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Abstract

In this paper we study the complexity of several coloringgbeons on graphs, param-
eterized by the treewidth of the graph.

1. The LsT COLORING problem takes as input a graph together with an assign-
ment to each vertex of a set of colorg”,. The problem is to determine whether
it is possible to choose a color for verteXxrom the set of permitted coloisS,,
for each vertex, so that the obtained coloringcbfs proper. We show that this
problem isW[1]-hard, parameterized by the treewidth(@f The closely related
PRECOLORING EXTENSION problem is also shown to bié’[1]-hard, parame-
terized by treewidth.

2. Anequitable coloringof a graphG is a proper coloring of the vertices where the
numbers of vertices having any two distinct colors diffeysalh most one. We
show that the problem is hard fo¥[1], parameterized by the treewidth plus the
number of colors. We also show that a list-based variatioaT [EQUITABLE
COLORING is W[1]-hard for forests, parameterized by the number of colors on
the lists.

3. Thelist chromatic numbery;(G) of a graphG is defined to be the smallest
positive integer, such that for every assignment to the verticesf G, of a
list L, of colors, where each list has length at legsthere is a choice of one
color from each vertex list,, yielding a proper coloring ofs. We show that the
problem of determining whethey;(G) < r, the LIST CHROMATIC NUMBER
problem, is solvable in linear time on graphs of constargvtidth.
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1. Introduction

It is well-known that many computationally hard problems solvable in polyno-
mial time when the input is an-vertex graphz of treewidtht. Whether the running
time of the algorithm is of the forn.°® or f(t) - n®™) differs from problem to
problem, and this drastically affects the practical aflitity of the algorithm. In
this paper we initiate the systematic classification of fots on graphs on bounded
treewidth based on whether there exists an algorithm foptioblem with running
time f(t) - n°M. In particular we consider the complexity of various graptodng
problems, for graphs of bounded treewidth, in the framevadrgarameterized com-
plexity [DF99, FGO06, Nie06], where we take the parameterddhe treewidtht. For
the definition of the graph invariant treewidth and relatedaept we refer to [Bod93].

Coloring problems that involve local or global restrictioan the coloring have
many important applications in such areas as operatiorares, scheduling and com-
putational biology, and also have a long mathematical histBor recent surveys of
the area one can turn to [Tu97, KTV98, Al00, Wo01] and alsddibek [JT95] and the
Ph.D. dissertation of Marx [Ma04].

Problems Considered:A proper coloring of a graph is an assignment of colors to its
vertices such that the endpoints of every edge get distlor (that is no edge is
monochromatic). Similarly, a propercoloring of graphG = (V, E) is an assignment
of colors from{1,2, ..., ¢} to the vertices of7 such that no edge is monochromatic.
The chromatic number of a grajgh denoted by (G), is the minimumy for which a
properg-coloring exists. Thdist chromatic numbey;(G) of a graphG is defined to

be the smallest positive integersuch that for every assignment to the vertices G,

of alist L, of colors, where each list has length at legghere is a choice of one color
from each vertex list,, yielding a proper coloring ofz. Next we define all the main
problems we consider in this paper.

LisT COLORING

Input: A graphG = (V, E) of treewidth at most, and for each vertex
v €V, alist L, of permitted colors.

Parameter:t

Question:ls there a proper vertex colorirgvith ¢(v) € L, for eachv?

PRECOLORINGEXTENSION

Input: A graphG = (V, E) of treewidth at most, a subset?’” C V of
precoloredvertices, grecoloringey of the vertices o, and a positive
integerr.

Parameter:t

Question:ls there a proper vertex coloringpf V- which extendsyy (that
is, ¢(v) = ew (v) for all v € W), using at most colors?

EQuITABLE COLORING (ECP)
Input: A graphG = (V, E) of treewidth at most and a positive integer.



Parameter:t
Question:Is there a proper vertex colorirngusing at most colors, with
the property that the sizes of any two color classes diffeatipost one?

LiST CHROMATIC NUMBER

Input: A graphG = (V, E) of treewidth at most, and a positive integer
T.

Parameter:t

Question:ls x;(G) < r?

Framework of Study — Background on Parameterized Complexie obtain all our
results in the framework of parameterized complexity. Here provide some essen-
tial background of the theory. Parameterized complexibaisically a two-dimensional
generalization of “P vs. NP” where in addition to the ovenafiut sizen, one studies
the effects on computational complexity of a secondary nwessent that captures ad-
ditional relevant information. This additional informaiti can be, for example, a struc-
tural restriction on the input distribution considered;isas a bound on the treewidth of
an input graph. Parameterization can be deployed in maferélift ways; for general
background on the theory see [DF99, FGO06, Nie06].

The two-dimensional analogue (or generalization) of Rolgability within a time
bound of O(f(k)n®), wheren is the total input sizek is the parameterf is some
(usually computable) function, andis a constant that does not dependfoor n.
Parameterized decision problems are defined by specifhi@dnput, the parameter,
and the question to be answered. A parameterized probldrndahde solved in such
time is termedfixed-parameter tractabl¢FPT). There is a hierarchy of intractable
parameterized problem classes above FPT, the main ones are:

FPT C M[1] € W[1] € M[2] CW[2] € --- C W[P] € XP

The principal analogue of the classical intractabilityssladNP isW[1], which is a
strong analogue, because a fundamental problem complelé fo is the k-STEP
HALTING PROBLEM FORNONDETERMINISTIC TURING MACHINES (with unlimited
nondeterminism and alphabet size) — this completenesk pesuides an analogue of
Cook’s Theorem in classical complexity. A convenient sewtiV [1]-hardness reduc-
tions is provided by the result th&tCLIQUE is complete fod1/[1]. Other highlights
of the theory include that-DOMINATING SET, by contrast, is complete foi/[2].
FPT = M]1] if and only if theExponential Time Hypothediails. XP is the class of
all problems that are solvable in ting&(n9(¥)).

