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We define several new complexity classes of search problems, "between" the classes FP and 
FNP. These new classes are contained, along with factoring, and the class PLS, in the class 
TFNP of search problems in FNP that always have a witness. A problem in each of these new 
classes is defined in terms of an implicitly given, exponentially large graph. The existence of 
the solution sought is established via a simple graph-theoretic argument with an inefficiently 
constructive proof; for example, PLS can be thought of as corresponding to the lemma "every 
dag has a sink." The new classes are based on lemmata such as "every graph has an even 
number of odd-degree nodes." They contain several important problems for which no polyno- 
mial time algorithm is presently known, including the computational versions of Sperner's 
lemma, Brouwer's fixpoint theorem, Chfvalley's theorem, and the Borsuk-Ulam theorem, the 
linear complementarity problem for P-matrices, finding a mixed equilibrium in a non-zero 
sum game, finding a second Hamilton circuit in a Hamiltonian cubic graph, a second 
Hamiltonian decomposition in a quartic graph, and others. Some of these problems are shown 
to be complete. © 1994 Academic Press, Inc. 

1. INTRODUCTION 

The classes F N P  and  F P  of search p rob lems  (p rob lems  in which an ou tpu t  more  

e labora te  than  "yes" or  "no" is sought )  are t r ad i t iona l ly  s tudied  in terms of their  

sur rogates  N P  and  P. There  are cer ta in  aspects  of the issue, however ,  tha t  canno t  

be easily cap tu red  by  recogni t ion  problems.  Cons ide r  for example  the class T F N P  

defined in [ M P ] .  T F N P  (for total mul t iva lued  funct ions with po lynomia l - t ime  

ver i f icat ion)  conta ins  all search p rob l ems  for which a witness a lways  exists, 

i ndependen t ly  of  the input.  Obvious ly ,  F P  ___ T F N P  ~_ F N P ,  and  no p r o o f  of a 

p rope r  inc lus ion is in sight. Is T F N P  = F P ?  Is it  true, tha t  is, tha t  it is easy to find 

a so lu t ion  when you  know tha t  there  is a lways  one? A posi t ive answer  would  imply,  

a m o n g  o ther  things, tha t  P = N P  n c o N P ,  tha t  there  is some k ind  of po lynomia l  

p ivo t ing  rule for simplex, and  tha t  there  are po lynomia l - t ime  a lgor i thms  for 

factoring,  as well as for f inding Brouwer  f ixpoints  (despite  the lower  b o u n d s  in 

[ H V ]  ). Na tu ra l ly ,  a negat ive  answer  would  have even more  i m p o r t a n t  consequences.  
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Even a qualified negative answer, such as the existence of an FNP-complete 
problem in TFNP, would imply that NP = coNP. 

As with any conundrum in complexity, it would be nice to isolate problems that 
are TFNP-complete and thus capture this interesting computational phenomenon. 
However, it appears unlikely that such problems exist. The reason is that, along 
with NP c~ coNP, RP, ZPP, BPP, and so many other complexity classes, TFBP is 
a semantic class. 1 By this informal notion we mean that a syntactic object (in our 
case, a nondeterministic Turing machine with output) defines a search problem in 
TFNP iff it satisfies a property quantified over all inputs (in the case of TFNP, the 
property states that the machine has at least one conclusive computation of all 
inputs). Such properties (like polynomial-time termination) can be handled only if 
they are properties of single computations. Semantic classes seem to have no 
complete problems. We are thus led to the following question: Are there important, 
syntactically definable, subclasses of  TFNP? ZPP does not qualify, as it is a 
semantic class. 

Every natural member of a semantic class is equipped with a mathematical proof 
that it belongs to that class. One idea is to group together problems in TFNP in 
terms of "proof styles." Factoring and discrete logarithms have too specialized, 
algebraic proofs (but see the open problems section). Another proof style, employed 
in the case of linear programming before Khachian's algorithm, and in the case of 
other combinatorial optimization problems, is duality (essentially, the ability to 
recognize optimality). Obviously, all optimization problems with duality are in 
TFNP, but there has been little success in formalizing duality in a syntactic way. 
Yet another proof style may be the "probabilistic method in combinatorics" [Sp], 
usually implying not only existence, but abundance, and thus membership in RP 
(see Section 5 for a brief discussion of an exception, the local lemma). 

In [JPY] we defined a broad and natural subclass of TFNP, namely PLS (for 
polynomial local search). A problem A in PLS is defined in terms of two polyno- 
mial algorithms N and c. For each input x, S(x)= Z "p(txt) is the set of all solutions 
(nodes of the dag alluded to above), where p is a polynomial. The two polynomial 
algorithms compute, for each input x and node s ~ S(x), the cost c(x, s) and the 
(polynomially bounded in cardinality) set of neighbors N(x, s). We wish to find a 
solution such that no neighbor has better cost. Thus, totality for functions in PLS 
is established by invoking the following "lemma:" 

Every finite directed acyctic graph has a sink. 

The dag for invoking the lemma is the graph whose adjacency lists are the N(x, s), 
with arcs leading to nodes with no better c omitted. In other words, we can view 
N and c as an implicit syntactic way for specifying an exponentially large dag. Class 
PLS contains a host of problems that are not known to be in FP (the difficulty is, 
of course, that the dag may have exponential depth). Several important problems 

1 Stuart Kurtz proposed to me the term non-categorical for the same thing. 
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are now known to be PLS-complete, including finding a local optimum in the 
Lin-Kernighan heuristic for the TSP and finding a stable configuration in Hopfield 
neural nets [JPY, PSY, Kr]. 

Are there other important examples of "unifying proof styles" of totality, defining 
new syntactic subclasses of TFNP? In this paper we identify several such classes, and 
a host of natural, important problems contained in them; some of them are complete. 
As usual, these classes first manifested themselves through a number of important 
computational problems which refused to be categorized in terms of existing com- 
plexity classes. Perhaps the most important among them is the computational ver- 
sion of Brouwer's fixpoint theorem, stating that any continuous function f from the 
d-dimensional simplex to itself has a fixpoint. Computing Brouwer fixpoints (within 
accuracy e) is a central computational problem in optimization and mathematical 
economics (see [SS] for a detailed discussion). We call this problem BROUWER 
(see Section 2 for a careful definition.) Ideally, we would like an algorithm for 
BROUWER that is polynomial in d and - l og  e. Unfortunately, it was shown in 
[HV, HPV] that any algorithm that treatsfas an oracle must be in the worst case 
exponential in both parameters. The assumption in this result is rather unsatisfying 
(despite the fact that every one of the many algorithms that have been proposed for 
this important problem is indeed an oracle algorithm). Naturally, in the absence of 
this assumption the problem is in TFNP; thus no exponential lower bound is 
forthcoming. In this paper we derive convincing evidence of a different sort for the 
difficulty of Brouwer's problem by showing that BROUWER is complete in a rich 
new complexity class. 

Like PLS, each of our new complexity classes can be seen as based on a 
graph-theoretic "lemma." Perhaps the most basic one is the parity argument: 

Any finite graph has an even number of odd-degree nodes. 

There is an interesting problem in graph theory that evokes the parity argument, 
namely Smith's theorem [Th]. Any graph with odd degrees has an even number of 
Hamilton cycles through edge xy. The proof constructs a graph F whose nodes are 
all Hamilton paths starting from node x and not continuing with node y. There is 
an edge between two paths iff they differ in only one edge (that is, one Hamilton 
path is a "rotation" of the other). It is easy to see that, since all degrees of G are 
odd, the odd-degree nodes of F are precisely the Hamilton paths starting from x 
and ending at y--and these can be extended to a Hamilton cycle through xy. The 
computational problem SMITH is this: Given a graph G with odd degrees, and a 
Hamilton cycle, find another one. It is in TFNP, and it is not known to be in FP. 
It is a prime specimen of our class PPA (for polynomial parity argument), defined 
in Section 3. 

To feel the difficulty of turning an existence proof based on the parity argument 
to an efficient algorithm, imagine the following situation: Everybody remembers all 
games of chess they have played in their life. You have played an odd number of 
games, and you must find a fellow odd player (known to exist by the parity 
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argument). Depth-first search can solve this problem, but it is too memory-consum- 
ing. Here is a solution: We require that each player has paired up his/her past 
games so that game 2 i -  1 is the "mate" of game 2i. The algorithm is this: Ask your 
last opponent if he is odd; if so, you are done. If not, you ask the address of his 
playmate in the game that is the mate, in his game history, of the game with you, 
and visit her. If she is odd you are done, but otherwise you ask for the address of 
her opponent in the game that is the mate (in her history) of her game with the 
previous player. And so on. You may come back to yourself many times (in which 
case you disregard your own parity), but the algorithm is guaranteed to terminate 
at another odd player. Alas, this algorithm may take time proportional to the 
number of all games of chess ever played! 

Note that the "chessplayer algorithm" above must converge because of a trivial 
graph-theoretic fact, the "even leaves argument," which is in fact a special case of 
the parity argument: 

All graphs o f  degree two or less have an even number o f  leaves. 

