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We study the complexity of reasoning in Kleene algebra and�-continuous Kleene

algebra in the presence of extra equational assumptions E; that is, the complexity

of deciding the validity of universal Horn formulas E � s � t, where E is a finite

set of equations. We obtain various levels of complexity based on the form of the

assumptions E. Our main results are: for �-continuous Kleene algebra, (i) if E

contains only commutativity assumptions pq � qp, the problem is ��

�-complete;

(ii) if E contains only monoid equations, the problem is ��

�-complete; and (iii) for

arbitrary equations E, the problem is��

�-complete. The last problem is the universal

Horn theory of the �-continuous Kleene algebras. This resolves an open question of

[22].

1. INTRODUCTION

Kleene algebra (KA) is fundamental and ubiquitous in computer science. Since its
invention by Kleene in 1956, it has arisen in various forms in program logic and semantics
[18, 30], relational algebra [29, 34], automata theory [25, 26], and the design and analysis
of algorithms [1, 16]. Many authors have contributed to the development of Kleene algebra
over the years [2, 3, 4, 6, 7, 8, 12, 17, 18, 19, 22, 24, 26, 31, 32, 33]. On the practical side,
KA provides a natural and effective tool for equational specification and verification. It has
recently been used successfully in numerous applications involving basic safety analysis,
low-level program transformations, and concurrency control [9, 10, 23].

1.1. Reasoning with Assumptions
The equational theory of KA alone is PSPACE-complete, and this is as efficient as one

could expect. However, in practice, one often needs to reason in the presence of assumptions
of various forms. For example, a commutativity condition pq � qp models the fact that the
programs p and q can be executed in either order with the same result. Such assumptions
are needed to reason about basic program transformations such as constant propagation and
moving static computations out of loops. In [23], several useful program transformations
are given under commutativity assumptions of the form pb � bp, where p is a program and
b is a test. This condition models the fact that the execution of the program p does not
affect the value of the test b.
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Assumptions of the form pb � bp where b is a test do not increase the complexity of KA
[11]. Unfortunately, slightly more general commutativity assumptions pq � qp, even for p
and q atomic, may lead to undecidability. Cohen gave a direct proof of this fact encoding
Post’s Correspondence Problem (see [23]). This result can also be shown to follow from a
1979 result of Berstel [5] with a little extra work; see Section 4 below.

These considerations bring up the general theoretical question:

How hard is it to reason in Kleene algebra under equational assumptions?

Equivalently and more formally,

What is the complexity of deciding the validity of universal Horn formulas of the form
E � s � t, where E is a finite set of equations?

Here “universal” refers to the fact that the atomic symbols of E, s, and t are implicitly
universally quantified. This question was posed by the author in 1991 [20, 22]. It is quite
natural, since the axiomatization of KA is itself a universal Horn axiomatization.

The question becomes particularly interesting in the presence of �-continuity (KA�). A
Kleene algebra is �-continuous if it satisfies the infinitary condition

pq�r � sup
n��

pqnr�

where the supremum is with respect to the natural order in the Kleene algebra. Not all
Kleene algebras are �-continuous, but all known naturally occurring ones are. Moreover,
although �-continuity often provides a convenient shortcut in equational proofs, there are
no more equations provable with it than without it; that is, the equational theories of KA
and KA� coincide [22].

Because of these considerations, it has become common practice to adopt �-continuity
as a matter of course. However, this is not without consequence: although the equational
theories of KA and KA� coincide, their Horn theories do not. Understanding where and
how the theories diverge is essential to the understanding of the comparative power and
limitations of reasoning in Kleene algebra with and without �-continuity.

1.2. Main Results
In this paper we explore these questions and provide some answers. Our main results

are summarized in Table 1. The entries marked a were previously known or follow easily
from known results. The results marked b are new.

