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Abstract

We study the computational complexity of two popular problems in multiple sequence
alignment: multiple alignment with SP-score and multiple tree alignment. It is shown
that the first problem is NP-complete and the second is MAX SNP-hard. The complexity

of tree alignment with a given phylogeny is also considered.

Key words: multiple sequence alignment, evolutionary tree, SP-score, computational com-

plexity, approximation algorithm.

1 Introduction.

Multiple sequence alignment is one of the most important and challenging problems in compu-
tational biology [16, 17]. It plays an essential role in two related areas of molecular biology:
finding highly conserved subregions among a set of biological sequences, and inferring the
evolutionary history of some species from their associated sequences. A huge number of pa-
pers have been written on effective and efficient methods for constructing multiple sequence

alignment. For a comprehensive survey, see [7, 27].

Many score schemes have been suggested to measure the quality of a multiple alignment.
Among them, SP-score seems to be very sensible and has received a lot of attention [3, 6, 24].
(Here, SP stands for sum of all pairs.) The best algorithm to compute an optimal alignment
under SP measure is based on dynamic programming and requires a running time which

is in the order of the product of the lengths of input strings [1]. Gusfield first proposed a
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polynomial-time approximation algorithm for this problem that achieves ratio 2 — % on k

input sequences (i.e., the algorithm always produces an alignment whose value is at most
2— % times the optimum) [11, 12]. Pevzner improved Gusfield’s algorithm to obtain a ratio of
2— 2 [20]. Recently Bafna and Pevzner pushed the ratio to 2 — é [4] for any fixed [. However,
it was not known if multiple alignment with SP-score is NP-hard [20]. Here we show that

this problem (actually, the decision version of it) is NP-complete.

The construction of an optimal evolutionary tree from a given set of sequences can also
be viewed as a type of multiple sequence alignment, called multiple tree alignment or, sim-
ply, tree alignment. Foulds and Graham proved that a variant of tree alignment, where
the distance between two sequences is defined as Hamming distance, is NP-complete [9].
Recently, Sweedyk and Warnow proved that tree alignment is NP-complete [26]. Several
approximate methods have been proposed in the literature [13, 14, 22, 23]. Gusfield showed
that a minimum-cost spanning tree of the input sequences has a cost that is at most twice
the cost of an optimal evolutionary tree [11, 12]. An interesting question is whether one can
find efficient algorithms with approximation ratio better that 2. It is easy to see that the
recent results of Zelikovsky, and Berman and Ramaiyer on approximation of Steiner minimal
trees imply that tree alignment can be approximated within a factor of 1.747 in polynomial
time [5, 29]. But can we make the approximation ratio arbitrarily close to 17 In this paper,
we will answer this negatively by showing that tree alignment is MAX SNP-hard. The con-
cept of MAX SNP-hardness was introduced by Papadimitrion and Yannakakis for the study
of non-approximability of NP-complete problems [19]. Combining with the result in [2], our
result implies that tree alignment does not have a polynomial-time approximation scheme
(PTAS). (A problem has a PTAS if for every fixed ¢ > 0, it can be approximated with ra-
tio 1 + € in polynomial time.) In other words, the approximation ratio can not arbitrarily

approach 1.

An important variant of tree alignment is that we are not only given the sequences of
some species, but also the phylogenetic structure (i.e., the tree structure). Although the
problem seems easier, the algorithms proposed in [1, 14, 23] all run in exponential time in the
worst case and again it was not known if this problem is NP-hard. Among the many possible
phylogenetic structures, binary tree and star are the most common ones [1, 23]. We will
prove that tree alignment with a given phylogeny is NP-complete even when the phylogeny
is a binary tree. Furthermore, the problem is MAX SNP-hard if the phylogeny is a star. In
contrast, when the given phylogeny is a binary tree, tree alignment is not MAX SNP-hard,

for we have shown in a companion paper that it has a PTAS [28].



