(π1 · ℓ) ≥ z and π2

is a v′-w path. Lemma 5.1.6 yields a v′-cycle ℓ′ with weight(ℓ′) = weight(ℓ) + δ

and drop(ℓ′) ≥ weight(ℓ) + δ − p1(k). We define π′ as π′ def
= π1 · ℓ′ · π2. Clearly,

weight(π′) = weight(π) + δ = z. Regarding the drop of π′, using the identities from

Lemma 4.1.2, we have

drop(π′) = drop(π1 · ℓ
′ · π2)

= min{drop(π1),weight(π1) + drop(ℓ′ · π2)}

= min{drop(π1),weight(π1) + drop(ℓ′),weight(π1 · ℓ
′) + drop(π2))}

≥ min{z, z − p1(k), drop(π) + δ}

= min{z − p1(k), drop(π) + δ}

Using the symmetry between G and G†, we now obtain a corresponding result for

paths with positive weight exceeding p3(k).

Lemma 5.1.8 Let v, w ∈ V . For all z ∈ Z such that z ≥ p3(k),
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(i) if there exists a v-w path π with weight(π) = z then there exists a v-w path π

with weight(π′) = z + δ and drop(π′) ≥ min{−p1(k), drop(π)}; and

(ii) if there exists v-w path π with weight(π) = z + δ then there exists a v-w path π′

with weight(π′) = z and drop(π′) ≥ min{−p1(k), drop(π)}.

Proof. We only show statement (i), the other statement follows along similar lines.

Suppose there exists a v-w path π with weight(π) = z. We have weight(π†) = −z ≤

−p3(k). By Lemma 5.1.7, there exists a path (π′)† such that weight((π′)†) = −z − δ

and drop((π′)†) ≥ min{drop(π†) − δ,−z − δ − p3(k)}. Hence, weight(π′) = z + δ as

required. Regarding the drop of π′, again by using the identities from Lemma 4.1.2,

we conclude

drop(π′) = weight(π′) + drop((π′)†)

≥ z + δ + min{drop(π†) − δ,−z − δ − p1(k)}

= min{drop(π),−p1(k)}.

We can now use the results obtained for paths in weighted graphs in order to prove

Lemma 5.1.2. Let us fix a one-counter automaton A and let GA be the weighted graph

corresponding to A. As a slight adjustment, we assume that GA is such that every

zero-labelled transition in A is replaced with a transition labelled with “+0” in GA.

The constants k and δ are defined as above.

Lemma 5.1.9 Let n, n′ ∈ N,

(i) if n − n′ > p3(k) + k and n′ > p1(k) then (q, n) →∗
A (q′, n′) if, and only if,

(q, n + δ) →∗
A (q′, n′); and

(ii) if n′ − n > p3(k) + k and n > p1(k) then (q, n) →∗
A (q′, n′) if, and only if,

(q, n) →∗
A (q′, n′ + δ).

Proof. (i) Suppose there is a run ̺ : (q, n) →∗
A (q′, n′) and let π be the corresponding

q-q′ path in GA. We can write π as π = π′ · π0 such that π′ : q →∗
GA

q′′, weight(π′) <
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−p3(k) and drop(π′) ≥ −p3(k)−k. By Lemma 5.1.7(i), there exists a path π′′ : q →∗
GA

q′′ such that weight(π′′) = weight(π′) − δ and drop(π′′) ≥ weight(π′) − δ − p1(k).

Consequently, there exists a run (q, n + δ) →∗
A (q′, n′) whose corresponding path is

π′′ · π0. The converse direction follows in similar way by applying Lemma 5.1.7(ii).

(ii) Suppose there is a run (q, n) →∗
A (q′, n′) and let π be the corresponding q-q′

path in GA. We can write π as π = π0 ·π
′ such that π′ : q′′ →∗

GA
q′, weight(π′) > p3(k)

and drop(π′) ≥ −p1(k). By Lemma 5.1.8(i), there exists a q′′-q′ path π′′ such that

weight(π′′) = weight(π′) + δ and drop(π′′) ≥ −p1(k). Consequently, there is a run

(q, n) →A (q′, n′ + δ) whose corresponding path is π0 · π′′. The converse direction

follows in a similar way by applying Lemma 5.1.8(ii). ¤

Lemma 5.1.2 now follows as a direct consequence of Lemma 5.1.9 by defining k

and δ as above and setting p(k)
def
= p3(k) + k and p′(k)

def
= p1(k). Taking together

Propositions 5.1.2 and 5.1.3, we obtain the main result of this section.

Theorem 5.1.1 Model checking EF-formulae on parametric one-counter automata

is PSPACE-complete.

EF Model Checking of Parametric-One Counter Automata

We now consider model checking EF formulae on parametric one-counter automata

and show that this problem is Π0
1-complete. Hardness for Π0

1 is shown via a reduction

from Hilbert’s tenth problem which we sketch in the following. Recall that Hilbert’s

tenth problem is to decide for a given polynomial p : Rn → R whether there are

a1, . . . , an ∈ Z such that p(a1, . . . , an) = 0. As discussed in Chapter 2, it is actually

sufficient to restrict the ai to be from N. For our reduction, the crucial step is to show

how we can express a multiplication relation over the parameters of a parametric one-

counter automaton. To this end, we use a trick that became popular by the work of

Robinson [94]: multiplication can be defined in terms of the least common multiple.
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Figure 5.2: The parametric one-counter automaton Alcm used for testing whether

ν(z) = lcm(ν(x), ν(y)) for a given valuation ν.

In fact, given x, y ∈ N, we have

lcm(x + y, x + y + 1) − lcm(x, x + 1) − lcm(y, y + 1)

= (x2 + x + 2xy + y2 + y) − (x2 + x) − (y2 + y) (∗)

= 2xy.

The multiplication relation in a parametric one-counter automaton can now be ex-

pressed as follows.

Lemma 5.1.10 There exists a fixed parametric one-counter automaton Amul with

parameters x, y, z and a control location q and a fixed EF formula ϕ such that for any

valuation ν, (T (Aν), (q, 0)) |= ϕ if, and only if, ν(z) = ν(x)ν(y).

Proof. In order to construct Amul , we make use of the identities in (∗) and first

construct a parametric one-counter automaton Alcm with parameters x, y, z, a control

location q and an EF formula ϕlcm such that for any valuation ν, (T (Aν
lcm), (q, 0)) |=

ϕlcm if, and only if, ν(z) = lcm(ν(x), ν(y)). For any r, s, t ∈ N, we have that t =

lcm(r, s) if, and only if, for all a ∈ N,

t|a ⇔ lcm(r, s)|a ⇔ (rs/ gcd(r, s))|a ⇔ r|a and s|a.
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Now consider the parametric one-counter automaton Alcm in Figure 5.2 and the EF

formula

ϕ = AG(γ → ((EFγx ∧ EFγy) ↔ (EFγz))).

Suppose that ν is a valuation such that (T (Aν
lcm), (q, 0)) |= ϕ, then ϕ enforces for all

n ∈ N that ν(x)|n and ν(y)|n if, and only if, ν(z)|n. Hence by the above reasoning,

ν(z) = lcm(ν(x), ν(y)).

In order to construct the required parametric one-counter automaton Amul , it is

thus sufficient to introduce additional slack parameters x1, x2, x3, ensure via gadgets

Alcm that x1 = lcm(x+ y, x+ y +1), x2 = lcm(x, x+1), x3 = lcm(y, y +1) and assert

that 2z = x1 − x2 − x3. ¤

Being able to express multiplication relations between parameters of a parametric

one-counter automaton immediately enables us reduce any instance of Hilbert’s tenth

problem to an instance of an EF model checking problem, which thus implies Π0
1-

hardness of the latter problem. Due to the existence of a universal polynomial,

it follows that there is a parametric one-counter automaton with a fixed number of

control locations and parameters and a fixed EF formula for which the model checking

problem is undecidable. Since EF is a notational fragment of CTL, membership in Π0
1

follows from Proposition 5.1.1.

Theorem 5.1.2 Model checking EF-formulae on parametric one-counter automata

is Π0
1-complete already for a parametric one-counter automaton with a fixed number

of control locations and a fixed EF-formula.

5.1.2 Computation Tree Logic (CTL) Model Checking

This section deals with model checking formulae of CTL on one-counter and paramet-

ric one-counter automata. In the introduction, we have already stated in Proposition

5.1.1 that this problem is in EXPSPACE for one-counter and in Π0
1 for parametric one-

counter automata. Subsequently, we are going to show that those bounds are tight.

Although Π0
1-hardness of CTL model checking on parametric one-counter automata
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already follows from Π0
1-hardness of EF model checking, we strengthen this result

by showing that CTL model checking is already Π0
1-hard for parametric one-counter

automata with only one parameter.

CTL Model Checking of One-Counter Automata

In this section, we are going to show that CTL model checking of transition systems

generated by one-counter automata is EXPSPACE-complete. As discussed above,

membership in EXPSPACE already follows from Proposition 5.1.1. We therefore con-

centrate on the lower bound and show that the problem is EXPSPACE-hard for a fixed

CTL formula.

Proving PSPACE-hardness of modal µ-calculus model checking of one-counter au-

tomata with updates encoded in unary can be achieved via a straightforward reduction

from the halting problem of an alternating polynomial-time Turing machine acting

on a unary alphabet, which is known to be PSPACE-complete [61, 69]. However,

PSPACE-hardness of CTL model checking of those automata requires some more ef-

fort and was shown by Göller and Lohrey in [50]. Instead of directly reducing from

the halting problem of a PSPACE Turing machine, in [50] the authors make use of

logspace-serialisability of PSPACE in order to obtain PSPACE-hardness. Inspired by

the ideas from [50], we are subsequently going to show EXPSPACE-hardness of CTL

model checking of one-counter automata by making use of the fact that EXPSPACE

is exponentially logspace-serialisable as defined in Section 2.4.1. Although we are

going to provide a large amount of technical details, for the sake of understandability

and readability we only sketch our reduction, i.e., show the existence of a reduction

proving EXPSPACE-hardness.

Before we begin with the reduction, we need to introduce some additional nota-

tion and results that are concerned with an alternative way of representing natural

numbers. Given naturals m,n ∈ N, the Chinese remainder representation CRRm(n)

of n is a word over the alphabet {0, 1} and defined as

CRRm(n)
def
= (bi,0 · · · bi,pi−1)i∈[m],
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where pi is the i-th prime number and bi,j
def
= 1 if n ≡ j mod pi and bi,j

def
= 0 otherwise.

The following problem is concerned with obtaining a bit of a number given in Chinese

remainder representation.

Bit-From-CRR

INPUT: CRRm(n) of some n,m ∈ N, i ∈ [0,m − 1] and b ∈ {0, 1}.

QUESTION: Is biti(n mod 2m) = b?

The following proposition states that Bit-From-CRR is computable in logarith-

mic space. It is a consequence of the result that division is computable in logspace-

uniform NC13, which was shown in [26], Theorem 3.3.

Proposition 5.1.5 ([26]) Bit-From-CRR is computable in L.

We are now going to prove EXPSPACE-hardness of CTL model checking of one-

counter automata. Given a language L ∈ EXPSPACE, by Theorem 2.4.2 there exists

a regular language R such that L is exponentially L-serialisable via R. Hence, there

exists an L-Turing machine M and a polynomial p such that for any w ∈ {0, 1}∗

and m = exp2(p(|w|)), w ∈ L if, and only if,
(
χM(w · bin(lg m)(d))

)

d∈[0,m−1]
∈ R.

Suppose we were asked to write a program that decides w ∈ L via the serialisation

of L. A possible solution to this task is given by Algorithm 3. It requires w and

the serialisation of L, i.e., an L Turing machine M, a regular language R given as

a deterministic finite state automaton AR and a polynomial p as input. For m as

above, the algorithm successively iterates through all d ∈ [0,m − 1] and simulates in

each iteration AR on input χM(w · bin(lg m)(d)). Once d = m, Algorithm 3 returns

true if the simulation of AR ended in an accepting state and false otherwise. Our goal

in this section is to simulate an execution of Algorithm 3 via an instance of a CTL

model checking problem of some polynomial-time computable one-counter automaton

AL(w) and a fixed CTL-formula ϕ.

Before we begin with the details of our reduction, let us discuss some problems

that we need to overcome:

3NC1 is the class of decision problems solvable by a uniform family of Boolean circuits, with

polynomial size, depth O(lg(n)), and fan-in 2.
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Algorithm 3 Algorithm deciding w ∈ L for an EXPSPACE-language L given via its

serialisation M, R and p.

Input: w ∈ {0, 1}∗, M, AR = (S, s0, F, ∆), p : N → N

s := s0

b := ǫ; d := 0

m := exp2(p(|w|))

while d < m do

b := bin(lg m)(d)

s := ∆(s, χM(w · b))

d := d + 1

end while

return s ∈ F

(a) As Algorithm 3 stands, it requires exponential space in |w| in order to store the

values of b, d and m. This excludes the possibility of encoding those variables into

the control locations of AL(w). A possible solution to this problem is to store

the values of the variables on the counter. However, when we want to compute

b, we need to access the bit representation of d, and the binary representation of

d comprises of exponentially many bits. Moreover, we need to be able to check

if d = m, which cannot be done by simply subtracting m from the counter and

performing a zero-test, since the size of m is too large.

(b) In [50], the problem of accessing the bit representation of d is solved by storing

d in Chinese remainder representation using the first lg m prime numbers. Each

such prime number can be represented in O((p(|w|)2) bits. However, we need

exponentially many of them, and for that reason we cannot hard-wire them into

AL(w).

(c) When we want to compute χM(w · b), we need to simulate M on an input ex-

ponential in |w|. A pointer to the input w · b can be stored using O(p(|w|)) bits.

However, we need to provide some on-the-fly mechanism to extract the bit that

such a pointer points to.
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Figure 5.3: Segmentation of the counter used in the reduction. Here, k ∈ N is

polynomial in |w|. Switching to the consecutive b, i.e., incrementing d in Algorithm

3, can be simulated by adding exp(k + |w| + 1) to the counter.

There are a number of key insights that allow us to overcome those problems. The

first is that the branching provided by CTL allows us to test the value of a bit of the

counter without destroying the counter value, provided the address of the bit we test

is polynomial in |w|. This enables us to toggle individual bits of the counter without

affecting the other bits. We exploit this insight in order to partition the counter

into various segments that can be used to store information that can individually be

accessed. The second insight is that we can simulate in these segments computations

of space-bounded Turing machines that require polynomial space in |w| for their

computations. To this end, we reserve a segment of the counter that is going to

serve as the working tape of such a Turing machine. This is, for example, going to

enable us to run M and to compute prime numbers on-the-fly. Third, we show that

it is possible to compute the residue class of the counter modulo the i-th prime pi,

where i is exponential in |w|. This will enable us to test a bit of the counter whose

address is exponential in |w| by computing the Chinese remainder representation of

the current counter value on-the-fly. All those insights are eventually going to enable

us to simulate Algorithm 3.

We are now going to proceed with the technical details of our hardness proof.

Let us consider Figure 5.3. It shows a bit representation of a counter value, where

the least-significant bit is on the left-hand side and the most-significant bit is on the

right-hand side. As discussed above, we aim for partitioning the counter into segments
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with some intended purpose. In our hardness proof, for some k polynomial in |w| to

be determined later, given a counter value n ∈ N, n[k, k + |w| + 1] is supposed to

encode w. Moreover, n[k + |w|+ 1, k + |w|+ exp(p(|w|)) + 1] is supposed to encode b

from Algorithm 3. Thus, n[k, k + |w|+ p(|w|) + 1] = w · b and if we could find a way

to evaluate χM(w · b), we could simulate one cycle of the while-loop of Algorithm

3. Simulating the consecutive cycle of this loop would then be possible by adding

exp(k + |w| + 1) to the counter. In our reduction, we are going to use the segment

n[0, k] of the counter as storage space for the working tape of M and as some further

temporary storage.

We are now going to provide a number queries that we use in order to simulate

Algorithm 3 and which we implement via a number of model-checking problems of

one-counter automata gadgets and CTL formulae. All gadgets are computable in

polynomial time, and we will omit mentioning this fact in order to improve readability.

The queries form a hierarchy and build on top of each other, and the last query

establishes our hardness proof. The first two queries deal with extracting information

encoded into the counter that enable us to then construct more sophisticated queries.

In the following, let n ∈ N be a counter value, and let i ∈ N be a number given in

unary, I = (n[ib, ie])2 for ib, ie ∈ N, J = (n[jb, je])2 for jb, je ∈ N and K = (n[kb,∞])2

for kb ∈ N given in unary.

(i) What is the value of biti(n)?

(ii) Is K ≡ J mod I, provided J ∈ [0, I − 1]?

(iii) Is J the I-th prime number?

(iv) What is the value of bitI(n)?

(v) Is n[k, k + |w| + p(|w|) + 1] ∈ L(M)?

(vi) Is w ∈ L?

We now show how to implement Query (i), which is realised with a gadget Abit .
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−2i+1
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γ γbit

Figure 5.4: Gadget Abit(i) used for testing the value of i-th bit of the counter.