Therefore, the path started by the algorithm must end somewhere. To illustrate the 
even leaves argument, imagine the special case of SMITH in which the graph is 
cubic (see Fig. 1). It is easy to find a second Hamilton cycle by the following (alas, 
exponential in the worst case!) algorithm: Delete an edge of the given cycle, fix an 
endpoint of the resulting path, and start "rotating" from the other endpoint. Since 
the graph is cubic, rotations are unique. There is no danger of "cycling" (repeating 
Hamilton paths), because cycling would mean that rotations are not unique. And 
there is no way for the process to end, other than in another Hamilton cycle 
through the deleted edge (see Fig. 1). 

It appears that the even leaves argument is much more specialized than the more 
general parity argument. As it turns out, the "chessplayer algorithm" above can be 
formalized to show that the class based on the even leaves argument coincides with 
that based on the general parity argument (Theorem 1). 

FIG. 1. 

Y 

Smiths theorem in the case of a cubic graph. 
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Sperner's lemma states that any admissible coloring of any triangulation of the unit 
triangle as a trichromatic triangle (in fact, by the parity argument, an odd number 
of them). Consider a triangulation of the unit triangle 012, say the standard n x n 
triangulation (Fig. 2, ignore for the moment the long triangles to the left). A 
coloring of all vertices with colors 0, 1, 2 is admissible if each vertex of the big 
triangle obtains its own name, and no vertex on edge #' of the original triangle 
contains color 3 - i - j .  A trichromatic triangle is found by extending the triangula- 
tion as shown in Fig. 2. Note an external 01 edge has been added. In fact, it is 
now the only external 01 edge. If we cross it, we end up in a triangle that is bound 
to have colors 0 and 1. So, it has another 01 edge, which we cross. The process 
cannot exit the boundary (that was the only 01 edge) and cannot fold upon itself 
(a triangle cannot have three 01 edges). It must end in a trichromatic triangle. 

Q.E.D. 
Note a subtle difference from the application of the pure even-leaf argument in 

the cubic case of Smith's theorem: In the present case we do have a sense of 
"progress" on the path from the standard starting position to the tricromatic 
triangle, suggested by the orientation of the bichromatic triangle in hand. Edges 
colored 0-1 are traversed in the direction that leaves the color 0 to the right. As a 
result, the implicit graph here is directed, but any leaf (a sink or a source other than 
the original one) is sought. The class of such problems is called PPAD (for "poly- 
nomial parity argument in a directed graph"). In contrast, in Smith's problem and 
other problems in PPA, if we start in the middle of a path we have no clue which 
of the two directions is the right one (see Fig. 1). This is the major difference 
between PMPA and PPAD. We do not know whether PPA = PPAD. As a general 
rule, problems in PPA that have a topological-geometric flavor seem to crowd into 
PPAD, whereas those of a more generic combinatorial or algebraic nature do not 
seem to be in PPAD. 

The simple proof of Sperner's theorem explained above can be used as the basis 
for a proof of Brouwer's fixpoint theorem (this proof is sketched in Section 3). It 
is therefore not surprising that the computational problems BROUWER and 
SPERNER are closely related. 

0 

F1G. 2. 

0 2 2 

Sperner's lemma in two dimensions. 
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There are many more problems that we consider in this paper; many of them 
were first identified in our joint work with Nimrod Megiddo IMP]. One of them, 
NASH, asks for a mixed equilibrium in a bimatrix game. This is arguably one of 
the few most important problems for which no polynomial algorithm is known 
(and no proof of NP-completeness seems possible). Another, SECOND 
HAMILTON DECOMPOSITION, asks for a second way to decompose a graph 
into two disjoint Hamilton cycles (its existence follows from a complicated parity 
argument, see [Th] and Theorem 12 below). A third, related problem is 
ANOTHER HAMILTON PATH: Given a Hamilton path in a graph (directed or 
not), find either another one or one in the complement (the total number of 
Hamilton paths in a graph and its complement is even!). 

We also discuss certain problems related to Brouwer's fixpoint theorem. Problem 
KAKUTANI, a generalization of BROUWER, asks for a fixpoint of an upper semi- 
continuous correspondence, roughly, a continuous mapping from the unit triangle to 
convex regions of the unit triangle. We also introduce two important computational 
problems from mathematical economics, namely, computing equilibrium prices in 
certain appropriate economic models that guarantee the existence of equilibria. 
Existence is proved by Kakutani's theorem, which is in turn based on Brouwer's, 
which uses Sperner's lemma, and so on, down to the parity argument. We also 
introduce perhaps the major open algorithmic question in an important subfield of 
optimization: Our problem P-LCP defined in Section 2 asks for the solution of a 
linear complementarity problem or a negative minor of the matrix; one of the two 
must exist. Finally, we show that a classical result in number theory, Ch6valley's 
theorem, has the parity argument at its root and the corresponding computational 
problem is thus in PPA. In fact, so are the computational problems associated with 
several interesting graph-theoretic applications of Ch6valley's theorem. For none of 
these applications (one due to [AFK] and one new in this paper) is there a known 
polynomial-time algorithm. 

In Section 2 we introduce the basic complexity classes discussed in this paper 
and show some interesting inclusions and collapses. We also point out a rather 
unexpected fact: If we insist that the algorithm return not any other leaf of the 
graph, but the particular leaf at the other end of the path (recall the discussion of 
Smith's and Sperner's theorems above) the problems become much harder: The 
resulting class is PSPACE! In Section 3 we introduce the various problems and 
show why they are in the classes discussed. In Section 4 we prove that BROUWER 
is PPAD-complete and so are several other problems. Finally, in Section 5 we 
introduce and briefly discuss certain other interesting classes of problems, based on 
"inefficiently constructive existence proofs" of different varieties. These new sub- 
classes are related to the probabilistic method [Sp], the local lemma [Sp], and the 
pigeonhole principle. We also point out some of the many problems left open by 
our work. 
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2. COMPLEXITY CLASSES 

Let R ___ 2]*x S* be a polynomial-time computable, polynomially balanced rela- 
tion (that is, {(x, y ) ~ R }  ~P, and (x, y ) ~ R  implies lY] ~< [xl ~ for some integer k). 
The search problem associated with R is this: Given input x ~ 2;*, return a y e ~* 
such that (x, y ) e  R, if such a y exists, and return the string "no" otherwise. The 
class of all such search problems is called FNP. We denote by FP the subclass of 
FNP containing all those search problems that can be solved in polynomial time. 
TFNP is the subclass of FNP containing all problems such that for all x there is 
a y with R(x, y). It is clear that FP ___ TFNP ___ FNP, and it is open whether these 
inclusions are strict. 

A problem in TFNP can be described by a polynomial-time machine that decides 
R. However, given such a description of a problem in TFNP, there is no way to 
tell whether R is indeed total (the problem is obviously undecidable). A similar 
problem already exists in the case of FNP, since it is undecidable whether a given 
machine halts after polynomially many steps. The problem here, however, is much 
less severe and can be easily taken care of by "standardization," for example, by 
restricting our machines to incorporate a polynomial clock. In other words, there 
is a recursive enumeration of the problems in FNP, whereas such an enumeration 
is not known to exist for TFNP. The difficulty is quite familiar: It is already present 
in the language classes RP, ZPP, BPP, NPc~coNP, etc. Such classes, whose 
definition is given in terms of a non-recursive enumeration of machines, can be 
informally called semantic (all others are thus syntactic). It is well known that 
semantic classes tend not to have complete problems [Si]. 

The definition of our classes is similar in spirit with that of PLS: A problem in 
PPA is described in terms of an algorithm which implicitly defines an exponentially 
large graph. In the case of PLS, the graph was a partial order, defined by a directed 
graph and a cost function. In our case, the graph is cyclic, sometimes directed, 
sometimes undirected, usually (but not always) of bounded degree. 

We start by defining PPA. A problem A in PPA is defined in terms of a polyno- 
mial-time deterministic Ruring machine M. Let x be an input for A. The configura- 
tion space C(x) is Z lp(Ixl)3, the set of all strings of length at most p(Lx]), where p 
is a polynomial. Given a configuration c ~ C(x), M outputs in time O(p(n)) a set 
M(x, c) of at most two configurations. Note that we do not require that c' ~ M(x, c) 
iff c ~ M(x, c'); symmetry is guaranteed syntactically by the following definition: We 
say that two configurations c, c' are neighbors, written [c, e'] ~ G(x), if c ~ M(x, c') 
and c'~ M(x, c). Obviously, G(x) is a symmetric graph of degree at most two. In 
applications, we expect M(x, c) to be empty often, thereby rendering many 
configurations c irrelevant. M is such that M(x, 0 . . . 0 ) =  {1. . .1} ,  and 
0 . . .O~M(x,  1 ... 1), so that 0 . - . 0  is always a leaf (the standard leaf). This is not 
a semantic restriction, since M can be standardized so that it is syntactically 
guaranteed to behave in the required way. Problem A associated with M is the 
following search problem: "Given x, find a leaf of G(x) other than 0- . .  0." PPA is 
the class of all problems A defined as above. 
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PPA, as defined above, embodies the "even leaves argument," and not the full 
"parity argument." It may thus appear that it fails to include problems such as 
"Given an odd-degree graph and a Hamilton cycle, find another" (the generaliza- 
tion of Fig. 1 to arbitrary odd-degree graphs). Suppose that we define PPA' to be 
the class with the same definition, only that [M(x, e)[ is bounded by a polynomial 
in [xl, as opposed to two. That is, we allow the degree of G(x) to be polynomially 
large. We are seeking any odd-degree node. 