2 Basic Definitions.

A sequence is a string over some alphabet Y. For DNA sequences, the alphabet ¥ contains
four letters A, C, G, and T representing four distinct nucleotides, and for protein sequences,
3 contains 20 letters, each represents a unique amino acid. An alignment of two sequences
s1 and s, is obtained by inserting spaces into or at either end of s; and s; such that the two
resulting sequences s{ and s}, are of the same length. That is, every letter in s/ is opposite to a
unique letter in s,. A space is viewed as a new letter and is denoted A throughout this paper.
Two opposing identical letters form a match and two opposing nonidentical letters form a
mismatch, which can also be viewed as a replacement. A space in one sequence opposite
to a letter x in the other can be viewed as a deletion of z from the second sequence, or an

insertion of # into the first sequence.

Suppose that [ is the length of the sequences s| and s),. The value of the alignment
is defined as Y°!_, s(s (i), s4(i)), where /(i) and s,(i) denote the two letters at the i-th
column of the alignment, and s(s}(7), s5(¢)) denotes the score of the two opposing letters
under some given score scheme s. There are several popular score schemes for amino acids
and for nucleotides [15, 25]. A standard assumption about a score scheme s is that it satisfies
triangle inequality, i.e., for any three letters z, y, and z, s(z, z) < s(z,y)+s(y, z). An optimal
alignment of two sequences is one that minimizes the value over all possible alignments. The
edit distance between two sequences is defined as the minimum alignment value of the two

sequences.

The concept of an alignment can be easily extended to more than 2 sequences. A multiple
alignment A of k > 2 sequences is obtained as follows: spaces are inserted into each sequence
so that the resulting sequences have the same length [, and the sequences are arrayed in k
rows of [ columns each. Again, a score value is defined on each column under some score
scheme and the value of A is simply the sum of the scores of all columns. A very popular
score scheme, called SP-score, defines the score value of a column as the sum of the scores
of all (unordered) pairs of the letters in the column. That is, the value of the alignment A
is the sum of the values of pairwise alignments induced by A. The SP-score has previously

been studied extensively in the past. See, e.g., [1, 3, 6, 12, 20].

In the analysis of genetic evolution, we are given a set X of k sequences, each stands for
an extant species. Let Y be a set of hypothetical sequences, where Y N X = . (Usually
each sequence in Y could represent an extinct species.) An evolutionary tree Tx y for X is
a weighted (sometimes rooted) tree of | X UY| nodes, where each node is associated with a
unique sequence in X UY [11, 12]. The cost of an edge is the edit distance between the two
sequences associated with the ends of the edge. The cost ¢(T'x y) of the tree T'x y is the total

cost of all edges in Txy. Given sequences X, the optimal evolutionary tree or multiple tree



alignment or, simply, tree alignment problem is to find a set of sequences Y as well as an
evolutionary tree T'x y for X which minimizes ¢(Tx y) over possible sets Y and trees T'x y.
Sometimes one might require that the given sequences of the extant species be only associated

with the leaves in the evolutionary tree [8]. In this case, our result in Theorem 5 still holds.

An important variant of tree alignment is that we are not only given the sequences of
some species, but also the phylogenetic structure (i.e., the tree structure). More precisely, we
are given a set X of k sequences and a tree structure with k leaves, each of them is associated
with a unique sequence in X. Then we would like to find the hypothetical sequences Y and
assign them to the internal nodes of the given tree so that the total cost is minimized [21].

We will refer to this problem as tree alignment with a given phylogeny.

3 NP-completeness of Multiple Alignment with SP-score.

In this section, we prove that the following decision version of multiple sequence alignment

with SP-score is NP-complete.

INSTANCE: Set of sequences S = {sy, s3, ..., sk}, and positive integer c.
QUESTION: Is there a multiple alignment of S with value ¢ or less?

The reduction is from the shortest common supersequence problem [10]:

INSTANCE: Finite set S of sequences over alphabet > and positive integer m.
QUESTION: Is there a sequence s with |s| < m such that each t = tt5---t, € Sis a

subsequence of s, i.e., s = sot1s1t953 - - - t,.8,, for some sg, $1,...,8,7

The problem remains NP-complete even if |¥| = 2 [18].
Theorem 1 Multiple sequence alignment with SP-score is NP-complete.