Perhaps the most remarkable of these results is E. This is the general question of the
complexity of the universal Horn theory of the �-continuous Kleene algebras. This question
was raised by the author in 1991 [20, 22], and has been open since that time. This question
is related to a conjecture of Conway (1971) [12, p. 103], who asked for an axiomatization
of the universal Horn theory of the regular sets. The phrasing of Conway’s conjecture is
somewhat ambiguous, and a literal interpretation is relatively easy to refute [19].

That the universal Horn theory of KA� should be so highly complex may be quite
surprising in light of the utter simplicity of the axiomatization. We are aware of no other
purely equational system with such high complexity. There are a few examples of � �

�-
completeness results in Propositional Dynamic Logic (PDL), but PDL is a relatively more
sophisticated two-sorted system and takes significant advantage of a restricted semantics
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TABLE 1

Main Results

Form of assumptions KA KA
�

unrestricted A. �
�

�
-completea E. �

�

�
-completeb

monoid equations B. �
�

�
-completea F. �

�

�
-completeb

pq � qp C. EXPSPACE-harda G. �
�

�
-completeb

pb � bp D. PSPACE-completea H. PSPACE-completea

a Previously known or follows easily from known results.
b New.

involving only relational models. Here we make no such restriction: a Kleene algebra or
�-continuous Kleene algebra is any algebraic structure satisfying the axioms of Section 2.1.

1.3. A Universality Property
A cornerstone of our approach is a certain universality property relating the class of

�-continuous Kleene algebras and a restricted subclass consisting of algebras of the form
REGM , the regular subsets of an arbitrary monoid M .

Formally, the universality property says that any monoid homomorphism h � M � K

from a monoid M to the multiplicative monoid of a �-continuous Kleene algebra K

extends uniquely to a Kleene algebra homomorphism bh � REGM � K. In category-
theoretic terms, the map M �� REGM constitutes a left adjoint to the forgetful functor
taking a �-continuous Kleene algebra to its multiplicative monoid.

This relationship is not obvious, and in fact is not valid for Kleene algebras in general.
Its validity for �-continuous algebras hinges on the fact that in such algebras, suprema of
definable sets exist [21, Lemma 7.1, p. 35].

In practice, this property will allow us to restrict our attention to algebras of the form
REG ���E when dealing with universal Horn formulas E � s � t, where E consists of
monoid equations. Intuitively, we can think in terms of regular sets of equivalence classes
of words modulo E.

We develop this connection in more detail in Section 2.3.

1.4. Other Results
The results D and H in Table 1 apply to Kleene algebras with tests and were proved in

[11]. The decision problems in the column labeled KA are all r.e. because of the finitary
axiomatization of KA given in Section 2.1. The r.e.-hardness of A and B follows from the
fact that these problems encode the word problem for finitely presented monoids, shown
r.e.-hard independently by Post and Markov in 1947 (see [13, Theorem 4.3, p. 98]). The
EXPSPACE-hardness of C follows from the EXPSPACE-hardness of the word problem for
commutative monoids [27]. It is not known whether C is decidable.

2. PRELIMINARY DEFINITIONS

We assume a basic knowledgeof complexityof abstract data types and recursion theoretic
hierarchies. Good introductory references on these topics are [28] and [15], respectively.

2.1. Kleene Algebra
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A Kleene algebra is a structure �K� �� �� �� �� �� satisfying the following equations and
equational implications:

p� �q � r� � �p� q� � r

p� q � q � p

p� � � p� p � p

p�qr� � �pq�r

�p � p� � p

�p � p� � �

p�q � r� � pq � pr

�p� q�r � pr � qr

� � pp� � p�

� � p�p � p�

px � x � p�x � x

xp � x � xp� � x�

where� refers to the natural partial order:

p � q
def
�� p� q � q�

We abbreviate p � q as pq and avoid parentheses by assigning the precedence � � � � � to
the operators.

