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Abstract: Let N = {1, ... ,n} be a finite set of players and K N the complete graph on the node set 
N w {0}. Assume that the edges of K N have nonnegative weights and associate with each coalition 
S _~ N of players as cost c(S) the weight of a minimal spanning tree on the node set S u {0}. 

Using transformation from EXACT COVER BY 3-SETS, we exhibit the tollowing problem to be 
NP-complete. Given the vector x~9t N with x(N)  = c(N). decide whether there exists a coalition S such 
that x(S) > c(S). 
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1 Introduction 

In this note  we invest igate  the c o m p u t a t i o n a l  complex i ty  of  f inding op t ima l  core 
a l loca t ions  of a much  s tudied coopera t ive  N - p e r s o n  game. The  minimum cost 
spanning tree game, M C S T - g a m e  for short ,  is a game on the set N = {1 . . . . .  n} of 
players,  the grand coalition, tha t  is to  be connec ted  to the supply node O. 
Establ i sh ing  a direct  l ink between any pa i r  (i,j), where  i , jEN u {0}, is assumed to 
cost  the nonnega t ive  a m o u n t  w(i,j) = w(j, i). The object ive is to create  a connected  
g raph  on the node  set N w {0} and  to d ivide  the resul t ing to ta l  cost  a m o n g  the 
n players.  The  la t ter  is represented  by an allocation vector x~91N whose compo-  
nents  indicate  the a m o u n t  each ind iv idua l  p layer  is to con t r ibu te  to cover  the 
to ta l  cost. 

The  vec tor  x should  be considered fair by the p layers  and  the coal i t ions  they 
m a y  form, i.e., the a m o u n t  x(S) any coal i t ion  S has to pay  cumula t ive ly  should  
never exceed the cost  c(S) of a m i n i m u m  spanning  tree on S u {0}, which is what  
S would  have to invest  in o rder  to connect  itself to 0 wi thou t  using any o ther  
nodes.  The core of the M C S T - g a m e  consists  of all vectors  x tha t  are fair in this 
sense. 

Being defined by  l inear  inequali t ies ,  the core of a M C S T - g a m e  is a p o l y h e d r o n  
in ffl N. App ly ing  a "greedy"  a l loca t ion  scheme, it is ac tual ly  an easy a lgor i thmic  
t ask  to de te rmine  a core a l locat ion.  The  scheme is a l ready  discussed in, e.g., Claus  
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and Kleitman [1973] and Bird [1976] and has been rigorously proved to yield 
a core allocation by Granot  and Huberman [1981]: Find a minimum cost 
spanning tree T on N va {0} and allocate to player i the weight of the first edge that 
i encounters on the (unique) path from i to 0 in T. 

Notice, however, that this scheme seems to favor players that are at relatively 
far distance from 0 in T: the allocation to player i is just the connection cost of i to 
the rooted subtree of nodes reachable from 0 without passing through i. One way 
of overcoming such a bias would be to allocate a core vector that is optimal with 
respect to a linear function (which depends just on the players and not on their 
relative distance from the supply node). Linear optimization over a polyhedron 
implicitly necessitates a good description of the polyhedron. 

Thus the problem of getting a complete overview of the core of MCST-games 
has received considerable attention. Positive answers were obtained for cases 
where the core (or a subset of the core) can be described by submodular (a.k.a. 
convex) constraints (cf. Shapley [1971]), which permits the determination of 
extremal core vectors by Edmonds' [1970] greedy algorithm (see, e.g., Aarts 
[1994], Aarts and Driessen [1993], Granot  and Huberman [1983], Kuipers 
[1994] or for related models Granot  and Granot  [1993], Meggido [1978] and 
Tamir [1991]). 

The purpose of this note is to contribute a negative answer to the problem of 
determining the core of general MCST-games. We show that it is an NP-hard 
problem to decide whether a given vector is not a member of the core. Because of 
the polynomial equivalence of membership testing and optimizing linear func- 
tions relative to a polyhedron (see Gr6tschel et al. [1988]), it is therefore doubtful 
whether there exist efficient ways to obtain a complete overview of the core of 
a general MCST-game. 