Proof.  Obviously, multiple sequence alignment is in NP. We reduce the shortest common
supersequence problem to multiple alignment with SP-score. Given a set S of sequences over
alphabet {0,1}, and a positive integer m, we construct a collection of sets X = {X ;|¢,j >
0,i4j = m}, where X;; = SU {a’, b} and a and b are two new letters. Here we can
assume that each sequence in .S has length at most m. The score scheme is shown in Table
1. Clearly the score scheme satisfies triangle inequality. The positive integer ¢ is defined as
c= (k- 1)||S||+ (2k + 1)m, where ||S]| is the total length of all sequences in S.

To show that multiple alignment with SP-score is NP-hard, it is sufficient to show that:
S has a supersequence s of length m if and only if some X; ; has an alignment with value at

most c.



Table 1: Score scheme I.

S 0|1 ]lael|bd|A
0 21211121
1 21212111
a 112021
b 21112101
Af1]1]11]0

(if ) Suppose that we have an alignment A of the k + 2 sequences in X; ; with value at
most ¢, for some 7, j. Consider the induced alignment of the k sequences in 5. No matter
what the alignment is, its score is always (k — 1)||S||. Thus, in A, the total contribution of
the pairwise alignments involving sequences a’ and/or b/, is at most (2k + 1)m. Therefore,
every 0 must be aligned with an a and every 1 must aligned with a & in .A. We can obtain
a supersequence s for S by assigning 0 to the columns containing a’s and 1 to the other

columns. The length of sis ¢4+ 7 = m.

(only if) Let s be a supersequence for S with length m. Let ¢ be the number of 0’s in
s and j the number of 1’s in s. Consider set X; ;. For each sequence ¢ € S, there exists an
alignment of ¢ and s such that each 0 (or 1) in X; matches a 0 (or 1, respectively) in s. Some
0’s and 1’s in s may correspond to spaces. To obtain the desired multiple alignment, we align
each ¢ in S with s as above and then align the a’s in the sequence @' with the 0’s in s and
the b’s in b7 with the 1’s in s. Obviously, in this alignment, the letters in a column are either

0,a,A, or 1,b, A. The value of the alignment (with sequence s removed) is c.

Therefore, by checking the value of an optimal alignment of X; ;, i+;j = m, we can answer

if there is a supersequence s for X with length m in polynomial time. W

4 MAX SNP-hardness of Tree Alignment.

In this section, we show that constructing an optimal tree alignment is MAX SNP-hard.

This implies that there is no polynomial-time approximation scheme (PTAS) for the problem,
unless P=NP, by the result of [2].

First, we review the definition of L-reduction introduced by Papadimitriou and Yan-
nakakis [19]. Suppose that II and II" are two minimization problems. (The definition is
analogous for maximization problems.) We say that Il linearly reduces (L-reduces) to II’ if
there are polynomial-time algorithms f and ¢ and constants o, 8 > 0 such that, for any

instance I of 1I,



1. OPT(f(I))) < - OPT(I)

2. Given any solution of f(I) with cost ¢/, algorithm g produces in polynomial time a
solution of I with cost ¢ satistying |¢c — OPT(I)| < gl — OPT(f(1))].

It follows from the above definition that (i) the composition of two L-reductions is an
L-reduction and (ii) if problem II L-reduces to problem I’ and I’ can be approximated in
polynomial time within a factor of 1+ ¢, then II can be approximated within factor 1+ age.
In particular, if II' has a PTAS, so does II.

In order to prove the MAX SNP-hardness of tree alignment, we first prove a sequence of
auxiliary MAX SNP-hardness results. We begin with the Vertex Cover-B problem, which is
proved to be MAX SNP-complete in [19].

Vertex Cover-B: Given a graph G = (V, E) with degree bounded by B, find the smallest
vertex cover, i.e., a smallest subset V! C V such that, for each edge (u,v) € F, at least one

of w and v belong to V.

