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Abstract

In this paper we study the complexity of several coloring problems on graphs, param-
eterized by the treewidth of the graph.

1. The LIST COLORING problem takes as input a graphG, together with an assign-
ment to each vertexv of a set of colorsCv. The problem is to determine whether
it is possible to choose a color for vertexv from the set of permitted colorsCv,
for each vertex, so that the obtained coloring ofG is proper. We show that this
problem isW [1]-hard, parameterized by the treewidth ofG. The closely related
PRECOLORING EXTENSION problem is also shown to beW [1]-hard, parame-
terized by treewidth.

2. An equitable coloringof a graphG is a proper coloring of the vertices where the
numbers of vertices having any two distinct colors differs by at most one. We
show that the problem is hard forW [1], parameterized by the treewidth plus the
number of colors. We also show that a list-based variation, LIST EQUITABLE

COLORING is W [1]-hard for forests, parameterized by the number of colors on
the lists.

3. The list chromatic numberχl(G) of a graphG is defined to be the smallest
positive integerr, such that for every assignment to the verticesv of G, of a
list Lv of colors, where each list has length at leastr, there is a choice of one
color from each vertex listLv yielding a proper coloring ofG. We show that the
problem of determining whetherχl(G) ≤ r, the LIST CHROMATIC NUMBER

problem, is solvable in linear time on graphs of constant treewidth.
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1. Introduction

It is well-known that many computationally hard problems are solvable in polyno-
mial time when the input is ann-vertex graphG of treewidtht. Whether the running
time of the algorithm is of the formnO(t) or f(t) · nO(1) differs from problem to
problem, and this drastically affects the practical applicability of the algorithm. In
this paper we initiate the systematic classification of problems on graphs on bounded
treewidth based on whether there exists an algorithm for theproblem with running
time f(t) · nO(1). In particular we consider the complexity of various graph coloring
problems, for graphs of bounded treewidth, in the frameworkof parameterized com-
plexity [DF99, FG06, Nie06], where we take the parameter to be the treewidtht. For
the definition of the graph invariant treewidth and related concept we refer to [Bod93].

Coloring problems that involve local or global restrictions on the coloring have
many important applications in such areas as operations research, scheduling and com-
putational biology, and also have a long mathematical history. For recent surveys of
the area one can turn to [Tu97, KTV98, Al00, Wo01] and also thebook [JT95] and the
Ph.D. dissertation of Marx [Ma04].

Problems Considered:.A proper coloring of a graph is an assignment of colors to its
vertices such that the endpoints of every edge get distinct colors (that is no edge is
monochromatic). Similarly, a properq-coloringof graphG = (V, E) is an assignment
of colors from{1, 2, . . . , q} to the vertices ofG such that no edge is monochromatic.
The chromatic number of a graphG, denoted byχ(G), is the minimumq for which a
properq-coloring exists. Thelist chromatic numberχl(G) of a graphG is defined to
be the smallest positive integerr, such that for every assignment to the verticesv of G,
of a listLv of colors, where each list has length at leastr, there is a choice of one color
from each vertex listLv yielding a proper coloring ofG. Next we define all the main
problems we consider in this paper.

L IST COLORING

Input: A graphG = (V, E) of treewidth at mostt, and for each vertex
v ∈ V , a listLv of permitted colors.
Parameter:t
Question:Is there a proper vertex coloringc with c(v) ∈ Lv for eachv?

PRECOLORINGEXTENSION

Input: A graphG = (V, E) of treewidth at mostt, a subsetW ⊆ V of
precoloredvertices, aprecoloringcW of the vertices ofW , and a positive
integerr.
Parameter:t
Question:Is there a proper vertex coloringc of V which extendscW (that
is, c(v) = cW (v) for all v ∈ W ), using at mostr colors?

EQUITABLE COLORING (ECP)
Input: A graphG = (V, E) of treewidth at mostt and a positive integerr.
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Parameter:t
Question:Is there a proper vertex coloringc using at mostr colors, with
the property that the sizes of any two color classes differ byat most one?

L IST CHROMATIC NUMBER

Input: A graphG = (V, E) of treewidth at mostt, and a positive integer
r.
Parameter:t
Question:Is χl(G) ≤ r?

Framework of Study – Background on Parameterized Complexity:. We obtain all our
results in the framework of parameterized complexity. Here, we provide some essen-
tial background of the theory. Parameterized complexity isbasically a two-dimensional
generalization of “P vs. NP” where in addition to the overallinput sizen, one studies
the effects on computational complexity of a secondary measurement that captures ad-
ditional relevant information. This additional information can be, for example, a struc-
tural restriction on the input distribution considered, such as a bound on the treewidth of
an input graph. Parameterization can be deployed in many different ways; for general
background on the theory see [DF99, FG06, Nie06].

The two-dimensional analogue (or generalization) of P, is solvability within a time
bound ofO(f(k)nc), wheren is the total input size,k is the parameter,f is some
(usually computable) function, andc is a constant that does not depend onk or n.
Parameterized decision problems are defined by specifying the input, the parameter,
and the question to be answered. A parameterized problem that can be solved in such
time is termedfixed-parameter tractable(FPT). There is a hierarchy of intractable
parameterized problem classes above FPT, the main ones are:

FPT ⊆ M [1] ⊆ W [1] ⊆ M [2] ⊆ W [2] ⊆ · · · ⊆ W [P ] ⊆ XP

The principal analogue of the classical intractability class NP isW [1], which is a
strong analogue, because a fundamental problem complete for W [1] is thek-STEP

HALTING PROBLEM FORNONDETERMINISTIC TURING MACHINES (with unlimited
nondeterminism and alphabet size) — this completeness result provides an analogue of
Cook’s Theorem in classical complexity. A convenient source ofW [1]-hardness reduc-
tions is provided by the result thatk-CLIQUE is complete forW [1]. Other highlights
of the theory include thatk-DOMINATING SET, by contrast, is complete forW [2].
FPT = M [1] if and only if theExponential Time Hypothesisfails. XP is the class of
all problems that are solvable in timeO(ng(k)).