THEOREM 1 (The Chessplayer Algorithm). PPA'= PPA. 

Proof It is obvious that P P A _  PPA'. We shall show that, given any problem 
A in PPA', presented by a machine M, we can define an equivalent problem in 
PPA. For each node c of G(x) we can compute its neighborhood N(c). If [N(e)] = 
k i> 1, we create new nodes (c, i), i = 1 ..... [-k/27. To compute the connectivity of the 
new graph, the two neighbors of (c, i) are the two nodes of the form (c', j),  where 
the (lexicographically) 2ith or (2i+ 1)th edge out of c is [c, c'-], which is also the 
2jth or (2j+ 1)th edge out of c'. It is clear that the nonstandard leaves of the 
new graph coincide with the nonstandard odd-degree nodes of the former, and 
that the neighbors of each node of the new graph can be computed in polynomial 
time. [ 

We can even extend the definition of PPA to cases in which the degree of 
the graph is not bounded by a polynomial. Suppose that we have a polynomial 
algorithm for deciding, given two nodes c, c' ~ C(x), whether [c, c'] ~ G(x). We call 
this the edge recognition algorithm. Naturally, if a graph is presented this way, its 
degree may very well be exponential. However, assume that we are also given a 
polynomial algorithm that computes a pairing function (b between the edges out of 
each node. That is, given c, c', where c is an even-degree node and [c, c'] ~ G(x), 
q~(c,c')=c" with c '~c"  and [c,c"]~G(x), and also q)(c,c")=c'. If c has odd 
degree, then for exactly one c' q)(c, c')=c'. We are again asking for any 
nonstandard odd-degree node. 

COROLLARY. Any problem defined in terms of an edge recognition algorithm and 
a pairing function is in PPA. 

Proof The nodes of the new graph are the edges of the original, unbounded- 
degree one, and the only adjacencies are these: edges [c, e'] and [c, c"] (considered 
as unordered pairs) are adjacent if and only if ~b(c, c') -- c". | 

Note that there is no syntactic way to tell whether an algorithm indeed computes 
a pairing function; however, this does not interfere with the validity of the corollary 
above. If ~b fails to be a pairing function, then simply there will be a nonstandard 
leaf in the constructed graph that does not correspond to an odd-degree node of 
G(x), and the problem in PPA will fail to be the intended one. 
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To define PPAD (the parity argument for directed graphs), we modify the defini- 

tion of PPA so that M(x,  c) is an ordered pair of configurations. The graph G(x) 
is now directed: (c, c') ~ G(x) iff c' is the second component of M(x,  c), and c is the 

first component of M(x,  c'). We are asking for any node (other than 0 . . .0 )  with 

indegree + outdegree = 1. In other words, a correct output is any source or sink 
of the directed graph other than the standard source. 

In the context of search problems, a reduction from A to B is defined as a pair 

of polynomially computable functions f and g such that, for any input x of problem 

A, and for any legal output of problem B on input f ( x ) ,  g (x, y) is a legal output 

of problem A on input x. As defined so far, PPA and PPAD are not closed under 

reductions, if g is not one-to-one on outputs. We must therefore modify our defini- 

tions so that PPA is the closure under reductions of the class of search problems 
defined so far, and similarly for PPAD. 

PROPOSITION 1. FP ~_ PPAD ~ PPA ~_ FNP. 

As Theorem 1 suggests, these classes are quite robust under certain variants of 

their definition. Modifying the definition in other directions can have a devastating 

effect. Suppose, for example, that in the definition of PPA we insist that the output 
be not any other leaf, bu the particular other leaf connected to 0 - . .0 .  This is not 

unnatural, since that leaf is the only one guaranteed to exist. Call this class PPA", 
and the corresponding directed class PPAD". 

THEOREM 2. PPA" = PPAD" = FPSPACE. 

Sketch. We shall show that P P A " ~ F P S P A C E ,  the other inclusions being 
immediate. Consider any problem in FPSPACE. It follows from a result by Bennett 

[Be]  that this problem can be solved by a polynomial-space bounded Turing 

machine T that is reversible; that is, each configuration is the successor and prede- 

cessor of at most one other configuration. We can thus define the following problem 

in PPA": For  each configuration c of T, M(x,  c) returns the (at most) two con- 
figurations that are the predecessor and/or successor of c on input x. The standard 

leaf is connected to the initial configuration on input x. Thus, the nonstandard leaf 

on the same component as the standard one is precisely the halted configuration, 

containing the desired output. | 

Another interesting observation (due to Steve Bloch and Sam Buss) is this: 
Imagine that P P A "  is the variant in which LM(x, c)l <~ 3; that is, the configuration 
graph has degree at most three. Naturally, a second leaf is now not guaranteed to 

exist. It can be shown that P P A "  = FNP. 

3. THE PROBLEMS 

In defining some of the computational problems that we study, we encounter a 
complication reminiscent of the "semanticity" issue in classes, but of course, one 
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set-theoretic level below. At the problem level, the analog of a semantic class is a 
"promise problem," that is, one whose input domain is restricted in some way. 
Since TFNP trivially contains a host of uninteresting promise problems, we are 
eager to avoid considering such problems. As a result, whenever our inputs need to 
be restricted in some way (see the problems BROUWER and SPERNER below), 
the input will be supplied with a syntactic proof that it satisfies the restriction. Even 
when the input is an algorithm, this is usually easy to do by standardizing the 
algorithm so that its output can be checked and, if illegal, replaced by a standard 
output. 

3.1. Problems in PPAD 

SPERNER. We have sketched Sperner's theorem for two dimensions, and its 
proof, in the Introduction (Fig. 2). The corresponding computational problem is 
2D SPERNER: Given an integer n (in binary) and an algorithm M for assigning 
to each point p = ( i l ,  i2, i3) with i~,i2, i3>>,0 and i~+i2+i3=n a color 
M(p) ~ C0, 1, 2}, such that ij = 0 implies f ( p ) ~ j ;  find three points p, p'p" such that 

their pairwise distances are one, and i f (P) ,  f(P'), f (P")} = C 0, 1, 2}. (The three 
points define a trichromatic triangle). To guarantee that M indeed produces an 
admissible color, we equip it with a subroutine which, before halting, examines the 
output and, if it is not legal, outputs something standard. 

Sperner's theorem and its proof above can be generalized to three and more 
dimensions: Consider the d-dimensional simplex with vertices 0, 1, ..., d, and a given 
simplicization (the d-dimensional equivalent of the triangulation) of the simplex. 
Suppose that all vertices of this simplicization have been assigned colors 0, 1, ..., d 
such that, if a vertex v is in the exterior of the simplex, on face i o ..... i k (recall that 
a k-dimensional face of the simplex is determined by its k + 1 vertices), then its 
color is among i0, ..., ik. Then Sperner's lemma guarantees that there is a 
panchromatic simplex in the simplicization (one that contains all colors). The proof 
proceeds by an induction on the dimension, with the panchromatic simplex in a 
( d -  1)-dimensional face serving as the starting point of a path that must lead to a 
panchromatic simplex (just as a bichromatic edge started us in two dimensions, 
recall Fig. 2). 

However, although Sperner's theorem holds in higher dimensions, there is a 
difficulty in generalizing the computational problem 2D SPERNER to three and 
more dimensions. The reason is that there is no easy standard simplicization of  the 
tetrahedron, no simple three-dimensional analog of the triangles in Fig. 2. For 
example, I believe that there is no way to divide a regular tetrahedron into 
eight identical regular tetrahedra (the reader is encouraged to try). There are 
several approaches we can take to handle this problem, each with different 
advantages and disadvantages: 

(1) We could encode the simplicization in the machine that defines the 
coloring. This would make the problem unnecessarily complex (and, therefore, 
the completeness result in Theorem 14 unnecessarily weak). Syntactic guarantees 



508 CHRISTOS H. PAPADIMITRIOU 

that the machine indeed provides a simplicization are possible, but would further 
complicate the problem and obscure the issue. We come back to this problem after 
Theorem 14. 

(2) To divide the equilateral triangle into four equal triangles we first "cut 
off" the three triangles with parallel lines to the sides (Fig. 3); fortunately, the 
remainder also happens to be an equilateral triangle. If we try the same in the 
regular tetrahedron, we end up with a regular octahedron in the middle. We can 
now divide this octahedron into eight equal (not regular) tetrahedra with a vertex 
at the center of the octahedron. Thus we have subdivided the regular tetrahedron 
into 12 tetrahedra. To divide any tetrahedron into 12 k tetrahedra, repeat the above 
subdivision k times. This results into an arbitrarily fine simplicization. The vertex 
coordinates are rationals with denominators of polynomial length in k, and the 
vertices can be encoded easily. Unfortunately, had we adopted this approach, the 
geometric and analytical details of our reduction in Theorem 14 would be 
extremely messy. 

(3) Another idea is to embed a solid with an easy simplicization, such as a 
cube, into the tetrahedron. Simplicize the remaining space in some standard coarse 
way (see Fig. 4 for the idea in the two-dimensional case, leading to an obvious 
three-dimensional generalization). This version has certain advantages, but the 
following variant of the same idea is much cleaner. 