We then L-reduce Vertex Cover-B to the following more restricted version of itself:

Triangle-free Vertex Cover-B: Given a triangle-free graph G = (V| F) with degree
bounded by B, find the smallest vertex cover.

Now we L-reduce Triangle-free Vertex Cover-B to a restricted version of tree alignment:

Restricted Tree Alignment: Given two sets of sequences X and Y, find a subset Y/ C Y

and an evolutionary tree Tx y+ with the smallest cost.

Finally this problem is L-reduced to the tree alignment problem, stated again below:

Tree Alignment: Given a set of sequences X, find a set of sequences Y and an evolutionary

tree T’y y with the smallest cost.

Now, we describe the required reductions.
Lemma 2 Triangle-free Vertex Cover-B is MAX SNP-hard.

Proof. For each edge (v;,v;) in the given graph G, we insert two vertices u;; and u;;
into the edge. This should remove all the triangles. Call this new graph G’. Clearly, G has a
vertex cover of size ¢ if and only if G’ has a vertex cover of size c+|F|. This is an L-reduction
because |[E|< B-c. W

Lemma 3 Restricted Tree Alignment is MAX SNP-hard.



Table 2: Score scheme II.

0] 1]A
0 ]0]1)2
1 (|1/0]2
All21210

Proof. Let G = (V,F) be a triangle-free graph with degree bounded by B, where
V ={1,2,...,n}. Without loss of generality, we also assume that GG is connected. Let 0;
denote the binary sequence of length n with a 0 at the ¢-th position and 1’s at the rest, and
0; ; denote the binary sequence of length n with 0’s at the ¢-th and j-th positions and 1’s at
the rest. We construct sets X = {0;,[(,j) € £} and Y = {1"} U{0;]s = 1,2,...,n}. The

score scheme is defined in Table 2, which also satisfies triangle inequality.

Seven types of edges may appear in a restricted evolutionary tree. Their costs are:

1. ¢(1™,0;) = 1.

2. c(1™,0; ;) = 2.

3. ¢(0;,0;) = 2s(1,0) = 2.

4. ¢(0;,05;) =s(1,0)=1,if i=kori=1

5. ¢(0;,0x,1) = 3s(1,0) =3,if i # k and ¢ # L.

6. c(0;4,051) = 2s(1,0) = 2, if {¢, 5} N {k, I} # 0.

7. ¢(0;4,051) = 4s(1,0) = 4, if {¢, 7} N {k, 1} = 0.

Now, we want to show that the reduction is indeed an L-reduction. Suppose that G has
a vertex cover U of size ¢. We can connect each sequence 0;; € X to some 0y, where £ =1
or j, and k € U, and then connect the sequences {0;]: € U} to 1". Each connection costs

1. This gives us a restricted evolutionary tree with cost |F| 4 ¢. Since the degree of G is
bounded by B, |E| < B - ¢. So condition (1) of L-reduction holds.

To see that condition (2) of L-reduction also holds, we need the following claim.

Claim 4 Given a restricted tree alignment with cost ¢’, we can find an evolutionary tree with

cost not greater than ¢’ in polynomial time such that all the edges are of type (1) or (4).



Proof.  Each edge (17,0; ;) can be replaced by two edges (17,0;) and (0;,0; ;). An edge
(0;,0;) can be replaced by two edges (0;,1") and (1",0;). An edge (0;,0x,) of type (5), where
i # k and 7 # [, can be replaced by the edges (0, 04;) and (0, 0;) with the same cost 3. An
edge (0; 7, 0x,) of type (6), where {¢, 7} N {k,[} = {m}, can be replaced by the edges (0; ;,0,,)
and (0g,,0,,) with the same cost 2. An edge (0;;,0x;) of type (7), where {4, j} N{k,{} =0,
can be replaced by the edges (0;;,0;), (0, 0%) (17,0;) and (1™,0x) with the same cost 4.
|

Given an evolutionary tree with cost ¢/, we can construct a new evolutionary tree with
the same cost ¢’ using edges of types (1) and (4) only. The number of sequences of form 0;
in the new evolutionary tree is at most ¢ — |E/|. This implies a vertex cover of (& of size at
most ¢/ — |E|+ 1. Therefore, setting / = 1 makes condition (2) hold. This completes the
proof. W

Theorem 5 Tree Alignment is MAX SNP-hard.