The principal “working algorithmics” way of showing that a parameterized prob-
lem is unlikely to be fixed-parameter tractable is to proveW [1]-hardness. The key
property of a parameterized reduction between parameterized problemsΠ andΠ′ is
that the input(x, k) to Π should be transformed to input(x′, k′) for Π′, so that the
receiving parameterk′ is a function only of the parameterk for the source problem.
Parameterized reductions are allowed to take time that is upper bounded by a function
of the parameterk and a polynomial in the input size.

Previous Results:.By the celebrated Courcelle’s theorem [Cou90], all graph proper-
ties definable in Monadic Second Order (MSO) logic can be decided in linear time
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on graphs of bounded treewidth. For every fixedr, deciding whether a graph isr-
colorable is expressible in MSO logic. Since the chromatic number of a graph is at
most its treewidth plus one, on graphs of treewidtht, the GRAPH COLORING problem
is solvable in timeO(f(t) · n). Thus GRAPH COLORING is FPT parameterized by the
treewidth of the input graph.

Many NP-complete variations of GRAPH COLORING are solvable in polynomial
time on graphs of constant treewidtht, however the running time of all these algo-
rithms isnO(t). For example, Jansen and Scheffler described a dynamic programming
algorithm for the LIST COLORING problem that runs in timeO(nt+2) [JS97]. PRE-
COLORING EXTENSION can also be solved in timeO(nt+2) for graphs of treewidth at
mostt [JS97]. The EQUITABLE COLORING problem is also known to be solvable in
timenO(t) [BF05].

Our Results:.We give a proof that the running timenO(t) of algorithms from [BF05,
JS97] for different variants of GRAPH COLORING is essentially the best we can hope
for up to a widely believed assumptionFPT 6= W [1]. In particular, we show that

• L IST COLORING, PRECOLORING EXTENSION, and EQUITABLE COLORING

areW [1]-hard for parametert.

To the best of our knowledge, these are the first nontrivial results on the hardness of
parameterization by the treewidth of a graph, apart from theNP-hardness of some
problems (such as BANDWIDTH ) on trees.

While our complexity results can create an impression that any interesting exten-
sion of GRAPH COLORING is W [1]-hard, when parameterized by the treewidth, fortu-
nately, this is not the case. In particular, we show that the LIST CHROMATIC NUMBER

problem (known to beΠp
2-complete for any fixedr ≥ 3 [GT09]) can be computed

in linear time for any fixed treewidth boundt. This shows the diversity of coloring
problems when parameterized by treewidth.

2. Some Coloring Problems That Are Hard for Treewidth

We tend to think that “all” (or almost all) combinatorial problems are easy for
bounded treewidth, but in the case of structured coloring problems, the game is more
varied in outcome.

2.1. L IST COLORING andPRECOLORINGEXTENSION areW [1]-Hard Parameterized
by Treewidth

There is a simple reduction to the LIST COLORING (when parameterized by the
treewidtht) from the MULTICOLOR CLIQUE problem which is defined as follows.

MULTICOLOR CLIQUE : The problem takes as input a graphG together
with a properk-coloring of the vertices ofG. The question is whether
there is ak-clique inG consisting of exactly one vertex of each color.
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Figure 1: Example of the reduction from MULTICOLOR CLIQUE to LIST COLORING

The MULTICOLOR CLIQUE problem is known to beW [1]-complete [FHRS09] (by a
simple reduction from the ordinary CLIQUE). Starting a reduction from colored ver-
sions of different problems has many advantages and gives usa schematic way to de-
sign gadgets. LetV [i] be the set of vertices in the color classi andE[i, j] be the set of
edges between color classi andj. Then we can assume that|V [i]| = N for all i, and
that |E[i, j]| = M for all i < j, that is, we can assume that the vertex color classes
of G, and also the edge sets between them, have uniform sizes. Fora simple justifica-
tion of this assumption consider the following. We reduce MULTICOLOR CLIQUE to
itself. LetSk be the set of permutation of{1, . . . , k}. Given ak colored graphG and
a permutationσ ∈ Sk by Gσ we mean the graphG where the color classi is colored
with σ(i). Now given ak colored graphG of MULTICOLOR CLIQUE we takeG′ a
a union ofk! disjoint copies ofG, one for each permutation of the color set. That is,
G′ =

⋃

σ∈Sk
Gσ. ClearlyG′ has the property that every color class is of same size and

between every pair of color class we have the same set of edges. FurthermoreG has a
multicolored clique of sizek if and only if G′ has.

Now we show that the LIST COLORING problem on graphs of treewidtht is W[1]-
hard when parameterized by treewidth. Given the source instanceG of MULTICOLOR

CLIQUE problem, we construct an instanceG′ of L IST COLORING that admits a proper
choice of color from each list if and only if the source instanceG has a multicolork-
clique. The colors on the lists of vertices inG′ are in one-to-one correspondence with
the vertices ofG. For simplicity of arguments wedo notdistinguish between a vertex
v of G and the colorv which appears in the list assigned to the vertices ofG′. The
instanceG′ is constructed as follows.

1. There arek verticesv[i] in G′, i = 1, . . . , k, one for each color class ofG, and
the list assigned tov[i] consists of the colors corresponding to the vertices inG

of color i that isLv[i] = {V [i]}.
2. For i 6= j, there is a degree two vertex inG′ adjacent tov[i] andv[j] for each

pair x, y of nonadjacentvertices inG, wherex has colori andy has colorj.
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This vertex is labeledvi,j [x, y] and has{x, y} as its list.

This completes the construction. As example of the reduction is shown in Figure 1.
The figure shows an example for the parameter valuek = 4.