Lemma 5.1.11 For any i ∈ N given in unary, there exists a one-counter automaton

Abit(i) with a control location q and fixed CTL-formulae ϕbit ,b, b ∈ {0, 1} such that for

any n ∈ N, (T (Abit(i), (q, n)) |= ϕbit ,b if, and only if, b = biti(n).

Proof. Consider the automaton Abit(i) in Figure 5.4 and let q be the © location.

Define the required CTL-formulae as

ϕbit ,0
def
= γ ∧ EF(γ ∧ ¬EXγ ∧ ¬EXγbit)

ϕbit ,1
def
= γ ∧ EF(γ ∧ ¬EXγ ∧ EXγbit),

which can easily be seen to have the desired property. ¤

We continue with the gadget Amod , which realises Query (ii) and uses Abit as an

oracle.

Lemma 5.1.12 Let ib < ie < jb < je < k ∈ N be given in unary. For any n ∈ N,

let I = (n[ib, ie])2, J = (n[jb, je])2 and K = (n[k,∞])2. Assuming J ∈ [0, I − 1],

there exist a one-counter automaton Amod(ib, ie, jb, je, k) with a control location q and

a fixed CTL-formula ϕmod such that (T (Amod), (q, n)) if, and only if, K ≡ J mod I.

Proof. Consider the one-counter automaton Amod(ib, ie, jb, je, k) in Figure 5.5, where

q is the © location. Amod consists of two rows, each consisting of ie − ib respectively

je − jb diamonds. We aim for achieving that any time we traverse the upper row

we subtract I from K. Likewise, the lower row is supposed to subtract J from K.

Thus, if there is a path reaching the location labelled with γ2 such that it is not

possible to reach the location labelled with γmod , we have K ≡ J mod I. In both

rows row, each diamond is connected to an Abit gadget. The CTL formula we are
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Figure 5.5: The one-counter automaton Amod(ib, ie, jb, je, k) used for the implemen-

tation of Query (ii).

going to define below will make sure that any time we traverse a diamond through a

location labelled with γ1, EXϕbit ,1 holds, where ϕbit ,1 is defined as in Lemma 5.1.11.

For example, in the first diamond in the upper row this will ensure that we only

subtract exp(k + ie − ib − 1) from the counter if, and only if, bitie−1(n) = 1 for the

current counter value n. This allows us to construct a suitable CTL-formula that

ensures that the gadgets Abit can be used to “guide” the paths through Amod . We set

ϕmod
def
= E ((γ0 → EXϕbit ,0 ∧ γ1 → EXϕbit ,1)U(γ2 ∧ ¬EXγmod)) ,

which can be seen to have the desired properties. ¤

We now turn towards Query (iii). Instead of giving a direct implementation,

we sketch how an arbitrary space-bounded Turing machine can be simulated via an

instance of a model checking problem. A concrete implementation of Query (iii)
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then follows as an instantiation of the next lemma with a Turing machine M that

computes prime numbers.

Lemma 5.1.13 Let ib < ie < jb < je < kb < ke ∈ N be given in unary and

let M be a space-bounded deterministic Turing machine such that M uses at most

je − jb tape cells on an input of size ie − ib. There exists a one-counter automaton

AM(ib, ie, jb, je, kb, ke) with a control location q and a fixed CTL-formula ϕM such that

for all n ∈ N, (T (AM), (q, n)) |= ϕM if, and only if, M has on input n[ib, ie] a run

that ends in an accepting state in which the content of the working tape is n[kb, ke].

Proof. The idea is to simulate a run of M on input n[ib, ie] using the cells in n[jb, je]

as the working tape of M until we reach an accepting state of M. Once an accepting

state has been reached, we can compare the contents of n[jb, je] and n[kb, ke] with an

additional gadget. We omit details of this additional gadget for brevity and concen-

trate on the simulation of M. The construction of such a gadget is an easy exercise

and can be realised using the gadget Abit constructed in the implementation of Query

(i).

The one-counter automaton AM contains a gadget Abit(m) for each m ∈ [ib, ie −

1] ∪ [jb, je − 1] and additional control locations

S × ([0, ie − ib + 1]) × ([0, je − jb + 1]) × {0, 1} × {0, 1}

that we use to simulate runs of M. The intention behind those control locations is

as follows: a tuple (s, i, j, b1, b2) corresponds to the configuration of M in which M

is in control state s, the input head of M is at position i reading b1 and the working

head of M is at position j reading b2. We will use i = 0 and j = 0 to indicate that

the input respectively working head has reached the left delimiter ⊲, and ie − ib + 1

to indicate that the input head has reached the right delimiter ⊳. The content of the

whole input or working tape is not encoded in the control locations of M, but in the

respective segments of the counter, which keeps the number of control locations of

AM polynomial.

Let us explain how AM is wired and how it works with the help of an example

shown in Figure 5.6. Here, we assume that AM is in control location (s, i, j, 0, 1),
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(s, i, j, 0, 1)

(s′, i + 1, j − 1, 0, 0)(s′, i + 1, j − 1, 0, 1)(s′, i + 1, j − 1, 1, 0)(s′, i + 1, j − 1, 1, 1)
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Figure 5.6: Part of the one-counter automaton AM(ib, ie, jb, je) for the case when M

is in state s and the input head scans cell i reading 0, the working head of M scans

cell j reading 1 and the transition function requires the input head to move to the

right, the output head to the left and to write a 0 to the current working tape cell.

i ∈ [ie − ib], j ∈ [je − jb] and that the transition relation ∆ of M is such that

∆(s, 0, 1) = (s′, 1,−1, 0). Thus, we simulate a transition in which M is in control

state s, reading a 0 on the input tape, 1 on the working tape, and the transition

function requires the input tape head to move to the right, the output tape head to

move to the left, to write a 0 on the current working tape position and to switch to

control state s′. Each (s, i, j, b1, b2) of AM is labelled with atomic propositions γin,b1

and γwo,b2 and connects to a gadget Abit(ib + i−1) and Abit(jb + j−1). Consequently,

(s, i, j, 0, 1) in Figure 5.6 is labelled with γin,0 and γwo,1. Whenever we reach a control

location (s, i, j, b1, b2), this labelling allows us to verify that the bits at the respective

positions of the counter actually correspond to the intended content of the tapes of

M. Now (s, i, j, 0, 1) has a transition to each (s′, i + 1, j − 1, b′1, b
′
2), b

′
1, b

′
2 ∈ {0, 1},

and along each transition we subtract exp(jb + j − 1) from the counter. The four

transitions allow us to guess the content of the input respectively working tape at

the updated head positions. The validity of our guess can be verified in the next

step using the gadgets Abit . Subtracting exp(jb + j − 1) from the counter simulates

writing 0 at the current position of the working head. Extra effort is needed to get
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the behaviour for control locations of the form (s′, i′, j′, b′1, b
′
2) with i′ ∈ {0, ie− ib +1}

or j′ ∈ {0, je − jb + 1} right, i.e., when M has reached a delimiter. However, this

is a rather technical than conceptual issue and will not be considered here. Finally

any (s, i, j, b1, b2) such that s ∈ A, i.e., s is an accepting location, is labelled with a

proposition γA and connected to a gadget that allows for testing whether the content

of n[jb, je] is the same as n[kb, ke] via a CTL formula ϕeq that holds if, and only if,

n[jb, je] = n[kb, ke]. Let ϕbit ,0, ϕbit ,1 be the CTL-formulae from Lemma 5.1.11. We

define the CTL formula required in the lemma as

ϕM
def
= E(

∧

b1,b2∈{0,1}

(γin,b1 → EX(γin ∧ ϕbit ,b1) ∧ γwo,b2 → EX(γwo ∧ ϕbit ,b2))U(γA ∧ EXϕeq)).

Thus, when adding a distinguished control location q to AM that non-deterministically

branches into control locations (s0, 1, 1, b1, b2), b1, b2 ∈ {0, 1}, we have that for all

n ∈ N, (T (A), (qM, n)) |= ϕM if, and only if, M has a run on input n[ib, ie] that ends

in an accepting state in which the content of the working tape is n[kb, ke]. ¤

We are now going to consider an implementation of Query (iv), which is about

extracting bits from the counter whose address is encoded in binary into the counter.

With Figure 5.3 in mind, we will be interested in testing bits in the upper segment

of the counter beyond the working area. The main challenge we need to overcome is

that we cannot adopt the idea from Query (i) and use loops in a counter automaton to

test for divisibility, as the address of the bit we test for can be exponential. Instead,

we represent the counter value in Chinese remainder representation and then use

Bit-From-Crr in order to extract the desired bit.

Lemma 5.1.14 Given n ∈ N and ib < ie < k ∈ N in unary, and let i = (n[ib, ie])2

and m = (n[k,∞]). Provided k is sufficiently large, there exists a one-counter automa-

ton Abinbit(ib, ie, k) with a control location q and a fixed CTL formula ϕbinbit ,b, b ∈ {0, 1}

such that (T (Abinbit ,b), (q, n)) |= ϕbinbit ,b if, and only if, biti(m) = b.

Proof. As discussed above, we determine biti(m) through the Chinese remainder rep-

resentation of m. By Proposition 5.1.5, there is an L-Turing machine M computing
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biti(m). Since i is given in binary, M can compute biti(m) in space polynomial in

ie − ib. Simulating M can be done in a similar way as described in Lemma 5.1.13.

However, the input CRRs(m) with s = exp(ie − ib) cannot be encoded in the counter

as it is exponential in ie−ib. Instead, we sketch below how the construction in Lemma

5.1.13 can be altered in a way such that the input to M is computed on-the-fly.

Recall that CRRs(m) = (bj,0 . . . bj,pj−1)j∈[s], where pj is the j-th prime number.

In order to compute a fixed bj,r, Abinbit uses a segment of the counter distinct from

[ib, ie] and [k,∞] in which it stores the index j ∈ [s], pj and r ∈ [0, pj − 1] in binary,

which serve as pointers to the Chinese remainder representation of m. We can then

employ Amod in order to test whether m ≡ r mod pj, i.e., compute bj,r. In order

to compute the j-th prime number pj, Abinbit employs a one-counter automaton AM′

that we obtain from Lemma 5.1.13 whose working tape is stored in some unused

segment of the counter of size polynomial in lg s. Consequently, when simulating

M as in Lemma 5.1.13 and guessing the current input symbol, Abinbit uses Amod in

order to verify the guess. Simulating a movement of the input head of M is done as

follows. If r ∈ [1, pj − 2] then simulating that the input head moves to the left or

right corresponds to decrementing respectively incrementing r. If r = 0 and we wish

to simulate that the input head moves to the left then the index j is decremented,

pj is re-computed and r is set to pj − 1. The case when r = pj − 1 and we wish to

simulate that the input head moves to the right follows analogously.

As discussed above, storing the working tapes of M, M′ and the additional storage

requires segments of size polynomial in ie− ib. Hence, if k is sufficiently, polynomially

large, those segments can be reserved in the working area of the counter and the

lemma follows. ¤

Using Abinbit as a gadget, we can now sketch an implementation of Query (v). This

query requires us to simulate the computation of a logarithmically-space bounded

Turing machine on an exponentially large input which is encoded into a segment of

the counter.

Lemma 5.1.15 Given an L-Turing machine M, n ∈ N, k ∈ N in unary and l ∈ N
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in binary, and let m = n[k, k + l]. Provided k is sufficiently large, there exists a one-

counter automaton AM(k, l) and a fixed CTL formula ϕM such that (T (A), (q, n)) |=

ϕM if, and only if, M accepts input m.

Proof. We sketch a proof which combines the ideas from the Lemmas 5.1.13 and

5.1.14. We cannot directly apply Lemma 5.1.13, since the input to M is of exponential

length. Instead, we will extract the input to M bit by bit using the gadget Abinbit

from Lemma 5.1.14.

Since the input to M is of exponential length, M runs in PSPACE and we can

reserve a segment in the working area of the counter below k which stores the working

tape during the simulation of M. Moreover, we are going to use an additional segment

n[jb, je] below k in order to store a pointer to the input m. This segment requires a

linear number of bits in the size of l.

The simulation of M can be done in a similar way as in Lemma 5.1.13. In partic-

ular, the symbol read on the input tape is guessed when moving the head, however,

as in Lemma 5.1.14, we cannot use ϕbit from Lemma 5.1.11 in order to validate our

guess. Instead, we use Abinbit(jb, je, k) and ϕbinbit from Lemma 5.1.14 for this purpose.

Simulating moving the input head can be done by incrementing respectively decre-

menting the pointer in n[jb, je]. Abinbit(jb, je, k) requires some additional segments in

the working area of the counter, but only of size polynomial in the size of l. Con-

sequently, if k is chosen sufficiently large, polynomial in l, M can be simulated on

input m via AM and a CTL formula ϕM. ¤

Finally, we can turn towards an implementation of Query (vi), which builds on

top of all previously defined gadgets concludes our proof of EXPSPACE-hardness of

CTL model checking of one-counter automata.

Lemma 5.1.16 Let L ⊆ {0, 1}∗ be a language in EXPSPACE and w ∈ {0, 1}∗. There

exists a one-counter automaton AL(w) with a control location q, n ∈ N and a fixed

CTL-formula ϕ such that (T (A), (q, n)) |= ϕ if, and only if, w ∈ L.
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Figure 5.7: Part of the one-counter automaton AL constructed in Lemma 5.1.16.

Proof. By Theorem 2.4.2 there are an L-Turing machine M and a polynomial p such

that for any w ∈ {0, 1}∗ and m = exp2(p(|w|)),

w ∈ L ⇔
(
χM(w · bin(lg m)(d))

)

d∈[0,m−1]
∈ R.

Let AR = (S, s0, F, ∆) be a deterministic finite-state automaton defining R. We are

now going to sketch the construction of a one-counter automaton AL that simulates

Algorithm 3. To this end, as discussed at the beginning of the hardness-proof, we

partition the counter into segments as sketched in Figure 5.3. Hence, for a given

counter value n and some k ∈ N to be determined later, n[k, k + |w|] stores w and

n[k + |w|, k + |w| + exp(p(|w|)) + 1] stores a bit-string of length exp(p(|w|)) which

represents b from Algorithm 3.

In order to compute χM(w · b), AL contains a gadget AM(k, |w|+exp(p(|w|))+1)

as defined in Lemma 5.1.15. Furthermore, AL contains a gadget Abinbit(ib, ie, k) from

Lemma 5.1.14 for some ib < ie < k that we are going to use in order to test whether

bitk+|w|+exp(p(|w|))+1(n) = 1 for a given counter value n. This is going to enable us to

determine when to quit from the while-loop in Algorithm 3.

We are now going to concentrate on the simulation of the body of the while-loop

in Algorithm 3. In order to simulate a run of AR, AL contains two control locations
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(s, 0) and (s, 1) for each s ∈ S that indicate that AR is simulated to be in state s

reading 0 respectively 1. A control location (s, 0) is labelled with γ0 and (s, 1) with

γ1. Moreover, each s ∈ F is labelled with γF in order to indicate that an accepting

state has been reached. The transitions between the (s, c), c ∈ {0, 1} control locations

of AL are sketched in Figure 5.7. Each (s, c) has a transition to ∆(s, c), which adds

exp(k + |w| + 1) to the counter, thus simulating an increment of d. Moreover, each

(s, c) has a transition to the gadget AM and Abinbit(ib, ie, k). The initial locations of

the gadgets are labelled with γM and γbb, respectively. The transition to AM enables

us to verify that a guessed value of χM(w · b) is actually correct. The other transition

to Abinbit(ib, ie, k) allows us to check for a counter value n if bitk+|w|+exp(p(|w|))+1(n) = 1.

We are now going to give the required CTL formula ϕ, which is defined as follows:

ϕ
def
= E(γ0 → EX(γM ∧ ¬ϕM) ∧ γ1 → EX(γM ∧ ¬ϕM) ∧ ¬(EX(γbb ∧ ϕbinbit))U

(γF ∧ EX(γbb ∧ ϕbinbit)).

Here, ϕbinbit and ϕM are the CTL formulae from the Lemmas 5.1.14 and 5.1.15. In-

formally speaking, ϕ makes sure that we guess the value of χM(w · b) correctly as

long as d < exp2(p(|w|)). Once d = exp2(p(|w|)), ϕ requires that the simulation of

AR ends in an accepting state.

It remains to discuss the size of k. The value of k needs to be chosen sufficiently

large such that the gadget AM can work properly. By a similar argument as in the

discussion at the end of the proof of Lemma 5.1.15, AM requires k to be polynomial

in |w|. Moreover, the gadget Abinbit also requires k to be polynomial in |w|, as ib and

ie only need to be polynomial in |w|.

The counter value n required in the lemma is the unique natural number n ∈ N

such that n[k, k + |w|] = w, (n[ib, ie])2 = exp2(p(|w|)), and all other bits of n are

zero. Clearly, this n can be computed in polynomial time and, informally speaking,

provides a proper initial configuration of AL.

Finally, by introducing a distinguished control location q to the control locations

of AL that connects to (s0, 0) and (s0, 1), we have (T (AL(w)), (q, n)) |= ϕ if, and only

if, w ∈ L. ¤
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Together with Proposition 5.1.1, we can now deduce the main theorem of this

section.