Proof. By Lemma 3, it suffices to show that given an evolutionary tree T for X with cost
¢, where X is the same as in the proof of Lemma 3, there is a polynomial-time algorithm to
construct a restricted evolutionary tree for X and Y = {17} U {0;|1 <1 < n}, with cost ¢ or
less. Observe that here X has the “triangle-free” property, i¢.e., X does not simultaneously
contain the sequences 0; ;, 0; x, and 0;; for any 7, 7, k. We will give a method to modify the

tree T so that every sequence not in X is of form 1" or 0;.

A sequence that is not in X or of form 1" or 0; is a bad sequence and a node that is
associated with a bad sequence is a bad node. Two sequences 0;; and 0y, are adjacent if
{i,7}N{k,1} # 0. Note that, as we have seen before, two adjacent sequences 0; ; and 0; ; can

be connected through the sequence 0; using two edges, each costing 1.

For convenience, we make without loss of generality a few assumptions about 7. Here
we view T as a rooted tree. We can assume that each edge in the tree T" has cost 1. This is
because we can delete any edge of cost 2 or more, find two adjacent sequences 0; ; and 0; 1, one
from each disconnected component, and reconnect them through 0;. Since X is constructed
from a connected graph G, such adjacent sequences always exist. Note that, this implies that
all the sequences in the tree are of length n, because the score between A and other letters is
2. Moreover, we can assume that every bad node in T" has two or more children. Otherwise,
we can delete bad node and reconnect the two disconnected components as above without

increasing the cost. Lastly, we assume that each node in T is labeled by a unique sequence.

We will delete the bad nodes in T iteratively from the bottom to the top. Below we

describe the steps involved in one iteration, which removes at least one bad node. Consider a
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Figure 2: When s; = 0; ;.

bad node at the lowest level of the tree. The sequence, denoted sq, associated with the node
must be of form either 0; ; (type (a)) or 0; ;% (type (b)), as shown in Figure 1. Note that, in

case (b), s; must have exactly two children due to the triangle-free property of X.

In the figure, an ellipse denotes a bad node, a rectangle denotes a good node, and a triangle

denotes a subtree containing no bad nodes.

Suppose that sy is of type (a), say, 0; ;. Since sy has two children 0; and 0;, the parent of
s1 must have three 0’s, say, 0; ; . Because each of 0; and 0; can appear at most once in 7', a
sibling, say, 0; s, of s; can not be a bad node. See Figure 2(a). In fact, 0;, € X because it
has at most one child. Thus, we can delete s;, move the subtree under 0; to 0; ; and relink
the subtree under 0; to the tree through some appropriate adjacent sequences (one from the
subtree and one from the rest of the tree), as shown in Figure 2(b). This will not increase

the cost.

Now suppose that sq is of type (b), say, 0; ;5. Its parent, denoted s,, contains either
two 0’s or four 0’s. Suppose that sy contains two 0’s, say, s, = 0; ;. The assumptions made
above force s; to have exactly two children 0;; and 0; ;. s; has a sibling of form 0; or 0;,
then we can link 0; 5 (or 0;%) to 0; (or to 0;, respectively) with cost 1, and thereby get rid

of s1. Thus, we assume that s; has a sibling s3 with three 0’s, say 0; ;;, which is also a bad



Figure 4: When s; = 0; ;1 and sy = 0; ; 1.

sequence of type (b). Similarly, s3 must have two children 0;; and 0;;. We can modify the

two subtrees rooted at s; and s3 to get rid of the bad nodes s; and ss3, as shown in Figure 3

Now suppose that sy contains four 0’s, say, sp = 0; ;. Without loss of generality, we
assume that s; has a sibling s3 = 0; ; ;. We temporarily modify the subtrees under s; and s

as in Figure 4.

Let s4 be a sibling of s5. Since the parent of sy has either three 0’s or five 0’s, s4 has

either four 0’s, say, 0; j k.m, or two 0’s, say, 0; ;. We consider two cases.