The treewidth ofG′ is bounded byk as the graph obtained after removing the
verticesv[i], 1 ≤ i ≤ k, fromG′ is an empty graph and hence has treewidth0 (anyway
it is well known that degree2 vertices do not increase the treewidth of a graph). Now,
if G has a multicolor cliqueK then we can easily list colorG′. Assignv[i] with the
vertex (color inG′) corresponding to the color classV [i] in the multicolor cliqueK.
Now it is easy to see that every degree2 vertex inG′ has at least one color free in its
list, as the pair of colors in the list correspond to non-adjacent vertices inG. For the
other direction, we show that the vertices ofG, corresponding to the colors assigned to
v[i]’s in a list coloring ofG′, forms a clique. This follows since two verticesu andv of
G belonging to different color classes do not appear togetheron a list of some degree
2 vertices inG′ if and only if they have an edgeuv between them inG. This results in
the following theorem.

Theorem 1. L IST COLORING parameterized by treewidth isW [1]-hard.

To show that PRECOLORING EXTENSION is alsoW [1]-hard when parameterized by
treewidth, we reduce from the LIST COLORING problem, by simply using many pre-
colored vertices of degree1 to enforce the lists. This construction does not increase
the treewidth. More precisely given an instance ofG = (V, E) of L IST COLORING we
construct an instanceG′ of PRECOLORINGEXTENSION as follows. LetC =

⋃

v∈V Lv.
Now for every vertexv ∈ V , we addℓ = |C| \ |Lv| vertices of degree1 and make them
adjacent tov. Let the set of newly added degree1 vertices that are adjacent tov be
calledS(v). We color the vertices ofS(v) with colors inC \ Lv where each color is
used exactly once. This completes the description ofG′, an instance of PRECOLORING

EXTENSION. Thus we have:

Theorem 2. PRECOLORINGEXTENSION parameterized by treewidth isW [1]-hard.

2.2. EQUITABLE COLORING is W [1]-Hard Parameterized by Treewidth

The EQUITABLE COLORING problem is a classical problem with a long history
starting from 1960s [HS70, Mey73]. Bodlaender and Fomin have shown that deter-
mining whether a graph of treewidth at mostt admits an equitable coloring, can be
solved in timeO(nO(t)) [BF05].

We consider the parameterized complexity of EQUITABLE COLORING (ECP) in
graphs with bounded treewidth. We actually prove a strongerresult than the one we
have so far stated. We show that when ECP is parameterized by(t, r), wheret is the
treewidth bound, andr is the number of color classes, then the problem isW [1]-hard.
Before we proceed further we make remarks on what it means to parameterize by two
parameters, sayκ1 andκ2. It essentially means parameterizing by a single parameter
k = κ1 + κ2. For an example INDEPENDENT SET is known to beW [1] complete
parameterized by the solution sizek [DF99], while it is FPT when parameterized by
the solution sizek and the maximum degree∆ of the input graph. That is, there is
an algorithm for INDEPENDENTSET running in timeO(f(k + ∆)nc), wheren is the
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input size. We refer to [FG06, Chapter1, Section3] for further examples. A combined
parameter or two parameters together sometimes enable a problem to be FPT, while
with any one of the parameters they areW [1] hard. For an example INDEPENDENTSET

is not known to be FPT with either the solution size as the parameter or the maximum
degree of the input graph. However, when we show that a problem isW [i]-hard,i ≥ 1,
with a combined parameter then it also means that the problemis W [i]-hard with any
one parameter of the combination. Next we show that ECP isW [1]-hard parameterized
by (t, r) or t + r.

In this section we show a reduction based on a methodology which is sometimes
termed asedge representation strategyfor the parameterized reduction from MULTI -
COLOR CLIQUE. This strategy is very basic and is useful for many reductions. Note
that the instanceG = (V, E) of MULTICOLOR CLIQUE has its vertices colored by
the integers1, ..., k. Let V [i] denote the set of vertices of colori, and letE[i, j], for
1 ≤ i < j ≤ k, denote the set of edgese = uv, whereu ∈ V [i] andv ∈ V [j]. We also
assume that|V [i]| = N for all i, and that|E[i, j]| = M for all i < j, that is, the vertex
color classes ofG, and also the edge sets between them, have uniform sizes.

In what follows next we adhere to edge representation strategy and form gadgets
in the context of reduction from MULTICOLOR CLIQUE to EQUITABLE COLORING

PROBLEM on graphs with bounded treewidth. To show the desired reduction, we in-
troduce two intermediate problems.

L IST EQUITABLE COLORING PROBLEM (LECP): Given an input graph
G = (V, E), listsLv of colors for every vertexv ∈ V and a positive inte-
gerr; does there exist a proper coloringf of G with exactlyr colors that
for every vertexv ∈ V uses a color from its listLv such that for any two
color class,Vi andVj of the coloringf , ||Vi| − |Vj || ≤ 1?

NUMBER L IST COLORING PROBLEM (NLCP): Given an input graph
G = (V, E), lists Lv of colors for every vertexv ∈ V , a functionh :
∪v∈V Lv → N, associating a number to each color, and a positive integer
r; does there exist a proper coloringf of G with r colors that for every
vertexv ∈ V uses a color from its listLv, such that any color classVc of
the coloringf is of sizeh(c)?

List analogues of equitable coloring have been previously studied by Kostochka,
et al. [KPW03]. Our main effort is in the reduction of the MULTICOLOR CLIQUE

problem to NLCP.
We will use the following sets of colors in our construction of an instance of NLCP:

1. S = {σ[i, j] : 1 ≤ i 6= j ≤ k}

2. S′ = {σ′[i, j] : 1 ≤ i 6= j ≤ k}

3. T = {τi[r, s] : 1 ≤ i ≤ k, 1 ≤ r < s ≤ k, r 6= i, s 6= i}

4. T ′ = {τ ′
i [r, s] : 1 ≤ i ≤ k, 1 ≤ r < s ≤ k, r 6= i, s 6= i}

5. E = {ǫ[i, j] : 1 ≤ i < j ≤ k}

6. E ′ = {ǫ′[i, j] : 1 ≤ i < j ≤ k}
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Note that|S| = |S′| = 2
(

k

2

)

, that is, there are distinct colorsσ[2, 3] andσ[3, 2], etc.
In contrast, the colorsτi[r, s] are only defined forr < s.