A Kleene algebra is �-continuous if

pq�r � sup
n��

pqnr (1)

where q� � �, qn�� � qqn, and the supremum is with respect to the natural order�. The
�-continuity condition (1) can be regarded as the conjunction of infinitely many axioms
pqnr � pq�r, n � �, and the infinitary Horn formula

�
n��

�pqnr � y� � pq�r � y� (2)

The category of Kleene algebras and Kleene algebra homomorphisms is denoted KA.
The full subcategory of �-continuous Kleene algebras is denoted KA�.

A term is just a regular expression over some finite alphabet �. Terms are denoted
s� t� u� � � � . An interpretation over a Kleene algebra K is a map I � � � K. Every
interpretation I extends uniquely to a homomorphism I � fterms over �g � K. An
equation s � t is true under interpretation I if I�s� � I�t�. More generally, if E is a set
of equations, the Horn formula E � s � t is true under I if either I�s� � I�t� or some
equation of E is not true under I . We write K� I � � if � is true in K under I . We write
KA � � if � is true in all Kleene algebras under all interpretations. The equational theory
of Kleene algebras, denoted E KA, is the set of equations true in all Kleene algebras under
all interpretations. The universal Horn theory of Kleene algebras, denoted H KA, is the
set of all finite equational implications E � s � t true in all Kleene algebras under all
interpretations.

Similar definitions hold for the �-continuous Kleene algebras, using KA� in place of
KA.
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2.2. Regular Sets over a Monoid

Let M be a monoid with identity �M . The powerset 	M forms a natural �-continuous
Kleene algebra under the operations

A�B � A � B � � �

AB � fxy j x 	 A� y 	 Bg � � f�Mg�

A� �
S
n��A

n

The injection �M � x �� fxg is a monoid homomorphism embedding M into the multi-
plicative monoid of 	M .

Let REGM denote the smallest Kleene subalgebra of 	M containing the image of M
under the map �M . This is a �-continuous Kleene algebra and is called the algebra of
regular sets over M .

For the free monoid �� over the finite alphabet �, the Kleene algebra REG �� is the
family of regular sets of strings over � in the usual sense.

2.3. The Functor REG
The map M �� REGM , along with the map that associates with every monoid homo-

morphism h �M �M � the Kleene algebra homomorphismREG h � REGM � REGM �

defined by

REG h �A�
def
� fh�x� j x 	 Ag�

constitute a functor REG from the category of monoids and monoid homomorphisms to
the category KA� of �-continuous Kleene algebras and Kleene algebra homomorphisms.

M M �

REGM REGM �

h

�M �M �

REG h

�

�
� �

(3)

The functorREG is the left adjoint of the forgetful functor that takes a �-continuous Kleene
algebra to its multiplicative monoid. This implies that any monoid homomorphism h �

M � K from a monoidM to the multiplicative monoid of a �-continuous Kleene algebra
K extends uniquely through �M to a Kleene algebra homomorphism bh � REGM � K:

M K

REGM

h

�M bh
�

��
�
�
��

(4)

The homomorphism bh is defined as follows:

bh�A� def
� sup fh�x� j x 	 Ag� (5)

This makes sense for �-continuous Kleene algebras because of [21, Lemma 7.1, p. 35],
which says that suprema of all definable subsets of a �-continuous Kleene algebra exist. It
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does not work for Kleene algebras in general, since the supremum on the right-hand side
of (5) may not exist.

3. ENCODING TURING MACHINES

The lower bound proofs for E, F, and G in Table 1 depend partially on encoding Turing
machine computations as monoid equations. This construction is standard. We sketch
it here for completeness and because we need the equations in a particular form for the
applications to follow. We follow the treatment of Davis [13].

Without loss of generality, we consider only deterministic Turing machines M that
conform to the following restrictions.


 M has input alphabet fag and finite tape alphabet 
 containing a and a special blank
symbol xy different from a. The alphabet 
 may contain other symbols as well.

 It has a finite set of states Q disjoint from 
 containing a start state s and one or more

halt states distinct from s.

 There are no transitions into the start state s and no transitions out of any halt state.

Thus, once M enters a halt state, it cannot proceed.