Case 1: 54 = 0;;m. Similar to s = 0;; 11, s4 has four descendants of form 0, ,, where
p,q € {i,7,k,l}. One of the descendants has to involve ¢, e.g., it is of form 0; ;. Thus, we can
link 0; to 0; with cost 1. This reconnects the component in Figure 4(b) to the tree. Then

we delete node sy and reduce the cost by 1.

Case 2: s4 = 0py. The component in Figure 4 can be reorganized as in Figure 5 without

10



Figure 5: Rearranging the component.

Uy

Ty Uz
T

Uk

(a) (b)

Figure 6: (a) The tree 7. (b) The subtree T;.

extra cost. Then we can link 0z to s4 with cost 1, and delete sy which reduces the cost by 1.

Therefore, we can gradually remove all the bad nodes from T'. This completes the proof.
|
5 Tree Alignment with a Given Phylogeny

In this section, we study the complexity of tree alignment when the phylogenetic tree structure

is given. Two important structures are considered: binary tree and star.

Theorem 6 [t is NP-complete to construct an optimal evolutionary tree even when the given

phylogeny is a binary tree.
Proof. The reduction is again from the shortest common supersequence problem. Let

S = {s1,89,...5:} be a set of sequences {0,1}. Now, we construct a binary tree T as in

Figure 6(a), where each 7; is a subtree shown in Figure 6(b). Every leaf in T is associated

11



Table 3: Score scheme III.

O(1lalb]|A
0 0|1 |1(1]1
1 10111
a 1(1]0]2]|2
b 1(1]12]0]|2
Alll1]1]2]2]0

with a sequence over 3 = {0,1,a,b}. We define y; = 5; for i = 1,2,...,k, z; = a*~ 1o+,

fore=1,2,...,k—1, and z = a™.
The score scheme is defined in Table 3, which again satisfies triangle inequality.

Let M = 2%, 2m — |s;]. We will show that there is a common supersequence s with

|s| = m if and only if there is an evolutionary tree with cost M.

(only if) Assume that there is a supersequence s with |s| = m. To obtain the desired

evolutionary tree, we assign sequence s to every z; and u;, ¢t = 1,..., k.

(if) Suppose that there exists an assignment of sequences to the internal nodes of T" such
that the cost of the resulting evolutionary tree is M. For each ¢, let ¢; be the sequence
assigned to z;. For any node v in 7', let T'(v) denote the subtree rooted at v. First observe
that, because of the triangle inequality, for each ¢ the optimal cost of T'(x;) is at least the edit
distance between the sequences at the nodes y; and z;, which is 2m — |s;|. Hence, the cost of
T(z;) in this evolutionary tree is exactly 2m — |s;|. Since all the edges between (;,u;) and
(u;, wit1) must cost 0, t; = ... = tr. The sequences b™ and ™ assigned to z; and zj force ¢;
not to contain any @ or b. Hence, in order for T'(z;) to achieve score 2m — |s;|, the sequence
t; must be a supersequence of s; and |t;| = m. Therefore, we have a common supersequence

for S with length m. W

Note that, most definitions of phylogenetic trees require that the nodes in the tree be
labeled with distinct sequences. In this case, Theorem refbinary.hard still holds. We can
modify the above proof by identifying nodes zj and wug in the phylogeny, and adding a suffix
w; to each y; and z;, where wy, = (1)*(01)* and w; = (1)*(11)*=i=110(01)" for any 1 < i < k.
Therefore, in the optimal alignment, each z; = sw;, and each w; = s(1)%(11)¥=*(01)* for
1<i<kand 23 = swy,.

To prove the MAX SNP-hardness of tree alignment when the given phylogeny is a star,
we begin with the Max Cut-B problem.

12



Max Cut-B: Given a graph G = (V, E') with degree bounded by B, find a partition of V'
which divides V into disjoint sets Vg and Vj such that the number of edges that go from V4
to Vi is the largest.

Max Cut-B is shown to be MAX SNP-complete in [19]. Now, we can prove our last result.

