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Abstract

We study the computational complexity of two popular problems in multiple sequence

alignment� multiple alignment with SP	score and multiple tree alignment� It is shown

that the 
rst problem is NP	complete and the second is MAX SNP	hard� The complexity

of tree alignment with a given phylogeny is also considered�

Key words� multiple sequence alignment� evolutionary tree� SP�score� computational com�

plexity� approximation algorithm�

� Introduction�

Multiple sequence alignment is one of the most important and challenging problems in compu�

tational biology ���� ��	� It plays an essential role in two related areas of molecular biology


�nding highly conserved subregions among a set of biological sequences� and inferring the

evolutionary history of some species from their associated sequences� A huge number of pa�

pers have been written on e�ective and ecient methods for constructing multiple sequence

alignment� For a comprehensive survey� see ��� ��	�

Many score schemes have been suggested to measure the quality of a multiple alignment�

Among them� SP�score seems to be very sensible and has received a lot of attention ��� �� ��	�

�Here� SP stands for sum of all pairs�� The best algorithm to compute an optimal alignment

under SP measure is based on dynamic programming and requires a running time which

is in the order of the product of the lengths of input strings ��	� Gus�eld �rst proposed a
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polynomial�time approximation algorithm for this problem that achieves ratio � � �

k
on k

input sequences �i�e�� the algorithm always produces an alignment whose value is at most

�� �

k
times the optimum� ���� ��	� Pevzner improved Gus�eld�s algorithm to obtain a ratio of

�� �

k
���	� Recently Bafna and Pevzner pushed the ratio to �� l

k
��	 for any �xed l� However�

it was not known if multiple alignment with SP�score is NP�hard ���	� Here we show that

this problem �actually� the decision version of it� is NP�complete�

The construction of an optimal evolutionary tree from a given set of sequences can also

be viewed as a type of multiple sequence alignment� called multiple tree alignment or� sim�

ply� tree alignment� Foulds and Graham proved that a variant of tree alignment� where

the distance between two sequences is de�ned as Hamming distance� is NP�complete ��	�

Recently� Sweedyk and Warnow proved that tree alignment is NP�complete ���	� Several

approximate methods have been proposed in the literature ���� ��� ��� ��	� Gus�eld showed

that a minimum�cost spanning tree of the input sequences has a cost that is at most twice

the cost of an optimal evolutionary tree ���� ��	� An interesting question is whether one can

�nd ecient algorithms with approximation ratio better that �� It is easy to see that the

recent results of Zelikovsky� and Berman and Ramaiyer on approximation of Steiner minimal

trees imply that tree alignment can be approximated within a factor of ����� in polynomial

time ��� ��	� But can we make the approximation ratio arbitrarily close to �� In this paper�

we will answer this negatively by showing that tree alignment is MAX SNP�hard� The con�

cept of MAX SNP�hardness was introduced by Papadimitriou and Yannakakis for the study

of non�approximability of NP�complete problems ���	� Combining with the result in ��	� our

result implies that tree alignment does not have a polynomial�time approximation scheme

�PTAS�� �A problem has a PTAS if for every �xed � � �� it can be approximated with ra�

tio � � � in polynomial time�� In other words� the approximation ratio can not arbitrarily

approach ��

An important variant of tree alignment is that we are not only given the sequences of

some species� but also the phylogenetic structure �i�e�� the tree structure�� Although the

problem seems easier� the algorithms proposed in ��� ��� ��	 all run in exponential time in the

worst case and again it was not known if this problem is NP�hard� Among the many possible

phylogenetic structures� binary tree and star are the most common ones ��� ��	� We will

prove that tree alignment with a given phylogeny is NP�complete even when the phylogeny

is a binary tree� Furthermore� the problem is MAX SNP�hard if the phylogeny is a star� In

contrast� when the given phylogeny is a binary tree� tree alignment is not MAX SNP�hard�

for we have shown in a companion paper that it has a PTAS ���	�
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� Basic De�nitions�

A sequence is a string over some alphabet �� For DNA sequences� the alphabet � contains

four letters A�C�G� and T representing four distinct nucleotides� and for protein sequences�

� contains �� letters� each represents a unique amino acid� An alignment of two sequences

s� and s� is obtained by inserting spaces into or at either end of s� and s� such that the two

resulting sequences s�

� and s�

� are of the same length� That is� every letter in s�

� is opposite to a

unique letter in s�

�� A space is viewed as a new letter and is denoted � throughout this paper�

Two opposing identical letters form a match and two opposing nonidentical letters form a

mismatch� which can also be viewed as a replacement� A space in one sequence opposite

to a letter x in the other can be viewed as a deletion of x from the second sequence� or an

insertion of x into the �rst sequence�

Suppose that l is the length of the sequences s�

� and s�

�� The value of the alignment

is de�ned as
Pl

i�� s�s
�

��i�� s
�

��i��� where s�

��i� and s�

��i� denote the two letters at the i�th

column of the alignment� and s�s�

��i�� s
�

��i�� denotes the score of the two opposing letters

under some given score scheme s� There are several popular score schemes for amino acids

and for nucleotides ���� ��	� A standard assumption about a score scheme s is that it satis�es

triangle inequality� i�e�� for any three letters x� y� and z� s�x� z� � s�x� y��s�y� z�� An optimal

alignment of two sequences is one that minimizes the value over all possible alignments� The

edit distance between two sequences is de�ned as the minimum alignment value of the two

sequences�

The concept of an alignment can be easily extended to more than � sequences� A multiple

alignment A of k � � sequences is obtained as follows
 spaces are inserted into each sequence

so that the resulting sequences have the same length l� and the sequences are arrayed in k

rows of l columns each� Again� a score value is de�ned on each column under some score

scheme and the value of A is simply the sum of the scores of all columns� A very popular

score scheme� called SP�score� de�nes the score value of a column as the sum of the scores

of all �unordered� pairs of the letters in the column� That is� the value of the alignment A

is the sum of the values of pairwise alignments induced by A� The SP�score has previously

been studied extensively in the past� See� e�g�� ��� �� �� ��� ��	�

In the analysis of genetic evolution� we are given a set X of k sequences� each stands for

an extant species� Let Y be a set of hypothetical sequences� where Y � X � �� �Usually

each sequence in Y could represent an extinct species�� An evolutionary tree TX�Y for X is

a weighted �sometimes rooted� tree of jX � Y j nodes� where each node is associated with a

unique sequence in X � Y ���� ��	� The cost of an edge is the edit distance between the two

sequences associated with the ends of the edge� The cost c�TX�Y � of the tree TX�Y is the total

cost of all edges in TX�Y � Given sequences X � the optimal evolutionary tree or multiple tree
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alignment or� simply� tree alignment problem is to �nd a set of sequences Y as well as an

evolutionary tree TX�Y for X which minimizes c�TX�Y � over possible sets Y and trees TX�Y �

Sometimes one might require that the given sequences of the extant species be only associated

with the leaves in the evolutionary tree ��	� In this case� our result in Theorem � still holds�

An important variant of tree alignment is that we are not only given the sequences of

some species� but also the phylogenetic structure �i�e�� the tree structure�� More precisely� we

are given a set X of k sequences and a tree structure with k leaves� each of them is associated

with a unique sequence in X � Then we would like to �nd the hypothetical sequences Y and

assign them to the internal nodes of the given tree so that the total cost is minimized ���	�

We will refer to this problem as tree alignment with a given phylogeny�

� NP�completeness of Multiple Alignment with SP�score�

In this section� we prove that the following decision version of multiple sequence alignment

with SP�score is NP�complete�

INSTANCE� Set of sequences S � fs�� s�� � � � � skg� and positive integer c�

QUESTION� Is there a multiple alignment of S with value c or less�

The reduction is from the shortest common supersequence problem ���	


INSTANCE� Finite set S of sequences over alphabet � and positive integer m�

QUESTION� Is there a sequence s with jsj � m such that each t � t�t� � � � tr � S is a

subsequence of s� i�e�� s � s�t�s�t�s� � � � trsr� for some s�� s�� � � � � sr�

The problem remains NP�complete even if j�j � � ���	�

Theorem � Multiple sequence alignment with SP�score is NP�complete�

Proof� Obviously� multiple sequence alignment is in NP� We reduce the shortest common

supersequence problem to multiple alignment with SP�score� Given a set S of sequences over

alphabet f�� �g� and a positive integer m� we construct a collection of sets X � fXi�jji� j �

�� i � j � mg� where Xi�j � S � fai� bjg and a and b are two new letters� Here we can

assume that each sequence in S has length at most m� The score scheme is shown in Table

�� Clearly the score scheme satis�es triangle inequality� The positive integer c is de�ned as

c � �k � ��jjSjj� ��k� ��m� where jjSjj is the total length of all sequences in S�

To show that multiple alignment with SP�score is NP�hard� it is sucient to show that


S has a supersequence s of length m if and only if some Xi�j has an alignment with value at

most c�
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Table �
 Score scheme I�

S � � a b �

� � � � � �

� � � � � �

a � � � � �

b � � � � �

� � � � � �

�if� Suppose that we have an alignment A of the k � � sequences in Xi�j with value at

most c� for some i� j� Consider the induced alignment of the k sequences in S� No matter

what the alignment is� its score is always �k � ��jjSjj� Thus� in A� the total contribution of

the pairwise alignments involving sequences ai and�or bj � is at most ��k � ��m� Therefore�

every � must be aligned with an a and every � must aligned with a b in A� We can obtain

a supersequence s for S by assigning � to the columns containing a�s and � to the other

columns� The length of s is i� j � m�

�only if� Let s be a supersequence for S with length m� Let i be the number of ��s in

s and j the number of ��s in s� Consider set Xi�j � For each sequence t � S� there exists an

alignment of t and s such that each � �or �� in Xi matches a � �or �� respectively� in s� Some

��s and ��s in s may correspond to spaces� To obtain the desired multiple alignment� we align

each t in S with s as above and then align the a�s in the sequence ai with the ��s in s and

the b�s in bj with the ��s in s� Obviously� in this alignment� the letters in a column are either

�� a��� or �� b��� The value of the alignment �with sequence s removed� is c�

Therefore� by checking the value of an optimal alignment ofXi�j � i�j � m� we can answer

if there is a supersequence s for X with length m in polynomial time�

� MAX SNP�hardness of Tree Alignment�

In this section� we show that constructing an optimal tree alignment is MAX SNP�hard�

This implies that there is no polynomial�time approximation scheme �PTAS� for the problem�

unless P�NP� by the result of ��	�

First� we review the de�nition of L�reduction introduced by Papadimitriou and Yan�

nakakis ���	� Suppose that � and �� are two minimization problems� �The de�nition is

analogous for maximization problems�� We say that � linearly reduces �L�reduces� to �� if

there are polynomial�time algorithms f and g and constants �� � � � such that� for any

instance I of ��
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�� OPT �f�I��� � � �OPT �I�

�� Given any solution of f�I� with cost c�� algorithm g produces in polynomial time a

solution of I with cost c satisfying jc�OPT �I�j � �jc� � OPT �f�I��j�

It follows from the above de�nition that �i� the composition of two L�reductions is an

L�reduction and �ii� if problem � L�reduces to problem �� and �� can be approximated in

polynomial time within a factor of �� �� then � can be approximated within factor �� ����

In particular� if �� has a PTAS� so does ��

In order to prove the MAX SNP�hardness of tree alignment� we �rst prove a sequence of

auxiliary MAX SNP�hardness results� We begin with the Vertex Cover�B problem� which is

proved to be MAX SNP�complete in ���	�

Vertex Cover�B� Given a graph G � �V�E� with degree bounded by B� �nd the smallest

vertex cover� i�e�� a smallest subset V � 	 V such that� for each edge �u� v� � E� at least one

of u and v belong to V ��

We then L�reduce Vertex Cover�B to the following more restricted version of itself


Triangle�free Vertex Cover�B� Given a triangle�free graph G � �V�E� with degree

bounded by B� �nd the smallest vertex cover�

Now we L�reduce Triangle�free Vertex Cover�B to a restricted version of tree alignment


Restricted Tree Alignment� Given two sets of sequences X and Y � �nd a subset Y � 	 Y

and an evolutionary tree TX�Y � with the smallest cost�

Finally this problem is L�reduced to the tree alignment problem� stated again below


Tree Alignment� Given a set of sequences X � �nd a set of sequences Y and an evolutionary

tree TX�Y with the smallest cost�

Now� we describe the required reductions�

Lemma � Triangle�free Vertex Cover�B is MAX SNP�hard�

Proof� For each edge �vi� vj� in the given graph G� we insert two vertices ui�j and uj�i

into the edge� This should remove all the triangles� Call this new graph G�� Clearly� G has a

vertex cover of size c if and only if G� has a vertex cover of size c� jEj� This is an L�reduction

because jEj � B � c�

Lemma � Restricted Tree Alignment is MAX SNP�hard�
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Table �
 Score scheme II�

� � �

� � � �

� � � �

� � � �

Proof� Let G � �V�E� be a triangle�free graph with degree bounded by B� where

V � f�� �� � � � � ng� Without loss of generality� we also assume that G is connected� Let �i

denote the binary sequence of length n with a � at the i�th position and ��s at the rest� and

�i�j denote the binary sequence of length n with ��s at the i�th and j�th positions and ��s at

the rest� We construct sets X � f�i�jj�i� j� � Eg and Y � f�ng � f�iji � �� �� � � � � ng� The

score scheme is de�ned in Table �� which also satis�es triangle inequality�

Seven types of edges may appear in a restricted evolutionary tree� Their costs are


�� c��n� �i� � ��

�� c��n� �i�j� � ��

�� c��i� �j� � �s��� �� � ��

�� c��i� �k�l� � s��� �� � �� if i � k or i � l�

�� c��i� �k�l� � �s��� �� � �� if i 
� k and i 
� l�

�� c��i�j� �k�l� � �s��� �� � �� if fi� jg � fk� lg 
� ��

�� c��i�j� �k�l� � �s��� �� � �� if fi� jg � fk� lg � ��

Now� we want to show that the reduction is indeed an L�reduction� Suppose that G has

a vertex cover U of size c� We can connect each sequence �i�j � X to some �k� where k � i

or j� and k � U � and then connect the sequences f�iji � Ug to �n� Each connection costs

�� This gives us a restricted evolutionary tree with cost jEj � c� Since the degree of G is

bounded by B� jEj � B � c� So condition ��� of L�reduction holds�

To see that condition ��� of L�reduction also holds� we need the following claim�

Claim � Given a restricted tree alignment with cost c�� we can �nd an evolutionary tree with

cost not greater than c� in polynomial time such that all the edges are of type ��� or �	��
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Proof� Each edge ��n� �i�j� can be replaced by two edges ��n� �i� and ��i� �i�j�� An edge