Theorem 5.1.3 CTL model checking of one-counter automata is EXPSPACE-complete

already for a fixed CTL formula.

CTL Model Checking of Parametric-One Counter Automata

Since EF is a syntactic fragment of CTL, it follows from the results in Section 5.1.1 that

model checking CTL formulae on parametric one-counter automata is Π0
1-hard. In this

section, we strengthen this result for the CTL case and show that Π0
1-hardness can

already be achieved for a fixed CTL formula and a parametric one-counter automaton

with only one parameter.

We reduce from the reachability problem for two-counter automata. Given a two-

counter automaton A′ and two locations q, q′ of A′, we construct a parametric one-

counter automaton A with one parameter y from A′ such that (q,~0) →∗
A′ (q′,~0) if, and

only if, (T (A), (q, 0)) 6|= ϕ. For our purposes, we may assume with no loss of generality

that counter updates of A′ are in unary, i.e., of the form addi(z) for i ∈ {0, 1} and

z ∈ {−1, 0, +1}. Moreover, we assume that the first and second counter of A′ are

tested for zero before q′ can be reached. As in the hardness proof in Section 4.2, we

exploit the fact that on a witnessing run there exists an m ∈ N such that none of the

two counters of A′ exceeds this value. We use the parameter y in order to guess m,

which allows us to give a one-to-one correspondence between configurations of A′ and

A. Given a configuration (q, n1, n2) of A′ with n1, n2 < m and a valuation such that

ν(y) = m, the corresponding configuration of A is (q, n), where n = mn2 + n1, i.e.,

n1 ≡ n mod m and n2 = n div m. Testing the first and the second counter of A′ for

zero corresponds to checking whether whether n ≡ 0 mod m respectively n < m. In

our reduction, we use the branching that CTL formulae offer in order to perform these

tests without destroying the value of the counter. Incrementing and decrementing the

first counter of A′ can be simulated by adding respectively subtracting 1 from the

counter of A. Regarding the second counter of A′, incrementation and decrementation

correspond to adding respectively subtracting m, i.e., the value of the parameter y,
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Figure 5.8: Gadgets used in the reduction from two-counter automata reachability to

CTL model checking of a parametric one-counter automaton.

from the counter. Of course, we have to ensure that we do not overflow when we

perform these operations. For example, suppose that n ≡ −1 mod m. If we intend

to add 1 to the counter of A in order simulate an increment of the first counter of A′,

informally speaking we would accidentally reset the first counter of A′ and increment

its second counter. Again, we will use the branching that CTL formulae offer in order

to make increments and decrements safe.

We begin the formal part of the reduction by providing some gadgets that allow

us to perform the necessary tests described above.

Lemma 5.1.17 There exist fixed parametric one-counter automata A1,A2,A3 with

one parameter y, each with a control location q, and a fixed CTL formula ϕt such that

for all valuations ν and n ∈ N

(i) (T (Aν
1), (q, n)) |= ϕt if, and only if, n 6≡ 0 mod ν(y);

(ii) (T (Aν
2), (q, n)) |= ϕt if, and only if, n 6≡ −1 mod ν(y); and

(iii) (T (Aν
3), (q, n)) |= ϕt if, and only if, n < ν(y).

Proof. The parametric one-counter automata A1,A2,A3 are depicted in Figure 5.8.

It is now easily verified that ϕt
def
= ¬(EFγ) when evaluated in the locations labelled

with © is a CTL formula with the desired properties. ¤

Figure 5.9 shows the replacement rules that we apply in order to obtain A from A′.

The top row deals with operations on the first counter: any transition acting on the
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Figure 5.9: Replacement rules for obtaining a parametric one-counter automaton A

from a given two-counter automaton A′ used in the hardness proof of CTL model

checking.
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first counter of A′ is split by introducing a fresh control location that is connected to

an A1 or A2 as defined in Lemma 5.1.17 and labelled with an extra label depending

on which operation is performed in A′. This allows us to use the formula ϕt defined

in Lemma 5.1.17 in order to check if the value of the counter is congruent 0 or

−1 modulo the value of y before we add respectively subtract 1 from the counter.

The bottom row deals with operations performed on the second counter of A′. All

add2(±1)-operations are replaced with a corresponding add(±y)-operation. In order

to simulate testing the second counter for zero, we again split the edge connecting any

q and q′ by introducing a fresh control location which is connected to an A3 gadget

as defined in Lemma 5.1.17. This allows us to use the formula ϕt from the lemma in

order to check if the value of the counter is less than the value of y. Additionally, we

label q′ with a fresh label γq′ in A as a marker indicating that control location q′ has

been reached. We now define the CTL formula for our hardness proof as follows:

ϕc
def
=

(
(γ−

1 ∨ γ+
1 ∨ γ0

2) → EX(γt ∧ ϕt)
)
∧

(
γ0

1 → EX(γt ∧ ¬ϕt)
)

ϕ
def
= E(ϕcUγq′).

Suppose there exists a valuation ν such that m = ν(y) and (T (Aν), (q, 0)) |= ϕ. There

exists a finite path in T (Aν) starting in (q, 0) along which ϕc holds and which ends

in (q′, 0). Since ϕc ensures that all corresponding zero-tests in A′ are matched and

that all updates to the counter of Aν respect the boundary m, this path yields a

run of A′ witnessing (q, 0) →∗
A (q′, 0) on which both counters do not exceed m. The

converse direction follows analogously. This shows that model checking CTL-formulae

of parametric one-counter automata is Π0
1-hard.

Membership in Π0
1 is rather trivial as in the EF case. Given a parametric one-

counter automaton A with parameters y1, . . . , yn, a CTL formula ϕ and (q, n), we

can enumerate all possible valuations ν of the parameters and check whether or not

(T (Aν), (q, n)) |= ϕ, which by Proposition 5.1.1 is decidable.

Theorem 5.1.4 Model checking CTL-formulae on parametric one-counter automata

is Π0
1-complete already for parametric one-counter automata with only one parameter

and a fixed CTL-formula.
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τ |= γ ⇐⇒ γ ∈ τ(0)

τ |= ¬ϕ ⇐⇒ τ 6|= ϕ

τ |= ϕ1 ∧ ϕ2 ⇐⇒ τ |= ϕ1 and τ |= ϕ2

τ |= Xϕ ⇐⇒ τ 1 |= ϕ

τ |= ϕ1Uϕ2 ⇐⇒ there is j ∈ N such that τ j |= ϕ2 and for all i ∈ [0, j − 1], τ i |= ϕ1

Table 5.2: Semantics of LTL.

5.2 Linear-Time Temporal Logic (LTL) Model Check-

ing

This section establishes the computational complexity of model checking formulae

of linear-time temporal logic (LTL) on transition systems generated by one-counter

automata and families of transition systems generated by parametric one-counter au-

tomata. In contrast to CTL, we are going to show that the model checking problem is

decidable in both cases, PSPACE-complete in the former and coNEXPTIME-complete

in the latter case. We begin with some standard definitions.

Formulae of LTL are inductively defined according to the following grammar, where

γ ranges over a set of labels Λ:

ϕ ::= γ | ¬ϕ | ϕ ∧ ϕ | Xϕ | ϕUϕ.

The standard Boolean abbreviations and true are defined in the same way as in CTL.

The finally modality Fϕ is an abbreviation for trueUϕ and the globally modality Gϕ

abbreviates ¬F¬ϕ. The size |ϕ| of an LTL formula ϕ is defined as the number of

symbols required to write it down. The semantics of LTL is given in terms of traces

τ : N → 2Λ and shown in Table 5.2. The model checking problems that we consider

are defined as follows:
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LTL OCA Model Checking

INPUT: A one-counter automaton A, a configuration (q, n) of A and an LTL

formula ϕ.

QUESTION: Does τ |= ϕ for every infinite trace τ starting in (q, n)?

LTL POCA Model Checking

INPUT: A parametric one-counter automaton A, a configuration (q, n) of A

and an LTL formula ϕ.

QUESTION: Does τ |= ϕ for every valuation ν : Y → N and every infinite trace τ

starting in (q, n) in T (Aν)?

All of our upper bounds rely on the standard automata-theoretic approach to

LTL model checking [105]. In the following, we give a brief account of this approach.

Expositions on this topic can be found in the literature, see e.g. [3, 33]. The heart

of the approach is the construction of a Büchi automaton Aϕ from an LTL formula ϕ

whose transition system consists of all traces satisfying ϕ, formally captured by the

following theorem.

Proposition 5.2.1 ([105]) Given an LTL formula ϕ, there exists a corresponding

Büchi automaton Aϕ with the initial control location qϕ such that |Aϕ| = exp(O(|ϕ|))

and for all traces τ , τ |= ϕ if, and only if, there is a Büchi run ̺ in T (Aϕ) starting

in qϕ with trace τ .

Thus, for a given one-counter automaton A and an LTL formula ϕ, checking (T (A), (q, n)) 6|=

ϕ can be reduced to checking whether there is a common trace τ in T (A) starting

in (q, n) and T (A¬ϕ) starting in q¬ϕ. Consequently, this reduces to checking whether

there is a Büchi run in T (A) × T (A¬ϕ) which traverses states with a component of

the final locations of A¬ϕ infinitely often. In the following, we show how to construct

a one-counter automaton that generates the transition system T (A)×T (A¬ϕ), which

then allows us to decide the existence of a Büchi path via our results obtained in

Chapter 4.
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Let A = (Q, Λ, q0, F, ∆, λ, ξ) be a one-counter automaton with Q = F and let

Aϕ = (Qϕ, Λ, qϕ, Fϕ, ∆ϕ) be the Büchi automaton corresponding an LTL formula ϕ.

We define the product automaton A′ of A and Aϕ as A′ = (Q′, Λ, q′0, F
′, ∆′, λ′, ξ′),

where

• Q′ def
= {(q, qϕ) ∈ Q × Qϕ : λ(q) = λϕ(qϕ)};

• F ′ def
= Q × Fϕ;

• ∆′ def
= {((q, qϕ), (q′, q′ϕ)) ∈ Q′ × Q′ : (q, q′) ∈ ∆ and (qϕ, q′ϕ) ∈ ∆ϕ};

• λ′(q, qϕ)
def
= λ(q); and

• ξ′((q, qϕ), (q′, q′ϕ))
def
= ξ(q, q′).

We write A×Aϕ to denote the product automaton of A and Aϕ. It is easily checked

that A×Aϕ is computable in L and that T (A×Aϕ) is isomorph to T (A) × T (Aϕ).

LTL Model Checking of One-Counter Automata

We are now going to show that the combined complexity of LTL model checking of

one-counter automata is PSPACE-complete and coNP-complete if we fix ϕ. PSPACE-

hardness of the model checking problem follows immediately from PSPACE-hardness

of LTL model checking on Büchi automata [101]. In order to show membership in

PSPACE, we employ the automata-theoretic approach discussed in the previous sec-

tion. However, given a one-counter automaton A and an LTL formula ϕ, it is not

sufficient to näıvely construct the product automaton A × A¬ϕ and then check for

the existence of a Büchi path, since |A × A¬ϕ| = |A| exp(O(|ϕ|)), which only gives

a coNEXPTIME upper bound for LTL model checking. Instead, we reduce the model

checking problem to a model checking problem in a unary one-counter automaton,

similar to the CTL case.

Let A′ be the unary one-counter automaton obtained from A by expanding tran-

sitions that increment the counter as described at the beginning of this chapter. As
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in the CTL case, in order to decide a model checking problem on A via A′, we have to

make some adjustments to the LTL formula ϕ. To this end, we define ϕ† as follows:

γ† def
= γ (Xϕ)†

def
= X(αU(¬α ∧ ϕ†))

(¬ϕ)†
def
= ¬(ϕ†) (ϕ1Uϕ2)

† def
= (α ∨ ϕ†

1U(¬α ∧ ϕ†
2))

(ϕ1 ∧ ϕ2)
† def

= ϕ†
1 ∧ ϕ†

2

Clearly, ϕ† can be constructed by a log-space transducer. The following lemma es-

tablishes the correspondence between A, ϕ and A′, ϕ†.

Lemma 5.2.1 Let A, ϕ and (q, n) be an instance of an LTL model checking problem,

and let A′ and ϕ† be defined as above. Then (T (A), (q, n)) |= ϕ if, and only if,

(T (A′), (q, n)) |= ϕ†.

Proof. We sketch a proof by structural induction on ϕ and only consider the in-

teresting cases ϕ = Xϕ′ and ϕ = ϕ1Uϕ2. For ϕ = Xϕ′, suppose (T (A), (q, n)) |=

ϕ, by the semantic definition there exists an infinite path ̺ with a trace τ such

that τ |= ϕ, i.e., τ 1 |= ϕ′. Let ̺(1) = (q′, n′). By the induction hypothesis,

(T (A′), (q′, n′)) |= (ϕ′)†. The construction of A′ ensures that (T (A′), (q′, n′)) |= ¬α,

hence (T (A′), (q′, n′)) |= ¬α ∧ (ϕ′)†. Moreover, by the construction of A′ there is a

finite (q, n)-(q′, n′) path ̺′ such that λ(̺′(i)) = α for all i ∈ [2, |̺′|]. Consequently,

(T (A′), (q, n)) |= X(αU(¬α∧ (ϕ′)†)), i.e., (T (A′), (q, n)) |= ϕ†. The converse direction

follows analogously.

For the case ϕ = ϕ1Uϕ2, by the semantic definition there exists an infinite path ̺

with a trace τ and j ∈ N such that τ |= ϕ, τ(i) |= ϕ1 for all i ∈ [2, j] and τ(j) |= ϕ2.

Consequently, (T (A), ̺(i)) |= ϕ1 for all i ∈ [2, j], (T (A), ̺(j)) |= ϕ2 and hence by

the induction hypothesis (T (A′), ̺(i)) |= ϕ†
1 for all i ∈ [2, j] and (T (A′), ̺(j)) |= ϕ†

2.

Moreover, the construction of A′ ensures that (T (A′), ̺(i)) |= ¬α for all i ∈ [2, j] and

that there are finite ̺(i)-̺(i+1) paths ̺i for all i ∈ [2, j] such that (T (A′), ̺i(k)) |= α

for all k ∈ [1, |̺i| − 1]. Consequently, (T (A′), (q, n)) |= (α ∨ ϕ†
1)U(¬α ∧ ϕ†

2), i.e.,

(T (A′), (q, n)) |= (ϕ1Uϕ2)
†. The converse direction follows analogously. ¤
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We can now prove the PSPACE upper bound for LTL model checking of one-counter

automata. Given an instance A, ϕ and (q, n) of a model checking problem, we can

construct with a PSPACE transducer the unary one-counter automaton A′ correspond-

ing to A, the LTL formula ϕ†, the Büchi automaton A¬ϕ† and the product automaton

A′′ def
= A′ × A¬ϕ† . We have (T (A), (q, n)) |= ϕ if, and only if, there is a Büchi run

in T (A′′) starting in (q, n). Since |A′′| = exp(O(|A|)) exp(O(|ϕ|) and by Proposition

2.5.3 checking for the existence of a Büchi run in a unary one-counter automaton

A is NL-complete, the combined complexity of LTL model checking of one-counter

automata is PSPACE-complete.

If we fix ϕ, we can avoid the construction of a unary one-counter automaton and

directly construct the product A′ def
= A × A¬ϕ whose size is |A′| = O(|A||A¬ϕ|). It

then follows from Theorem 4.1.1 that model checking LTL on a one-counter automaton

for a fixed LTL formula is coNP-complete. Hardness for coNP can easily be derived

from the fact that reachability for one-counter automata is NP-hard. The following

theorem summarises the results of this section.

Theorem 5.2.1 LTL model checking of one-counter automata is PSPACE-complete

and coNP-complete for a fixed LTL-formula.

LTL Model Checking of Parametric One-Counter Automata

In this section, we are going to establish the computational complexity of model check-

ing LTL on parametric one-counter automata. We are going to show that the problem

is coNEXPTIME-complete in general and coNP-complete for fixed LTL formulae.

The upper bounds follow straightforwardly in the same way as discussed in the

previous section. Given an LTL formula ϕ, a parametric one-counter automaton A and

a configuration (q, n), in order to decide (T (A), (q, n)) 6|= ϕ we can construct the Büchi

automaton A¬ϕ and the product automaton A′ def
= A×A¬ϕ and then decide whether

there exists a valuation ν such that T (Aν) has a Büchi path starting in (q, n). By

Theorem 4.2.2, the latter problem is NP-complete, and since |A′| = |A| exp(O(|ϕ|)) we

get that model checking LTL on parametric one-counter automata is in coNEXPTIME.

If ϕ is fixed, we have |A′| = O(|A|), whence model checking is in coNP. Hardness for

160



coNP follows from coNP-hardness of reachability in parametric one-counter automata,

which can be checked with a fixed LTL formula.

Theorem 5.2.2 LTL model checking of parametric one-counter automata is coNP-

complete for a fixed LTL-formula.

It remains to show that the combined complexity of LTL model checking on para-

metric one-counter automata is coNEXPTIME-hard. We reduce from the comple-

ment of the NEXPTIME-complete problem Succinct 3-SAT [87], which is to decide

whether a Boolean formula in 3-CNF given as a circuit is satisfiable.