We associate with each vertex and edge ofG a pair of (unique)identification
numbers. The up-identification numberv[up] for a vertexv should be in the range
[n2 + 1, n2 + n], if G hasn vertices and it could be chosen arbitrarily, but uniquely.
Similarly, theup-identification numbere[up] of an edgee of G can be assigned (arbi-
trarily, but uniquely) in the range[2n2 + 1, 2n2 + m], assumingG hasm edges.

Choose a suitably large positive integerZ0, for exampleZ0 = n3, and define the
down-identification numberv[down] for a vertexv to beZ0 − v[up], and similarly for
the edgese of G, define thedown-identification numbere[down] to beZ0 − e[up].

Choose a second large positive integer,Z1 >> Z0, for example, we may take
Z1 = n6.

Next we describe various gadgets and the way they are combined in the reduction.
First we describe the gadget which encodes theselectionof the edge going between
two particular color classes inG. In other words, we will think of the representation of
ak-clique inG as involving the selection of edges (with each edge selectedtwice, once
in each direction) between the color classes of vertices inG, with gadgets forselection,
and to check two things: (1) that the selections in opposite color directions match, and
(2) that the edges chosen from color classV [i] going toV [j] (for variousj 6= i) all
emanate from the same vertex inV [i].

There are2
(

k
2

)

groups of gadgets, one for each pair of color indicesi 6= j. If
1 ≤ i < j ≤ k, then we will refer to the gadgets in the groupG[i, j] as forward
gadgets, and we will refer to the gadgets in the groupG[j, i] asbackward gadgets.

If e ∈ E[i, j], then there is one forward gadget corresponding toe in the group
G[i, j], and one backward gadget corresponding toe in the groupG[j, i]. The construc-
tion of these gadgets is described as follows.

The forward gadget corresponding to e = uv ∈ E[i, j].
The gadget has a root vertexr[i, j, e], and consists of a tree of height 2. The list
assigned to this root vertex contains two colors:σ[i, j] andσ′[i, j]. The root vertex
hasZ1 + 1 children, and each of these is also assigned the two-elementlist containing
the colorsσ[i, j] andσ′[i, j]. One of the children vertices is distinguished, and has2k

groups of further children:

• e[up] children assigned the list{σ′[i, j], ǫ[i, j]}.

• e[down] children assigned the list{σ′[i, j], ǫ′[i, j]}.

• For eachr in the rangej < r ≤ k, u[up] children assigned the list{σ′[i, j], τi[j, r]}.

• For eachr in the rangej < r ≤ k, u[down] children assigned{σ′[i, j], τ ′
i [j, r]}.

• For eachr in the range1 ≤ r < j, u[down] children assigned{σ′[i, j], τi[r, j]}.

• For eachr in the range1 ≤ r < j, u[up] children assigned the list{σ′[i, j], τ ′
i [r, j]}.

8



Thus the number of grandchildren ofr[i, j, e] is

e[up] + e[down] + (k − j)u[up] + (k − j)u[down] + (j − 1)u[down] + (j − 1)u[up]

= Z0 + (k − j)Z0 + (j − 1)Z0

= kZ0.

The backward gadget corresponding to e = uv ∈ E[i, j].
The gadget has a root vertexr[j, i, e], and consists of a tree of height 2. The list
assigned to this root vertex contains two colors:σ[j, i] andσ′[j, i]. The root vertex
hasZ1 + 1 children, and each of these is also assigned the two-elementlist containing
the colorsσ[j, i] andσ′[j, i]. One of the children vertices is distinguished, and has2k

groups of further children:

• e[up] children assigned the list{σ′[j, i], ǫ′[i, j]}.

• e[down] children assigned the list{σ′[j, i], ǫ[i, j]}.

• For eachr in the rangei < r ≤ k, v[up] children assigned the list{σ′[j, i], τj [i, r]}.

• For eachr in the rangei < r ≤ k, v[down] children assigned{σ′[j, i], τ ′
j [i, r]}.

• For eachr in the range1 ≤ r < i, v[down] children assigned{σ′[j, i], τj [r, i]}.

• For eachr in the range1 ≤ r < i, v[up] children assigned the list{σ′[j, i], τ ′
j [r, i]}.

Thus the number of grandchildren ofr[j, i, e] is

e[up] + e[down] + (k − i)v[up] + (k − i)v[down] + (i − 1)v[down] + (i − 1)v[up]

= Z0 + (k − i)Z0 + (i − 1)Z0

= kZ0.

The numerical targets (function h).

1. For allc ∈ (T ∪ T ′), h(c) = Z0.
2. For allc ∈ (E ∪ E ′), h(c) = Z0.
3. For allc ∈ S, h(c) = (M − 1)(Z1 + 1) + 1.
4. For allc ∈ S′, h(c) = (M − 1) + (Z1 + 1) + k(M − 1)Z0.

Given the source instanceG of MULTICOLOR CLIQUE problem, we construct an
instanceG′ of NLCP that admits a proper choice of color from each list as well as that
each colorc appears on exactlyh(c) vertices (that is, meets its numerical requirement)
if and only if the source instanceG has a multicolork-clique. The instanceG′ is
essentially the disjoint union of the edge gadgets. That is,

G′ =
⋃

1≤i6=j≤k

G[i, j].
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Theh function is defined as above. That completes the formal description of the reduc-
tion from MULTICOLOR CLIQUE to NLCP. We turn now to some motivating remarks
about the design of the reduction.

Remarks on the colors, their numerical targets, and their role in the reduction.