(4) The simplest and most intuitive way is to state the computational 
problem related to Sperner is in terms of a hypercube. To explain and motivate it 
in two dimensions, suppose that we are given a square grid with a coloring, such 
that (see Fig. 5): (a) Vertex (0, 0) is colored 0, vertex (1, 0) is colored 1, and vertex 
(0, 1) is colored 2. (b) No point on the edge (0, 0)-(1, 0) is colored 2, and no point 
on the edge (0, 0)-(0, 1) is colored 1. (c) Points on the other two edges are 
not colored 0. Sperner's theorem implies that there is a little square with all 
three colors. Note that the square "simulates" a triangle, with its two sides 

f "x 

(~) 

/ 
(b) 

FIG. 3. Subdividing a simplex. 
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\ \ \  

FIG. 4. Embedding a hypercube. 

(0, 1)-(1, 1)-(1,0) playing the role of the third side. The proof is immediate if 
we triangulate the little squares and then "pull" the vertices (0, 1) and (1,0) 
diffeomorphically (as indicated in Fig. 5), so that a triangle is formed with vertices 
(0, 0), (0, 1), (1, 0). 

We can now generalize this to three dimensions. Suppose that we are given the 
standard subdivision of the unit cube into n 3 "cubelets" (see Fig. 6). Each point 
(xl/n, x2/n, x3/n), 0 <~ xl,  x2, x3 ~< n (we call the vertices of the cubelets "points") is 
assigned a color among 0, 1, 2, 3, subject to the following conditions: (a) Vertex 
(0, 0, 0) obtains 0; also vertex (1, 0, 0) obtains 1, vertex (0, 1, 0) obtains 2, and 
vertex (0, 0, l) obtains 3. Call these the principal vertices. (b) Any point on a face 
containing (0, 0, 0) cannot obtain the color of the principal vertex missing from it. 
(c) Any point on the three faces not containing (0, 0, 0) cannot obtain the color 0. 
Intuitively, we "simulate" the tetrahedron by a cube, where the three faces incident 
upon (0, 0, 0) simulate the three faces of the tetrahedron, and the other three faces 

2 1 2 

2 0 1 

!1 0 2 

0 1 1 

1 

(~) (b) 

FIG. 5. Sperner's lemma in the square. 
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1 

3 3 

2 ~  ) 3 

FIG, 6. 

j l  

0 

Sperner's lemma in the cube. 

of the cube simulate the fourth face of the tetrahedron. Sperner's Theorem implies 

that there is a cubelet with all four colors. The proof is by subdividing each cubelet 

into tetrahedra (such a subdivision of the cube into five tetrahedra is possible and 

well known) and transforming the cube into a tetrahedron by "pulling" the 

principal vertices outwards. The result follows immediately from Sperner's lemma in 

the tetrahedron. 

We define the computational problem 3D SPERNER thus: Given an integer n 

(in binary) and a polynomial-time algorithm computing for each point of the 

n x n x n subdivision of the cube a legal color, find a tetrachromatic cubelet (one 

that has all four colors). We assume as before that the polynomial algorithm is such 

that the colors computed by it are legal. The generalization to more dimensions is 

immediate. This simple problem captures the intricacy of Sperner's theorem and 

avoids the problem alluded to above. 

THEOREM 3. For any k >~ 2, k-D S P E R N E R  is in PPAD. 

Proof. In the two-dimensional case the nodes are the triangles in Fig. 2 
(including the "long" triangles on the left), and there is an arc from one triangle to 
the other if they have colors 0 and 1, and they share a 0-1 edge. The arc is directed 

away from the simplex in which the colors on the common arc in the clockwise 
direction are 0-1. The standard leaf corresponds to the outermost 0-1 triangle. All 

other leaves are adjacent to trichromatic triangles. 
For  3D SPERNER we generalize the same construction. We embed the cube into 

a tetrahedron and fix a simplicization. We complete this simplicization by adding 
edges from node 0 to all points on the 0-1-2 face. The vertices are either 
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0-1 triangles on that face or trichromatic triangles on that face or 0-1-2 simplices 
in the interior of the tetrahedron: 0-1 triangles are connected as before; 0-1 
triangles are connected to adjacent O-1-2 triangles and each of the latter, to the 
0-1-2 simplex that contains it. Finally, two 0-1-2 simplices are connected if they 
share a 0-1-2 face and the tail is the one for which the common face is read 0-1-2 
in the clockwise sense. We omit the generalization to more dimensions. | 

BROUWER. Brouwer's theorem states that any continuous function f from the 
unit simplex (or cube, or any convex compact body) to itself has a fixpoint, that 
is, a point x such that f ( x )=x .  A simple proof is based on Sperner's lemma. 
Consider the d-dimensional regular simplex and the vector from vertex i and per- 
pendicular to the opposite facet; call it "vector i." Now, consider any simplicization 
of the simplex, and a coloring of the points in it with colors in {0, 1 ..... d}, such 
that if the color o f p  is i, then vector p - f ( p )  has a positive projection on the ith 
vector. It is easy to see that any such coloring of the points is acceptable. Hence, 
by Sperner's theorem, it has a panchromatic simplex. The center of this simplex is 
called x~. 

Consider now a sequence of finer and finer such triangulations and centers of 
panchromatic simplices (Xl,X2 .... ). Pick a converging subsequence of that 
sequence. It is easy to see that its limit, call it x*, must satisfy f (x*)= x*. End of 
proof! 

In defining the computational problem associated with Brouwer's theorem, we 
must somehow represent a continuous function by a Turing machine. We know of 
no simple syntactic general way of doing this (basically, we know of no simple 
enumeration of the algorithms computing continuous functions). We define here a 
syntactic special case of the problem, which is sufficiently general in that the 
negative results of [HPV]  apply (and the Corollary to Theorem 14 still holds). We 
are given an integer n Turing machine M which, given a point x in the unit cube 
Ca with coordinates multiples of 1In returns in polynomial time a vector #(x) such 
that ]#(x)l ~< 1In 2 ands f ( x )=  x+ #(x)~ Ca (these conditions can be syntactically 
enforced by checking the output, and returning 0 if they are violated). The function 
f(x)  thus defined can be extended to a piecewise linear map b3( computing the 
values within each 1/n cubelet by interpolating the values at the vertices, according 
to a standard simplicization of the cubelet. We are seeking a point x such that 
f (x)  = x. 

THEOREM 4. BROUWER is in PPAD. 

Proof. The proof above reduces BROUWER to SPERNER. | 

We next examine KAKUTANI,  a computational problem inspired by a 
generalization of Brouwer's theorem, f (x)  is now a subset of Ca, say a simplex with 
vertices of the form x+#i(x)  for i = 0 ,  ..., d such that again x+#i (x )e  Ca for all x 

571/48/3-10 
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and i. We are seeking a point x such that x e l ( x ) .  The existence of such a point 
follows from a reduction to Brouwer's theorem. Therefore we have 

COROLLARY. K A K U T A N I  is in PPAD. 

EQUILIBRIUM. Brouwer's theorem is used in the proof of certain important 

theorems in mathematical economics (results in the so-called "Arrow-Debreu 

theory"). Accordingly, algorithms for problem BROUWER are at the core of com- 

puter models of large-scale economies. Here we shall only try to give the flavor of 
these important results. 

A vector x~91 n stands for amounts (perhaps negative) of each of n goods. 

A (normalized) price vector is a vector in An (the unit simplex). One application 

supposes that each price vector p generates among producers and consumers a total 

excess demand D(p)  ~ 91n, where D is a continuous function satisfying Walras's Law 

p .  D(p) ~ 0. An equilibrium in this situation is a price vector such that D(/~) -- 0. It 

always exists, and this result is equivalent to Brouwer's theorem. The corresponding 

computational problem, called EXCHANGE EQUILIBRIUM, is defined as 

follows: We are given an e = 2-'~, and a machine D computing the demand for each 

price vector, up to 2m bits. We are asked to find a price vector such that (D(/~)I ~< e. 

In a related but more detailed setting, economic agents are studied as individuals, 

not through their aggregate behavior. We have m agents, each with a convex, 

upwards unbounded set X,. c 91n of acceptable vectors of goods. A negative amount  

of a good means production, a positive amount  consumption. Presumably, the 

acceptable vectors of a consumer will have nonnegative components everywhere 

except for the component labor; those of a factory will positive labor and raw 
material components, and a negative component for the products. Each agent has 

a utility function u i mapping 91n to 9t (a measure of the satisfaction he/she draws 

from each vector of commodities) and also an initial endowment ei ~ 91n, e~ >10. We 

assume that ui is piecewise linear and convex, say. 
Then prices are announced. Each agent will sell his/her endowment and obtain 

the best (under u,) acceptable vector 2; he/she can afford (max u(2i) subject to 
xi e Xi, p .  2~ ~< p-e~); at least one such 2~ is assumed to exist, no matter what the 

prices are. A famous theorem by Arrow and Debreu (based on Kakutani 's theorem) 

[A D ]  states that there is a price/~, the equilibrium price vector, such that the 
m 2 m individual optimizing agents will end up clearing all markets: ~ = 1  ~ = ~ i =  l e;. 

We omit the details of the definition of the corresponding computational problem, 

called COMPETITIVE EQUILIBRIUM. 

THEOREM 5. C O M P E T I T I V E  E Q U I L I B R I U M  and E X C H A N G E  EQUI- 

L I B R I U M  are in PPA. 