 It has a single two-way-infinite read-write tape,padded on the left and right by infinitely

many blanks xy.

 M never writes a blank symbol between two nonblank symbols.

Let �, a be two special symbols that are not in 
 or Q. Let

�
def
� 
 �Q � f��ag�

A configuration is a string in �� of the form � xqy a , where x� y 	 
� and q 	 Q.
Configurations describe instantaneous global descriptions of M in the course of some
computation. In the configuration � xqy a , the current state is q, the tape currently
contains xy surrounded by infinitely many blanks xy on either side, and the machine is
scanning the first symbol of y. If y is null, then the machine is assumed to be scanning
the blank symbol immediately to the right of x, although that blank symbol need not be
explicitly represented in the configuration.

The symbols � and a are not part of M ’s tape alphabet, but only a device to mark the
ends of configurations and to create extra blank symbols to the right and left of the input if
required; more on this below.

Each transition of M is of the form �p� a� � �b� d� q�, which means, “when in state p
scanning symbol a, print b, move the tape head one cell in direction d 	 fleft, rightg, and
enter state q.”

Now consider the following equations on ��:

(E1) for each transition �p� a�� �b� right� q� of M , the equation pa � bq;
(E2) for each transition �p� a� � �b� left� q� of M and each c 	 
, the equation cpa �

qcb;
(E3) the equations � � � xy and a � xy a.

Equations (E3) allow us to create extra blank symbols to the left and right of the input any
time we need them and to destroy them if we do not.

For x� y 	 ��, we write x � y if x and y are congruent modulo (E1)–(E3), and we write
x 
 y if x and y are congruent modulo (E3) only.
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Lemma ���� If x� y 	 
 and t is a halt state, then

�xsya � �ztwa �� �xsya
�
��
M

�ztwa � (6)

Proof. See [13, Theorem 4.3, p. 98]. The chief concern is that monoid equations are
reversible, whereas computations are not; thus it is conceivable that the left-hand side of
(6) holds by some complicated sequence of substitutions modeling a zigzagging forwards-
and-backwards computation even when the right-hand side of (6) does not. It can be shown

that sinceM is deterministic and there are no transitions out of state t, this cannot happen.

4. MONOID EQUATIONS

In this section we indicate how to take advantage of the universality property (4) of
Section 2.3 to obtain the results F and G in Table 1.

Let � be a finite alphabet. Let E be a finite set of equations between words in ��,
the free monoid over �. Let s� t be regular expressions over �. Let ���E denote the
quotient monoid. For x 	 ��, let �x� denote the E-congruence class of x in ���E. The
map � � a �� f�a�g constitutes an interpretation over the �-continuous Kleene algebra
REG ���E, called the standard interpretation.

Lemma ���� The following are equivalent:

(i)KA� � E � s � t; that is, the Horn formula E � s � t is true in all �-continuous
Kleene algebras under all interpretations;

(ii)REG���E� � � s � t.

Proof. It is easily verified that REG���E satisfies E under the standard interpretation
�. The implication (i) � (ii) follows.

Conversely, for (ii) � (i), let I be any interpretation into a �-continuous Kleene algebra
K satisfying E. The monoid homomorphism I � �� � K factors as I � I � � � 
, where
I � � ���E � K. The universality property (4) then implies that I �, hence I , factors
through REG���E.

��

�

Q
Q
Q
Qs

� 
 I

���E K

REG���E

I �

�
���E

�

��
�
�
��

�

�

�

Thus any equation true in REG ���E under interpretation � is also true in K under I .

This result allows us to restrict our attention to REG���E for the purpose of proving F
and G in Table 1.

Theorem ���� The following complexity results hold for the problem of deciding
whether a given Horn formula E � s � t is true in all �-continuous Kleene algebras.
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(i)WhenE consists of commutativity conditions (or for that matter, any monoid equations
x � y such that jxj � jyj), the problem is ��

�-complete.
(ii)When E consists of arbitrary monoid equations x � y, the problem is ��

�-complete.