Theorem 7 It is MAX SNP-hard to construct an optimal evolutionary tree when the given
phylogeny is a star.

Proof. The reduction is from Max Cut-B. Let ¢ = (V, E) be a graph with degree bounded
by constant k, where E = {vy,vq,...,v,}. Define ¥ = {0,1,a,b,#,*,%}. The letters #,$
will serve as delimiters and * will be a kind of “wild card”. For each v; € V, we construct a

sequence s; = z;1%;2 - 2,9, where

D’0 D j1xk if j # ¢, v; and v; are adjacent
Zij; = D; skt Dj*k"'l if 7 # 4, v; and v; are not adjacent
DRI D 0FLif j =,

where D] =8, Dy =#, and D: =D; =# fori=2,...,n.

Observe that, in general s; has the form

(S gy ") (P ) (T ) (T Ay ).

k+1

It contains n blocks of z ML s 0k+17

and n blocks y*t! in the sequence, where the i-th z
i-th y**1 is 1511 and the rest of 2FT1’s and y**+1’s are either +F1, 0%%, or 1%*. ! Similarly,

let t; = u;quig- - u;,$, where

| DM DR i £
" DARFLD R if j = .

Finally, define

!The following construction forces the internal sequence to be of the form

*k+1(#xk+l#*k+l)(#xk+l#*k+l) . (#xk+l#*k+l)7

1%+ Since the degree of

where there are n blocks of 2"t! in the sequence, each of them is either 0%t! or
each node in G is bounded by k, the segment z;; in each s; dominates the alignment of s; and the internal
sequence. The optimal score for the alignment of s; and the internal sequence is the number of edges (with v;

as an end) not being cut.

13



Table 4: score scheme

#1% |0 |1 | |A|a |b
# 1|0 | 2k | 4k | 4k | 4k | 4k | 4k | 4k
$ 2k | 0 4k | 4k | 4k | 4k | 4k | 4k
0 4k | 4k | 0 1 0 1 1 1
1 4k | 4k | 1 0 0 1 1 1
x || 4k |4k |0 0 0 0 0 2
Al 4k | 4k | 1 1 0 0 0 2
a || 4k | 4k |1 1 0 0 0 2
b 4k | 4k | 1 1 2 2 2 2

Xo = {sili=1,2,...,n},

Xi o= {a'#FS ) i= 01,50k + 1)),
X, = {a'#H"H¥)"i=1,2,...,3k},
X3 = {a't;li=1,2,...,k j=1,2,....n}

and
X =XoUXjUX3U Xs.

The score scheme is given in Table 4. Note that the scores do not satisfy triangle inequality.
The phylogeny is a star (i.e., a tree with only one internal node) with |X| leaves, each is

associated with a sequence in X.

First, we show that the internal sequence in an optimal evolutionary tree for X should

be in the form

*k-l—l(#xk-l—l#*k-l—l)(#xk-l—l#*k-l—l) L. (#xk+1#*k+1)7
where there are n blocks of z5%!, each is either 0F*! or 1¥*1. This is due to the following
reasons.

1. The sequences in X; = {a'(# +**1 #)"|i = 0,1,...,5n(k + 1)} force the internal
sequence to contain exactly n #’s and no $. Otherwise, the 5n(k + 1) sequences in X3
contribute a cost of 5n(k+1) -2k = 10k(k+1)n or more. However, if the internal sequence is
in the form (1514517 the total cost of the tree is less than 5k%n + 6kn < 10k(k+ 1)n.
(See the analysis below.)

2. The sequences in Xy = {a*(#0"T'4)"|i = 1,2,...,3k} force the internal sequence
to contain none of 0,1,b at positions between the 2i-th # and (2¢ 4+ 1)-th #. Otherwise,
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the existence of such letter would make the 3k sequences in X5 contribute an extra cost of
3k, while the contribution from the sequences in Xy decreases by at most £ + 1 and the
contribution from the sequences in X3 decreases by at most k. Thus, we can always delete

such letters without increasing the total cost.