The principal “working algorithmics” way of showing that agameterized prob-
lem is unlikely to be fixed-parameter tractable is to prdi/¢l]-hardness. The key
property of a parameterized reduction between parameteproblemdI andIl’ is
that the input(x, k) to IT should be transformed to inp@’, k') for I, so that the
receiving parametet’ is a function only of the parametérfor the source problem.
Parameterized reductions are allowed to take time thatpemupounded by a function
of the parametek and a polynomial in the input size.

Previous Results: By the celebrated Courcelle’s theorem [Cou90], all grapppr-
ties definable in Monadic Second Order (MSO) logic can bed#gtin linear time



on graphs of bounded treewidth. For every fixeddeciding whether a graph is
colorable is expressible in MSO logic. Since the chromatimber of a graph is at
most its treewidth plus one, on graphs of treewittthe GRAPH COLORING problem
is solvable in timeD(f(t) - n). Thus GRAPH COLORING is FPT parameterized by the
treewidth of the input graph.

Many NP-complete variations of @ PH COLORING are solvable in polynomial
time on graphs of constant treewidthhowever the running time of all these algo-
rithms isn®®). For example, Jansen and Scheffler described a dynamicapnoging
algorithm for the LsT COLORING problem that runs in timé(n'*+?2) [JS97]. FRE-
COLORING EXTENSION can also be solved in tim@(n!*2) for graphs of treewidth at
mostt [JS97]. The BUITABLE COLORING problem is also known to be solvable in
timen©(*) [BFO5].

Our Results:. We give a proof that the running time”() of algorithms from [BF05,
JS97] for different variants of @APH COLORING is essentially the best we can hope
for up to a widely believed assumptidnPT # W[1]. In particular, we show that

e LIST COLORING, PRECOLORING EXTENSION, and EQUITABLE COLORING
areW[1]-hard for parameter.

To the best of our knowledge, these are the first nontrivisliite on the hardness of
parameterization by the treewidth of a graph, apart fromNkehardness of some
problems (such asA\DWIDTH) on trees.

While our complexity results can create an impression thgtiateresting exten-
sion of GRAPH COLORING is W1]-hard, when parameterized by the treewidth, fortu-
nately, this is not the case. In particular, we show that ttsg ICHROMATIC NUMBER
problem (known to bdI5-complete for any fixed: > 3 [GT09]) can be computed
in linear time for any fixed treewidth bourtd This shows the diversity of coloring
problems when parameterized by treewidth.

2. Some Coloring Problems That Are Hard for Treewidth

We tend to think that “all” (or almost all) combinatorial fems are easy for
bounded treewidth, but in the case of structured colorimiplems, the game is more
varied in outcome.

2.1. LisT COLORING andPRECOLORINGEXTENSIONare W [1]-Hard Parameterized
by Treewidth

There is a simple reduction to thadT COLORING (when parameterized by the
treewidtht) from the MULTICOLOR CLIQUE problem which is defined as follows.

MuLTICOLOR CLIQUE : The problem takes as input a graghtogether
with a properk-coloring of the vertices ofy. The question is whether
there is &-clique inG consisting of exactly one vertex of each color.



Figure 1: Example of the reduction fromWTICOLOR CLIQUE to LIST COLORING

The MuLTICOLOR CLIQUE problem is known to bé&V[1]-complete [FHRSO09] (by a
simple reduction from the ordinaryL.@UE). Starting a reduction from colored ver-
sions of different problems has many advantages and givasoksematic way to de-
sign gadgets. Lel’[i] be the set of vertices in the color clasand E|i, j] be the set of
edges between color clasandj. Then we can assume thaf[:]| = N for all i, and
that|E[i, j]| = M for all i < j, that is, we can assume that the vertex color classes
of G, and also the edge sets between them, have uniform sizes. dfople justifica-

tion of this assumption consider the following. We reduceuvicoLoOR CLIQUE to
itself. LetSy, be the set of permutation éfi, . .., k}. Given ak colored graphG and

a permutationr € S; by G, we mean the grap&’ where the color classis colored
with o (7). Now given ak colored graphG of MULTICOLOR CLIQUE we takeG’ a

a union ofk! disjoint copies of7, one for each permutation of the color set. That is,
G' = U,cs, Go- ClearlyG’ has the property that every color class is of same size and
between every pair of color class we have the same set of eBggbermores has a
multicolored clique of sizé if and only if G’ has.

Now we show that the isT COLORING problem on graphs of treewidttis W[1]-
hard when parameterized by treewidth. Given the sourcanesty of MULTICOLOR
CLIQUE problem, we construct an instanGéof LIsT COLORING that admits a proper
choice of color from each list if and only if the source instad has a multicolot-
clique. The colors on the lists of vertices(i are in one-to-one correspondence with
the vertices of=. For simplicity of arguments wdo notdistinguish between a vertex
v of G and the colow which appears in the list assigned to the vertice&'of The
instance’ is constructed as follows.

1. There aré: verticesv[i] in G’, i = 1,..., k, one for each color class ¢f, and
the list assigned to[:] consists of the colors corresponding to the vertice§ in
of colori thatisL,p; = {V'[i]}.

2. Fori # j, there is a degree two vertex @ adjacent tov[i] andv[j] for each
pair z,y of nonadjacentwertices inG, wherex has colori andy has color;.