We remark that our result is not the first to indicate that core membership 
testing is generally NP-hard. Tamir [1991] points out that a result of Chv/ttal 
[1978] implies NP-hardness of membership testing for the class of network 
synthesis games, which includes the MCST-games. Deng and Papadimitriou 
[1994] have given the example of a game for which the Shapley value is easy to 
compute and the problem of deciding whether the Shapley value is not a core 
vector is NP-complete: every pair of players has a weight and the value of 
a coalition S is the sum of all weights of the pairs with both components in S. 

It is curious to observe that a Deng-Papadimitriou game has a non-empty core 
(in which case it necessarily contains the Shapley value) if and only if the game is 
submodular. It should be interesting to have more genuine examples of 
cooperative games whose cores are not given by submodular constraints and, yet, 
core membership testing is provably polynomial. 

2 Core Membership Testing is Co-NP-Complete 

The remaining part of this note will be devoted to proving the headline of this 
section. Recall that a decision problem ~ is in the class N P  if every instance of 
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has a solution whose correctness can be checked in polynomial time (if an 
affirmative solution exists at all). ~ is NP-complete  i fN lies in NP and is NP-hard,  
i.e., every instance of any probem in NP can be transformed to an instance of.~ in 
polynomial time. A problem is co-NP-complete  if its negative is NP-complete (see, 
e.g., the well-known book of Garey and Johnson [1979]). 

Theorem 2 .1 :The fo l l ow in9  problem is NP-complete:  

Instance: An M C S T - g a m e  (N, w) and a vector x 6 9 t  N with x(N)  = c(N). 

Question: Is  x not an element of  the core of  the game, i.e., does there exist a coalition 
S ~ N such that x(S) > c(S)? 

Proof:  The problem is easily seen to be in NP by exhibiting a coalition S with 
x(S) > c(S) (if such an S exists). To prove completeness we establish a polynomial 
transformation from EXACT COVER BY 3-SETS (X3C), which is one of the six 
basic NP-complete problems in Garey and Johnson [1979] and is given as 
follows: 

EXACT COVER BY 3-SETS (X3C) 

Instance: A finite set with X = {xl , . . . ,  x3q } and a collection F = {fl  . . . . .  flFI} of 
3-element subsets of X. 

Question: Does F contain an exact  cover for X, that is, a subcollection F' ___ F 
such that every element of X occurs in exactly one member of F'? 

Given an instance of X3C we construct the following MCST-game. It has 
4 "layers" of players (see Figure 1). We have an element-player for each element of 
X and a set-player for each member from F. Furthermore we have a Steiner- 
point-player St and a guardian g. Thus, including the supply node 0, the graph of 
the game has [XI + [FI + 3 nodes 

{1 , . . . ,3q}u{3q + 1 . . . ,3q  + IF l }u{O,g ,  St}. 

The corresponding weight function is given as follows. First we define the weights 
on a subset E of the edges of the graph. 

For  each set f i  = {J, k, l}(i = 1,. . . ,  I f l )  we set 

�9 w(3q + i,j) = w(3q + i, k) = w(3q + i, l) = q + 1, 
�9 w(3q + i, St) = q, 
�9 w ( 3 q + i , g ) = q + l  

and additionally 

�9 w ( g , 0 )  = 2 q  - -  1, 

�9 w(St, g ) = q + l .  
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Fig. l. The graph of the MCST-game 
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3q element-players, charge q+2 each 

distance q+ 1 

k set-players, charge q each 

distance q 

Steiner-point-player, charge 0 

distance q+ 1 

guardian, charge 0 

distance 2q- 1 

supply node 

The weights of  the other edges e are given by the distances induced from the graph  
G(N, E) with weights as above. Note  that  our  instance is Euclidean in the sense 
that  it satisfies the triangle inequality. 