3. The score scheme allows us to delete an @ from the internal sequence without increasing
the cost.
4. Since s(b,b) = s(b,A) =2 and s(b,1) = s(b,0) = 1, it is advantageous for the internal

sequence to be of form

*k+1(#{07 1}k+1#*k+1)(#{07 1}k+1#*k+1) e (#{07 1}k+1#*k+1)7

where {0,1}*+1 denotes any binary string of length k& 4+ 1. The leading and trailing *’s are
used to absorb the 0’s and 1’s in the beginning or end of an s; or an ¢;. (See Figure 7.)
5. The kn sequences in X3 = {a't;|i =1,2,...,k, j=1,2,...,n} allow us to modify the

internal sequence into the form

*k-l—l(#xk-l—l#*k-l—l)(#xk-l—l#*k-l—l) L. (#xk+1#*k+1)7

k+1

where there are n blocks of z in the sequence, each of them is either 0%+ or 15+1,

Now, we prove condition (1) of L-reduction. Suppose that there is a partition (Vp, V1) of

V', which cuts ¢ edges. The internal sequence can be constructed as

*k-l—l(#xk-l—l#*k-l—l)(#xk-l—l#*k-l—l) L. (#xk+1#*k+1)7

where there are n blocks of 251, the i-th block is 1%+ if v; is in V;, and 0FF! otherwise. In
this case, the sequences in X contributes no cost. Each sequence in X5 contributes a cost
of (k4 1)n and thus X, totally contributes 3k(k 4 1)n. Each sequence in X3 contributes a
cost of 2k and totally X3 contributes 2k2n.

Let ¢(v) denote the number of edges incident upon v that are cut by the partition. For
each v; € V, s; contributes 2k + d(v;) — ¢(v;). This can be observed as follows. Since there
are 2n #’s in the internal sequence and 2n — 1 #’s and 2 $’s in each s;, the delimiters in s;

k+1

always contribute a cost of 6k. For each ¢, if the i-th block of z of the internal sequence

is 1¥+1 (ie., v; € V1), we align s; with the internal sequence as in Figure 7(a), i.e., the right

k+1 6f the internal

end delimiter of the s; is matched with a space, and if the i-th block of z
sequence is 0Ft! (ie., v; € V), we align s; with the internal sequence as in Figure 7(b).
If v; € Vi, then for each v; adjacent to v;, the segment z;; of s;, which is of the form
D0 +* D;1x* will contribute 1 towards the cost if and only if v; € V;. (See Figure 7(a).)
Similarly, if v; € Vp, then for each v; adjacent to v;, the segment z;; of s5; will contribute 1
towards the cost if and only if v; € Vi, (See Figure 7(b).) That is, all the edges that are not

cut by the partition are counted here.
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$OkkkF1dkk#1111#0000#0 %k x#F 1kkk$ SOkt 1k +%#1111H#0000#0*k*#1 ¥ **§ s_1i

wokkrdt 111 1 Rkt 111 1* k#0000 * + k% *kkABO000H ¥k k#0000 ***x#1111#%%%%  int. seq.
(a) (b)

Figure 7: (a) v; isin V;. (b) v; is in Vp.
Therefore, the total cost of the tree is
3k(k+1)n+ 2k%n + Zn: 2k + d(v;) — c(v;) = 5k%n + 5kn + 2|E| — 2e.
=1
Recall that the optimal ¢ is at least |F|/2. Since the degree of GG is bounded, condition (1)

of L-reduction holds.

By the same argument, it is not hard to show that, given an evolutionary tree for X with
cost ¢/ = Bk*n 4 bkn + 2| E| — 2¢, we can easily construct a partition of G which cuts ¢ edges,

by looking at the 0/1 assignment to the z-blocks in the internal sequence. Thus, condition

(2) of L-reduction also holds (with 3 =1/2). N

6 Concluding Remarks.

It remains an interesting open question if the score scheme in the above proof can be made
to satisfy triangle inequality. If so, then the result in [28] that tree alignment with a given
binary phylogeny has a PTAS implies that the degree of the tree makes a difference in the
approximability of the problem.
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