This vertex is labeled; ;[z,y] and has{z, y} as its list.

This completes the construction. As example of the redod§cshown in Figure 1.
The figure shows an example for the parameter valae4.

The treewidth ofG’ is bounded byk as the graph obtained after removing the
verticesv[i], 1 < i < k, from G’ is an empty graph and hence has treewidfanyway
it is well known that degre@ vertices do not increase the treewidth of a graph). Now,
if G has a multicolor cliquds then we can easily list cola’. Assignv]i] with the
vertex (color inG’) corresponding to the color cla3gi] in the multicolor cliquek.
Now it is easy to see that every degteeertex inG’ has at least one color free in its
list, as the pair of colors in the list correspond to non-e€ljd vertices inG. For the
other direction, we show that the verticefcorresponding to the colors assigned to
v[i]'s in a list coloring ofG’, forms a clique. This follows since two verticeandv of
G belonging to different color classes do not appear togeihex list of some degree
2 vertices inG’ if and only if they have an edgev between them id7. This results in
the following theorem.

Theorem 1. LisT COLORING parameterized by treewidth 1&[1]-hard.

To show that RECOLORING EXTENSION is alsoW|[1]-hard when parameterized by
treewidth, we reduce from theiT COLORING problem, by simply using many pre-
colored vertices of degreketo enforce the lists. This construction does not increase
the treewidth. More precisely given an instancé&of (V, E) of LIST COLORING we
constructan instand@ of PRECOLORINGEXTENSIONas follows. LeC = (J, .y Lo-
Now for every vertex € V, we add! = |C| \ | L,| vertices of degre¢ and make them
adjacent tow. Let the set of newly added degréevertices that are adjacent tobe
called S(v). We color the vertices af (v) with colors inC \ L, where each color is
used exactly once. This completes the descriptiai’pfin instance of RECOLORING
EXTENSION. Thus we have:

Theorem 2. PRECOLORING EXTENSION parameterized by treewidth 1&[1]-hard.

2.2. EQuUITABLE COLORING is W(1]-Hard Parameterized by Treewidth

The EQuUITABLE COLORING problem is a classical problem with a long history
starting from 1960s [HS70, Mey73]. Bodlaender and Fominehstvown that deter-
mining whether a graph of treewidth at masadmits an equitable coloring, can be
solved in timeO(n°®) [BFO5].

We consider the parameterized complexity @jlETABLE COLORING (ECP) in
graphs with bounded treewidth. We actually prove a stronggult than the one we
have so far stated. We show that when ECP is parameterized by wheret is the
treewidth bound, and is the number of color classes, then the problefyid]-hard.
Before we proceed further we make remarks on what it meanaranpeterize by two
parameters, say; andxs. It essentially means parameterizing by a single parameter
k = k1 + ko. For an exampleNDEPENDENT SET is known to belV[1] complete
parameterized by the solution sikdDF99], while it is FPT when parameterized by
the solution sizé: and the maximum degre& of the input graph. That is, there is
an algorithm for NDEPENDENTSET running in timeO(f (k + A)n®), wheren is the



input size. We refer to [FG06, ChapterSection3] for further examples. A combined
parameter or two parameters together sometimes enablebkeproo be FPT, while
with any one of the parameters they &#é1] hard. For an examplelDEPENDENTSET

is not known to be FPT with either the solution size as therpatar or the maximum
degree of the input graph. However, when we show that a proisl&l’[¢]-hard,i > 1,
with a combined parameter then it also means that the proisléti(i]-hard with any
one parameter of the combination. Next we show that EGP[i§-hard parameterized
by (¢,r) ort +r.

In this section we show a reduction based on a methodologghnibisometimes
termed asdge representation stratedgr the parameterized reduction fromuwri -
COLOR CLIQUE. This strategy is very basic and is useful for many redustidvote
that the instancé& = (V, E) of MULTICOLOR CLIQUE has its vertices colored by
the integerd, ..., k. Let V'[i] denote the set of vertices of colgrand letE[i, j], for
1 <i < j <k, denote the set of edges= uv, whereu € V[i] andv € V[j]. We also
assume thgl/[i]| = N for all 7, and that E'[i, j]| = M forall i < j, thatis, the vertex
color classes of7, and also the edge sets between them, have uniform sizes.

In what follows next we adhere to edge representation glysdad form gadgets
in the context of reduction from MLTICOLOR CLIQUE to EQUITABLE COLORING
PrROBLEM on graphs with bounded treewidth. To show the desired remhyatve in-
troduce two intermediate problems.

LIST EQUITABLE COLORING PROBLEM (LECP): Given an input graph
G = (V, E), lists L,, of colors for every vertex € V and a positive inte-
gerr; does there exist a proper colorifigof G with exactlyr colors that

for every vertexo € V uses a color from its list,, such that for any two
color classy; andV; of the coloringf, ||V;| — |V;|| < 1?

NUMBER LIST COLORING PROBLEM (NLCP): Given an input graph

G = (V,E), lists L, of colors for every vertex € V, a functionh :
Uyev Ly, — N, associating a number to each color, and a positive integer
r; does there exist a proper colorirfgof G with r colors that for every
vertexv € V uses a color from its list,,, such that any color clads. of

the coloringf is of sizeh(c)?

List analogues of equitable coloring have been previousigtisd by Kostochka,
et al. [KPWO03]. Our main effort is in the reduction of theuricoLor CLIQUE
problem to NLCP.