(1). There are2
(

k

2

)

groups of gadgets. Each edge ofG gives rise to two gadgets.
Between any two color classes ofG there are preciselyM edges, and thereforeM ·

(

k
2

)

edges inG in total. Each group of gadgets therefore containsM gadgets. The gadgets
in each group have two “helper” colors. For example, the group of gadgetsG[4, 2] has
the helper colorsσ[4, 2] andσ′[4, 2]. The role of the gadgets in this group is to indicate
a choice of an edge goingfrom a vertex in the color classV [4] of G to a vertex in
the color classV [2] of G. The role of the2

(

k

2

)

groups of gadgets is to represent the
selection of

(

k
2

)

edges ofG that form ak-clique, with each edge chosen twice, once in
each direction. Ifi < j then the choice is represented by the coloring of the gadgetsin
the groupG[i, j], and these are theforwardgadgets of the edge choice. Ifj < i, then the
gadgets inG[i, j] arebackwardgadgets (representing the edge selection in the opposite
direction, relative to the ordering of the color classes ofG). The numerical targets
for the colors inS ∪ S′ are chosen to force exactly one edge to be selected (forward
or backward) by each group of gadgets, and to force the gadgets that are colored in
a way that indicates the edge was not selected into being colored in a particular way
(else the numerical targets cannot be attained). The numerical targets for these colors
are complicated, because of this role (which is asymmetric between the pair of colors
σ[i, j] andσ′[i, j]).

(2). The colors inT ∪ T ′ andE ∪ E ′ are organized in symmetric pairs, and each
pair is used to transmit (and check) information. Due to the enforcements alluded
to above, each “selection” coloring of a gadget (there will be only one possible in
each group of gadgets) will force some number of vertices to be colored with these
pairs of colors, which can be thought of as an information transmission. For example,
when a gadget inG[4, 2] is colored with a “selection” coloring, this indicates thatthe
edge from which the gadget arises is selected as the edgefrom the color classV [4]
of G, to the color classV [2]. There is a pair of colors that handles the information
transmission concerningwhich edge is selectedbetween the groupsG[2, 4] andG[4, 2].
(Of course, something has to check that the edge selected in one direction, is the same
as the edge selected in the other direction.) There is something elegant about the dual-
color transmission channel for this information. Each vertex and edge has two unique
identification numbers, “up” and “down”, that sum toZ0. To continue the concrete
example,G[4, 2] uses the (number of vertices colored by the) pair of colorsǫ[2, 4]
andǫ′[2, 4] to communicate toG[2, 4] about the edge selected. The signal from one
side consists ofe[up] vertices coloredǫ[2, 4] ande[down] vertices coloredǫ′[2, 4]. The
signal from the other side consists ofe[down] vertices coloredǫ[2, 4] ande[up] vertices
coloredǫ′[2, 4]. Thus the numerical targets for these colors allow us to check whether
the same edge has been selected in each direction (if each color target ofZ0 is met).
There is the additional advantage that theamountof signal in each direction is the
same: in each direction a total ofZ0 colored vertices, with the two paired colors,
constitutes the signal. This means that, modulo the discussion in (1) above, when an
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edge isnot selected, the corresponding non-selection coloring involves uniformly the
same number (i.e.,Z0) of vertices colored “otherwise” for each of the(M −1) gadgets
colored in the non-selection way: this explains (part of) thek(M − 1)Z0 term in (4) of
the numerical targets.

(3). In a similar manner to the communication task discussed above, each of thek − 1
groups of gadgetsG[i, ] need to check that each has selected an edgefrom V [i] that
originates at the same vertex inV [i]. Hence there are pairs of colors that provide a
communication channel similar to that in (2) for this information. This role is played
by the colors inT ∪ T ′. (Because of the bookkeeping issues, this becomes somewhat
intricate in the formal definition of the reduction.)

The above remarks are intended to aid an intuitive understanding of the reduction.
We now return to a more formal argument.

Claim 1. If G has ak-multicolor clique, thenG′ is a yes-instance to NLCP.

Proof. The proof of this claim is relatively straightforward. The gadgets corresponding
to the edges of ak-clique inG are colored in a manner that indicates “selected” (for
both the forward and the backward gadgets) and all other gadgets are colored in manner
that indicates “non-selected”. The coloring that corresponds to “selected” colors the
root vertex with the colorσ[i, j], and this forces the rest of the coloring of the gadget.
The coloring that corresponds to “non-selected” colors theroot vertex with the color
σ′[i, j]. In this case the coloring of the rest of the gadget is not entirely forced, but
if the grandchildren vertices of the gadget are also coloredwith σ′[i, j], then all the
numerical targets will be met. We substantiate below how thenumerical targets are
met.

A color σ[i, j] ∈ S is used only on the gadgets belonging toG[i, j]. There areM
edge gadgets inG[i, j] andσ[i, j] is used once on the root of a gadget (the one which
indicates selection) and on the remainingM −1 gadgets it is used on children of roots.
This implies thatσ[i, j] is used on1 + (M − 1)(Z1 + 1) vertices, meeting its required
numerical target. Similarly we know thatσ′[i, j] ∈ S′ is used only on the gadgets
belonging toG[i, j]. This is used on the roots ofM − 1 edges gadgets and on the
grandchildren of these gadgets. For the remaining one gadget it is used on the children
of root. This implies that it is used on(M − 1) + (M − 1)kZ0 + (Z1 + 1) vertices
and hence meets its numerical target. Now we argue about colors inT andT ′. A color
τi[r, s], r < s, is used only on the gadgets inG[i, r] andG[i, s] and appears only on
the list of grandchildren. We only use this color on a gadget when the root is colored
with σ[i, r] (that is the gadget corresponds to selection) among the gadgets ofG[i, r]
andσ[i, s] among the gadgets ofG[i, s]. Hence ifv is the vertex in the clique from
the color classi then the colorτi[r, s] is usedv[up] times on the vertices of gadgets of
G[i, r] and is usedv[down] times on the vertices of gadgets ofG[i, r]. This shows that
τi[r, s] is used exactlyZ0 times on the vertices and hence meets its numerical target.
One can similarly show for a colorτ ′

i [r, s]. Finally we argue that colors inE andE ′

meet their numerical target. A colorǫ[i, j] is used only among the gadgets ofG[i, j]
andG[j, i] and again we use this color only on the vertices of gadgets where the roots
are colored withσ[i, j] andσ[j, i] respectively. Hence ife is the edge selected in the
clique between color classi and color classj then if i < j the colorǫ[i, j] is usede[up]
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times on the vertices of gadgets ofG[i, j] ande[down] times on the vertices of gadgets
of G[i, j], else vice-versa. Either way it is usede[up] + e[down] = Z0 times. One can
similarly show that a colorǫ′[i, j] meets its numerical target. This concludes the proof.