Sketch. For  EXCHANGE EQUILIBRIUM the result follows from the equiv- 

alence to BROUWER described in [Uz] .  For  COMPETITIVE EQUILIBRIUM,  
it follows from the corollary to Theorem 4, since the existence of a competitive 
equilibrium is proven by a simple application of Kakutani 's theorem [ADJ.  I 
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BORSUK, ULAM, AND TUCKER. The Borsuk-Ulam theorem states that any 
continuous function f :  Sd~-+ 9l d (from the surface of the (d+ 1)-dimensional unit 
sphere to 9t d) has equal values at some pair of antipodal points; that is, there is a 

point x such that f ( x ) = f ( - x ) .  
An immediate application of the Borsuk-Ulam theorem is the "ham sandwich 

problem:" Given d + 1 "nice" bodies in d + 1 dimensions, there is a hyperplane that 
cuts all of them in half by volume. To prove it, consider the mapping from S d to 
~R d defined as follows: For each point x~  S d (that is, direction in 9td+1), let f (x )  
be the vector of volumes cut from bodies 1 ..... d by the hyperplane normal to x that 
bisects body 0. The result then follows from the Borsuk-Ulam Theorem. Another 
interesting application of the Borsuk-Ulam theorem is the necklace problem 
[All]. It is shown that any necklace with mnk beads, equally divided into k 
colors, can be cut by ( m -  1)k cuts into pieces that can be reassembled to m smaller 
necklaces, each containing n beads of each color (note that (m - 1)k is optimal: 
consider a necklace with contiguous colors). The proof is a direct applica- 
tion of the Bursuk-Ulam theorem, not unlike the one for the ham sandwich 
problem. 

Perhaps the most natural proof of the Borsuk-Ulam theorem is based on a com- 
binatorial result due to Tucker (very much the same way that Brouwer's theorem 
follows from Sperner's lemma). Tucker's lemma states the following: Consider the 
d-dimensional hypercube - 1 ~< x; ~< 1. Consider a subdivision of the hypercube into 
an even number of equal cubelets (so that the origin is a point). Consider now a 
coloring f of all points by colors + 1 ..... _d  which is antipodal preserving, that is, 
for all points x on the surface of the hypercube f ( - x ) =  - f (x ) .  Then there is a 
cubelet that contains two opposite colors. For a proof of Tucker's lemma see 
Theorem 6 below. 

To prove the Borsuk-Ulam theorem from Tucker's lemma, consider the function 
f on the surface of the (d + 1 )-dimensional sphere. Consider now a hemisphere ½ Sd, 
and define on it the function g: g ( x ) = f ( x ) - f ( - x ) .  Note that, at the "rim" of 
the hemisphere, g ( x ) = - g ( - x ) .  Now, map the hemisphere continuously and 
symmetrically to the d-dimensional hypercube (say, by first projecting to the 
d-dimensional ball, and then mapping the ball "radially" to the hypercube). Finally, 
define the color of a point p of a subdivision of the cube to be the index of the 
largest (in absolute value) coordinate of g(p) times the sign of that coordinate; ties 
favor smaller coordinates, say. Precisely as in Brouwer's theorem, any sequence of 
subdivisions defines a sequence of centers of the cubelets with two oppos~ite colors, 
which converges to a point that corresponds (inverting the mappings) to a point x* 
on the surface of the sphere satisfyingf(x*) = f ( - x * ) .  One can define the following 
computational problems: 

Borsuk-Ulam. Given an integer n and a Turing machine computing for each 
point p = ( x ,  .... ,xa) with - n 4 x i < ~ n  and maxi]xil =n  (the surface of the L1 
sphere) a function f (p )  with f(p)~< 1/Kn. Find an x with t f ( x ) - f ( - x ) ]  ~< 1/n 2. 
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Discrete ham sandwich. Given 2n 2 points in generic position in n dimensions, 

separate them into n groups with 2n points each, find a hyperplane dividing all 

groups in half. (Note that, unlike other geometric-topological problems in this 

section, this problem is in FP for any fixed dimension d.) 

Necklace splitting. Given a cyclic sequence a l, a2 ..... a,~,k of integers between 

1 and k, such that each integer appears mn times, find ( m -  1)k integers 1 ~< 

cl <<.... ~ Cm <<. rank (the cuts) such that there is a way to partition the cyclic inter- 

vals [Ci'''Ce+~moa(m-~lk] into m sets of intervals, each of which contains n 
appearances of each integer. 

Tucker. Given an integer n and a Turing machine computing for each 

point p = (x, y, z) with - n  ~ x, y, z ~ n a color M(p)  e { +_ 1, ..., +d} such that 

for all p with max{Ix1, lyl, Izl }---nM(p) = - M ( - p ) ,  find a two points p, p'  with 

[ P -  P'I ~ ~< 1 and M ( p )  = - M ( p ' ) .  

None of this problems is known to be in FP. However, we can show the following: 

THEOREM 6. TUCKER is in PPAD. 

Proof. The construction of G(x) is based on the elegant proof of Tucker's 

lemma in [FT] .  We consider a standard simplicization of the hypercube that 

refines the subdivision into cublets. The nodes of G(x) are the fully colored simplices 

in this simplicization. We call a simplex (of any dimension including 0) fully 

colored if for any nonzero coordinate i of its center, one of the colors + i appears 

at some point in the simplex. Note that the zero-dimensional simplex at the origin 

(necessarily a part of the simplicization) is trivially fully colored; it is the standard 

source of G(x). Two simplices are adjacent if one of the following circumstances 

occur: (a) One is a facet of the other, and the smaller one has the same set of colors 

as the larger; or (b) They are both on the surface of the hypercube, and antipodal. 

It is easy to see (see [SF]  for a careful proof)  that all degrees are all at most two, 

and any nonstandard leaf must be a simplex containing two opposite colors. 

However, this only establishes that the problem is in PPA. To prove it is in 

PPAD we must define consistent directions of the arc of G(x). This is possible, but 

requires the introduction of involved techniques, see [Fr ] .  | 

COROLLARY. B O R S U K - U L A M ,  D I S C R E T E  H A M  S A N D  WICH, and 

N E C K L A G E  S P L I T T I N G  are in PPAD. 

LINEAR COMPLEMENTARITY. We  are given an n x n matrix A and an n-vector b. 

We are seeking vectors x, y >~ 0 such that A x  + b = y, and x . y  = 0. The latter 
constraint requires that, for each i, at least one of xi, yi be zero (hence the term 

complementarity). 
This problem can always be attacked (but not always solved) by Lemke's 

algorithm [LH,  Le, CD].  Let us modify the equation to A x  + b + ,~. 1 = y, where 
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2 is a scalar. By taking x = 0 and 2 appropriately large to make for the negative 

components of b, we can find a basic solution (at most n nonzero among the Yi, 

xi's, and 2) of this equation with all x's zero and at least one y zero. Unfortunately, 
2 will in general be nonzero as well, and so we have no solution. Thus, there is an 

i for which xi = y~ = 0. If we choose one of these two variables and increase its 

value, the other positive variables will change linearly (this is very much like tradi- 

tional simplex pivoting, except that we have only one pivoting choice). If they all 

increase, this means that the variable can be increased indefinitely, and we are at 

an infinite ray. We shall return to this case. Suppose then that at least one 

other variable decreases and eventually becomes zero. If it is one of the xj, yj's, 

say xj, we are back where we started: We can start to increase yj away from 

zero and continue. But if 2 ever becomes zero then we have solved the original 
problem. 

But, unfortunately, this "algorithm" may indeed end up in a ray (actually, the 

linear complementarity problem is NP-complete). However, there are certain cases 

in which this cannot happen. For  example, if all entries of A are positive, or if A 

is derived in a simple way from a bimatrix game (see the proof of Theorem 8 

below), then the algorithm cannot end up in a ray. We shall concentrate on perhaps 
the most intriguing such special case, namely that of P-matrices. A matrix A is a 

P-matrix if for all nonempty subsets S of {1 ..... n}, de t (As)>0 ,  where As is A 

restricted to the rows and columns in S. For  symmetric matrices this coincides with 

the matrix being positive-definite .and can be tested in polynomial time by standard 

techniques. For  general matrices, however, it is open whether checking the 

P-property can be done in polynomial time. What is known is that if A is a 

P-matrix, then the linear complementarity problem has a unique solution for any 

b, and Lemke's algorithm eventually converges to it [CD] .  Let P-LCP be the 

following problem: "We are given A and b, and we are asked to find either a 

solution x, y to the linear complementarity problem, or a subset S such that 
det(As) ~< 0 (proof that A is not a P-matrix)." 

THEOREM 7. P-LCP is in PPAD. 

Sketch. The construction of the directed graph G(A, b), where A, b is an 

instance of P-LCP and A is n x n, is outlined in [To] .  The nodes are pairs of the 

form (S, T), where S and T are subsets of {0, 1,2 ..... n}, such that S =  

T -  {a} w {b} (as a special case, a could equal b in which case S =  T). Intuitively, 
S is the set of coordinates in the vector (0, Xl ..... x , )  that are zero, and T is the set 

of coordinates in the vector (2, yt  .... , y , )  that are not zero. Two such nodes are 
adjacent if they represent a pivot. The direction is determined by the signs of the 
subdeterminants of A defined by the sets, as explained in [To] .  The standard 

source is ({0}, {0}). All other sources and sinks are of the form (S, S), with S ~  ~ .  