In order to define Succinct 3-SAT, we now define circuits in an informal way.

A more rigorous treatment can for example be found in [100]. A Boolean circuit

consists of Boolean gates, AND-, OR- and NOT-gates. The AND- and OR-gates have

two inputs and one output, and the NOT-gate has one input and one output. Inputs to

and outputs of the gates are Boolean values, i.e., 0s and 1s, and each gate computes

a Boolean function, i.e., an AND-gate outputs b1 ∧ b2 on input b1, b2 ∈ {0, 1}. A

circuit is a collection of Boolean gates in which the outputs of some gates connect

to the inputs of other gates such that the resulting graph is acyclic. It is important

to mention that the output of a gate can connect to more than one input of another

gate. The inputs of the gates of a circuit that are not connected to any output of

another gate are called inputs to the circuit. Likewise, the outputs of the gates of a

circuit that are not connected to the input of a gate are called outputs of the circuit. A

circuit C with m inputs and n outputs computes a function f : {0, 1}m → {0, 1}n. We

define the size |C| of a circuit C to be the number of gates it consists of. An example

of a Boolean circuit C of size three is shown in Figure 5.10. It consists of three gates,

one AND-, one OR- and one NOT-gate, has three inputs i1, i2, i3 and two outputs

o1, o2. Hence it computes a function fC : {0, 1}3 → {0, 1}2. Clearly, a polynomially

space-bounded deterministic Turing machine can evaluate a circuit, i.e., compute the

output for a given input. We can now formally define Succinct 3-SAT. An input

to Succinct 3-SAT is given by a Boolean circuit C that encodes a Boolean formula

ψ in 3-CNF in N = exp(O(|C|)) Boolean variables and with M = exp(O(|C|) clauses.
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Figure 5.10: An example of a Boolean circuit C with inputs i1, i2, i3 and outputs o1, o2

defining a function fC : {0, 1}3 → {0, 1}2. For example, we have fC(1, 0, 1) = (1, 1)

and fC(1, 1, 1) = (0, 1).

We write ψ as

ψ(x0, . . . , xN−1) =
∧

j∈[0,M−1]

(ℓj
1 ∨ ℓj

2 ∨ ℓj
3).

The circuit C encodes ψ as follows: C has m = (lg M) + 2 inputs and n = (lg N) + 1

outputs. On input c · ℓ, where c ∈ {0, 1}m and ℓ ∈ {0, 1}2, both read as binary

numbers, fC outputs x · b, where x ∈ {0, 1}n and b ∈ {0, 1} such that x is the index of

the variable of the ℓ-th literal of the clause with index c in ψ, and b indicates whether

or not x is negated4. Succinct 3-SAT is to decide whether ψ is satisfiable.

Succinct 3-SAT

INPUT: A Boolean circuit C encoding a Boolean 3-CNF formula ψ.

QUESTION: Is ψC satisfiable?

Due to the exponential succinctness provided by Boolean circuits, the complexity

of deciding Succinct 3-SAT increases by one exponent as compared to classical

3-SAT.

Proposition 5.2.2 ([87]) Succinct 3-SAT is NEXPTIME-complete.

In order to establish coNEXPTIME-hardness for the combined complexity of LTL

model checking, given an input C to Succinct 3-SAT, we construct a parametric

4For definiteness, ψ can be assumed to be augmented with redundant clauses and literals to

handle the cases when c ≥ M or ℓ = 4.
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= (x · b)

AC(c · 3)
= (x · b)

Aprime(x) = px
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Figure 5.11: High-level description of the automaton A used in the hardness-proof of

LTL model checking on parametric one-counter automata.

one-counter automaton A with one parameter y and an LTL formula ϕ such that ψ

is satisfiable if, and only if, there is a valuation ν such that (T (Aν), (q, 0)) |= ϕ for

some distinguished control location q of A(y).

As a first step, let us provide a suitable encoding of truth assignments of the

variables of ψ by natural numbers. The encoding we use has also been employed for

establishing lower bounds for EF model checking of unary one-counter automata [68].

Let pi denote the i-th prime number. Every natural number y defines a truth assign-

ment ν : {x1, . . . , xN} → {0, 1} such that ν(xi) = 1 if, and only if, pi|y. By the prime

number theorem, pN = O(N log N) and hence O(|C|2) bits are sufficient to represent

pN . We will use the parameter y to guess an assignment, but the above encoding

of course requires exponentially many prime numbers to verify that this assignment

evaluates ψ to true, and those prime numbers cannot be hardwired into A. Instead,

they are going to be computed in A on-the-fly.

Let us now take a high-level look at A, which is sketched in Figure 5.11. It uses one

parameter y and employs several gadgets. The only gadgets manipulating the counter

are Adivides and Adivides . The remaining gadgets are designed in a way such that they

communicate via designated propositional variables and not, as in Section 5.1.2, with

the help of the counter. First, A loads the value of the parameter y on the counter.
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Recall that the value of y is supposed to encode a truth assignment to ψC. Next, A

traverses through a gadget Ainc, which initially chooses an arbitrary index c identi-

fying a clause of ψ. Every time Ainc is traversed afterwards, it increments c modulo

M and hereby moves on to the next clause. Now A branches non-deterministically

into a gadget AC in order to compute x · b from C on input c · 1, c · 2, respectively c · 3,

i.e., in order to compute the index of the variable of the first, second or third literal

of the clause with index c. The computed index x is then used as input to a gadget

Aprime , which computes pc. Then if b = 0, it is checked in Adivides that pi does not

divide the value of y, and likewise in Adivides that pi divides the value of y if b = 1.

These checks require the counter to be modified. After the checks have been finished,

A restores the value y on the counter and the process continues with clause c + 1

mod M . Clearly, if ψ is satisfiable then there exists a valuation ν of y such that there

is an infinite path in T (Aν) that traverses the control location q infinitely often, since

every time we traverse Ainc we can always determine which AC gadget to choose next

so that we do not “get stuck” at the divisibility respectively non-divisibility tests.

It remains to show how the gadgets and the communication between them can

be realised. Our first observation is that the computations of Ainc, AC and Aprime

can be realised by space bounded deterministic Turing machines using no more than

a number of tape cells polynomial in |C|. Indeed, it is easily seen that incrementing

modulo M , evaluating C and computing the i-th prime number pi can be performed by

such a deterministic Turing machine. Thus, we now show how given a generic space-

bounded deterministic Turing machine M, we can construct in polynomial time a

one-counter automaton AM and some LTL formulae that mimic computations of M

on traces of AM. Our approach is inspired by the classical proof of PSPACE-hardness

of LTL model checking on Kripke structures [101].

Let M = (S, Σ, Γ, s0, A,R, ∆) be a DTM with a fixed input tape with m tape cells,

and n working tape cells, and let S = {s0, . . . , sk}. We may without loss of generality

assume that Σ = Γ = {0, 1}. Figure 5.12 shows the one-counter automaton AM that

we use for the simulation of M. There, besides Greek letters we additionally use

italic Latin letters in order to denote atomic propositions of AM. A simulation of M
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Figure 5.12: One-counter automaton AM used for the simulation of a space-bounded

deterministic Turing machine.
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starts when AM is entered at the location labelled with ζ and is finished when the

location labelled with β is reached.

The sequence of propositions occurring on a trace of a path starting from and

ending in q encodes a configuration of M. In more detail,

• si indicates that M is in state si;

• ih i that the input tape head scans cell i;

• wh i that the working tape head scans cell i;

• ii,b that the i-th bit of the input tape is set to b; and

• wi,b that the i-th bit of the working tape is set to b, where i is in the respective

range and b ∈ {0, 1}.

We are now going to introduce some LTL formulae that enforce that a proper

sequence of configurations of M is encoded in traces of AM. First, we look at LTL

formulae that allow for testing properties of the current configuration. It is helpful

to think of all of them as being evaluated in q. The formula ϕstate(i)
def
= Xsi for

each i ∈ [0, k] expresses that the current state of M is si. Additionally, with the

formula ϕinhead(i)
def
= XXXXih i we express that the input head is at position i, where

i ∈ [0,m + 1]. Similarly, define the formulae ϕwohead(i), ϕwork(j, b), and ϕinput(i, b) for

expressing that the working head is at position i, that the i-th bit of the input tape

is b, and that the j-th bit of the working tape is b, respectively, where i ∈ [m], j ∈ [n]

and b ∈ {0, 1}.

The LTL formula below, assumed to be evaluated in the control location labelled

with α, ensures that the transition function is correctly encoded into traces of AM

for states s ∈ S \A whenever the input respectively working tape head does not scan
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a start marker ⊲ or end marker ⊳:

∧

sl∈S\A

∧

i∈[m],
j∈[n]

∧

b1,b2∈{0,1}

ϕstate(l) ∧ ϕinhead(i) ∧ ϕinput(i, b1) ∧ ϕwohead(j) ∧ ϕwork(j, b2) →

→ ((X(¬α ∧ ¬β)U(α ∧ ϕsucc(sl, i, j, b1, b2))∧

∧
∧

k 6=j,

b∈{0,1}

(ϕwork(k, b) ↔ (X¬αU(α ∧ ϕwork(k, b)))))).

Here, whenever ∆(sl, b1, b2) = (sh, d1, d2, b), the formula

ϕsucc(sl, i, j, b1, b2)
def
= ϕstateh

∧ ϕinheadi+d1
∧ ϕwoheadj+d2

∧ ϕworkj,b

guarantees that the correct bit is “written” to the working tape and that the state,

the input head position, and the working tape position of the next configuration seen

indeed match the successor configuration. A similar formula can be constructed for

the case when one or both of the input or working heads point to a start respectively

end marker.

Once we have reached an accepting state si ∈ A, we require that AM is left, which

is expressed by the following formula when evaluated in q:

∧

si∈F

ϕstate(i) → (¬αUβ).

It is now easily seen that we can construct an LTL-formula ϕcompute that is derived

from a conjunction of the formulae from above such that the formula G(α → ϕcompute)

constraints paths through AM in a way such that their traces yield the encoding of

a valid computation of M.

Let us now turn towards ensuring that once we enter AM, we initially traverse

it in a way such that the trace corresponds to an initial configuration of M. The

formula

G(ζ → X(ϕstate(0) ∧ ϕinhead(1) ∧ ϕwohead(1) ∧
∧

j∈[n]

ϕwork(j, 0)))

ensures that the heads of the input and working tape point to the first tape cell, that

the working tape is filled with 0s and that we are in the initial state. If the input tape
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Figure 5.13: The one-counter automaton Adivides for testing the counter for divisibility

with some natural number of bit length l + 1.

can be initialized with an arbitrary content, we are done. Otherwise, suppose that

we want to transfer the first j bits of the output of a space-bounded deterministic

Turing machine M′ from its corresponding one-counter automaton AM′ to the input

of AM. For b ∈ {0, 1}, let b
def
= 0 if b = 1 and b

def
= 1 otherwise, and suppose that all

atomic propositions are primed in AM′ . The formula

∧

k∈[j]
b∈{0,1}

G((w ′
k,b ∧ (¬α′Uβ′)) → (¬ik,bUγ)

guarantees that we traverse through the first j bits of the component of AM repre-

senting the input tape of M in the same way as we traverse the first j bits of the

working tape component of M′ in AM′ when a computation has finished. In sum-

mary, we have thus shown how the gadgets Ainc,AC and Aprime from Figure 5.11 and

the communication between them can be realised.

The only major question left open is how we can perform a divisibility respectively

non-divisibility test of the counter value with a prime number computed in Aprime .

To this end, let us consider the one-counter automaton Adivides shown in Figure 5.13.

One cycle through Adivides subtracts some natural number of bit length l + 1 from

the counter. In order to properly test for divisibility, we need to make sure that we

remain on the same path in every cycle. In the CTL setting, this problem was resolved

by branching into the additional one-counter automaton Abit . In contrast, in LTL we

cannot branch, but use the propositions γj,bj
, j ∈ [0, l], b ∈ {0, 1} in order to stay

on a precisely fixed path in every cycle. Assuming that the number p for which we

want to test for divisibility with the current counter value is encoded as a sequence of
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propositions wj,bj
of a one-counter automaton AM, the subsequent formula enforces

that we always subtract p in cycles of Adivides :

G(
∧

j∈[0,l]
bj∈{0,1}

((wj,bj
∧ (¬αUβ)) → (¬γj,bj

Uξ))).

It is straightforward to derive a similar one-counter automaton Adivides and an appro-

priate LTL formula for testing non-divisibility of the counter value with a previously

computed prime number. Finally, we can also adopt these techniques in order to

correctly handle the branching on b performed in Figure 5.11.

In summary, by taking the disjoint union of all the gadgets from Figure 5.11,

their appendent LTL formulae that we described in this section, wiring the gadgets

correctly and taking the conjunction of the relevant LTL formulae, given an input C

to Succinct 3-SAT, we can construct a parametric one-counter automaton A with

one parameter y and an LTL formula ϕ such that there is an assignment ν assigning

a natural number to y such that (T (Aν), (q, 0)) 6|= ϕ if, and only if, ψ encoded by C

is satisfiable.

Theorem 5.2.3 The combined complexity of LTL model checking on parametric one-

counter automata is coNEXPTIME-complete.

5.3 Discussion

This chapter established complexity results for model-checking problems on transition

systems generated by one-counter automata and parametric one-counter automata.

We considered two classes of specification logics, branching-time and linear time log-

ics.

Section 5.1 dealt with the branching-time logic CTL and its syntactic fragment

EF. We showed that the expressive power of those logics renders the model checking

problem on parametric one-counter automata undecidable. Decidability of the prob-

lem on one-counter automata was already known, the contribution of this chapter

is that we have developed tight bounds for the complexity of model checking this
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class of counter automata. Although EF model checking of one-counter automata

with updates encoded in unary is PNP-complete, the succinct encoding of numbers

in our model does not increase the complexity by one exponent and model checking

EF on one-counter automata is PSPACE-complete. The crucial insight in establishing

the upper bound was to show a periodicity property for reachability relations and

EF formulae. In contrast, CTL turned out to be expressive enough to fully exploit

the exponential succinctness of one-counter automata: while CTL model checking

of one-counter automata with updates encoded in unary is PSPACE-complete, it is

EXPSPACE-complete already for a fixed formula when updates are encoded in bi-

nary. Proving the lower bound was far from being straightforward and shown by

using the fact that EXPSPACE is exponentially L-serialisable. In Section 5.2 we then

considered model checking LTL on one-counter automata and parametric one-counter

automata. In contrast to the branching-time logics, both problems were shown to be

decidable. Moreover, we showed that model checking LTL on transition systems gen-

erated by one-counter automata is from a complexity point-of-view not harder than

standard LTL model checking and PSPACE-complete. Similar to the CTL case, LTL

model checking of parametric one-counter automata turned out to be computationally

harder, but remained decidable and coNEXPTIME-complete.

We have recently considered in [49] an even more restricted fragment of CTL

which only allows for the EX modality. It is not difficult to adjust the proof of

Proposition 5.1.2 in order to show that model checking this logic on one-counter

automata is PSPACE-hard. For parametric one-counter automata however, model

checking becomes decidable and can be shown to be PSPACE-complete.

With regards to future work, it would be interesting to investigate synthesis prob-

lems for LTL. Instead of asking whether an LTL formula holds for all one-counter

automata obtained from all possible valuations, we could instead ask whether there

exists a valuation such that an LTL formula holds. This problem is closely related to

the Büchi synthesis problem discussed at the end of the previous chapter. For CTL

respectively EF, this problem is undecidable by Theorem 5.1.2 and 5.1.4.
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Chapter 6

Tractable Reasoning in a Fragment

of Separation Logic

This chapter is about the complexity of reasoning in a fragment of separation logic

(SL). Separation logic [66, 92] is an extension of Hoare logic to reason about pointer

manipulating programs. It extends the syntax of assertions with predicates describing

shapes of memory; aliasing and disjointness can be concisely expressed within these

shapes. This extended assertion language allows elegant and concise hand written

proofs of programs that manipulate dynamically allocated data structures. However,

generating such proofs in an automated fashion is constrained by the undecidability

of almost all reasoning tasks in separation logic [92]. For that reason, there has been

a lot of research on finding decidable fragments of this logic, see e.g. [11, 23].

In this chapter, we study the separation logic fragment introduced by Berdine,

Calcagno and O’Hearn in [11]. This chapter is independent from the previous chapters

of this thesis. Although in the literature decidability results for separation logic have

been obtained via reductions to decision problems for counter automata, as discussed

in the introduction of this thesis, we do not follow this approach in this chapter.