2

Claim 2. Suppose thatΓ is a list coloring ofG′ that meets all the numerical targets.
Then in each group of gadgets, exactly one gadget is colored in a way that indicates
“selection”. That is, among the gadgets ofG[i, j] exactly one of the gadget’s root is
colored withσ[i, j].

Proof. We argue this as follows. We first show that there cannot be twogadgets in any
groupG[i, j] such that its roots are colored withσ[i, j]. If this happens then the color
σ′[i, j] has to be used on the children of these roots. This implies that σ′[i, j] will at
least be used on2Z1 + 2 ≥ 2n6 + 2 vertices. However the number of times the color
σ′[i, j] has to be used on vertices is

(M − 1) + (Z1 + 1) + k(M − 1)Z0 ≤
n(n − 1)

2
+ n6 + n

(

n(n − 1)

2
− 1

)

n3

≤
n2

2
−

n

2
+ n6 +

n6

2
−

n5

2
− n4

< 2n6,

which is less than what we need to use when we color roots of twogadgets in the group
G[i, j] with σ[i, j]. Now we show that if there exists no gadget in the groupG[i, j]
such that its roots is colored withσ[i, j] then also the numerical targets for the colors
in S ∪ S′ are not met. In this case we know that all the roots of the gadgets inG[i, j]
are colored withσ′[i, j]. Hence all the children of the roots of the gadgets inG[i, j] are
colored withσ[i, j]. This implies thatσ[i, j] will be used onM(Z1 + 1) = MZ1 + M

vertices. However the number of times the colorσ[i, j] has to be used on vertices is

(M − 1)(Z1 + 1) + 1 = MZ1 + M − Z1 − 1 + 1

< MZ1 + M,

asZ1 > M . This is less than what we need to use when we color root of no gadget
in the groupG[i, j] with σ[i, j]. This implies that among the gadgets ofG[i, j] exactly
one of the gadget’s root is colored withσ[i, j]. This concludes the proof. 2

Claim 3. Suppose thatΓ is a list coloring ofG′ that meets all the numerical targets.
Then in each group of gadgets, every gadget that is not colored in a way that indicates
“selection” must have all of its grandchildren vertices colored with the appropriate
color in S′. That is, all the gadgets ofG[i, j] where the root is colored withσ′[i, j], all
its grandchildren are also colored withσ′[i, j].

Proof. Suppose to the contrary that there exists a groupG[i, j] such that it has a gadget
L such that its root is colored withσ′[i, j], andat least onegrandchildren is not colored
with σ′[i, j]. By Claim 2, we know that there exists exactly one gadget, sayL′ 6= L in
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G[i, j] whose root is colored withσ[i, j]. All the children of the root ofL′ is colored
with σ′[i, j] and hence no grandchildren of the root ofL′ is colored withσ′[i, j]. This
implies thatσ′[i, j] only appears on the roots ofM − 1 gadgets ofG[i, j] and their
grandchildren. Hence the vertices on whichσ′[i, j] is used are (a)(M − 1) roots;
(b) Z1 + 1 children of the root ofL′; and (c) at most(M − 2)kZ0 + (kZ0 − 1)
on the grandchildren of roots of gadgets inG[i, j]. The last assertion follows from
our assumption that at least one grandchildren of the root ofL is not colored with
σ′[i, j]. This implies that the number of timesσ′[i, j] is used is bounded above by
(M −1)+(Z1 +1)+((M −1)kZ0)−1 and henceσ′[i, j] does not meet its numerical
target. This proves that all the gadgets ofG[i, j] where the root is colored withσ′[i, j],
its all grandchildren are also colored withσ′[i, j]. This completes the proof. 2

Claim 4. Suppose thatΓ is a list coloring ofG′ that meets all the numerical targets.
Then ifr[i, j, e] is colored withσ[i, j] thenr[j, i, e] is colored withσ[j, i].

Proof. Without loss of generality assume thati < j. If r[i, j, e] is colored withσ[i, j]
then by Claims 2 and 3 we know that this is the unique gadget ofG[i, j] such that the
grandchildren ofr[i, j, e] arenot colored withσ′[i, j]. Hencee[up] grandchildren of
r[i, j, e] are colored withǫ[i, j] ande[down] grandchildren ofr[i, j, e] are colored with
ǫ′[i, j]. But to meet the numerical targets ofǫ[i, j] and ǫ′[i, j] we needZ0 − e[up]
andZ0 − e[down] more vertices, respectively, to be colored withǫ[i, j] andǫ′[i, j].
However,ǫ[i, j] andǫ′[i, j] appeare[down] ande[up] times, respectively, only on the
grandchildren ofr[j, i, e]. This together with Claims 2 and 3 imply thatr[j, i, e] is the
root of the gadget inG[j, i] that is colored withσ[j, i]. This concludes the proof. 2

Claim 5. Suppose thatΓ is a list coloring ofG′ that meets all the numerical targets.
Fix an1 ≤ i ≤ k, then all the rootsr[i, j, e], j 6= i, that are colored withσ[i, j] has the
property that all the edgese that appear in the definition ofr[i, j, e] are incident to the
same vertex in the color classi of the graphG.