��i� �j� can be replaced by two edges ��i� �
n� and ��n� �j�� An edge ��i� �k�l� of type ���� where

i 
� k and i 
� l� can be replaced by the edges ��k� �k�l� and ��k� �i� with the same cost �� An

edge ��i�j � �k�l� of type ���� where fi� jg�fk� lg� fmg� can be replaced by the edges ��i�j� �m�

and ��k�l� �m� with the same cost �� An edge ��i�j� �k�l� of type ���� where fi� jg � fk� lg � ��

can be replaced by the edges ��i�j� �i�� ��k�l� �k� ��n� �i� and ��n� �k� with the same cost ��

Given an evolutionary tree with cost c�� we can construct a new evolutionary tree with

the same cost c� using edges of types ��� and ��� only� The number of sequences of form �i

in the new evolutionary tree is at most c� � jEj� This implies a vertex cover of G of size at

most c� � jEj� �� Therefore� setting � � � makes condition ��� hold� This completes the

proof�

Theorem 	 Tree Alignment is MAX SNP�hard�

Proof� By Lemma �� it suces to show that given an evolutionary tree T for X with cost

c� where X is the same as in the proof of Lemma �� there is a polynomial�time algorithm to

construct a restricted evolutionary tree for X and Y � f�ng � f�ij� � i � ng� with cost c or

less� Observe that here X has the �triangle�free property� i�e�� X does not simultaneously

contain the sequences �i�j � �i�k� and �j�k for any i� j� k� We will give a method to modify the

tree T so that every sequence not in X is of form �n or �i�

A sequence that is not in X or of form �n or �i is a bad sequence and a node that is

associated with a bad sequence is a bad node� Two sequences �i�j and �k�l are adjacent if

fi� jg�fk� lg 
� �� Note that� as we have seen before� two adjacent sequences �i�j and �i�k can

be connected through the sequence �i using two edges� each costing ��

For convenience� we make without loss of generality a few assumptions about T � Here

we view T as a rooted tree� We can assume that each edge in the tree T has cost �� This is

because we can delete any edge of cost � or more� �nd two adjacent sequences �i�j and �i�k� one

from each disconnected component� and reconnect them through �i� Since X is constructed

from a connected graph G� such adjacent sequences always exist� Note that� this implies that

all the sequences in the tree are of length n� because the score between � and other letters is

�� Moreover� we can assume that every bad node in T has two or more children� Otherwise�

we can delete bad node and reconnect the two disconnected components as above without

increasing the cost� Lastly� we assume that each node in T is labeled by a unique sequence�

We will delete the bad nodes in T iteratively from the bottom to the top� Below we

describe the steps involved in one iteration� which removes at least one bad node� Consider a
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bad node at the lowest level of the tree� The sequence� denoted s�� associated with the node

must be of form either �i�j �type �a�� or �i�j�k �type �b��� as shown in Figure �� Note that� in

case �b�� s� must have exactly two children due to the triangle�free property of X �

In the �gure� an ellipse denotes a bad node� a rectangle denotes a good node� and a triangle

denotes a subtree containing no bad nodes�

Suppose that s� is of type �a�� say� �i�j � Since s� has two children �i and �j � the parent of

s� must have three ��s� say� �i�j�k� Because each of �i and �j can appear at most once in T � a

sibling� say� �i�k� of s� can not be a bad node� See Figure ��a�� In fact� �i�k � X because it

has at most one child� Thus� we can delete s�� move the subtree under �i to �i�k and relink

the subtree under �j to the tree through some appropriate adjacent sequences �one from the

subtree and one from the rest of the tree�� as shown in Figure ��b�� This will not increase

the cost�

Now suppose that s� is of type �b�� say� �i�j�k� Its parent� denoted s�� contains either

two ��s or four ��s� Suppose that s� contains two ��s� say� s� � �i�j � The assumptions made

above force s� to have exactly two children �i�k and �j�k� s� has a sibling of form �i or �j �

then we can link �i�k �or �j�k� to �i �or to �j � respectively� with cost �� and thereby get rid

of s�� Thus� we assume that s� has a sibling s� with three ��s� say �i�j�l� which is also a bad
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sequence of type �b�� Similarly� s� must have two children �i�l and �j�l� We can modify the

two subtrees rooted at s� and s� to get rid of the bad nodes s� and s�� as shown in Figure �

Now suppose that s� contains four ��s� say� s� � �i�j�k�l� Without loss of generality� we

assume that s� has a sibling s� � �i�j�l� We temporarily modify the subtrees under s� and s�

as in Figure ��

Let s� be a sibling of s�� Since the parent of s� has either three ��s or �ve ��s� s� has

either four ��s� say� �i�j�k�m� or two ��s� say� �k�l� We consider two cases�

Case �
 s� � �i�j�k�m� Similar to s� � �i�j�k�l� s� has four descendants of form �p�q� where

p� q � fi� j� k� lg� One of the descendants has to involve i� e�g�� it is of form �i�k� Thus� we can

link �i to �i�k with cost �� This reconnects the component in Figure ��b� to the tree� Then

we delete node s� and reduce the cost by ��

Case �
 s� � �k�l� The component in Figure � can be reorganized as in Figure � without
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Figure �
 �a� The tree T � �b� The subtree Ti�

extra cost� Then we can link �k to s� with cost �� and delete s� which reduces the cost by ��

Therefore� we can gradually remove all the bad nodes from T � This completes the proof�

�

� Tree Alignment with a Given Phylogeny

In this section� we study the complexity of tree alignment when the phylogenetic tree structure

is given� Two important structures are considered
 binary tree and star�

Theorem 
 It is NP�complete to construct an optimal evolutionary tree even when the given

phylogeny is a binary tree�

Proof� The reduction is again from the shortest common supersequence problem� Let

S � fs�� s�� � � �skg be a set of sequences f�� �g� Now� we construct a binary tree T as in

Figure ��a�� where each Ti is a subtree shown in Figure ��b�� Every leaf in T is associated

��



Table �
 Score scheme III�

� � a b �

� � � � � �

� � � � � �

a � � � � �

b � � � � �

� � � � � �

with a sequence over � � f�� �� a� bg� We de�ne yi � si for i � �� �� � � � � k� zi � ai��bm�i���

for i � �� �� � � � � k � �� and zk � am�

The score scheme is de�ned in Table �� which again satis�es triangle inequality�

Let M �
Pk

i�� �m � jsij� We will show that there is a common supersequence s with

jsj � m if and only if there is an evolutionary tree with cost M �

�only if� Assume that there is a supersequence s with jsj � m� To obtain the desired

evolutionary tree� we assign sequence s to every xi and ui� i � �� � � � � k�

�if� Suppose that there exists an assignment of sequences to the internal nodes of T such

that the cost of the resulting evolutionary tree is M � For each i� let ti be the sequence

assigned to xi� For any node v in T � let T �v� denote the subtree rooted at v� First observe

that� because of the triangle inequality� for each i the optimal cost of T �xi� is at least the edit

distance between the sequences at the nodes yi and zi� which is �m� jsij� Hence� the cost of

T �xi� in this evolutionary tree is exactly �m� jsij� Since all the edges between �xi� ui� and

�ui� ui��� must cost �� t� � � � � � tk� The sequences b
m and am assigned to z� and zk force ti

not to contain any a or b� Hence� in order for T �xi� to achieve score �m� jsij� the sequence

ti must be a supersequence of si and jtij � m� Therefore� we have a common supersequence

for S with length m�

Note that� most de�nitions of phylogenetic trees require that the nodes in the tree be

labeled with distinct sequences� In this case� Theorem refbinary�hard still holds� We can

modify the above proof by identifying nodes xk and uk in the phylogeny� and adding a sux

wi to each yi and zi� where wk � ���k����k and wi � ���k����k�i��������i for any � � i � k�

Therefore� in the optimal alignment� each xi � swi� and each ui � s���k����k�i����i for