The fragment of separation logic that we consider and has been presented in [11]

allows for reasoning about structural integrity properties of programs with pointers

and linked lists. Traditionally, separation logic formulae are interpreted in memory

models consisting of a stack and a heap. The stack is a mapping from a finite set
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of stack variables to cells of the heap. The heap is partitioned into a finite set of

allocated heap cells and an infinite set of non-allocated heap cells. An allocated heap

cell maps, or in different words points to, a possibly non-allocated heap cell. The

separation logic assertion language we consider allows for specifying shapes of the

heap. An assertion consists of a pure and a spatial part. The pure part consists of a

conjunction of equalities and disequalities over the stack variables. For example, the

pure assertion x = y∧x 6= z holds in all memory models in which the stack variables x

and y map to the same heap cell, and in which the heap cell that x (and thus y) maps

to is different from the cell that z maps to. An atomic spatial assertion is either x 7→ y

or ℓs(x, y), where x and y are stack variables. The semantics is that x 7→ y holds in

a memory model in which the heap cell that x maps to is allocated and points to the

heap cell of y, which is not required to be allocated. The assertion ℓs(x, y) holds in

a memory model if either the heap cell that x is mapped to is equivalent to the heap

cell of y and no heap cell is allocated, i.e., there is an empty list on the heap, or there

is a chain of heap cells c1, . . . , cn+1 such that c1, . . . , cn are allocated and ci points to

ci+1 for all i ∈ [n]. Atomic spatial assertions can be combined with the star-operator.

Given atomic spatial formulae σ1, σ2, we have that σ1 ∗ σ2 holds in a memory model

if its set of allocated heap cells can be separated into two disjoint parts such that in

one part σ1 holds and σ2 holds in the other part. Recall that, for example, x 7→ y

does not require y to be allocated in a memory model. Therefore, both σ1 and σ2 can

mention the same stack variable without resulting in an inconsistent spatial assertion.

So, for example, x 7→ y ∗ ℓs(y, z) has a memory model, even though y is mentioned

on both sides of the star-operator. An assertion in the separation logic fragment that

we consider now is a tuple consisting of a pure and a spatial formula. For example,

α = (y 6= z; x 7→ y ∗ ℓs(y, z))

describes memory models in which y and z map to different heap cells, and in which

the heap can be separated into disjoint heaps, on in which the heap cell of x is

allocated and maps to the heap cell of y, and another heap in which there is a list,i.e.

a possibly empty chain of allocated heap cells forming a linked list, from y to z. Since
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y and z are required to be disjoint, this list is non-empty and thus y is required to be

allocated in the heap in which ℓs(y, z) holds.

The decision problem that we consider in this chapter is entailment, which is to

decide given assertions α1, α2 whether α2 holds in every memory model in which α1

holds. We write α1 |= α2 if α1 entails α2 and show that entailment can be decided

in polynomial time. For example, we have x 7→ y |= ℓs(x, y), but ℓs(x, y) 6|= x 7→ y

since the list from x to y could possibly be empty or of length greater than two.

Thus, a memory model disproving entailment can be obtained by considering the

canonical memory model obtained from replacing the ℓs(x, y) assertion with two new

assertions x 7→ z ∗ z 7→ y, where z is a fresh stack variable. A formalisation of this

way of disproving entailment was developed in [11] by showing that list assertions

need to be expanded to length at most two in order to disprove that an entailment

holds. This immediately yields a coNP algorithm for entailment which, in order to

disprove an entailment, non-deterministically guesses how much any list assertion on

the left-hand side of an entailment needs to be expended.

In order to show that entailment is computable in polynomial time, we need to take

a fundamentally different approach to [11]. The first difference is that we represent

memory models and assertions as a special class of directed coloured graphs, which

we call SL graphs. In order to represent memory models, in an SL graph, heap cells

are nodes which are coloured red if they are allocated and coloured black if they are

not allocated. Each node is labelled with a finite set of stack variables that point to

this heap cell this node represents. Special edges between nodes allow for indicating

that heap cells are disjoint. Arrows between cells indicate that the heap cell at the

source of the arrow points to the heap cell at the target of the arrow. Figure 6.1(a)

shows an example of how we graphically represent memory models. There, nodes

coloured red are circles, and thus the represented memory model consists of three

allocated heap cells, to which the stack variables x, y and u point to. The heap cell

with stack variable x points to the heap cell with stack variable y, etc. Dashed lines

explicitly assert that the heap cells are not equivalent, e.g., a dashed line between the

heap cell labelled with x and the heap cell labelled with y asserts that those heaps
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◦

◦

◦

•

{x}

{y}

{u}

{z, w}

◦

•

•

{x}

{y}

{z}

•

•

{x}

{z}

(a) (b) (c)

Figure 6.1: Examples of the way memory models and assertions are graphically rep-

resented in this chapter and homomorphic embeddings.

cells are not equivalent. Finally, there is one non-allocated heap cell to which the

stack variables z and w point, i.e., z and y are equivalent in the represented memory

model. Some structural restrictions have to be made in order to reflect particularities

of the semantics of separation logic, but this basically is the main idea how memory

models are represented. Separation logic assertions are also represented as graphs,

but allow for additional list edges between nodes, depicted as dotted arrows. Figure

6.1(b) and (c) show the graphs corresponding to α1 = (x 6= z; x 7→ y ∗ ℓs(y, z))

respectively α2 = (x 6= z; ℓs(x, z)). The ℓs(y, z) assertion is represented as a dotted

list in the figure. The graphs are constructed in a way such that each SL assertion

has a corresponding SL graph and vice versa. So in particular, a memory model also

corresponds to an SL formula. The advantage of representing assertions as graphs and

memory models as a subclass of general SL graphs is that entailment can be decided

by checking for the existence of a homomorphic embedding, which is a mapping

between the node of SL graphs that preserves structural properties. For example,
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the memory model in (a) is a model of the assertion α1, and an embedding of the

SL graph corresponding to α1 is shown in Figure 6.1 by the arrows from (b) to (a).

The homomorphism is fully determined by the stack variables, and once it has been

fixed, it can be checked that all assertions are fulfilled. Indeed, x 6= z holds in the

memory model, x points to y as well and there is a list from y to z. Likewise, there is

a homomorphism from the graph of α2 to the graph of α2, and we are going to show

in this chapter that this implies that α1 |= α2. The difficult part is that, in general,

computing homomorphisms between graphs is an NP-complete problem. However, we

are going to show that we can bring SL graphs into a particular normal form, where

deciding the existence of a homomorphism can be performed in polynomial time.

The fragment of separation logic that we consider is the basis for tools such as

Smallfoot [12], which however employs the coNP algorithm discussed above in or-

der to decide entailments. Despite the worst-case exponential time complexity, the

tool demonstrated that separation logic could be used to automatically verify memory

safety of linked list and tree manipulating programs. Based on the success of Small-

foot, this approach has been extended to allow automatic inference of specifications

of systems code [10, 22], to reason about object-oriented programs [43, 67], and even

to reason about non-blocking concurrent programs [12]. But fundamentally all these

tools are based on the same style of syntactic proof theory presented in [11].

This chapter is structured as follows: in Section 6.1 we formally introduce our

fragment of separation logic, graphs and the decision problems that we consider. Sec-

tion 6.2.1 then shows how we can compute in polynomial time from a given assertion

a graph in normal form that represents the same set of models of the formula. We

then show in Section 6.2 that a homomorphism between graphs in normal form wit-

nesses an entailment, and that such a homomorphism can be computed in polynomial

time. Section 6.3 deals with syntactic extensions that make entailment coNP-hard.

We close this chapter with a discussion in Section 6.4, where we in particular focus

on the differences between the semantic model used in thesis and in [11].

176



6.1 Separation Logic and SL-Graphs

Let Vars and V be countably infinite sets of variables and nodes. We assume some

fixed total order < on Vars and for any finite set S ⊆ Vars, we denote by min(S) the

unique x ∈ S such that x ≤ y for all y ∈ S.

The syntax of our assertion language is given by the following grammar, where x

ranges over Vars:

expr ::= x (expressions)

φ ::= expr = expr | expr 6= expr | φ ∧ φ (pure formulae)

σ ::= expr 7→ expr | ℓs(expr , expr) | σ ∗ σ (spatial forumlae)

α ::= (φ; σ) (assertions)

Subsequently, we call formulae of our assertion language SL-formulae. An example

of an SL-formula is α = (x 6= y; ℓs(x, y) ∗ y 7→ z). It describes memory models in

which the value of the stack variable x is not equal to the value of the stack variable

y, and in which the heap can be separated into two disjoint segments such that in

one segment there is a linked list from the heap cell whose address is the value of x

to the heap cell whose address is the value of y, and where in the other segment the

latter heap cell points to the heap cell whose address is z. We denote by |φ| the size

of a pure formula and by |σ| the size of a spatial formula, which is in both cases the

number of symbols used to write down the formula. Given an assertion α = (φ; σ),

the size of α is |α|
def
= |φ| + |σ|. By ǫ, we subsequently denote the empty spatial

assertion of size zero.

The semantics of SL-formulae is given in terms of SL-graphs, which we define to

be a special class of directed graphs. Later, we are also going to use SL-graphs in

order to represent SL-formulae.

Definition 18 An SL-graph G is either ⊥ or (Vb, Vr, El, Ep, Ed, ℓ) such that

• Vb, Vr ⊆fin V , Vb ∩ Vr = ∅, Vb,r
def
= Vb ∪ Vr;

• El ⊆ Vb,r × Vb,r;
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•

◦ •

•

• • •

{x1}

{x2}{x3}

{x4}

{x5}
{x6}

{x7}

(a)

◦

•

• •

{x1, x2, x3}

{x4, x6}

{x5} {x7}

(b)

◦

•

•

•

{x1}

{x4}

{x6}

{x7}

(c)

Figure 6.2: Three SL-graphs, where bullets represent black nodes, circles red nodes

and where l-edges are dotted arrows, p-edges solid arrows and d-edges dashed lines.

Nodes are labelled with the variables next to them. The graphs (b) and (c) are in

normal form, where (b) is obtained by reducing (a). The arrows from (c) to (b) depict

a homomorphism.

• Ep ⊆ Vr × Vb,r and for every v ∈ Vr, Ep(v) 6= ∅;

• Ed ⊆ {{v, w} : v, w ∈ Vb,r, v 6= w}; and

• ℓ : Vars ⇀fin Vb,r

An SL-interpretation is an SL-graph where El = ∅, Ep is functional and Ed = {{v, w} :

v, w ∈ Vb,r, v 6= w}. ♦

An SL-graph ⊥ indicates an inconsistent SL-graph. The set Vb,r of nodes of an SL-

graph partitions into sets Vb and Vr, where we refer to nodes in Vb as black nodes and

to those in Vr as red nodes. We call Ep the set of pointer edges (p-edges), El the set

of list edges (l-edges), Ed is the set of disequality edges (d-edges) and ℓ the variable
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I |= x = y ⇐⇒ ℓI(x) = ℓI(y)

I |= x 6= y ⇐⇒ ℓI(x) 6= ℓI(y)

I |= φ1 ∧ φ2 ⇐⇒ I |= φ1 and I |= φ2

I |= x 7→ y ⇐⇒ ∃v, w ∈ V I
b,r.V

I
r = {v}, EI

p = {(v, w)}, ℓI(x ) = v, ℓI(y) = w

I |= ℓs(x , y) ⇐⇒ ∃n ∈ N.I |= ℓsn(x , y)

I |= ℓs0(x , y) ⇐⇒ ℓI(x ) = ℓI(y) and V I
r = ∅

I |= ℓsn+1(x , y) ⇐⇒ ∃z /∈ dom(ℓI), v ∈ V.I[ℓ[z 7→ v/ℓ]] |= x 7→ z ∗ ℓsn(z, y)

I |= σ1 ∗ σ2 ⇐⇒ ∃I1, I2.I = I1 ∗ I2, I1 |= σ1, I2 |= σ2

I |= (φ; σ) ⇐⇒ I = I1 ∗ I2, I1 |= φ and I1 |= σ, where I |= ǫ for all I

Table 6.1: Semantics of the assertion language, where I is an SL-interpretation.

labelling function. For convenience, Ep,l denotes the set Ep∪El. Given a node v ∈ V ,

we set vars(v)
def
= {x ∈ Vars : ℓ(x) = v} and var(v)

def
= min(vars(v)). We sometimes

wish to alter one component of a graph and, e.g., write G[E ′
p/Ep] to denote the graph

G′ = (Vb, Vr, E
′
p, El, Ed, ℓ).

Figure 6.2 shows three examples of SL-graphs. Subsequently, we identify nodes

of an SL-graph with any of the variables they are labelled with. Graph (a) has an

l-edge from the black node x1 to the red node x3, depicted by a dotted arrow. The

latter node has a p-edge to the black node x4, depicted by a solid arrow. Moreover,

there is a d-edge between x5 and x7, depicted by a dashed line.

In the remainder of this chapter, we denote an SL-interpretation by I and usually

denote the components of an interpretation with superscript I, e.g., we write V I
b

in order to denote the black nodes of an interpretation I. Given SL-interpretations

I, I ′, I ′′, we define the star operator as I = I ′ ∗ I ′′ if, and only if,

• V I
r = V I′

r ⊎ V I′′

r ;

• V I′

b = V I
b ∪ V I′′

r ;
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• V I′′

b = V I
b ∪ V I′

r ;

• EI
p = EI′

p ⊎ EI′′

p ; and

• ℓI = ℓI
′
= ℓI

′′
.

The semantics of our assertion language is presented in Table 6.1. We call I a

model of α if I |= α. The decision problems of interest to us are satisfiability and

entailment.

SL Satisfiability

INPUT: An assertion α.

QUESTION: Does there exist an interpretation I such that I |= α?

SL Entailment

INPUT: Assertions α, α′.

QUESTION: Does I |= α imply I |= α′ for all interpretations I?

Given an assertion α, we say α is satisfiable if there exists a model I such that I |=

α. Given two assertions α1 and α2, we say α1 entails α2 if for any SL-interpretation

I, whenever I |= α1 then I |= α2. We write α1 |= α2 if α1 entails α2, and α1 ≡ α2 if

α1 |= α2 and α2 |= α1.

Given an SL-graph G, we are now going to define its corresponding assertion α(G).

If G = ⊥ then α(G)
def
= (x 6= x; ǫ), i.e., an unsatisfiable SL-formula. Otherwise, the

assertion α(G) corresponding to G is defined as follows, where we use an indexed star

operator:

φ(G)
def
=

∧

v∈Vb,r

x,y∈vars(v)

x = y ∧
∧

{v,w}∈Ed

var(v) 6= var(w),

σ(G)
def
=

(
∗(v,w)∈Ep

var(v) 7→ var(w)
)
∗

(
∗(v,w)∈El

ℓs(var(v), var(w))
)
,

α(G)
def
= (φ(G), σ(G)).

We define the size of an SL-graph G as |G|
def
= |α(G)|. An example of the above

definition is given in Figure 6.2, where graph (b) corresponds to the assertion α =
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(φ; σ), where

φ
def
= x1 = x2 ∧ x2 = x3 ∧ x4 = x6 ∧ x1 6= x4 ∧ x5 6= x7,

σ
def
= x1 7→ x4 ∗ ℓs(x4, x5) ∗ ℓs(x4, x7)),

and where we have omitted superfluous equalities.

We now give some technical definitions about paths in SL-graphs. Given a relation

E ⊆ V × V , a v-w path in E of length n is a sequence of nodes π : v1 · · · vn+1 such

that v1 = v, vn+1 = w and (vi, vi+1) ∈ E for all 1 ≤ i ≤ n. We write |π| to denote the

length of π. The edges traversed by π is defined as edges(π)
def
= {(vi, vi+1) : 1 ≤ i ≤ n}.

Two paths π1, π2 are distinct if edges(π1)∩edges(π2) = ∅. If v 6= w, we call a v-w path

loop-free if vi 6= vj for all 1 ≤ i 6= j ≤ n + 1. We write v Ãp w, v Ãl w and v Ãp,l w

if there exists a v-w path in Ep, El respectively Ep,l. Moreover, we write v →p w,

v →l w and v →p,l w if (v, w) ∈ Ep, (v, w) ∈ El respectively (v, w) ∈ Ep,l. Given a

set of edges E, V (E) denotes the set V (E)
def
= {v : ∃w.(v, w) ∈ E or (w, v) ∈ E}. As

usual, E∗ denotes the reflexive and transitive closure of E. For e = (v, w) ∈ E, we

define E∗(e)
def
= {u : (w, u) ∈ E∗} ∪ {v}, i.e., E∗(e) is the set of all nodes reachable

starting from edge e.

6.2 Deciding Entailment via Homomorphisms be-

tween SL-Graphs

The challenging aspect in giving a polynomial time algorithm to decide entailment

is that there is some implicit non-determinism introduced by list assertions. As has

already been observed in [11], given α = (y 6= z; ℓs(x, y)∗ℓs(x, z)), for any model I of

α we have I |= (x = y; ǫ) or I |= (x = z; ǫ). However there are models I1, I2 of α such

that I1 6|= (x = y; ǫ) and I2 6|= (x = z; ǫ). Non-determinism often makes computing

entailment coNP-hard for logics that contain predicates for describing reachability

relations on graphs, e.g., in fragments of XPath or description logics [79, 55]. However,

in our SL fragment we obtain tractability through the SL-graph normal form we are

going to develop in the next section and the fact that variable names only occur at
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exactly one node in an SL-graph, which fully determines a graph homomorphism if

it exists.

The structure of this section is as follows. The first part deals with a particular

normal form of SL-graphs. We are going to show that any satisfiable SL-formula has

an equivalent SL-formula whose corresponding SL graph is in such a normal form

and which can be computed in polynomial time. The subsequent section then shows

that entailment can be decided by checking for the existence of a homomorphism

between SL-graphs in normal form. The key property is that a homomorphism can be

computed in polynomial time, which yields a polynomial-time algorithm for checking

entailment between SL formulae.