We will use the following sets of colors in our constructidraa instance of NLCP:

S={oli,j]:1<i#j<k}
S ={o'li,j]:1<i#j<k}
T={mr,s]:1<i<k, 1<r<s<kr#is#i}
T ={r][r,s] :1<i<k 1<r<s<kr#is#i}
CE=Aeli, gl 1<i<j <k}
CE =A{€i, g1 <i<j<k}

R N



Note that S| = |S’| = 2(%), that is, there are distinct colos$2, 3] ando|[3, 2], etc.
In contrast, the colors;[r, s] are only defined for < s.

We associate with each vertex and edgeGbh pair of (unique)identification
numbers The up-identification numbev[up] for a vertexv should be in the range
[n? + 1,n? + n], if G hasn vertices and it could be chosen arbitrarily, but uniquely.
Similarly, theup-identification numbet[up] of an edge: of G can be assigned (arbi-
trarily, but uniquely) in the rang@n? + 1, 2n? + m], assuming= hasm edges.

Choose a suitably large positive integ&y, for exampleZ, = n?, and define the
down-identification number[down] for a vertexv to be Z, — v[up], and similarly for
the edges of G, define thedown-identification numbet{down] to be Zy — e[up].

Choose a second large positive integéy, >> Z;, for example, we may take
Z1 = nG.

Next we describe various gadgets and the way they are conhbirtbe reduction.
First we describe the gadget which encodesstblectionof the edge going between
two particular color classes . In other words, we will think of the representation of
ak-cligue inG as involving the selection of edges (with each edge seléwied, once
in each direction) between the color classes of verticés with gadgets foselection
and to check two things: (1) that the selections in oppositerairections match, and
(2) that the edges chosen from color cl&§3] going toV'[j] (for various; # ) all
emanate from the same vertexiiffi].

There are2(’2“) groups of gadgets, one for each pair of color indiceg ;. If
1 < i < j < k, then we will refer to the gadgets in the grogf, j] asforward
gadgetsand we will refer to the gadgets in the groG, ;] asbackward gadgets

If e € Eli,j], then there is one forward gadget corresponding io the group
Gli, 7], and one backward gadget correspondingitothe groupG|j, i]. The construc-
tion of these gadgets is described as follows.

The forward gadget correspondingto e = uv € EJi, j].

The gadget has a root verteki, j, ¢], and consists of a tree of height 2. The list
assigned to this root vertex contains two colass$i, j] ando’[i, j]. The root vertex
hasZ; + 1 children, and each of these is also assigned the two-eldisetdntaining
the colorso[i, j] ando’[4, j]. One of the children vertices is distinguished, and2¥as
groups of further children:

e c[up] children assigned the li§t'[i, j], €[, 7]}

e c[down] children assigned the li§t'[i, 5], €[4, 7] }.

e Foreachrintherangg < r < k, u[up] children assigned the li§t"'[i, j], 7:[j, 7] }-
e Foreach-intherangeg < r < k, u[down] children assignedlo’[:, j], 7/[j, 7]}

e For eachr in the rangel < r < j, u[down] children assignedo’[i, j], 7;[r, 7]}

Foreach-intherangd < r < j, u[up] children assigned the li$t'[¢, j], 7/[r, 7]}



Thus the number of grandchildren«di, j, e] is

elup] + e[down] + (k — j)ulup] + (k — j)u[down] + (j — 1)u[down] + (j — 1)u[up]
Zo+(k=3)Z0+ (j —1)Zo
= kZ.

The backward gadget correspondingto e = uv € Eli, j].

The gadget has a root vertekj, i, ¢], and consists of a tree of height 2. The list
assigned to this root vertex contains two colos$j, i) ando’[j,¢]. The root vertex
hasZ; + 1 children, and each of these is also assigned the two-eldisetdntaining
the colorso[j, 7] ando’[j,4]. One of the children vertices is distinguished, and¥as
groups of further children:

e c[up] children assigned the ligt’[7, ], €[4, j]}

e c[down] children assigned the ligt’[7, ], €[4, j]}.

e Foreachrintherange < r < k, v[up] children assigned the ligt’[7, ¢], 7;[¢, r| }.

e Foreachr inthe range < r < k, v[down] children assignedo’(j, i, 7;[i, r]}.

e Foreachrin the rangel < r < i, v[down] children assignedo’[j, i], 7;[r, ] }.

e Foreachrintherangd < r <, v[up] children assigned the li$t’[5, i, 7} [r, i]}.
Thus the number of grandchildren«dfj, i, e] is

elup] + e[down] + (k — i)vup] + (k — i)v[down] + (i — 1)v[down] + (i — 1)v[up]

= Zo+(k—i)Z+ (i —1)Z
= kZ.

The numerical targets (function h).

1. Forallce (T UT’), h(c) = Zp.

2. Forallc e (EUE), h(c) = Zp.

3. Forallce S, h(c) = (M —1)(Z1 + 1) + 1.

4. Forallce 8’ h(c) = (M — 1)+ (Z1 + 1) + k(M — 1) Z,.

Given the source instaneg of MULTICOLOR CLIQUE problem, we construct an
instance’ of NLCP that admits a proper choice of color from each list al as that
each color appears on exactly(c) vertices (that is, meets its numerical requirement)
if and only if the source instanc@ has a multicolork-clique. The instancé&’ is
essentially the disjoint union of the edge gadgets. That s,

&= |J gl

1<i#j<k



Theh function is defined as above. That completes the formal ge&or of the reduc-
tion from MULTICOLOR CLIQUE to NLCP. We turn now to some motivating remarks
about the design of the reduction.

Remarkson the colors, their numerical targets, and their rolein thereduction.
(1). There are2(’2“) groups of gadgets. Each edge @fgives rise to two gadgets.