If det As>O then we have a solution of the LCP; otherwise we have a proof that 
A is not a P-matrix. | 
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NASH. We are given two m x n matrices A and B. Intuitively, A,~ is the payoff 
of player I when I plays strategy i and II plays strategy j; by is the payoff of player 
II. In general, A + B # 0 (the game is not zero-sum). A Nash equilibrium is a pair 
of strategies i for I and j for II, such that neither I nor II have an incentive to 
change strategy, that is, akj ~< a• for all k, and b,.k <~ b~ for all k. It is easy to see that 
a bimatrix game may have no equilibrium. 

The problem here is that the set of strategies is not convex (since it is discrete). 
For a convex space of strategies, Nash has shown that an equilibrium exists. There 
is an attractive may to make our situation convex: Accept as strategies any 
probabilistie distribution over the rows and columns. A (row) m-vector x is a mixed 
strategy of I if x >~ 0, x .  1 = 1; similarly for a column vector y for II. We say that 
a pair of such mixed strategies x and y are an equilibrium if x'Ay <<. xAy for all 
mixed strategies x', and xBy'<<, xBy for all y'. Such an equilibrium always exists. 
Nash's proof used Brouwer's fixpoint theorem. Another proof uses the linear com- 
plementarity problem; in fact, this latter proof shows that the equilibrium will be 
rational with small coefficients (this is open for games with more than two players, 
where equilibria are also guaranteed to exist). The problem NASH is this: Given 
integer matrices A and B, find a mixed strategy equilibrium. There is no known 
polynomial algorithm for this fundamental problem. 

THEOREM 8. N A S H  is in PPAD. 

Proof Any solution to the linear complementarity problem with matrix (BOT ~) 
and vector 1 is a mixed equilibrium, and can be found by Lemke's algorithm, 
assuming (with no loss of generality) that A and B are positive [CD].  | 

3.2. Problems in PPA 

SMITH. We are given an odd-degree graph G and a Hamilton cycle C of G. We 
are asked to find a second Hamilton cycle of G. Existence proof is by the parity 
argument, as in the Introduction. This same proof yields the following result. 

THEOREM 9. SMITH is in PPA. 

A similar problem is based on the following result: Let G be an undirected graph 
and G its complement. If H(G) is the number of Hamilton paths of G, then H(G) + 
H(G) is even [Lo].  The same is true when G is directed. ANOTHER HAMILTON 
PATH is the following problem: Given a graph (or digraph) G and a Hamilton 
path in it, find either another Hamilton path in it, or a Hamilton path in its 

complement G. 

THEOREM 10. ANOTHER H A M I L T O N  PATH (directed and undirected case) is 

in PPA. 

Proof We shall construct a graph F such that its odd-degree nodes are precisely 
the Hamilton paths of G, and those of G. The graph is bipartite. The left-hand side 
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has as nodes all Hamilton paths of the complete graph over the nodes of G. The 
right-hand side has as nodes all subgraphs of G (including the empty subgraph). 
There is an edge from Hamilton path h on the left side to subgraph s on the fight 

if and only if s is a proper subgraph of h. 
We claim that the only odd-degree nodes are the Hamilton paths of G and (7 on 

the left side. Suppose a node on the left is not a Hamilton path of G or of G. Then 
it contains a non-empty subset of edges of (7, so it will be adjacent to the nodes 
on the right that correspond to all subsets of that non-empty set; hence it has even 
degree. On the other hand, a Hamilton path of G on the left will only be adjacent 
to the empty subgraph, and will thus be a leaf. And a Hamilton path of (7 will be 
adjacent to all of its 2"- 1 _ 1 proper subgraphs and will also have odd degree. Any 
subgraph on the right will be connected to all possible completions to a Hamilton 
path (for most subgraphs this number will be zero); an easy calculation shows that, 
for graphs with five or more nodes, this number is always even. Since it is easy to 
match together the edges out of all even-degree nodes, the Corollary to Theorem 1 
applies, and the problem is in PPA. | 

Incidentally, the proof that all tournaments have an odd number of Hamilton 
paths (the exercise in [Lo] that comes right after the previous one) is efficiently 
constructive, and the corresponding problem is in FP. 

HAMILTON DECOMPOSITION. Thomason shows that each four-regular graph has 
an even number of decompositions into two disjoint Hamilton cycles [Th] (a proof 
is given in Theorem 11 below). The problem HAMILTON DECOMPOSITION is 
the following: Given a graph that is the disjoint union of two given Hamilton 
cycles, find another such decomposition. 

This problem is equivalent to the following question from combinatorial 
optimization: Given two disjoint traveling salesman tours, provide convincing 
evidence that they are not adjacent on the traveling salesman polytope. Two tours 
are called adjacent if there is a distance matrix that makes them the only optimum 
tours. The simplest possible proof of non-adjacency would be two other disjoint 
tours using the same edges (their costs would always be in between). There are 
more complex proofs: Any set of tours such that they contain as a convex combina- 
tion the average of the two given ones is a proof; finding a general proof for an 
arbitrary pair of tours is an FNP-complete problem [ P a l l  (called TSP NON- 
ADJACENCY). Naturally, for arbitrary tours such a proof may not exist, and 
therefore the problem can be FNP-complete. In the case of disjoint tours, however, 
existence is guaranteed by Thomason's theorem, although the proof is, for all we 
know, hard to find. 

THEOREM 11. HAMILTON DECOMPOSITION is in PPA. 

Proof Suppose that G is a loopless graph of degree four with three or more 
nodes (and possibly parallel edges), and let x, y be two of its edges. We denote by 
D(x, y) the set of all Hamilton decompositions of G in which x and y belong to the 
same Hamilton cycle, we denote by C(x, y) the set of all other Hamilton decom- 
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positions, and let D=D(x, y ) u  C(x, y). For each such set we shall construct 

graphs F(D(x, y)), F(D(x, y)), and F(D), with degrees O(n2), where n is the num- 

ber of nodes of G, such that their sets of odd-degree nodes are D(x, y), C(x, y), and 

D, respectively. (In general, in this proof we shall denote by F(S) a graph whose 

set of odd-degree nodes is S.) All graphs will be such that adjacency can be com- 

puted efficiently and locally. Let us first note the following basic construction: If 

F(S) and F(T) are two such graphs, we can take the union of their nodes and edges 

to form a new graph (allowing multiple edges). It is easy to see that the resulting 

graph is F(S• T) (where @ is the symmetric difference). It follows that, if we have 

constructed all F(D(x, y')) 's then we can also construct F(D) and F(C(x, y)) by 

noting that D=(D(x, y)~3D(x, y'))OD(x, y"), where x, y, y', y" are the edges 

adjacent to some node v; and C(x,y)=D(x,y')@D(x,y") (alternatively, 
D(x, y) + D). 

Thus, we shall show how to construct F(D(x, y)). The construction is inductive 

on the number of nodes of G and follows closely the proof in [Th] .  It is trivial 

when G has three nodes, so let us suppose it has four or more. Suppose first that 

x and y are edges having one endpoint in common. Then consider the graph G" 

that results by deleting their common node and its edges, and adding two more 

edges, z connecting the endpoints of x and y, and w the endpoints of the other two 

edges. It is easy to see that Hamilton decompositions in D(x, y) and C'(z, w) 
(where by C' we denote the C sets of G') are in one-to-one correspondence. Let ~b 

be the one-to-one mapping assigning to a Hamilton decomposition in D(x, y) the 

Hamilton decomposition in C'(z, w) for which the edges x, y are "shortcut" by z, 

and the other two edges by w. Consider next the graph F(C'(z, w)), whose 

construction we are assuming by induction. Add now to F(C'(z, w)) a node for 

each Hamilton decomposition in D, and the edges {I-d, (~(d)]:d~D(x, y)}. The 

resulting graph is F(D(x, y)). Since, by induction, the odd-degree nodes of 

F(C'(z, w)) are the Hamilton decompositions in C'(z, w), and our construction 

adds one edge to each of these (they are the range of ~b), the odd degree nodes of 

F(D(x, y)) are precisely the Hamilton decompositions in D(x, y). This completes 

the construction for the case in which x and y are adjacent edges--and therefore the 

construction of F(D). 
Suppose now that x and y are not adjacent. The induction will be now on the 

length of the shortest path connecting them. We have already proved it when the 

distance is zero. Suppose then that x.. .y 'y is the shortest path from x to y. We 
assume that we have constructed F(D(x, y')) and F(D(y', y)). By observing that 

C(x, y)=D(x, y')OD(y', y), we construct F(C(x, y)) and from it and F(D) we 

finally obtain F(D(x, y)). I 

COROLLARY. TSP NONADJACENCY in the special case of disjoint tours is 
in PPA. 

CI~VALLEY. Ch6valley's theorem in number theory considers a system of 
polynomial equations in n variables in the field modulo p (a prime). It states that 
if the sum of the degrees of the polynomials is less than n, then the number of roots 
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(n-vectors of integers modulo p that make all given polynomials zero) is divisible 

by p. The computational problem CHI~VALLEY M O D  p is this: Given such a 

system and a root, find another. 
This beautiful number-theoretic result has some unexpected combinatorial 

applications. Here is one, which, to our knowledge, has not been observed before: 

Given a graph with n nodes whose set of edges is the union of k < n/2 (not 

necessarily disjoint) classes (with multiple edges and loops), there is a non-empty 

induced graph with an even number of edges from each class. (Proof Apply 

Chrvalley's theorem with p = 2 to the k bilinear forms defined by the upper- 

triangular adjacency matrices of the color classes, and exclude the trivial root.) This 

immediately suggests a problem which we call TOTALLY EVEN SUBGRAPH. 