6.2.1 A Normal form of SL-Graphs

In this section, we are going to show that given an assertion α, we can compute in

polynomial time an SL-graph G in a normal form such that α ≡ α(G). This normal

form serves three purposes:

• it makes implicit equalities and disequalities from α explicit;

• an SL-graph in normal form has the structural property that if there is a loop-

free path between two distinct vertices then there is exactly one such path;

and

• any SL-graph G 6= ⊥ in normal form can be transformed into an interpretation

I such that I |= α(G), thus showing that satisfiability in our SL fragment is in

polynomial time.

Our strategy is as follows: we first show how given an assertion α, we can compute

an SL-graph G such that α ≡ α(G). Next, we define the normal form of SL-graphs

and show that from any SL-graph G 6= ⊥ we can compute an SL-graph G′ in normal

form such that α(G) ≡ α(G′).

To begin with, we show how given a pure formula φ we can construct a cor-

responding graph Gφ such that (φ, ǫ) ≡ α(Gφ). Let {x1, . . . , xm} ⊆ Vars be the
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set of all variables occurring in φ, and let {[e1], . . . , [en]} be the set of all equiv-

alence classes of variables induced by φ, i.e., x, y ∈ [ei] if, and only if, φ implies

x = y. Let Vb
def
= {v1, . . . , vn} ⊆ V ; ℓ(x)

def
= vi if, and only if, x ∈ [ei]; and

Ed
def
= {{vi, vj} : ∃x, y ∈ Vars.x ∈ [ei], y ∈ [xj] and x 6= y occurs in φ}. If there

is a singleton set in Ed then set Gφ
def
= ⊥, otherwise Gφ

def
= (Vb, ∅, ∅, ∅, Ed, ℓ). The

following lemma can now easily be verified.

Lemma 6.2.1 Let φ be a pure formula. There exists a polynomial time computable

SL-graph Gφ such that α(Gφ) ≡ (φ, ǫ).

Next, we show how to deal with spatial assertions. When processing spatial asser-

tions and transforming SL-graphs into normal form, we need to manipulate SL-graphs.

The two operations we perform on them are merging nodes and removing edges. These

operations can be realised by the algorithms that we subsequently introduce. Let us

fix an SL graph G = (Vb, Vr, El, Ep, Ed, ℓ). Algorithm Merge(G, v, w) takes an

SL-graph G as input and merges the node w into node v by adding all labels from w

to the labels of v and appropriately updating El, Ep and Ed. Moreover, the algorithm

makes sure that if either v ∈ Vr or w ∈ Vr then v ∈ Vr in the returned graph. If

both v, w ∈ Vr or {v, w} ∈ Ed then Merge(G, v, w) returns ⊥. It is obvious that the

algorithm runs in polynomial time, and we can characterise Merge as follows.

Lemma 6.2.2 Let α(G) = (φ; σ), v, w ∈ Vb,r, x = var(v) and y = var(w). We have

α(Merge(G, v, w)) ≡ (φ ∧ x = y; σ).

In order to remove edges, we define for removing l- and p-edges. Algorithm LRemove(G, (v, w))

takes an SL-graph G and an l-edge as input and removes the (v, w) from El. We omit

the pseudo-code of LRemove for readability, the algorithm can be characterised as

follows.

Lemma 6.2.3 Let α(G) = (φ; σ ∗ ℓs(x, y)), v, w ∈ Vb,r, x = var(v) and y = var(w).

We have α(LRemove(G, (v, w))) ≡ (φ; σ).

Similarly to LRemove, PRemove(G, (v, w)) removes a p-edge (v, w) from Ep and,

if necessary, moves v from Vr to Vb if v has as a result no outgoing p-edge. The

algorithm can be characterised as follows.
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Algorithm 4 Merge(G, v, w) merging two nodes v and w of G semantically

Input: An SL-graph G and nodes v, w ∈ Vb,r

if v = w then

return G

end if

if {v, w} ⊆ Vr or {v, w} ∈ Ed then

return ⊥

end if

V ′
b

def
= Vb \ {w}; V ′

r

def
= Vr \ {w}

if w ∈ Vr then

V ′
r

def
= V ′

r ∪ {v}; V ′
b

def
= V ′

b \ {v}

end if

E ′
p

def
= Ep \ ({(w′, w) ∈ Ep} ∪ {(w,w′) ∈ Ep})

E ′
p

def
= E ′

p ∪ ({(w′, v) : (w′, w) ∈ Ep} ∪ {(v, w′) : (w,w′) ∈ Ep})

E ′
l

def
= El \ ({(w′, w) ∈ El} ∪ {(w,w′) ∈ El})

E ′
l

def
= E ′

l ∪ ({(w′, v) : (w′, w) ∈ El} ∪ {(v, w′) : (w,w′) ∈ El})

E ′
d

def
= Ed \ ({{w,w′} ∈ Ed}) ∪ ({{v, w′} : ∃w′.{w,w′} ∈ Ed})

ℓ′(x)
def
= v if ℓ(x) = w and ℓ′(x)

def
= ℓ(x) otherwise

G′ def
= (V ′

b , V
′
r , E

′
p, E

′
l, E

′
d, ℓ

′)

return G′

Lemma 6.2.4 Let α(G) = (φ; σ ∗ x 7→ y)) v, w ∈ Vb,r, x = var(v) and y = var(w).

We have α(PRemove(G, (v, w))) ≡ (φ; σ).

We introduce functions LReMerge(G, (v, w)) and PReMerge(G, (v, w)) as macro,

which first remove an l- respectively p-edge (v, w) from G and then merge w into v.

Coming back to our original goal which was to show how to deal with spatial

assertions, Algorithm Apply(G, σ) takes an SL-graph G and a single spatial assertion

σ ∈ {x 7→ y, ℓs(x, y)} as input and outputs an SL-graph G′ such that if α(G) = (φ; σ′)

then α(G′) ≡ (φ; σ′ ∗ σ). Some extra care has to be taken if an l-edge is added that

is already present in G, since (φ; σ ∗ ℓs(x, y) ∗ ℓs(x, y)) ≡ (φ ∧ x = y; σ ∗ ℓs(x, y)). It
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Algorithm 5 PRemove(G, v, w) removing a p-edge (v, w) semantically

Input: An SL-graph G, a p-edge (v, w) ∈ Ep

if |Ep(v)| > 1 then

return G[(Ep \ {(v, w)})/Ep]

else

return G[(Vr \ {v})/Vr, (Vb ∪ {v})/Vb, (Ep \ {(v, w)})/Ep]

end if

is easily checked that Apply runs in polynomial time.

By combining the algorithms considered in this section and computing the SL-

graph corresponding to an assertion α by induction on the structure of α, we obtain

the following lemma.

Lemma 6.2.5 Let α be an SL-graph. Then there exists a polynomial-time algorithm

that computes an SL-graph G such that α ≡ α(G).

We now are now going to move towards defining the normal form of an SL-graph

and show that any SL-graph can be transformed into one in normal form such that

their corresponding assertions are equivalent. A key concept of the normal form is

that of a persistent set of edges.

Definition 19 Let G be an SL-graph, a set of edges E ⊆ Ep,l is persistent if V (E)∩

Vr 6= ∅ or there are v, w ∈ V (E) such that {v, w} ∈ Ed. ♦

Let us illustrate this definition with the help of Figure 6.2. Let e1 be the l-edge from

x4 to x5 and e2 the l-edge from x4 to x7 of graph (a) in Figure 6.2. Neither {e1} nor

{e2} is persistent, but {e1, e2} is as there is a d-edge between x5 and x7. Intuitively,

the idea behind the definition is as follows: suppose we are given an SL-graph G

with (v, w) ∈ El such that E = E∗
p,l(v, w) is persistent. Then in any model I of

α(G) for v′ = ℓI(var(v)), we have v′ ∈ V I
r since v′ must have an outgoing p-edge as

the persistence property enforces that there is a p-edge in E or that not all variable

names occurring in E are mapped to v′ in I. Moreover, if v has a further outgoing

l-edge (v, w′) then ℓI(var(w′)) = v since v can only have one outgoing p-edge in I.
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Algorithm 6 Apply(G, σ) adding a p or l-edge semantically

Input: An SL-graph G, an assertion σ ∈ {x 7→ y, ℓs(x, y)}

v
def
= ℓ(x); w

def
= ℓ(y); ℓ′

def
= ℓ; V ′

b

def
= Vb

if ℓ(x) is undefined then

v
def
= choose(V \ Vb,r); V

′
b

def
= V ′

b ∪ {v}; ℓ′
def
= ℓ′[x 7→ v]

end if

if ℓ(y) is undefined then

w
def
= choose(V \ Vb,r); V

′
b

def
= V ′

b ∪ {w}; ℓ′
def
= ℓ′[y 7→ v]

end if

if σ = x 7→ y then

if (ℓ(x), ℓ(y)) ∈ Ep then

return ⊥

end if

V ′
r

def
= Vr ∪ {ℓ(x)}; V ′

b = V ′
b \ {ℓ(x)}

E ′
p

def
= Ep ∪ {(ℓ(x), ℓ(y)}; G′ def

= (V ′
r , V

′
b , E

′
p, El, Ed, ℓ)

end if

if σ = ℓs(x, y) then

if (ℓ(x), ℓ(y)) ∈ El then

G′ def
= Merge(G, ℓ(x), ℓ(y))

else

E ′
l

def
= El ∪ {ℓ(x), ℓ(y)}; G′ def

= (Vr, V
′
b , Ep, E

′
l, Ed, ℓ)

end if

end if

return G′
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(i) if v ∈ Vr then |Ep(v)| = 1

(ii) if v →p,l w such that E∗
p,l(v, w) is persistent then El(v) ⊆ {w}

(iii) if v →l w1 and v →l w2 such that E∗
p,l(v, w1) ∪ E∗

p,l(v, w2) is persistent then

El(v) ⊆ {w1, w2}

(iv) there are no distinct loop-free v-w paths π1, π2 in El.

Table 6.2: Conditions for an SL-graph G to be reduced.

For graph (a) in Figure 6.2, this means that x6 becomes equivalent to x4 in any model

of the corresponding SL-formula. Thus persistency allows us to make some implicit

equalities in G explicit.

We can now give a definition of our normal form of SL-graphs.

Definition 20 An SL-graph G is reduced if G = ⊥ or if it fulfills the conditions in

Table 6.2. An SL-graph G is in normal form if G is reduced and for all v, w ∈ Vb,r

such that α(G) = (φ; σ), x = var(v) and y = var(w), whenever (φ ∧ x = y; σ) is

unsatisfiable then {v, w} ∈ Ed.

Thus, an SL-graph is in normal form if it is reduced and if its set of d-edges is

saturated. Let us explain on an informal level the four conditions given in Table

6.2 that constitute the property of a graph being reduced. The idea behind those

conditions is that if any of them is violated by an SL-graph G then we can make

some implicit facts explicit. Clearly, if (i) is violated then α(G) is unsatisfiable as

the spatial part of α(G) consists of a statement of the form x 7→ y ∗ x 7→ z. If (ii)

or (iii) is violated then by our previous discussion on persistent edges any further

outgoing l-edge can be collapsed into v. Condition (iv) contributes to making sure

that between any two different nodes there is at most one loop-free path, as can

be seen by the following lemma. Note that in particular any interpretation I is an

SL-graph in normal form.
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Algorithm 7 Reduce(G) reducing G according to Definition 20

Input: An SL-graph G

while G is not reduced do

case split on violated condition at node v

// conditions are as in Table 6.2

// node names below refer in each case to the corresponding case in Lemma 6.2.9

case (i): return ⊥

case (ii): G = LReMerge(G, (v, w′))

case (iii): G = LReMerge(G, (v, w′′))

case (iv): G = Merge(G′, v, w)

end while

return G

Lemma 6.2.6 Let G 6= ⊥ be a reduced SL-graph, v, w be distinct nodes in Vb,r and

π : v Ãl,r w a loop-free path. Then π is the unique such loop-free path.

Proof. To the contrary, assume that there are two different loop-free v-w paths π1, π2.

Then there are nodes v′, w′ such that there are distinct v′-w′ paths π′
1 and π′

2 that are

segments of π1 respectively π2, where at least one of π1 or π2 is of non-zero length.

If v′ = w′ then this contradicts to π1 or π2 being loop-free. Thus, assume v′ 6= w′. If

both π′
1, π

′
2 are l-paths then this contradicts to G being reduced, as condition (iv) is

violated. Otherwise, if π′
1 reaches a red node then edges(π′

1) is persistent and hence

v′ has one outgoing edge, contradicting to π′
1 and π′

2 being distinct. The case when

π′
2 reaches a red node is symmetric. ¤

It is easy to see that checking whether a graph G is reduced can be decided in

polynomial time in |G|. In order to transform an arbitrary SL-graph into a reduced

SL-graph, Algorithm Reduce(G) just checks for a given input G if any condition

from Table 6.2 is violated. If this is the case, the algorithm removes edges and

merges nodes, depending on which condition is violated, until G is reduced. We will

subsequently prove Reduce to be correct. First, we provide two technical lemmas
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that will help us to prove correctness. They allow us to formalise our intuition about

persistent sets of edges.

Lemma 6.2.7 Let G be an SL-graph and v, w, w′ ∈ Vb,r such that x = var(v), y =

var(w), v Ãl w, and let I be a model of α(G). Then the following holds:

(i) if ℓI(y) ∈ V I
r then ℓI(x) ∈ V I

r ; and

(ii) if v Ãl w′ and {w,w′} ∈ Ed then ℓI(x) ∈ V I
r .

Proof. (i) Let α(G) = (φ; σ). The proof is by induction on the length of the l-path π

from v to w. The case |π| = 0 is trivial. For the induction step, let π = vw′ ·π′. Then

ℓs(x, z) is a spatial assertion in σ with z = var(w′). By the induction hypothesis,

ℓI(z) ∈ V I
r . Moreover, I |= ℓs(x, z) and hence I |= ℓsn(x′, z) for some n ∈ N. If

n = 0 we have ℓI(x) = ℓI(z) ∈ Vr. Otherwise, I |= x 7→ z′ ∗ ℓsn−1(z′, z), where

z′ ∈ Vars is fresh. Consequently, ℓI(x) ∈ V I
r .

(ii) Let α(G) = (φ; σ) and π and π′ be l-paths from v to w respectively w′. We

show the statement by induction on |π| + |π′|. Let m = |π| + |π′|. As {w,w′} ∈ Ed,

we have m > 0. If m = 1, assume without loss of generality that |π| = 1 and let

y = var(w). For any model I of α(G), I |= ℓs(x, y) and hence I |= ℓsn(x, y) for

some n ∈ N. Since I |= x 6= y, n > 0 and thus I |= x 7→ z ∗ ℓsn−1(z, y) for some

fresh z ∈ Vars. Consequently, ℓI(x) ∈ V I
r . For m > 1, we assume without loss of

generality that |π| > 0, i.e., π = vu · π′′. Hence ℓs(x, y) is a spatial assertion in σ,

where y = var(u). We have I |= ℓs(x, y) and hence I |= ℓsn(x, y) for some n ∈ N. If

n > 0 then I |= x 7→ z ∗ ℓsn−1(z, y) for some fresh z ∈ Vars, hence ℓI(x) ∈ V I
r . If

n = 0, let G′ def
= RLMerge(G, (v, u)). As ℓI(x) = ℓI(y), it follows that I is a model

of α(G′), hence the induction hypothesis yields that ℓI(x) ∈ Vr. ¤

The next lemma formalises our intuition about l-edges whose source node is guaran-

teed to be red in any model. It shows that in this case any outgoing l-edge collapses

into its source node.
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Lemma 6.2.8 Let α = (φ, σ) and x ∈ Vars be such that for all models I of α,

ℓI(x) ∈ V I
r . Then for all y ∈ Vars and α′ = (φ, σ ∗ ℓs(x, y)), α′′ = (φ ∧ x = y, σ), we

have α′ ≡ α′′.

Proof. We clearly have that α′′ |= α′. For the other direction, let I ′ be a model of α′.

By definition, there are I1, I2 such that I ′ = I1∗I2, I1 |= (φ; σ) and I2 |= (φ; ℓs(x, y)).

By assumption, ℓI1(x) ∈ V I1
r and hence ℓI2(x) /∈ V I2

r . Consequently, ℓI2(x) = ℓI2(y).

Hence ℓI
′
(x) = ℓI

′
(y), which yields I ′ |= (φ ∧ x = y; σ). ¤

We are now prepared to show the correctness of Reduce. Each case in the lemma

below captures a violated condition from Table 6.2 and shows that the manipulation

performed by Reduce is sound and complete.