Between any two color classes@fthere are precisely/ edges, and thereford - (’;)
edges inG in total. Each group of gadgets therefore contdifigadgets. The gadgets
in each group have two “helper” colors. For example, the groiigadgets;[4, 2] has
the helper colors[4, 2] ando’[4, 2]. The role of the gadgets in this group is to indicate
a choice of an edge goinfgom a vertex in the color clasg[4] of G to a vertex in

the color clasg/[2] of G. The role of thez(’;) groups of gadgets is to represent the

selection of(%) edges of that form ak-clique, with each edge chosen twice, once in
each direction. If < j then the choice is represented by the coloring of the gadgets
the grouJ|[i, j], and these are tHerward gadgets of the edge choice jlk i, then the
gadgets irG[i, j] arebackwardgadgets (representing the edge selection in the opposite
direction, relative to the ordering of the color classesz)f The numerical targets

for the colors inS U S’ are chosen to force exactly one edge to be selected (forward
or backward) by each group of gadgets, and to force the gadgat are colored in

a way that indicates the edge was not selected into beingezblo a particular way
(else the numerical targets cannot be attained). The noat¢girgets for these colors
are complicated, because of this role (which is asymmetiaben the pair of colors
oli, j] andao’[i, j]).

(2). The colors in7 U 7’ and& U &' are organized in symmetric pairs, and each
pair is used to transmit (and check) information. Due to thioeements alluded
to above, each “selection” coloring of a gadget (there wdldnly one possible in
each group of gadgets) will force some number of verticesetediored with these
pairs of colors, which can be thought of as an informationgmaission. For example,
when a gadget ig[4, 2] is colored with a “selection” coloring, this indicates thiae
edge from which the gadget arises is selected as the fedigethe color clasd/[4]

of G, to the color clasd/[2]. There is a pair of colors that handles the information
transmission concerninghich edge is selectdzbtween the group$[2, 4] andg[4, 2].

(Of course, something has to check that the edge selectetkidicection, is the same
as the edge selected in the other direction.) There is sangettegant about the dual-
color transmission channel for this information. Each exednd edge has two unique
identification numbers, “up” and “down”, that sum #. To continue the concrete
example,G[4, 2] uses the (number of vertices colored by the) pair of cofzs4]
ande’[2, 4] to communicate t@;[2, 4] about the edge selected. The signal from one
side consists of[up)] vertices colored|2, 4] ande[down] vertices colored’[2, 4]. The
signal from the other side consistsdflown] vertices colored[2, 4] ande[up] vertices
colorede’[2, 4]. Thus the numerical targets for these colors allow us tolchdether
the same edge has been selected in each direction (if eamhtamjet ofZ, is met).
There is the additional advantage that #mountof signal in each direction is the
same: in each direction a total &f, colored vertices, with the two paired colors,
constitutes the signal. This means that, modulo the digmugs (1) above, when an
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edge isnot selected, the corresponding non-selection coloring ire®uniformly the
same number (i.eZ,) of vertices colored “otherwise” for each of th&/ — 1) gadgets
colored in the non-selection way: this explains (part o®ibM — 1)Z, termin (4) of
the numerical targets.

(3). In a similar manner to the communication task discussedeyteach of thé: — 1
groups of gadget§|i, | need to check that each has selected an &dgeV [i] that
originates at the same vertex f[i]. Hence there are pairs of colors that provide a
communication channel similar to that in (2) for this infation. This role is played

by the colors in7 U 7’. (Because of the bookkeeping issues, this becomes somewhat
intricate in the formal definition of the reduction.)

The above remarks are intended to aid an intuitive undetstgrof the reduction.
We now return to a more formal argument.

Claim 1. If G has ak-multicolor clique, therG’ is a yes-instance to NLCP.

Proof. The proof of this claim is relatively straightforward. Thadgets corresponding
to the edges of &-clique in G are colored in a manner that indicates “selected” (for
both the forward and the backward gadgets) and all otherejadge colored in manner
that indicates “non-selected”. The coloring that corresfsoto “selected” colors the
root vertex with the coloe|i, 5], and this forces the rest of the coloring of the gadget.
The coloring that corresponds to “non-selected” colorsrtiee vertex with the color
o'[i, 7]. In this case the coloring of the rest of the gadget is notelytforced, but

if the grandchildren vertices of the gadget are also colovigd o'[7, j], then all the
numerical targets will be met. We substantiate below howntln@erical targets are
met.

A color i, j] € S is used only on the gadgets belonging?e, j|. There arelM/
edge gadgets ig[i, j| andol]i, j] is used once on the root of a gadget (the one which
indicates selection) and on the remaining— 1 gadgets it is used on children of roots.
This implies that [z, j] is used onl + (M — 1)(Z; + 1) vertices, meeting its required
numerical target. Similarly we know that[i, j] € S’ is used only on the gadgets
belonging tog|i, j]. This is used on the roots dff — 1 edges gadgets and on the
grandchildren of these gadgets. For the remaining one gédgesed on the children
of root. This implies that it is used o/ — 1) + (M — 1)kZy + (Z1 + 1) vertices
and hence meets its numerical target. Now we argue aboutanl® and7”. A color
7i[r, s], r < s, is used only on the gadgets i, 7] andG]i, s] and appears only on
the list of grandchildren. We only use this color on a gadge¢mvthe root is colored
with o[i, 7] (that is the gadget corresponds to selection) among theet®o§G |, r]
andoli, s] among the gadgets @f[i, s]. Hence ifv is the vertex in the clique from
the color clasg then the color;[r, s] is usedv[up] times on the vertices of gadgets of
Gli,r] and is used[down] times on the vertices of gadgets®fii, r]. This shows that
7i[r, s] is used exactlyZ, times on the vertices and hence meets its numerical target.
One can similarly show for a colat[r, s|]. Finally we argue that colors i and&’
meet their numerical target. A colefi, j] is used only among the gadgets@f, j]
andg[j, i] and again we use this color only on the vertices of gadgetsenthe roots
are colored withr |7, j] ando|j, i] respectively. Hence i is the edge selected in the
clique between color clagsand color clasg then ifi < j the colore[s, j] is usede[up]
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times on the vertices of gadgets®fi, j] ande[down] times on the vertices of gadgets

of G[i, j], else vice-versa. Either way it is useldip] + e[down] = Z, times. One can

similarly show that a colo¢'[¢, j] meets its numerical target. This concludes the proof.
O