Proof. Using Lemma 4.1 and expressing an equation as the conjunction of two inequal-
ities, we can reduce the problem to the conjunction of two instances of

REG���E� � � s � t� (7)

The upper bounds for both (i) and (ii) are obtained by expressing (7) as a first-order
formula with the appropriate quantifier prefix. Let� denote congruence moduloE on � �.
Applying (3) with M � �� and M � � ���E, (7) can be expressed

�x x 	 �
���s� � �y y � x � y 	 �

���t�� (8)

The predicates x 	 �
���s� and y 	 �

���t� are decidable, and efficiently so: this is just
string matching with regular expressions. Thus the formula (8) is a � �

� formula. Moreover,
if all equations in E are length-preserving, then the existential subformula

�y y � x � y 	 �
���t�

is decidable, so (8) is equivalent to a ��
� formula.

The lower bound for (i) uses the characterization of Lemma 4.1 and the result of Berstel
[5] (see also [14, 23]) that (7) is undecidable. The reductions given in the cited references
show that (7) is ��

�-hard. This result holds even when E consists only of commutativity
conditions of the form pq � qp for atomic p and q.

We prove the lower bound for (ii) by encoding the totality problem for Turing machines;
that is, whether a given Turing machine halts on all inputs. Let M be a Turing machine of
the form described in x3 with a single halt state t. Assume without loss of generality that
M erases its tape before halting. The totality problem is to decide whether

�sana
�
��
M

�ta � n � ��

This is a well-known ��
�-complete problem. By Lemma 3.1, this is true iff

REG���E� � � �sana � �ta � n � ��

where E consists of equations (E1)–(E3) of x3. This is equivalent to

REG���E� � � �sana � �ta � n � ��

since fxg � fyg iff x � y. By the �-continuity condition (1), this is true iff

REG���E� � � �sa�a � �ta �

and by Lemma 4.1, this is true iff

KA
�

� E � �sa�a � � ta �
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5. �
�

�
-COMPLETENESS OFH KA

�

In this section we prove that the universal Horn theory of the �-continuous Kleene
algebras is ��

�-complete.
Let G � ��� R� be a recursive directed graph on vertices �, the natural numbers. For

m 	 �, denote by R�m� the set of R-successors of m:

R�m� � fn j �m�n� 	 Rg�

Let WF � � be the set of all m such that all R-paths out of m are finite. Alternatively,
we could define WF as the least fixpoint of the following recursive equation:

WF � fm j R�m� � WFg�

Let us call G well-founded if � 	WF; that is, if all R-paths out of 0 are finite.
A well-known ��

�-complete problem is:

Given a recursive graph (say by a total Turing machine accepting the set of encodings of
edges �m�n� 	 R), is it well-founded?

We reduce this problem to H KA
�, thereby showing that the latter problem is ��

�-hard.
By assumption, R is a recursive set, thus there is a total deterministic Turing machine

M that decides whether �m�n� 	 R. We can assume without loss of generality that M
satisfies the restrictions of x3 and operates as follows.

In addition to its start state s,M has three halt states t� r� u. When started in configuration
�amsana , it first performs a check that the tape initially contains a contiguous string of a’s
surrounded by blanks and enters halt state u if not. It then determines whether �m�n� 	 R.
If so, it halts in configuration �anta , and if not, it halts in configuration �ra . Thus

�amsana
�
��
M

�
�anta � if �m�n� 	 R�

�ra � if �m�n� �	 R�

By Lemma 3.1, we have

�amsana � �anta �� �m�n� 	 R�

�amsana � �ra �� �m�n� �	 R�

where� denotes congruence modulo equations (E1)–(E3) of x3.
Now consider the Kleene algebra equation

t � sa�� (9)

Let E be the set of equations (E1)–(E3) together with (9).
The following is our main lemma.

Lemma ���� For all m � �,

KA
�

� E � �amta � �ra
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if and only if m 	WF.