Proof. We prove it by contradiction. Suppose we have two rootsr[i, j, e1] andr[i, ℓ, e2]
that are colored withσ[i, j] andσ[i, ℓ] respectively andi 6= j, i 6= ℓ andj 6= ℓ. Here
e1 = u1v1 ande2 = u2v2 are edges between color classi andj and between color class
i andℓ respectively. Furthermoreu1 6= u2 and both are colored withi in G. Without
loss of generality also assume thati < j < ℓ. Now we look at the number of times
the colorsτi[j, ℓ] andτ ′

i [j, ℓ] are used in the gadget whose root isr[i, j, e1]. By Claims
2 and 3 we know that this is the unique gadget ofG[i, j] such that the grandchildren
of r[i, j, e1] arenot colored withσ′[i, j] but with other colors. Thusτi[j, ℓ] is used
on u1[up] vertices andτ ′

i [j, ℓ] is used onu1[down] vertices of the gadget whose root
is r[i, j, e1]. Now to meet the numerical requirements ofτi[j, ℓ] andτ ′

i [j, ℓ] we need
to color more vertices. However these colors can only be given to the vertices of the
gadget whose root isr[i, ℓ, e2] and they need to meet their numerical requirements by
coloring the appropriate number of vertices in this gadget.Thus we know that the
number of vertices that are assigned the colorτi[j, ℓ] andτ ′

i [j, ℓ] among the vertices of
the gadget rooted atr[i, ℓ, e2] areu2[down] andu2[up] respectively. Thus the number
of times we useτi[j, ℓ] is u1[up] + u2[down] and the number of times we useτ ′

i [j, ℓ]
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is u1[down] + u2[up]. But u1[up] + u2[down] 6= Z0 andu1[down] + u2[up] 6= Z0.
The last assertion follows since given an up identification number there is an unique
down identification number to make it equal toZ0. Henceu1 must be equal tou2, a
contradiction to our assumption. Thus all the rootsr[i, j, e], j 6= i, that are colored
with σ[i, j] has the property that all the edgese that appear in the definition ofr[i, j, e]
are incident to the same vertex in the color classi of the graphG. This concludes the
proof of the claim. 2

Finally we have the following claim.

Claim 6. Suppose thatΓ is a list coloring ofG′ that meets all the numerical targets.
ThenG has a multicolor clique of sizek.

Proof. Let F be the set of edges that appears in the gadget whose rootr[i, j, e] is
colored withσ[i, j] by Γ. First by Claim 2 we know that for everyi 6= j there is
exactly one gadget inG[i, j] whose root is colored withσ[i, j]. By Claim 4 we know
that if e appears inr[i, j, e] thene also appears inr[j, i, e]. Furthermore by Claim 5
we know that all the edges selected inF whose end-points are colored withi are same.
That is, this process only selects a vertex from a color classi and all the edges emanate
from the same vertex. All this shows that the edges inF form a clique inG. 2

Now using Claims 1 and 6 we obtain the following.

Theorem 3. NLCP isW [1]-hard for forests, parameterized by the number of colors
that appear on the lists.

The reduction from NLCP to LECP is almost trivial, achieved by padding with iso-
lated vertices having single-color lists. The reduction from LECP to ECP is described
as follows. We add a clique onr vertices, numbered from1 to r. We connect the vertex
i in the clique to all vertices that do not containi in their list of allowed colors. Clearly,
any list coloring ofG can be extended to a coloring ofG′ by coloring the vertexi of
the clique with colori. On the other hand, any coloring ofG′ must color the vertices
of the clique with distinct colors. Without loss of generality, the vertexi of the clique
is colored with colori. Then all neighbors of this vertex, that is, all vertices ofG that
do not havei in its list, can not be colored withi. SinceG′ is a forest, the treewidth of
the resulting graph is at mostr. This proves the following theorem.

Theorem 4. EQUITABLE COLORING is W [1]-hard, parameterized by treewidth.

3. LIST CHROMATIC NUMBER Parameterized by Treewidth is FPT

The notion of thelist chromatic number(also known as thechoice number) of a
graph was introduced by Vizing in 1976 [Viz76], and independently by Erdös, Ru-
bin and Taylor in 1980 [ERT80]. A celebrated result that gaveimpetus to the area
was proved by Thomassen: every planar graph has list chromatic number at most five
[Th94].

We describe an algorithm for the LIST CHROMATIC NUMBER problem that runs
in linear time for any fixed treewidth boundt. Our algorithm employs the machinery
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of Monadic Second Order logic, due to Courcelle [Cou90] (also [ALS91, BPT92]).
At a glance, this may seem surprising, since there is no obvious way to describe the
problem in MSO logic — one would seemingly have to quantify over all possible list
assignments to the vertices ofG, and the vocabulary of MSO seems not to provide any
way to do this. We employ a “trick” that was first described (toour knowledge) in
[BFLRRW06], with further applications described in [CFRRRS07, FGKPRWY07].

The essence of the trick is to construct an auxiliary graph that consists of the origi-
nal input, augmented with additionalsemantic vertices, so that the whole ensemble has
— or can safely be assumed to have — bounded treewidth, and relative to which the
problem of interestcanbe expressed in MSO logic.

A list assignmentL with |Lv| ≥ r for all v ∈ V is termed anr-list assignment.
A list assignmentL from whichG cannot be properly colored is calledbad. Thus, a
graphG does not have list chromatic numberχl(G) ≤ r, if and only if there is a bad
r-list assignment forG.

The following lemma is crucial to the approach.

Lemma 1. If a graph of treewidth at mostt admits any badr-list assignment, then it
admits a bad list assignment where the colors are drawn from aset of(2t+1)r colors.

Proof. First of all, we may note that ifG has treewidth bounded byt, thenχl(G) ≤ t+1
(and similarly, the chromatic number ofG is at mostt + 1). This follows easily from
the inductive definition oft-trees. We can therefore assume thatr ≤ t + 1.