Claim 2. Suppose thaf is a list coloring of G’ that meets all the numerical targets.
Then in each group of gadgets, exactly one gadget is coloredway that indicates
“selection”. That is, among the gadgets @fi, j|] exactly one of the gadget’s root is
colored withoi, j].

Proof. We argue this as follows. We first show that there cannot begadyets in any
groupgGli, j] such that its roots are colored witt, j]. If this happens then the color
o'[t, 7] has to be used on the children of these roots. This impligsothia j] will at
least be used o2Z; + 2 > 2n5 + 2 vertices. However the number of times the color
o'[i, 7] has to be used on vertices is

(M=1)+(Z+ 1)+ k(M —1)Zy < Mwwn(wgﬁ

2
< n—2*2+n6+n—67n—57n4
- 2 2 2 2
< 2n°,

which is less than what we need to use when we color roots ofjasigets in the group
Gli, j] with oli, j]. Now we show that if there exists no gadget in the gréiip j|
such that its roots is colored with¢, j] then also the numerical targets for the colors
in S U S’ are not met. In this case we know that all the roots of the gadg&|i, ;]

are colored withv’[7, j]. Hence all the children of the roots of the gadget§|in j] are
colored witha[i, 7]. This implies that[i, 5] will be used onM (2, +1) = M Zy + M
vertices. However the number of times the caly, j] has to be used on vertices is

(M-1)(Z1+1)+1 = MZy+M—2Z —1+1
< MZi+ M,

asZ; > M. This is less than what we need to use when we color root of dgeja
in the groupG|i, j] with o[é, j]. This implies that among the gadgetsdit, j] exactly
one of the gadget’s root is colored witthi, j]. This concludes the proof. ]

Claim 3. Suppose thak is a list coloring of G’ that meets all the numerical targets.
Then in each group of gadgets, every gadget that is not cdliora way that indicates
“selection” must have all of its grandchildren vertices ocdd with the appropriate
colorin &’. That s, all the gadgets @f[i, j] where the root is colored with'[4, j], all
its grandchildren are also colored witd [z, j].

Proof. Suppose to the contrary that there exists a g@upj] such that it has a gadget
L such that its root is colored with[¢, j], andat least ongyrandchildren is not colored
with ¢’[i, j]. By Claim 2, we know that there exists exactly one gadget/8ay L in
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Gli, ] whose root is colored with (i, j]. All the children of the root ofZ’ is colored
with ¢’[z, ] and hence no grandchildren of the rootdfis colored witho' [, j]. This
implies thato’[¢, j] only appears on the roots @f — 1 gadgets ofG[:, j] and their
grandchildren. Hence the vertices on whielfi, j] is used are (&M — 1) roots;
(b) Z; + 1 children of the root of£’; and (c) at mos{M — 2)kZy + (kZy — 1)
on the grandchildren of roots of gadgetsdfi, j]. The last assertion follows from
our assumption that at least one grandchildren of the rodl & not colored with
o', j]. This implies that the number of times|i, j] is used is bounded above by
(M —1)+(Z14+1)+((M —1)kZy) — 1 and hence’[i, j] does not meet its numerical
target. This proves that all the gadgets7f, j] where the root is colored with' [z, j],
its all grandchildren are also colored wiiti, j]. This completes the proof. O

Claim 4. Suppose thaf is a list coloring of G’ that meets all the numerical targets.
Then ifr[i, j, e] is colored witho [z, j] thenr[j, i, €] is colored witho (7, 7].

Proof. Without loss of generality assume that j. If r[i, j, e] is colored witho[i, 7]
then by Claims 2 and 3 we know that this is the unique gadgé{ofj] such that the
grandchildren of-[i, j, e] arenot colored witho'[i, j]. Hencee[up] grandchildren of
r[i, j, e] are colored witte[i, j] ande[down] grandchildren of-[i, j, e] are colored with
€'l4,j]. But to meet the numerical targets df, j] and€'[i, j] we needZ, — e[up]
and Z, — e[down] more vertices, respectively, to be colored with j] and€'[i, j].
However,ei, j] ande'[i, j] appeare[down] ande[up] times, respectively, only on the
grandchildren of[j, 4, ¢]. This together with Claims 2 and 3 imply thdy, i, ¢] is the
root of the gadget ig/[7, 7] that is colored withs [, 7]. This concludes the proof. O

Claim 5. Suppose thal is a list coloring of G’ that meets all the numerical targets.
Fixanl < < k, then all the roots i, j, €], j # i, that are colored withr |7, j] has the
property that all the edgesthat appear in the definition off¢, j, e] are incident to the
same vertex in the color clas®f the graphG.