Proof. The reverse implication (�) is proved by transfinite induction on the stages of
the inductive definition of WF. Suppose that m 	 WF. Let � � 	� � 	� be the monotone
map

��A� � fm j R�m� � Ag

and define

���A� � A

�����A� � �����A��

���A� �
�
���

���A�� 	 a limit ordinal�

Then

WF �
�
�

������

Let 
 be the smallest ordinal such that m 	 � ����. Then 
 must be a successor ordinal
� � �, therefore m 	 ��� �����, so R�m� � �����. By the induction hypothesis, if
n 	 R�m�, then

KA
�

� E � �anta � �ra �

and �amsana � �anta , therefore

KA
�

� E � �amsana � �ra �

For n �	 R�m�, �amsana � �ra . Thus for all n,

KA
�

� E � �amsana � �ra �

By �-continuity,

KA
�

� E � �amsa�a � �ra �

and by (9),

KA
�

� E � �amta � �ra �

Conversely, for the forward implication (�), we construct a particular interpretation
satisfying E in which for all m 	 �, �amta � �ra implies m 	 WF.

For A � ��, define the monotone map

��A� � A � fx j �y 	 A x � yg � futv j �n usanv 	 Ag� (10)
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Call a subset of �� closed if it is closed under the operation �. The closure of A is the
smallest closed set containing A and is denoted A. Build a Kleene algebra consisting of
the closed sets with operations

A�B � A � B � � �

A�B � AB � � f
g�

A� �
S
nA

n

where 
 is the null string and An is the nth power of A under the operation �. It is not
difficult to show that the family of closed sets forms a �-continuous Kleene algebra under
these operations.

We show now that under the interpretation a �� fag, the equations E are satisfied. For
an equation x � y of type (E1)–(E3), we need to show that fxg � fyg. It suffices to show
that x 	 fyg and y 	 fxg. But since x � y, this follows immediately from (10).

For the equation t � sa�, we need to show that

t 	 fsg �
�
n

fag
n
�

It suffices to show t 	 fsan j n � �g. Again, this follows immediately from (10).
Finally, we show that for x 	 f�ra g, either

(i) x
�
��
M

�ra ;

(ii) x
�
��
M

�anta for some n 	 WF; or

(iii) x 
 �antaka for some k � �.

The argument proceeds by transfinite induction on the inductive definition of closure:

���A� � A

�����A� � �����A��

���A� �
�
���

���A�� 	 a limit ordinal

A �
�
�

���A��

Let 
 be the least ordinal such that

x 	 ���f �ra g��

Then 
 must be a successor ordinal � � �, thus

x 	 �����f �ra g���

There are two cases, one for each clause in the definition (10) of �.
If there exists y 	 ���f � r a g� such that x � y, then by the induction hypothesis, y

satisfies one of (i)–(iii), therefore so doesx; the argument here is similar to [13, Theorem 4.3,
p. 98].
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Otherwise, x � utv and

usanv 	 ���f �ra g�

for all n. By the induction hypothesis, one of (i)–(iii) holds for each usa nv. But (iii) is
impossible because of the form of (E3). Moreover, by construction of M , each of (i) and
(ii) implies that u 
�am and v 
 ak a for some k�m. Thus x 
�amtak a . If k � �,
then x satisfies (iii). Otherwise, x 
�amta and

�amsana 	 ���f �ra g�

for all n, therefore either (i) or (ii) holds for � amsan a . If (i), then �m�n� �	

R. If (ii), then �m�n� 	 R and n 	WF. Thus R�m� � WF and m 	WF.

Theorem ���� H KA
� is ��

�-complete.

Proof. Taking m � � in Lemma 5.1, we have

KA
�

� E ��ta � �ra

if and only ifG is well-founded. This gives the desired lower bound. The upper bound fol-
lows from the form of the infinitary axiomatization of �-continuous Kleene algebra (2); va-

lidity is equivalent to the existence of a well-founded proof tree.
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