Lemma 6.2.9 Let G be an SL-graph,

(i) if there is v ∈ Vr such that |Ep(v)| > 1 then α(G) is unsatisfiable;

(ii) if there are v, w, w′ ∈ Vb,r, x, y ∈ Vars such that v →p,l w, v →l w′, x = var(v),

y = var(w′), E∗
p,l(v, w) is persistent and α(G) = (φ, σ ∗ ℓs(x, y)) then α(G) ≡

(φ ∧ x = y; σ);

(iii) if there are v, w, w′, w′′ ∈ Vb,r, x, y ∈ Vars such that v →l w, v →l w′, v →l w′′,

x = var(v), y = var(w′′), E∗
p,l(v, w)∪E∗

p,l(v, w′) is persistent and α(G) = (φ, σ ∗

ℓs(x, y)) then α(G) ≡ (φ ∧ x = y; σ); and

(iv) if there are v, w ∈ Vb, x, y ∈ Vars such that x = var(v), y = var(w), α(G) =

(φ, σ) and there are distinct loop-free v-w l-paths π1, π2 in El then α(G) ≡

(φ ∧ x = y; σ).

Proof. Case (i): Let x = var(v), we have that there are y, z ∈ Vars such that (φ; σ ∗

x 7→ y ∗ x 7→ z), which clearly is unsatisfiable.

Case (ii): We show that for all models I of α(G), ℓI(x) ∈ Vr. The statement then

follows from Lemma 6.2.8. If there is u ∈ V (E∗
p,l(v, w)) ∩ Vr then by Lemma 6.2.7(i)
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we have x ∈ V I
r . Otherwise, if there are u, u′ ∈ V (E∗

p,l(v, w)) such that {u, u′} ∈ Ed

then Lemma 6.2.7(ii) gives x ∈ V I
r .

Case (iii): Again, we show that for all models I of α(G), ℓI(x) ∈ Vr. The

statement then follows from Lemma 6.2.8. It is sufficient to consider the case in

which there are u, u′ ∈ Vb,r such that w Ãl u, w Ãl u′ and {u, u′} ∈ Ed as all other

cases are subsumed by (ii). But then, Lemma 6.2.7(ii) again yields x ∈ V I
b,r.

Case (iv): Let π1 = vw1 · π
′
1 and π2 = vw2 · π

′
2 be v-w paths. Thus, w1 6= w2 and

hence m
def
= |π1|+|π2| ≥ 3. We show the statement by induction on m. For m = 3, the

statement follows from a similar reasoning as in Lemma 6.2.8. For the induction step,

let m > 3 and I be model of α(G). Let y1 = var(w1) and y2 = var(w2), we have that

α(G) = (φ; σ∗ℓs(x, y1)∗ℓs(x, y2)) and consequently I |= σ∗ℓsn1(x, y1)∗ℓsn2(x, y2) for

some n1, n2 ∈ N. If n1 = 0 then I |= G′, where G′ = LReMerge(G, (v, w1)) and the

induction hypothesis yields ℓI(x) = ℓI(y). The case n2 = 0 follows symmetrically. ¤

Proposition 6.2.1 Let G,G′ be SL-graphs such that G′ = Reduce(G). Then G′

is reduced and α(G) ≡ α(G′). Moreover, Reduce runs in polynomial time on any

input G.

Proof. Clearly, Reduce only returns graphs that are reduced. Moreover, Lemma

6.2.9 shows that in every iteration equivalent graphs are generated and hence α(G) ≡

α(G′). Regarding the complexity, checking if G is reduced can be performed in

polynomial time in |G|. Removing edges and merging nodes in the while-body can

also be performed in polynomial time. Moreover, the size of G strictly decreases

after each iteration of the while-body. Hence the while-body is only executed a

polynomial number of times. ¤

The next proposition summarises all constructions that we have established in

this section so far.

Proposition 6.2.2 For any SL-formula α, there exists a polynomial time computable

SL-graph G in normal form such that α ≡ α(G).
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Proof. Given an assertion α = (φ; σ), by Lemma 6.2.5 we can construct an SL-graph

G′ such that α(G′) ≡ α. Applying Reduce to G′ yields a reduced graph G′′ such

that α(G′) ≡ α(G′′). In order to bring G′′ into normal form, we check for each of the

polynomially many pairs v, w ∈ Vb,r if Reduce returns ⊥ on input Merge(G′′, v, w).

If this is the case, we add {v, w} to Ed, which finally gives us the desired graph G.

As argued before, all constructions can be performed in polynomial time. ¤

Let us now illustrate our definitions with the help of an example. Graph (b) in

Figure 6.2 is in normal form and obtained from the graph (a) by applying Reduce.

Graph (a) violates condition (iii) of Table 6.2 as {(ℓ(x4), ℓ(x5)), (ℓ(x4), ℓ(x7)} is persis-

tent, which results in Reduce merging x6 into x4. Moreover, the graph also violates

condition (iv) since there are two distinct l-paths from x1 to x3. Hence, Reduce

merges x1 and x3 and then removes all newly obtained outgoing l-edges from x3 due

to a violation of condition (ii). Finally in order to obtain graph (b) in normal form,

{(ℓ(x3), ℓ(x4))} is added to Ed as merging the nodes x3 and x4 and applying Reduce

results in an inconsistent graph.

As stated before, a nice property of SL-graphs in normal form is that they allow

to easily construct a model of their corresponding SL-formulae.

Lemma 6.2.10 Let G 6= ⊥ be a reduced SL-graph and v, w ∈ Vb,r such that v 6= w.

Then α(G) has a model I such that ℓI(var(v)) 6= ℓI(var(w)) and for all x, y ∈ Vars,

ℓ(x) = ℓ(y) implies ℓI(x) = ℓI(y).

Proof. We sketch how G can iteratively be turned into a desired model I. Suppose w

is reachable from v and let π be the loop-free path from v to w. First, we replace any

l-edge occurring on π by two consecutive p-edges. For all nodes v′ 6= w along π that

have further outgoing l-edges, we merge all nodes reachable via l-paths from v′ into

v′ and remove the connecting l-edges. If v is reachable from w via a loop-free path

π′, we apply the same procedure to π′. Finally, we iterate the following procedure: if

there is a node u with more than one outgoing l-edge, we fix an l-edge e and merge all

nodes reachable from u via the remaining l-edges different from e into u and remove

the connecting l-edges. We then replace e with two new consecutive p-edges. Once
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this procedure has finished, we obtain an SL-graph containing no l-edges that can be

turned into an interpretation I. It is easily checked that I is a model of α(G) and

ℓI(var(v)) 6= ℓI(var(w)). ¤

As the reduced SL-graph corresponding to an assertion can be computed in polyno-

mial time, we have thus shown that checking satisfiability in our assertion language

is decidable in polynomial time.

Theorem 6.2.1 Satisfiability of SL-formulae is decidable in polynomial time.

6.2.2 SL-Graph Homomorphisms

In this section, we are going to show that entailment between SL-formulae can be

decided by checking for the existence of a graph homomorphism between their cor-

responding SL-graphs in normal form. Throughout this section, we will assume that

all SL-formulae considered are satisfiable and all SL-graphs G 6= ⊥, since deciding

entailment becomes trivial otherwise, and checking for satisfiability can be done in

polynomial time.

A homomorphism is a mapping between the nodes of two SL-graphs that, if it

exists, preserves the structure of the source graph in the target graph. In the definition

of a homomorphism, we make use of the property of SL-graphs in normal form that

between any disjoint nodes there is at most one loop-free path connecting the two

nodes, c.f. Lemma 6.2.6. For nodes v 6= w, we denote this path by π(v, w) if it

exists. If v = w then π(v, w) is the zero-length path π(v, w)
def
= v. Subsequently, let

us fixed SL-graphs G = (Vb, Vr, El, Ep, Ed, ℓ), G′ = (V ′
b , V

′
r , E

′
l, E

′
p, E

′
d, ℓ

′) and ′′G =

(V ′′
b , V ′′

r , E ′′
l , E ′′

p , E ′′
d , ℓ′′).

Definition 21 Let G,G′ be SL-graphs in normal form. A mapping h : Vb,r → V ′
b,r is

a homomorphism from G to G′ if the homomorphism conditions from Table 6.3 are

satisfied. ♦

Given a mapping h, it is easy to see that checking whether h is a homomorphism can

be performed in polynomial time in |G|+ |G′|. The goal of this section is to prove the
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(i) vars(v) ⊆ vars(h(v))

(ii) if {v, w} ∈ Ed then {h(v), h(w)} ∈ E ′
d

(iii) if v →p w then h(v) →′
p h(w))

(iv) if v →l w then h(v) Ã′
p,l h(w)

(v) for all v1 →p,l w1 and v2 →p,l w2 such that (v1, w1) 6= (v2, w2),

edges(π(h(v1), h(w1))) ∩ edges(π(h(v2), h(w2))) = ∅

(vi) if v, w ∈ Vr and v 6= w then h(v) 6= h(w)

Table 6.3: Conditions for a homomorphism h from G to G′.

following proposition, which gives us the relationship between homomorphisms and

entailment.

Proposition 6.2.3 Let G,G′ be SL-graphs in normal form. Then α(G′) |= α(G) if,

and only if, there exists a homomorphism h from G to G′.

Before we begin with formally proving the proposition, let us discuss its validity on

an intuitive level. Suppose there is a homomorphism from G to G′. Condition (i)

makes sure that for any node v of G its image under h is labelled with at least the

same variables. If this were not the case, we could easily construct a counter-model

of α(G′) disproving entailment. Likewise, condition (ii) ensures that whenever two

nodes are required to be not equivalent, the same is true for the two nodes under

the image of h. Since G′ is in normal form, merging the two nodes in the image

of h would otherwise be possible since E ′
d is maximal. Condition (iii) requires that

whenever there is a p-edge between any two nodes v, w, such an edge also exists in G′.

Again, it is clear that if this were not the case we could construct a counter-model I

of α(G′) such that there is no p-edge between ℓI(var(v)) and ℓI(var(w)). Condition

(iv) is of a similar nature, but here we allow that there is a whole path between h(v)

and h(w). In condition (v), we require that the paths obtained from the image of
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two disjoint edges do not share a common edge in G′. If this were the case, we could

construct a model of α(G′) in which separation is violated. Finally, condition (vi)

makes sure that no two different nodes from Vr are mapped to the same node. This

condition is needed to handle p-edges of the form (v, v), which may not be covered

by condition (v). We now proceed with formally proving Proposition 6.2.3. First,

the following lemma shows the relationship between models and homomorphisms and

that homomorphisms can be composed.

Lemma 6.2.11 Let G,G′, G′′ be SL-graphs in normal form and I an interpretation.

Then the following holds:

(i) let h : Vb,r → V I
b,r be such that for all v ∈ Vb,r, h(v)

def
= ℓI(var(v)); then I |= α(G)

if, and only if, h is a homomorphism from G to I; and

(ii) given homomorphisms h′, h′′ from G′ to G respectively G′′ to G′; then h
def
= h′′◦h′

is a homomorphism from G′′ to G.

Proof. (i) Throughout this proof, we make implicit use of the fact that for all I,

I |= (φ; σ ∗ σ′) if, and only if, there are I1, I2 such that I = I1 ∗ I2, I1 |= (φ; σ) and

I2 |= (φ; σ′).

(“⇐”) We show the statement by induction on |σ|. In the following, let α(G) =

(φ, σ). It is not difficult to check that the statement holds in the induction base case.

For the induction step, let us first consider the case α(G) = (φ; σ′ ∗ x 7→ y). We

show that there are I1, I2 such that I1 |= (φ; σ′), I2 |= (φ; x 7→ y) and I = I1∗I2. Let

v = ℓ(x) and w = ℓ(y). Set I2
def
= I[{h(v)}/Vr, Vb∪(Vr\{h(v)})/Vb, {(h(v), h(w))}/Ep].

Clearly, I2 |= x 7→ y. Choose I1 such that I = I1∗I2 and let G′ = PRemove(G, (v, w))

be an SL-graph in normal form such that α(G′) = (φ; σ′). It is not difficult to ver-

ify that h is a homomorphism from G′ to I1. In particular conditions (iii) and (iv)

are satisfied by h since condition (v) makes sure that when we remove the p-edge

(h(v), h(w)) from I then we do not destroy any other path under the image of h. It

follows from the induction hypothesis that I1 |= (φ; σ′).
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Next, suppose α(G) = (φ; σ′ ∗ ℓs(x, y)). Again, we show that there are I1, I2 such

that I1 |= (φ; σ′), I2 |= (φ; ℓs(x, y)) and I = I1 ∗ I2. Let v = ℓ(x) and w = ℓ(y)

and π(h(v), h(w)) = v′
1v

′
2 · · · v

′
n. Define V ′

r

def
= {v′

1, v
′
2, . . . , v

′
n−1}, which is possibly an

empty set when π(h(v), h(w)) has length zero. Now set I2 = I[V ′
r/V

I
r , Vb ∪ (V I

r \

V ′
r )/V

I
b , {(v′

i, v
′
i+1) : 1 ≤ i < n}/EI

p ] and choose I1 such that I = I1 ∗ I2. Let

G′ def
= LRemove(G, (v, w)), it follows that G′ is an SL-graph G′ in normal form

such that α(G′) = (φ; σ′) and h is a homomorphism from G′ to I1. The induction

hypothesis then yields I1 |= α(G′) as required.

(“⇒”) Let α(G) = (φ; σ) and let I be a model of α(G). We show by the statement

by induction on the number of spatial assertions in σ. The induction base case is

reasonably clear, in particular {ℓI(x), ℓI(y)} ∈ EI
d if, and only if, ℓI(x) 6= ℓI(y)

ensures that condition (ii) is satisfied. For the induction step, let us consider the

case α(G) = (φ; σ′ ∗ x 7→ y), the case α(G) = (φ; σ′ ∗ ℓs(x, y)) follows along similar

lines. Let v = ℓ(x), w = ℓ(y) and G′ = PRemove(G, (v, w)), so that α(G′) = (φ; σ).

As I |= α(G), we have I = I ′ ∗ I ′′ such that I ′ |= (φ; σ′) and I ′′ |= (φ; x 7→ y).

By the induction hypothesis, there exists a homomorphism h′ from G′ to I ′. Set

h
def
= h′[ℓ(x) 7→ ℓI(x), ℓ(y) 7→ ℓI(y)], we claim that h is a homomorphism from G to

I. Conditions (i), (ii) and (iv) are obviously satisfied. For (iii), since I ′′ |= x 7→ y, we

have that (ℓI(x), ℓI(y)) ∈ EI′′

p ⊆ EI
p and since h′ is a homomorphism, condition (iii)

is true for all remaining p-edges that are in G′ as well. Regarding (v), if both (v1, w1)

and (v2, w2) are edges in G′ then condition (v) holds, since h′ is a homomorphism.

Otherwise, suppose (v1, w1) = (ℓ(x), ℓ(y)) ∈ Ep, then by the semantics definition there

is no p-edge in I ′. Since (iii) and (iv) hold for h′, {(ℓ(x), ℓ(y))}∩edges(π(h(v2), h(w2)))

must be empty. Last, it is easily verified that (vi) holds as well.

(ii) We check that all homomorphism conditions are met. Regarding condition

(i), let v ∈ Vb,r. We have vars(v) ⊆ vars(h′(v)) ⊆ vars(h′′(h′(v))) = vars(h(v)). For

(ii), from h′ we have (v, w) ∈ E ′′
d implies (h′(v), h′(w)) ∈ E ′

d and hence h′′ implies

(h′′(h′′(v)), h′′(h′(w))) ∈ E ′′
d , i.e., (h(v), h(w)) ∈ E ′′

d . For (iii), for v →p w, h′ gives

h′(v) →′
p h′(w) and h′′ yields h′′(h′(v)) →′′

p h′′(h′(v)), i.e., h(v) →′′
p h(w). Likewise for

(iv), if v →l w then h′ gives h′(v) Ã′
p,l h′(w). Now for any p- or l-edge (v′, w′) along the
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path π′ = π(h′(v), h′(w)), h′′ yields h′′(v′) Ã′′
p,l h′′(w′), which implies h(v) Ã′′

p,l h(w).

We now show that (v) holds for h. To this end, let v1 →p,l w1 and v2 →p,l w2. Let

π′
1 = π(h(v1), h(w1)) and π′

2 = π(h(v2), h(w2)), from h′ we get edges(π′
1)∩edges(π′

2) =

∅. Now h′′ gives us that for any pair of edges (v′
1, w

′
1) and (v′

2, w
′
2) that appear along

π′
1 respectively π′

2, edges(π′′
1) ∩ edges(π′′

2) = ∅, where π′′
1 = π(h′′(v′

1), h
′′(w′

1)) and

π′′
2 = π(h′′(v′

2), h
′′(w′

2)). Hence, edges(π(h(v1), h(w1))) ∩ edges(π(h(v2), h(w2))) = ∅.

Finally for (vi), let v, w ∈ Vb,r such that v 6= w. Then h′(v) 6= h′(w) and h′(v), h′(w) ∈

V ′
b,r and hence h(v) = h′′(h′(v)) 6= h′′(h′(w)) = h(w). ¤

Proposition 6.2.3 now is a consequence of the following lemma. Note that the

homomorphism is fully determined by G and G′.

Lemma 6.2.12 Let G,G′ be SL-graphs in normal form and let h : Vb,r → V ′
b,r be

defined as h(v)
def
= ℓ′(var(v)) for all v ∈ Vb,r. Then α(G′) |= α(G) if, and only if, h is

a homomorphism from G to G′.