� � i � k and xk � swk�

To prove the MAX SNP�hardness of tree alignment when the given phylogeny is a star�

we begin with the Max Cut�B problem�

��



Max Cut�B� Given a graph G � �V�E� with degree bounded by B� �nd a partition of V

which divides V into disjoint sets V� and V� such that the number of edges that go from V�

to V� is the largest�

Max Cut�B is shown to be MAX SNP�complete in ���	� Now� we can prove our last result�

Theorem � It is MAX SNP�hard to construct an optimal evolutionary tree when the given

phylogeny is a star�

Proof� The reduction is from Max Cut�B� Let G � �V�E� be a graph with degree bounded

by constant k� where E � fv�� v�� � � � � vng� De�ne � � f�� �� a� b�!� �� "g� The letters !� "

will serve as delimiters and � will be a kind of �wild card � For each vi � V � we construct a

sequence si � zi��zi�� � � �zi�n"� where

zi�j �

����
���

D�

j� �
k Dj��

k if j 
� i� vi and vj are adjacent

D�

j �
k�� Dj�

k�� if j 
� i� vi and vj are not adjacent

D�

j�
k��Dj�k�� if j � i�

where D�

� � "� D� � !� and D�

i � Di � ! for i � �� � � � � n�

Observe that� in general si has the form

�"xk��!yk����!xk��!yk��� � � ��!xk��!yk����!xk��!yk��"��

It contains n blocks of xk�� and n blocks yk�� in the sequence� where the i�th xk�� is �k���

i�th yk�� is �k��� and the rest of xk���s and yk���s are either �k��� ��k� or ��k� � Similarly�

let ti � ui��ui�� � � �ui�n"� where

ui�j �

�
D�

j �
k�� Dj�

k�� if j 
� i

D�

j�
k��Dj�

k�� if j � i�

Finally� de�ne

�The following construction forces the internal sequence to be of the form

�
k���	x

k��	�
k��
�	x

k��	�
k��
 � � � �	x

k��	�
k��
�

where there are n blocks of xk�� in the sequence� each of them is either �k�� or �k��� Since the degree of

each node in G is bounded by k� the segment zi�i in each si dominates the alignment of si and the internal

sequence� The optimal score for the alignment of si and the internal sequence is the number of edges �with vi

as an end
 not being cut�

��



Table �
 score scheme

! " � � � � a b

! � �k �k �k �k �k �k �k

" �k � �k �k �k �k �k �k

� �k �k � � � � � �

� �k �k � � � � � �

� �k �k � � � � � �

� �k �k � � � � � �

a �k �k � � � � � �

b �k �k � � � � � �

X� � fsiji � �� �� � � � � ng�

X� � fai�! �k�� !�nji � �� �� � � � � �n�k� ��g�

X� � fai�!bk��!�nji � �� �� � � � � �kg�

X� � faitj ji � �� �� � � � � k� j � �� �� � � � � ng

and

X � X� �X� � X� � X��

The score scheme is given in Table �� Note that the scores do not satisfy triangle inequality�

The phylogeny is a star �i�e�� a tree with only one internal node� with jX j leaves� each is

associated with a sequence in X �

First� we show that the internal sequence in an optimal evolutionary tree for X should

be in the form

�k���!xk��!�k����!xk��!�k��� � � ��!xk��!�k����

where there are n blocks of xk��� each is either �k�� or �k��� This is due to the following

reasons�

�� The sequences in X� � fai�! �k�� !�nji � �� �� � � � � �n�k � ��g force the internal

sequence to contain exactly n !�s and no "� Otherwise� the �n�k � �� sequences in X�

contribute a cost of �n�k��� ��k � ��k�k���n or more� However� if the internal sequence is

in the form �!�k��!�k���n� the total cost of the tree is less than �k�n��kn � ��k�k� ��n�

�See the analysis below��

�� The sequences in X� � fai�!bk��!�nji � �� �� � � � � �kg force the internal sequence

to contain none of �� �� b at positions between the �i�th ! and ��i � ���th !� Otherwise�

��



the existence of such letter would make the �k sequences in X� contribute an extra cost of

�k� while the contribution from the sequences in X� decreases by at most k � � and the

contribution from the sequences in X� decreases by at most k� Thus� we can always delete

such letters without increasing the total cost�

�� The score scheme allows us to delete an a from the internal sequence without increasing

the cost�

�� Since s�b� b� � s�b��� � � and s�b� �� � s�b� �� � �� it is advantageous for the internal

sequence to be of form

�k���!f�� �gk��!�k����!f�� �gk��!�k��� � � ��!f�� �gk��!�k����

where f�� �gk�� denotes any binary string of length k � �� The leading and trailing ��s are

used to absorb the ��s and ��s in the beginning or end of an si or an ti� �See Figure ���

�� The kn sequences in X� � faitj ji � �� �� � � � � k� j � �� �� � � � � ng allow us to modify the

internal sequence into the form

�k���!xk��!�k����!xk��!�k��� � � ��!xk��!�k����

where there are n blocks of xk�� in the sequence� each of them is either �k�� or �k���

Now� we prove condition ��� of L�reduction� Suppose that there is a partition �V�� V�� of

V � which cuts c edges� The internal sequence can be constructed as

�k���!xk��!�k����!xk��!�k��� � � ��!xk��!�k����

where there are n blocks of xk��� the i�th block is �k�� if vi is in V�� and �k�� otherwise� In

this case� the sequences in X� contributes no cost� Each sequence in X� contributes a cost

of �k � ��n and thus X� totally contributes �k�k � ��n� Each sequence in X� contributes a

cost of �k and totally X� contributes �k�n�

Let c�v� denote the number of edges incident upon v that are cut by the partition� For

each vi � V � si contributes �k � d�vi� � c�vi�� This can be observed as follows� Since there

are �n !�s in the internal sequence and �n� � !�s and � "�s in each si� the delimiters in si

always contribute a cost of �k� For each i� if the i�th block of xk�� of the internal sequence

is �k�� �i�e�� vi � V��� we align si with the internal sequence as in Figure ��a�� i�e�� the right

end delimiter of the si is matched with a space� and if the i�th block of xk�� of the internal

sequence is �k�� �i�e�� vi � V��� we align si with the internal sequence as in Figure ��b��

If vi � V�� then for each vj adjacent to vi� the segment zj�i of sj � which is of the form

D�

i� �k Di��k� will contribute � towards the cost if and only if vj � V�� �See Figure ��a���

Similarly� if vi � V�� then for each vj adjacent to vi� the segment zj�i of sj will contribute �

towards the cost if and only if vj � V�� �See Figure ��b��� That is� all the edges that are not

cut by the partition are counted here�

��



������������������������������� ������������������������������� s�i

���������������������������������� ���������������������������������� int� seq�

�a	 �b	

Figure �
 �a� vi is in V�� �b� vi is in V��

Therefore� the total cost of the tree is

�k�k� ��n� �k�n �
nX

i��

�k � d�vi�� c�vi� � �k�n � �kn� �jEj � �c�

Recall that the optimal c is at least jEj	�� Since the degree of G is bounded� condition ���

of L�reduction holds�

By the same argument� it is not hard to show that� given an evolutionary tree for X with

cost c� � �k�n��kn��jEj � �c� we can easily construct a partition of G which cuts c edges�

by looking at the �	� assignment to the x�blocks in the internal sequence� Thus� condition

��� of L�reduction also holds �with � � �	���

	 Concluding Remarks�

It remains an interesting open question if the score scheme in the above proof can be made

to satisfy triangle inequality� If so� then the result in ���	 that tree alignment with a given

binary phylogeny has a PTAS implies that the degree of the tree makes a di�erence in the

approximability of the problem�
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