We know of no polynomial algorithm that finds such a subgraph. 

More sophisticated combinatorial applications of Chrvalley's theorem can be 

found in [AFK] ,  where it is shown that any graph of degree four plus an edge 
contains a cubic subgraph. The problem CUBIC SUBGRAPH is the following: 

Given a graph with degree four, except for two adjacent nodes that have degree 

five, find a cubic subgraph. The proof is a direct application of Chrvalley's theorem 

for p =  3. 

THEOREM 12. C H E V A L L E Y  M O D  2 is in PPA. 

Proof  Suppose that we are given polynomials pi (x l ,  ..., x ,) ,  i---1 ..... m 

(explicitly as sums of monomials) such that 5Z" i= 1 deg(pe)< n. We shall construct a 
graph F whose odd-degree nodes are precisely the roots of the simultaneous equa- 

tions pi(x l  ..... x , )  = O, i= 1, ..., m modulo 2. The graph is bipartite. The nodes of 
the left side are all vectors in {0, 1 }". The nodes of the other side are the terms of  
the polynomial Q = I T  ~ (1 + pi); recall that Q has degree less than n. Each such i = 1  

term is the product of monomials from the given polynomials, with at most one 

monomial from each polynomial. That  is, each term can be represented by an 

m-tuple of integers (al,..., am), where O<<.ai<<.L~, and L~. is the number of 

monomials in Pi. There is an edge between vector x and term t if and only if 
t ( x )  = 1. 

Obviously, any vector x ~ {0, 1 }" is a root of the equations if and only if it has 

odd degree (since x is a root of the equations if and only if it is not a root of Q). 

We claim that all nodes in the right-hand side have even degree. That is, each term 

of Q has an even number of roots. But this is obvious since, because the degree of 

Q is less than the number of variables, there is a variable that does not appear 
in Q: Therefore, the roots are precisely the odd-degree nodes, and the construction 
is correct. This completes the proof of Chrvalley's theorem. 

However, the nodes of this graph have exponentially large degrees, so to apply 
the chessplayer algorithm we must exhibit a pairing function between the edges out 

of a node (recall the corollary to Theorem 1). For  a vector x which is not a root, 
we pair up the terms t such that t ( x )=  1 as follows: Since x is not a root, for some 
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i, 1 + p i ( x ) = 0 .  Pick the smallest such i. An even number of terms of 1 + p ;  are 1 
at x. We pair those terms up by a pairing function ~b. Then the mate of term 
(al ..... ai, ..., a,) is (al ..... (J(ai) ..... an). For a term t represented by (al .... , an) , we 
pair up the vectors x for which t(x) = 1 as follows: Since the degree of Q, and thus 
of t, is less then n, there is a variable xj not appearing in t; let xj be the 
lowest-indexed such variable. We pair up x with (xl,..., 1 - x j  ..... xn). | 

COROLLARY. T O T A L L Y  E V E N  S U B G R A P H  is in PPA. 

For p > 2, CHI~VALLEY MOD p fails to be in PPA; it is instead in a class that 
may be called PPA-p, in which existence proofs are based on the following 
generalization of the parity argument: 

I f  in a bipartite graph a node has degree not a multiple of  p, then 

there is at least another such node. 

THEOREM 13. For every odd prime p, CHF, V A L L E Y  MO D  p is in PPA-p. 

Sketch. The previous construction generalizes quite readily. Q is defined as 
/--[i~=l ( 1 -  pp-1). The bipartite graph must now have parallel edges, with multi- 
plicity reflecting the value of t(x). The roots are the nodes whose degree is not a 
multiple of p. | 

COROLLARY. CUBIC S U B G R A P H  is in PPA-3. 

Proof By the reduction to Chtvalley (with p = 3) described in [AFK] .  | 

4. COMPLETE PROBLEMS 

We show the following: 

THEOREM 14. 3D S P E R N E R  is PPAD-complete. 

Proof. We shall show that any problem in PPAD reduces to 3D SPERNER. 
Suppose that we are given a problem A in PPAD, that is, an algorithm M for 
computing, for each input x and each node v e {0, 1} ° (where N =  Ixl k) of G(x) its 
possible parent-possible child pair M ( x , v ) s ( { O ,  1} 2N. We shall construct in 
polynomial time, based on x and M, an integer n and a polynomial algorithm M'  
for computing legal colors for the points of the n x n x n subdivision of the unit 
cube such that a solution of the instance x of problem A (that is, a node with a 
parent and no child in G(x), or vice versa) can be easily recovered from any 

tetrachromatic cubelet. 
We describe the construction informally first: n, the number of subdivisions per 

dimension, will be 2 3N, that is, the cube of the number of nodes of G(x). The vast 
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majority of the points are going to be colored 0. For example, all points on the 
three faces containing (0, 0, 0) are colored 0, except for points on the edges to the 
other faces that cannot be legally colored 0. To each of the other three faces we 
assign a different legal color among 1, 2, 3 and give all its points this color (except 
for the single boundary edge where this color is not legal). The vertex (1, 1, 1) takes 
color 1, say. Note that the cubelet containing this vertex is the only one on the 
exterior that contains all three "rare" colors 1, 2, and 3. Since we have said that the 
vast majority of points are colored 0, the cubelets where all three rare colors meet 
are very interesting, since they are suspect tetrachromatic cubelets. These tri- 
chromatic cubelets will in fact form thin "lines" within the cube. If any of these lines 
ever touched the main, 0-colored part of the cube, we would immediately have a 
tetrachromatic cubelet. For this reason, these lines are almost always surrounded 
by protective "tubes" (Fig. 7). The points in these tubes are colored with the three 
rare colors, separated into three distinct sectors as shown. The circular order of the 
three sectors will determine a "direction" in the tube; that is, we shall think that the 
tube "moves" in the direction for which the colors 1, 2, and 3 appear in the 
clockwise order. The thickness of al l  tubes (in units of 1/n) will be an adequately 
large integer, such as 10; call it 0. 

The purpose of the tubes is to simulate paths in G(x). Since the tubes are essen- 
tially determined by the line at their core, we shall informally describe these lines 
first. The vertices of G(x) (except for the isolated ones, those that have neither 
parent nor child) will be themselves simulated also by short tubes (of length a few 
multiples of 0). The vertices are all arranged on a straight line very close to (a few 
O's away from) the edge (1, 1, 1)-(1, 1, 0) of the overall cube and parallel to it 
(Fig. 8). This line is divided into 2 N equal parts, and vertex j of G(x) is simulated 
by a short tube within the j t h  subdivision. Node 11 .. .  1 of G(x) (adjacent to the 
standard leaf) is thus located next to the vertex (1, 1, 1) of the cube, which is, very 

FIG. 7. The tubes. 
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Fla. 8. The broken line, schematically. 

appropriately, the known origin of the trichromatic lines. Incidentally, all 

tetrachromatic cubelets (solutions of the problem) will lie on this line, in positions 

corresponding to nonstandard source or sink vertices of G(x). 
Similarly, each pair of vertices of G(x) will be assigned a position on a line 

parallel to and near the edge (0, 0, 0)-(1, 0, 0) of the cube. Only those pairs that 

correspond to directed edges of G(x) will be assigned short tubes. Note that the two 
edges of the cube chosen to host these short tubes are orthogonal and skewed to 

each other, on parallel faces. Each short tube representing a vertex of edge of G(x) 
will have a beginning and an end, and its direction will be from the beginning to 

the end. 

We can now complete our sketch of the construction: For each edge (i, j) of G(x), 
there is a straight-line tube from the end of the tube corresponding to i to the 
beginning of the tube corresponding to (i, j), and one from the end of the (i, j)  tube 
to the beginning of the j tube. Because edges and vertices are arranged far apart from 

one another, and on lines that are skewed and orthogonal to each other, an easy 

geometric argument proves that the connecting lines never come close to each 

other. 
Care must be taken so that the division of tubes into monochromatic sectors 

passes smoothly from one piece of tube to the next (this will be achieved by 
slowly "rotating" the sectors appropriately). It should be intuitively clear now that 

the tetrachromatic cubelets sought are precisely at the beginnings or ends of 
those vertices of G(x) that are nonstandard leaves; this means that the reduction is 

a valid one. It will be crucial to show that our coloring is such that the color of 
each point can be decided locally, based only on x, M, and the coordinates of the 

point. 
We are now ready to describe the construction formally. We shall first describe 

the geometry of the core of the tubes (a possibly disconnected broken line) in terms 
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of G(x), and then we will describe a polynomial-time algorithm for computing the 

color of a point, based only on x, M, and the coordinates of the point. 