Proof. (“⇐”) Let h be a homomorphism from G to G′ and I be such that I |= α(G′).

By Lemma 6.2.11(i), there exists a homomorphism h′ from G′ to I. By Lemma

6.2.11(ii), h′′ def
= h′ ◦ h is a homomorphism from G to I. Consequently, Lemma

6.2.11(i) yields I |= α(G).

(“⇒”) Let α(G) = (φ, σ) and α(G′) = (φ′, σ′). We show the contrapositive.

Suppose h is not a homomorphism from G to G′, we construct a counter-model I

such that I |= α(G′) and I 6|= α(G).

Suppose condition (i) is violated by h. Then there are x, y ∈ Vars such that

ℓ(x) = ℓ(y) = v and ℓ′(x) = v′ 6= w′ = ℓ(y). By Lemma, α(G′) then has a model I

such that ℓI(v′) 6= ℓI(w′), which clearly is not a model of α(G).

Next, suppose condition (ii) is violated by h. Then there are {v, w} ∈ Ed such

that {h(v), h(w)} 6∈ E ′
d. Let x = var(h(v)) and y = var(h(w)), since G′ is in normal

form (φ′ ∧ x = y; σ′) is satisfiable, i.e., there exists I such that I |= α(G′) and

ℓI(x) = ℓI(y).

If condition (iii) is violated, let (v, w) ∈ Ep such that (h(v), h(w)) /∈ Ep,l and let

I be a model of α(G′). If (ℓI(var(h(v))), ℓI(var(h(w))) /∈ EI
p we have the desired
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counter model. Otherwise, let h′ be a homomorphism from G′ to I and let I ′ def
=

PRemove(I, (h(v), h(w))). Clearly, h′ still is a homomorphism from G′ to I ′, hence

I ′ |= α(G′). However, obviously I ′ 6|= α(G). If (h(v), h(w)) ∈ El this approach does

not work. But then Lemma 6.2.10 gives us a model I of α(G′) in which this list is

expanded to a path of length two, hence (ℓI(var(v)), ℓI(var(w))) /∈ EI
p .

If condition (iv) is violated by h, we proceed along similar lines. Let I be such

that I |= α(G′). If there is no path between ℓI(var(h(v))) and ℓI(var(h(w))) in I

then I serves as the desired counter-model. Otherwise, let h′ be a homomorphism

from α(G′) to I. There is some edge (v′′, w′′) ∈ EI
p ∩ edges(π(ℓI(var(v), ℓI(var(w)))

that is not in the image of h′. Define I ′ def
= PRemove(G′, (v′′, w′′)). We clearly have

that h′ is a homomorphism from G′ to I ′ and hence I ′ |= α(G′). However as there is

no path between ℓI
′
(var(v)) and ℓI

′
(var(w)) anymore in I ′, I ′ 6|= α(G).

Last, suppose (v) does not hold for h. Thus, there are v1, v2, w1, w2 ∈ Vb,r and

v, w ∈ V ′
b,r such that (v1, w1), (v2, w2) ∈ Ep,l and (v, w) ∈ edges(π(h(v1), h(w1))) ∩

edges(π(h(v2), h(w2))). For simplicity, we assume (v1, w1), (v2, w2) ∈ El, the other

cases following similarly. Moreover, let x = var(v), y = var(w), xi = var(vi) and

yi = var(wi), i ∈ {1, 2}. By Lemma 6.2.10, α(G′) has a model I such that ℓI(x) 6=

ℓI(y). Now for any separation of I = I ′ ∗ I ′′, only one of I ′ and I ′′ can contain a

path of length greater zero between ℓI(x) and ℓI(y), and hence in either I ′ or I ′′

there is no path from ℓI(x1) to ℓI(y1) respectively ℓI(x2) to ℓI(y2). Hence, I 6|=

ℓs(x1, y1) ∗ ℓs(x2, y2) and consequently I 6|= α(G).

In the last case (vi), we have that there exists a model I of α(G) such that

ℓI(x) 6= ℓI(y), where x = var(v) and y = var(w). Consequently, I 6|= x 7→ z ∗ y 7→ z′

for any z, z′ ∈ Vars. Hence I 6|= α(G). ¤

We can now combine all results of this chapter so far. Given satisfiable SL-formulae

α and α′, by Proposition 6.2.2 we can compute in polynomial time SL-graphs G and

G′ in normal form such that α ≡ α(G) and α′ ≡ α(G′). Next, we can compute

in polynomial time a mapping h from α(G′) to α(G) and check in polynomial time

whether h is a homomorphism. By the previous lemma, this then is the case if, and

only if, α |= α′.
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Theorem 6.2.2 Entailment between SL-formulae is decidable in polynomial time.

An example of a homomorphism can be found in Figure 6.2. The arrows from graph

(c) to graph (b) depict a homomorphism witnessing an entailment between the cor-

responding formulae of the graphs.

6.3 Syntactic Extensions Leading to Intractability

As stated in Section 6.2, due to the non-convexity present in our assertion language,

it is rather surprising that entailment in our fragment is decidable in polynomial time.

In this section, we briefly discuss natural syntactic extensions that render satisfiability

or entailment intractable. It turns out that even small extensions make computing

entailment intractable.

First, we consider additional Boolean connectives in pure and spatial formulae.

Formally, we amend the syntax of pure formulae to

φ ::= expr = expr | ¬ϕ | ϕ ∧ ϕ,

where I |= ¬ϕ if, and only if, I 6|= ϕ, as expected. Clearly, we can reduce satisfi-

ability of Boolean formulae to satisfiability in the extend assertion language. Since

an assertion α is satisfiable if, and only if, α 6|= (x 6= x; ǫ), we thus get that in the

extended assertion language satisfiability is NP- and entailment coNP-hard.

It is not too surprising that allowing for all Boolean connectives in pure formulae

makes satisfiability and entailment computationally hard. Less obvious, allowing for

conjunction in spatial assertions makes satisfiability NP-hard and thus entailment

coNP-hard. Formally, we amend the definition of the syntax of spatial formulae to

σ ::= expr 7→ expr | ℓs(x, y) | σ ∗ σ | σ ∧ σ,

where I |= σ1 ∧ σ2 if, and only if, I |= σ1 and I |= σ2. In order to show our hardness

results, we reduce from three colorability of undirected graphs.

3-Col

INPUT: An undirected graph G = (V , E).
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QUESTION: Does there exist a coloring f : V → {1, 2, 3} such that f(v) 6= f(w)

whenever (v, w) ∈ E?

3-Col is known to be NP-complete [45]. For our reduction, given an instance

G = (V , E) of 3Col with V = {v1, . . . , vn}, we construct an assertion α such that

there exists a three-coloring of G if, and only if, α is satisfiable. We set α
def
= (φ, σ),

where

φ
def
=

∧

(vi,vj)∈E

xi 6= xj

σ
def
= y1 7→ y2 ∗ y2 7→ y3 ∧

∧

vi∈V

ℓs(y1, xi) ∗ ℓs(xi, y3).

Let us sketch the correctness of our reduction. The first conjunct of σ ensures that

any model of α contains a list of three nodes that are successively labelled with the

variable names y1, y2 and y3. The remaining conjuncts enforce that for any vi ∈ V,

some yj-node is additionally labelled with the variable name xi. Our intention is that

yj is additionally labelled with xi in a model of α if vi is coloured with colour j in

a three-colouring induced by that model. We use φ to enforce that that two labels

xi, xk are not placed on the node labelled with the same yj if vi and vk are adjacent

in G, i.e., they must have a different colour in the induced three colouring. Hence G

can be three coloured if, and only if, α is satisfiable. Consequently, satisfiability is

NP- and entailment coNP-hard in the extended assertion language

Finally, we briefly discuss allowing for existentially quantified variables in asser-

tions. Formally, we amend the syntax of assertions to

α ::= ∃x1 . . . xn.(φ, σ),

where x1, . . . , xn range over Vars . The semantics for an interpretation I = (V I
b , EI

p , ℓI)

is I |= ∃x1 . . . xn.(φ, σ) if, and only if, there exist v1, . . . , vn ∈ V I
r such that I ′ |=

(φ, σ), where I ′ = (V I
r , EI

p , ℓI [x1 7→ v1, . . . , xn 7→ vn]). It is easily seen that satisfia-

bility in this extended fragment is still in polynomial time. However, it follows from

recent results by Gorogiannis, Kanovich and O’Hearn on the complexity of abduction

that entailment becomes coNP-hard [53].
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6.4 Discussion

This chapter dealt with the computational complexity of entailment in a fragment of

separation logic that was introduced in [11] and allows for reasoning about programs

with linked lists. We improved the coNP algorithm given in [11] and showed that

entailment is decidable in polynomial time. To this end, we showed that for any SL-

formula we can compute in polynomial time a corresponding SL-graph in a particular

normal form which has an equivalent corresponding SL-formula. Moreover, we showed

that deciding entailment between two SL-formulae then reduces to checking for the

existence of a homomorphism between their associated SL-graphs in normal form. A

key advantage was that the homomorphism, if it exists, is uniquely determined by

the SL-graphs, and that checking the homomorphism conditions can be performed in

polynomial time. As a byproduct of the developed concepts, we obtained that satisfi-

ability in the assertion language is in polynomial time. Finally, we discussed various

natural syntactic extensions that lead to intractability of satisfiability or entailment.

As promised in the introduction, we close this chapter with discussing the differ-

ences between the syntax and semantics used in this thesis and in [11]. On a syntactic

level, the difference between [11] and our assertion language is that [11] contains nil as

an expression. This does however not give more expressiveness, since we can introduce

a designated variable nil and implicitly join nil 7→ nil to every spatial assertion to

obtain the same effect. On a semantic level, we have given the semantics of our asser-

tion language in terms of SL-graphs, whereas it is given in terms of heaps and stacks

in [11]. This is, however, only for technical convenience, since both semantic models

are isomorph: red nodes of an interpretation can be viewed as the set of allocated

heap cells, the set of p-edges of an interpretation as a representative of the contents of

the heap cells and the variable labelling function as the stack. The main difference to

[11] on a semantic level is that our semantics is intuitionistic. In [11], I |= α = (φ; σ)

if, and only if, I |= φ and I |= σ, i.e., the semantics is non-intuitionistic with respect

to the definition provided by Reynolds [92]. Informally speaking, in our semantics

models can contain more red nodes than actually required. It should, however, not
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be difficult to transfer the results obtained in this thesis to the semantics used in

[11]. The concept of SL-graphs in normal form should adopt straight forwardly to

non-intuitionistic semantics. However, the homomorphism conditions would require

some adjustments. There basically needs to be an extra condition that ensures that

when h is a homomorphism from G to G′, all edges from G′ are covered by h. These

extra conditions would ensure that no model of α(G′) can contain extra red nodes

that, informally speaking, do not get used up by α(G). Furthermore, some adjust-

ments would need to be made to cater for the precise semantics of lists used in [11],

since our list semantics is imprecise. Working out the details is an interesting task

for future work.

A further aspect of future work could be to identify syntactic fragments of exten-

sions of our assertion language for which computing entailment remains in polynomial

time. For example, regarding the extension of our assertion language with existential

quantification, the hardness proof in [53] requires formulae that do not naturally oc-

cur in real-world program verification. Without going into too much detail, it seems

conceivable that there exist fragments of this assertion language defined in terms of

properties of SL-graphs for which entailment could be polynomial time computable.
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Infinite runs in weighted timed automata with energy constraints. In Franck

Cassez and Claude Jard, editors, Proceedings of the 6th International Confer-

ence on Formal Modelling and Analysis of Timed Systems (FORMATS’08), vol-

ume 5215 of Lecture Notes in Computer Science, pages 33–47. Springer Berlin

/ Heidelberg, 2008.

[17] Marius Bozga and Radu Iosif. On decidability within the arithmetic of addi-

tion and divisibility. In Vladimiro Sassone, editor, Proccedings of the 8th In-

ternational Conference on Foundations of Software Science and Computational

Structures (FoSSaCS’05), volume 3441 of Lecture Notes in Computer Science,

pages 425–439. Springer Berlin / Heidelberg, 2005.

[18] Marius Bozga, Radu Iosif, and Yassine Lakhnech. Flat parametric counter

automata. Fundamenta Informaticae, 91(2):275–303, 2009.

[19] Marius Bozga, Radu Iosif, and Swann Perarnau. Quantitative separation logic

and programs with lists. Journal of Automated Reasoning, 45:131–156, 2010.

[20] Julian Bradfield and Colin Stirling. Modal mu-calculi. In Johan Van Benthem

Patrick Blackburn and Frank Wolter, editors, Handbook of Modal Logic, vol-

205

http://www-verimag.imag.fr/FLATA.html


ume 3 of Studies in Logic and Practical Reasoning, pages 721–756. Elsevier,

2007.
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Appendix A

Missing proofs

A.1 Missing proofs from Chapter 2

A.1.1 Proof of Serialisability of EXPSPACE

The proof of EXPSPACE-serialisability was established by Göller in an informal tech-

nical report accompanying [48]. As already stated in Chapter 2, we wish to repeat

the proof of the theorem here in order to keep this thesis self-contained.

Recall that by Definition 4, given a complexity class C and a language R ⊆ {0, 1}∗,

a language L ⊆ Σ∗ is exponentially C-serialisable via R if there exists a polynomial p

and a language U ∈ C such that for all w ∈ Σn and m = exp p(n),

w ∈ L ⇔ χU(w · binm(0)) · χU(w · binm(1)) · · ·χU(w · binm(exp exp(p(n)) − 1)) ∈ R.

Theorem 2.4.2 states that for every L ∈ EXPSPACE there is a regular language R such

that L is exponentially L-serialisable via R. The proof of this theorem builds upon

results from [50], which are stated in terms of a polynomial version of serialisability

given in the subsequent definition.

Definition 22 Given a complexity class C and a language R ⊆ {0, 1}∗, a language

L ⊆ Σ∗ is C-serialisable via R if there exists a polynomial p and a language U ∈ C

such that for all w ∈ Σn and m = p(n),

w ∈ L ⇔ χU(w · binm(0)) · χU(w · binm(1)) · · ·χU(w · binm(exp(p(n)) − 1)) ∈ R.
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The following theorem follows as an immediate consequence from Theorem 22 in [50].

Theorem A.1.1 For every L ∈ PSPACE there is some regular language R such that

L is L-serialisable via R.

Before we begin with the proof of Theorem 2.4.2, let us recall the following proposition

which is folklore.

Proposition A.1.1 For every language L ⊆ Σ∗ in EXPSPACE there is some polyno-

mial q such that the padded language L′ def
= {w · $n : w ∈ L, n = exp q(|w|)} ⊆ Σ ·∪{$}

is in PSPACE.

We are now going to prove Theorem 2.4.2. Let L ⊆ Σ∗ be a language in EXPSPACE

and assume without loss of generality that {0, 1, $} ∩ Σ = ∅. By Proposition A.1.1,

there exists a polynomial q and a language L′ = {w · $n : w ∈ L, n = exp q(|w|)} such

that L′ ∈ PSPACE. Theorem A.1.1 yields a polynomial p′, an R′ ∈ REG and U ′ ∈ L

such that for each w′ ∈ (Σ ·∪{$})n and m′ = p′(n) we have

w′ ∈ L′ ⇔ χU ′(w · binm′(0)) · χU ′(w · binm′(1)) · · ·χU ′(w · binm′(exp(p′(n)) − 1)) ∈ R.

Theorem 2.4.2 requires us to provide U ∈ L, R ∈ REG and a polynomial p. Choose p

such that for all n ∈ N, exp p(n) > p′(n + exp(q(n))) + 1. The language U consists of

all words u ∈ (Σ ·∪{0, 1})∗ such that u can factored as

u = w · b · z · 0j, (⋆)

where j ∈ N, w ∈ Σn, b ∈ {0, 1}, z ∈ {0, 1}p′(n+exp(q(n))) such that b = 1 implies

w · $exp(q(n)) · z ∈ U ′, i.e., b = 0 or w · $exp(q(n)) · z ∈ U ′. Let us argue that U ∈ L.

First, checking whether u is of the form (⋆) clearly can be performed in logarithmic

space. Second, p grows sufficiently large in order to simulate any logarithmically-space

bounded Turing machine M that decides L′ in L due to our choice of p.

It remains to provide the regular language R, which we are construct from R′.

Suppose that

b1b2 · · · bn = χU ′(w · binm′(0)) · χU ′(w · binm′(1)) · · ·χU ′(w · binm′(exp(p′(n)) − 1)).
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By construction of U , for m = exp p(n) we have that

χU(w · binm(0)) · χU(w · binm(1)) · · ·χU(w · binm(exp exp(p(n)) − 1)) =

1b11b2 · · · 1bn00 · · · 00.

Thus, when reading 1b11b2 · · · 1bn00 · · · 00 in pairs, i.e., as (1b1)(1b2) · · · (1bn)(00) · · · (00),

whenever the first component is 1 we read information relevant for the simulation

of R′. Recall that regular languages are closed under homomorphisms. We set

R
def
= h(R′ · {¤}∗), where h : {0, 1,¤} → {0, 1} is a homomorphism such that

h(0) = 10, h(1) = 11 and h(¤) = 00. This finishes the proof of Theorem 2.4.2.
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