Proof. We prove it by contradiction. Suppose we have two reptsj, ;| andr[i, £, es]
that are colored witla[i, j] ando([i, ¢] respectively and # j, i # ¢ andj # (. Here
e1 = upv; andey = uqvy are edges between color classd;j and between color class
i and/ respectively. Furthermore; # us and both are colored within G. Without
loss of generality also assume that ;7 < ¢. Now we look at the number of times
the colorsr; [4, ¢] andr][j, {] are used in the gadget whose rootis j, e1]. By Claims

2 and 3 we know that this is the unique gadgeti@f, j] such that the grandchildren
of r[i, j,e1] arenot colored witho'[i, j] but with other colors. Thus;[j, ¢] is used
on u; [up] vertices andr/[j, ¢] is used onu; [down] vertices of the gadget whose root
is r[4, j, e1]. Now to meet the numerical requirementsroffj, ¢] and/[j, {] we need
to color more vertices. However these colors can only bengigehe vertices of the
gadget whose root igli, £, es] and they need to meet their numerical requirements by
coloring the appropriate number of vertices in this gaddgeius we know that the
number of vertices that are assigned the celfi;, ¢] andr/[j, ¢] among the vertices of
the gadget rooted afi, ¢, 5] areus[down| andus|up] respectively. Thus the number
of times we use; 4, £] is uq [up] + uz[down| and the number of times we usfj, /]
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is w1 [down] + uafup]. Butusup] + us[down| # Zy anduq[down] + uslup] # Zo.
The last assertion follows since given an up identificatiamhber there is an unique
down identification number to make it equalfg. Henceu; must be equal ta, a
contradiction to our assumption. Thus all the rodsj, e], j # 4, that are colored
with o[, j] has the property that all the edgethat appear in the definition ofi, j, €]
are incident to the same vertex in the color clae$the graph. This concludes the
proof of the claim. ]

Finally we have the following claim.

Claim 6. Suppose thak is a list coloring of G’ that meets all the numerical targets.
ThenG has a multicolor clique of sizk.

Proof. Let F' be the set of edges that appears in the gadget whose-[iogte] is
colored witho[é, j] by T'. First by Claim 2 we know that for every # j there is
exactly one gadget ig[i, j| whose root is colored with [z, j]. By Claim 4 we know
that if e appears in'[i, j, e] thene also appears in[j, i, e]. Furthermore by Claim 5
we know that all the edges selectediirwhose end-points are colored withre same.
That s, this process only selects a vertex from a color dlassl all the edges emanate
from the same vertex. All this shows that the edgeF iform a clique inG. a

Now using Claims 1 and 6 we obtain the following.

Theorem 3. NLCP isW{1]-hard for forests, parameterized by the number of colors
that appear on the lists.

The reduction from NLCP to LECP is almost trivial, achieveddadding with iso-
lated vertices having single-color lists. The reductianirLECP to ECP is described
as follows. We add a clique anvertices, numbered fromto r. We connect the vertex
i in the clique to all vertices that do not contaiim their list of allowed colors. Clearly,
any list coloring ofG can be extended to a coloring @f by coloring the vertex of
the clique with colori. On the other hand, any coloring 6f must color the vertices
of the clique with distinct colors. Without loss of genetglihe vertex of the clique
is colored with colori. Then all neighbors of this vertex, that is, all verticegzbthat
do not have in its list, can not be colored with SinceG’ is a forest, the treewidth of
the resulting graph is at most This proves the following theorem.

Theorem 4. EQUITABLE COLORING is W[1]-hard, parameterized by treewidth.

3. Li1sT CHROMATIC NUMBER Parameterized by Treewidth isFPT

The notion of thdist chromatic numbefalso known as thehoice numbeérof a
graph was introduced by Vizing in 1976 [Viz76], and indepemity by Erdos, Ru-
bin and Taylor in 1980 [ERT80]. A celebrated result that gampetus to the area
was proved by Thomassen: every planar graph has list chimmanber at most five
[Tho4].

We describe an algorithm for theidT CHROMATIC NUMBER problem that runs
in linear time for any fixed treewidth bourtd Our algorithm employs the machinery
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of Monadic Second Order logic, due to Courcelle [Cou90]ddkLS91, BPT92)).

At a glance, this may seem surprising, since there is no aisvicay to describe the
problem in MSO logic — one would seemingly have to quantifgioall possible list
assignments to the vertices@f and the vocabulary of MSO seems not to provide any
way to do this. We employ a “trick” that was first described ¢tar knowledge) in
[BFLRRWO6], with further applications described in [CFRB&, FGKPRWYO07].

The essence of the trick is to construct an auxiliary grapha¢bnsists of the origi-
nal input, augmented with additionsgmantic verticeso that the whole ensemble has
— or can safely be assumed to have — bounded treewidth, aativesto which the
problem of interestanbe expressed in MSO logic.

A list assignmentl with |L,| > r for all v € V is termed an--list assignment
A list assignment. from which G cannot be properly colored is callbad Thus, a
graphG does not have list chromatic number(G) < r, if and only if there is a bad
r-list assignment fo6.

The following lemma is crucial to the approach.

Lemma 1. If a graph of treewidth at mostadmits any bad-list assignment, then it
admits a bad list assignment where the colors are drawn fraet®f(2¢ 4 1)r colors.

Proof. First of all, we may note that i has treewidth bounded bytheny,;(G) < ¢t+1
(and similarly, the chromatic number 6f is at mostt + 1). This follows easily from
the inductive definition of-trees. We can therefore assume that ¢ + 1.