Let x e 911xl + IFI + 2 be given by 

�9 x i = q + 2 f o r i = l , . . . , 3  q, 
�9 x i = q f o r i = 3 q + l  . . . . .  3q+Ic, 

�9 XSt=Xg=O. 

We claim that  x is not  in the core of the MCST-game  if and only i f F  contains an 
exact cover. 

To see this let us first make a preliminary consideration. Let y e 9~ Lxl § IF1 + z denote 
the vector 

�9 Y i = q + l f ~  . . . .  ,3q, 
�9 y i = q f o r i = 3 q + l  . . . . .  3q+k ,  
�9 ys~=q+ 1, 
�9 Ya = 2 q  - -  1. 

This vector y is the core element of the MCST-game  computed  by the greedy 
algori thm in the last section. Considering d : = x - y ,  we get d(i)= 1 for 
i = l , . . . , 3 q ,  d ( i )=0  for i = 3 q + l  . . . . .  3q+k ,  d ( S t ) = - q - 1  and d(9)= 
- 2 q + l .  
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Let us comment  on the role of 9 and St in our construction. If y is a fixed core 
vector and x a candidate for a core vector, we set d = x - y. Then d(N) = 0, and 
x(S) > c(S) implies d(S) > 0. We would like such an 'unsatisfied' coalition S to 
exhibit an exact cover. So S should contain all element-players, which we try to 
achieve by giving the whole positive d-weight to the 3q element-players. If we 
could assume that S includes a further node 9, then the (negative) d-weight of 
9 could be used to "force" many element-players into S. Now d(S) > 0 implies 
d(9) > - 3q. So d(N) = 0 necessitates the existence of a further point St. We show 
that our construction works with the choice of parameters as above. 

Assume x is not in the core of the MCST-game and let S be a coalition 
satisfying x(S) > c(S). Then c(S) > y(S) implies d(S) > 0. We conclude that S must 
contain some element-player. 

Any path from an element-player to 0 in G(N,E) has to visit a covering 
set-player and 9- Since the weights of edges not in E are induced we may assume 
w.l.o.g, that 9~ S and that S contains a covering set-player for each element-player 
in S. Because {9, St} ~ S (otherwise d < 0), we then have St(~S. 

Under these assumptions we observe 

c(S)=(q+l)lS~{1 .... , 3q} l+(q+l ) lSn{3q+l  .... 3 q + k } l + 2 q - 1 ,  (1) 

x(S)=(q+2)lSn{1 . . . . .  3q}l + q I S ~ { 3 q +  1 , . . . 3q+k} l .  (2) 

Hence 

O<x(S) -c (S)=]S~{1 , . . . , 3q}] - tS~{3q+ l , . . . 3 q + k } l - 2 q +  l (3) 

implying IS n {3q + 1,... 3q + k} I < q. 
Every set-player covers at most 3 element-players, thus we have 

I S n { 1 , . . . , 3 q } l <  31Sn{3q + 1 . . . .  3q+  k}[. (4) 

Together with (3) this yields 

2 l S n { 3 q +  1 . . . .  3 q +  k} l>  2 q -  1 (5) 

implying I S n { 3 q +  1 . . . .  3 q + k } l > q  and hence ] S n { 3 q +  1, . . .3q+k}l=q.  
Again using (3) we get 

0 <  ISn{1 . . . . .  3 q } l -  3q + I ~ S _ ~  {1 , . . . , 3@ (6) 

By assumption, S contains a covering set-player for each of its element-players. 
Hence, our computat ions imply that the set-players in S must form an exact 
cover. 

On the other hand, i fF  admits an exact 3-cover, the coalition S consisting of all 
element-players, an exact cover of set-players and the guardian satisfies 

c(S) = (3q 2 + 3q) + (q2 + q) + (2q - 1) = 4q 2 + 6q - 1, (7) 

x(S) = (3q 2 + 6q) + q2 + 0 = 4q 2 + 6q (8) 

and hence x(S) > c(S), which implies that x is not in the core of the MCST- 
game. [] 
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