Fix attention on a widtht tree decompositionD for G, where the bags of the de-
composition are indexed by the treeT . For a nodet of T , let D(t) denote the bag
associated to the nodet. Suppose thatL is a badr-list assignment forG, and letC
denote the union of the lists ofL. For a colorα ∈ C, let Tα denote the subforest ofT
induced by the set of nodest of T for whichD(t) contains a vertexv of G, where the
colorα occurs in the listLv. Let T (α) denote the set of trees of the forestTα. Let T
denote the union of the setsT (α), taken over all of the colorsα that occur in the list
assignmentL:

T =
⋃

α∈C

T (α)

We consider that two treesT ′ andT ′′ in T areadjacentif the distance betweenT ′

andT ′′ in T is at most one. Note thatT ′ andT ′′ might not be disjoint, so the distance
between them can be zero. LetG denote the graph thus defined: the vertices ofG are
the subtrees inT and the edges are given by the above adjacency relationship.

Suppose thatG can be properly colored by the coloring functionc′ : T → C′. We
can use such a coloring to describe a modified list assignmentL′[c′] to the vertices
of G in the following way: if T ′ ∈ T (α) andc′(T ′) = α′ ∈ C′, then replace each
occurrence of the colorα on the listsLv, for all verticesv that belong to bagsD(t),
wheret ∈ T ′, with the colorα′.

This specification ofL′[c′] is consistent, because for any vertexv such thatα ∈ Lv,
there is exactly one treeT ′ ∈ T (α) such thatv belongs to a bag indexed by nodes of
T ′.
Claim 1. If c′ is a proper coloring ofG, andL is a bad list assignment forG, thenL′[c′]
is also a bad list assignment forG.
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This follows because the trees inG preserve the constraints expressed in having a
given color on the lists of adjacent vertices ofG, while the new colorsα′ can only be
used on two different treesT ′ andT ′′ when the vertices ofG in the bags associated
with these trees are at a distance of at least two inG.
Claim 2.The graphG has treewidth at most2(t + 1)r − 1.

A tree decompositionD′ for G of width at most2(t + 1)r can be described as
follows. Subdivide each edgett′ of T with a node of degree two denoteds(t, t′).
Assign to each nodet the bagD′(t) consisting of those treesT ′ of G that includet.
There are at most(t+1)r such trees. Assign to each nodes(t, t′) the bagD′(s(t, t′)) =
D′(t) ∪ D′(t′). It is straightforward to verify that this satisfies the requirements of a
tree decomposition forG.

The lemma now follows from the fact thatG can be properly colored with2(t+1)r
colors. 2

Theorem 5. TheL IST CHROMATIC NUMBER problem, parameterized by the treewidth
boundt, is fixed-parameter tractable, solvable in linear time for every fixedt.

Proof. The algorithm consists of the following steps.
Step 1.Compute in linear time, using Bodlaender’s algorithm, a tree-decomposition
for G of width at mostt. Consider the vertices ofG to be oftype 1.
Step 2. Introduce2(t + 1)r new vertices oftype 2, and connect each of these to all
vertices ofG. The treewidth of this augmented graph is at mostt+2(t+1)r = O(t2).
Step 3.The problem can now be expressed in MSO logic. That this is so,is not entirely
trivial, and is argued as follows (sketch). We employ a routine extension of MSO logic
that provides predicates for the two types of vertices.

If G admits a badr-list assignment, then this is witnessed by a set of edgesF

between vertices ofG (that is, type 1 vertices) and vertices of type 2 (that represent the
colors), such that every vertexv of G has degreer relative toF . Thus, ther incident
F -edges represent the colors ofLv. It is routine to assert the existence of such a set of
edges in MSO logic.

The property that such a set of edgesF represents a bad list assignment can be
expressed as: “For every subsetF ′ ⊂ F such that every vertex ofG has degree 1
relative toF ′ (and thus,F ′ represents a choice of a color for each vertex, chosen from
its list), there is an adjacent pair of verticesu andv of G, such that the represented
color choice is the same, i.e.,u andv are adjacent by edges ofF ′ to the same type
2 (color-representing) vertex.” The translation of this statement into formal MSO is
routine. 2

4. Conclusion and Open Problems

Structured optimization problems, such as the coloring problems considered here,
have strong claims with respect to applications. A source ofdiscussion of these appli-
cations is the recent dissertation of Marx [Ma04]. It seems interesting and fruitful to
consider such problems from the parameterized point of view, and to investigate how
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such extra problem structure (which tends to increase both computational complex-
ity, and real-world applicability) interacts with parameterizations (such as bounded
treewidth), that frequently lead to tractability.

The outcome of the investigation here of some well-known locally or globally con-
strained coloring problems has turned up a few surprises: first of all, that the LIST

CHROMATIC NUMBER problem is actually FPT, when we parameterize by treewidth.
It is also somewhat surprising that this good news does not extend to LIST COLORING,
PRECOLORING EXTENSION or EQUITABLE COLORING, all of which turn out to be
hard forW [1]. Results of the preliminary version of this paper [FFLRSST07] have led
to thorough investigations of structural parameterizations like treewidth or clique-width
[DLSY08, FGLS09, FGLS10, SS09].

There are many interesting open problems concerning the parameterized complex-
ity of “more structured” combinatorial optimization problems on graphs, parameterized
by treewidth. We mention the following:

1. Is the LIST EDGE CHROMATIC NUMBER problem fixed-parameter tractable,
parameterized by treewidth?

2. One can formulate a “list analogue” of the HAMILTONIAN PATH problem as
follows: each vertex is assigned a list that is a subset of{1, 2, ..., n} indicating
the positions in the ordering of then vertices implicit in a Hamiltonian path that
are permitted to the vertex. Is the LIST HAMILTONIAN PATH problem FPT,
parameterized by treewidth?

3. Our hardness results do not exclude the possibility of solving LIST COLORING,
PRECOLORINGEXTENSION, or EQUITABLE COLORING in timef(t) · no(t) on
graphs of treewidtht. Is it possible to show that up to some assumption from
complexity theory there are no such algorithms?
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