Fix attention on a width tree decompositio® for G, where the bags of the de-
composition are indexed by the trée For a node of T', let D(t) denote the bag
associated to the node Suppose thal is a badr-list assignment forz, and letC
denote the union of the lists @f. For a colora € C, letT,, denote the subforest af
induced by the set of nodeof T" for which D(t) contains a vertex of G, where the
color« occurs in the listL,.. Let7 («) denote the set of trees of the fordst Let 7
denote the union of the sefS(«), taken over all of the colora that occur in the list
assignmentL:

7T=J7(a)
a€el

We consider that two treé®’ and7” in 7 areadjacentf the distance betwe€en’
andT” in T is at most one. Note thdt’ and7” might not be disjoint, so the distance
between them can be zero. Lgtdenote the graph thus defined: the vertice§ @ire
the subtrees i and the edges are given by the above adjacency relationship.

Suppose thaf can be properly colored by the coloring functien 7 — C’. We
can use such a coloring to describe a modified list assignibédi to the vertices
of G in the following way: if7’ € 7T («) andd(T') = o € C’, then replace each
occurrence of the colar on the listsL,, for all verticesv that belong to bag®(t),
wheret € T”, with the colora’.

This specification of.'[¢'] is consistent, because for any vertesuch thatx € L,,,
there is exactly one tréE’ € 7 («) such that belongs to a bag indexed by nodes of
T
Claim 1.1f ¢’ is a proper coloring of, andL is a bad list assignment f&#, thenZ'[¢']
is also a bad list assignment f6¥.
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This follows because the treesdhpreserve the constraints expressed in having a
given color on the lists of adjacent vertices®f while the new colorg’ can only be
used on two different tre€s’ andT” when the vertices of7 in the bags associated
with these trees are at a distance of at least tw@. in
Claim 2. The graphg has treewidth at mogt(t + 1)r — 1.

A tree decompositiorD’ for G of width at most2(¢ + 1)r can be described as
follows. Subdivide each edge’ of T' with a node of degree two denoted,t’).
Assign to each nodethe bagD’(t) consisting of those treeg’ of G that includet.
There are at mogt+1)r such trees. Assign to each node, t') the badD’(s(t,t')) =
D'(t) UD'(t'). Itis straightforward to verify that this satisfies the regments of a
tree decomposition fay.

The lemma now follows from the fact th@tcan be properly colored with(t + 1)r
colors. |

Theorem 5. TheL1sT CHROMATIC NUMBER problem, parameterized by the treewidth
boundt, is fixed-parameter tractable, solvable in linear time foegy fixed:.

Proof. The algorithm consists of the following steps.

Step 1.Compute in linear time, using Bodlaender’s algorithm, @&-{decomposition
for G of width at most. Consider the vertices @¥ to be oftype 1

Step 2.Introduce2(t + 1)r new vertices otype 2 and connect each of these to all
vertices ofG. The treewidth of this augmented graph is at mtes®(t + 1)r = O(?).
Step 3.The problem can now be expressed in MSO logic. That this is smt entirely
trivial, and is argued as follows (sketch). We employ a meigxtension of MSO logic
that provides predicates for the two types of vertices.

If G admits a bad--list assignment, then this is withessed by a set of edges
between vertices dff (that is, type 1 vertices) and vertices of type 2 (that regmethe
colors), such that every vertexof G has degree relative toF'. Thus, ther incident
F-edges represent the colorsiof. It is routine to assert the existence of such a set of
edges in MSO logic.

The property that such a set of edgégepresents a bad list assignment can be
expressed as: “For every subdét C F such that every vertex aff has degree 1
relative toF” (and thus /" represents a choice of a color for each vertex, chosen from
its list), there is an adjacent pair of verticesandv of GG, such that the represented
color choice is the same, i.ai,andv are adjacent by edges &f to the same type
2 (color-representing) vertex.” The translation of thigtsiment into formal MSO is
routine. |

4. Conclusion and Open Problems

Structured optimization problems, such as the colorindgplems considered here,
have strong claims with respect to applications. A souradisgfussion of these appli-
cations is the recent dissertation of Marx [Ma04]. It seentsresting and fruitful to
consider such problems from the parameterized point of \aéa to investigate how
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such extra problem structure (which tends to increase bothpatational complex-
ity, and real-world applicability) interacts with paramagrations (such as bounded
treewidth), that frequently lead to tractability.

The outcome of the investigation here of some well-knowallgor globally con-
strained coloring problems has turned up a few surprisest dirall, that the LsT
CHROMATIC NUMBER problem is actually FPT, when we parameterize by treewidth.
Itis also somewhat surprising that this good news does riehexo LIST COLORING,
PRECOLORING EXTENSION or EQUITABLE COLORING, all of which turn out to be
hard foriW[1]. Results of the preliminary version of this paper [FFLRSE]Titave led
to thorough investigations of structural parameterizatiike treewidth or clique-width
[DLSYO08, FGLS09, FGLS10, SS09].

There are many interesting open problems concerning tlarpgerized complex-
ity of “more structured” combinatorial optimization pr@wshs on graphs, parameterized
by treewidth. We mention the following:

1. Is the LUsT EDGE CHROMATIC NUMBER problem fixed-parameter tractable,
parameterized by treewidth?

2. One can formulate a “list analogue” of theAMILTONIAN PATH problem as
follows: each vertex is assigned a list that is a subsdtlo?, ..., n} indicating
the positions in the ordering of thevertices implicit in a Hamiltonian path that
are permitted to the vertex. Is thadt HAMILTONIAN PATH problem FPT,
parameterized by treewidth?

3. Our hardness results do not exclude the possibility ofisglLIST COLORING,
PRECOLORINGEXTENSION, or EQUITABLE COLORING in time f(t) - n°(*) on
graphs of treewidth. Is it possible to show that up to some assumption from
complexity theory there are no such algorithms?
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