Let us fix 0 = 10 (the thickness of the tubes in units of 1/n). We are assuming that 
x is long enough so that 2 N is much larger than 03 (for small x, a standard reduc- 

tion is used, say). The broken line will consist of straight-line segments. Since the 

line and its segments are directed, each segment has a beginning and an end, both 

points of the subdivision. For  each node i of G(x) that is not isolated, where i is 
an integer between 1 and 2 N -  1, there is a segment from point B ( i ) =  (n--02, 
n--O 2, ( i+1)22N--02) to point E( i )=(n - -O  2, n--O 2, ( i+1)22N--202) (we are 

omitting the factor 1In in coordinates of points). Note that we are also omitting the 

standard leaf 0, since we are picking up its path from the next node, 11-. .  1. For  

each pair of nodes (i, j )  such that there is a directed edge (i, j )  from i to j, we have 
a broken line from E(i) to B'(i, j ) =  (21vi + 22Nj+ 02, 02, 02), from there to E'(i, j ) =  
(2Ui + 22Nj+ 202, 02, 02), and from there to B(j). Finally, there is a segment from 

(n, n, n) to (n - 02, n - 02, 02). See Fig. 8 for a schematic illustration of the construc- 

tion. Call a point from which a segment starts but no segment ends a source; the 

opposite is called a sink. It is easy to see that the construction guarantees the 
following: 

LEMMA 1. The broken line described has a source at (n, n, n). Any other point is 
a source if  and only if it is of  the form B(i) and i is a nonstandard source of  G(x). 
A point is a sink if  and only if  it is o f  the form E(i), and i is a sink of  G(x). 

So far we have essentially shown that an intermediate problem, that of finding 

non-standard sources and sinks in a directed broken line with breakpoints that are 

points in a cube, given by an algorithm that recognizes its breakpoints in the cube 

and their connections, is PPAD-complete. The purpose of the remaining part of the 
construction is to reduce this problem to 3D SPERNER. 

The next step of our construction is to create appropriate "tubes" around the 
broken lines described so far. We first describe the colors of the points in the 

exterior of the cube. Any point of the form (0, x, y), (x, 0, y), or (x, y, 0) with 

x, y < n obtains color 0. Any point of the form (n, x, y) takes color 1. Any point of 

the form (x,n, y), with x < n ,  obtains color 2. And any point of the form 

(x, y, n), x, y < n, takes color 3. All other points will obtain color 0 unless they are 
0 or closer to the broken line. We shall have to describe how one can easily decide 

this from the coordinates of a point, and then describe how the correct color among 
1, 2, 3 is chosen for each such point. 

Let p = (x, y, z) be a point in the interior of the cube. There are two cases. If p 
is at a distance of less than 22~v from the line (2, 02, 02), where all B's and all E's 

lie, then it is easy to see that there are at most two such points close enough to it 
and thus at most three lines and two points to check. If on the other hand, p is at 
a distance greater than 22N from the line (2, 02, 02), then (see Fig. 9) a segment 
connecting that line to the line (n - 02, n - 02, 2) (where all B's and all E's lie) and 

passing 0 close to p can only originate from an interval of length at most 02 on the 
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FIG. 9. Determining the closest segment. 

line (n - 0 2, n - 0 2, 2). However, on such an interval at most one B and one E can 

exist and thus at most three lines and two points must again be checked. 

LEMMA 2. There is a polynomial-time algorithm which, given M, x, and point p 
returns "'yes" i f  p is closer than 0 from any part of the broken line, and returns "no" 
i f  there is no part of  the broken line closer than 0 + 1 to p. 

It is thus easy for a point to decide whether its color is 0 or not. It is somewhat 

more involved to decide between the three rare colors. Consider any segment of the 

broken line. By the construction so far it is surrounded by a tube of radius between 

0 and 0 + 1. Consider the cross section of the tube with a plane perpendicular to 

the segment (Fig. 10). We shall define the boundaries of the three colors in the tube. 

In fact, we need only define the boundary between colors 1 and 2, as the other two 

will be determined by rotations of 120 ° . 

FIG. 10. The three sectors. 
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For the tubes on the (n - 02, n - 02, 2) line, as well as for the tube beginning at 

vertex (1, 1, 1), the boundary is the direction towards the (1, 1, 1)-(1, 1, 0) edge of 
the cube (note that, appropriately, this edge also separates the faces colored 1 and 
2). This assures that there is no tetrachromatic cubelet near vertex (1, 1, 1). For the 
tubes along the line (2, 02, 02), this is much less crucial; let us say that the boundary 
is in the direction towards the (0, 0, 0)-(1, 0, 0) edge of the cube. 

What happens when a segment ends and another begins? The tubes then ,,turn" 
as well. We assume that the boundary changes so that it forms the same angle with 
the normal to the plane defined by the two segments (Fig. 11). We have thus 
defined the boundary for all tubes, except for those going between the two lines. 
Even for these, this latter convention defines the boundary at their two endpoints. 
Naturally, the boundaries at the two endpoints may not coincide. Then the 
boundary is completely determined by the following rule: We assume that the 

boundary rotates in the clockwise direction at a constant rate so that it coincides with 

the two boundaries at the endpoints, and it makes less than a full  clockwise rotation 

totally. This completes the definition of the coloring. 

LEMMA 3. There is a polynomial-time algorithm which, given M, x, and a point p 

decides the correct color for  point p. 

Proof  If p is on the exterior, this is easy. Otherwise, we first determine whether 
p is close to a segment by the algorithm in Lemma 2; if not, the color is 0. 
Otherwise, the algorithm determines the boundaries between the colors at the cross 
section of the tube, where it belongs, and decides on the color according to the 
position of p on the cross section. | 

FIG. 11. Turning a tube. 
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The algorithm of Lemma 3 can be easily rendered as a Turing machine M', 
whose description can be constructed in polynomial time from the input x and the 
description of M; it is in fact the output of our reduction. Finally, from a 
tetrachromatic cubelet we can easily recover a nonstandard leaf of G(x). 

LEMMA 4. A tetrachromatic cubelet always contains as a vertex either B(i), where 
i is a nonstandard source of G(x), or E(i), where i is a sink of G(x). 

Proof The only places where the three rare colors meet is at cubelets at the core 
of the tubes. And the only places where these cubelets are not surrounded by a tube 
are the ones corresponding to nonstandard leaves. | 

This completes the proof of Theorem 14. | 

COROLLARY. The problems BROUWER,  KAKUTANI,  and EXCHANGE 
E C O N O M Y  are PPAD-complete. 

Proof For BROUWER, we can assign a small "displacement" vector to each 
color and define a Brouwer function which at the points is the point plus the 
displacement associated with its color. The function is then extended to the cube by 
interpolation and to the simplex by any convenient continuous mapping. The other 
two problems are generalizations of BROUWER. | 

THEOREM 15. TUCKER in three dimensions is PPAD-complete. 

Sketch. The proof is very similar to that of Theorem 14, and we only present 
the basic idea, namely, how to implement "tubes" in the context of Tucker's lemma. 
The idea is shown in Fig. 12 for two dimensions: The tube is a thin region of - l ' s ,  
"protected" from touching its environment of + l's by thin layers of + 2's and - 2's. 
Obviously, the tube starts at the origin, and the only solution of Tucker's problem 
is at the end of the tube. Once more, we need the third dimension to avoid the 
crossing of tubes implementing edges of G(x). I 

By applying the reduction implicit in the proof of the Borsuk-Ulam theorem in 
Section 3, we obtain 

COROLLARY. B O R S U K - U L A M  is PPAD-complete. 

In fact, the idea in Fig. 12 yields a result analogous to the lower bound in 
[HPV] (the proof is omitted). 

THEOREM 16. Any algorithm for solving B O R S U K - U L A M  in the (d+ l)-dimen- 
sional sphere, with d> 1, within e (that is, finding an x such that I f ( x ) - f ( - x ) l  ~< e) 
using the machine that computes f as an oracle requires (l/e) cd steps for some 
c>0.  
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~' +2~ 

FIG. 12. The construction for TUCKER (two dimensions). 

5. RELATED CLASSES AND OPEN PROBLEMS 

We have introduced and studied PPA and PPAD, two apparently important syn- 

tactic subclasses of TFNP;  PLS [ JPY]  is another such class. Another important 
source of "inefficiently constructive" proofs of existence is Lovfisz's local lemma 

[Sp].  We can define a class PLL (for polynomial local lemma). 2 A problem A in 

PLL is defined in terms of a polynomial algorithm M, much like PLS and PPA. 
Given input x, the set of possible solutions is again {0, 1 } ~p(Ixl)]. M takes as inputs 

triples of the form string--integer-string; on input (x, j', 2) (where x is the original 

input, 2 is the empty string, andj<~p(Ixl)) M generates a set D j c  {1, 2, ..., p(]x])}, 

with [Dj[ ~< log Ix[ for all j. Intuitively, the Dis  are the domains of local conditions 

on the strings. On input (x,j, y) where 1 <~j<~p(lxl) and y e  {0, 1} I°jl, M outputs 

"yes" or "no" (whether or not the string satisfies the local conditions). 

To define the desired output for input x, let N(x,j)  be { i ¢ j  :Dic~Djvafg}, and 

let a(x, j)  be the number of y's for which M(x, j, y) = "yes" (note that these sets 

and quantities are polynomial-time computable, because the length of the y's is 

logarithmic in that of x). If it so happens that for some j 

a(x, i) 1 

i e N ( x , j )  e 

2 Our definition builds on ideas by J. Kratochvil and M. Fellows [Kra], who defined a sequence of 
classes PLL[k], one for each size of the Dis in our definition. 

571/48/3-11 
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then the correct output is the string "local lemma does not apply"; otherwise, the 
correct output is any string z in {0, 1} Ep(Ixl)] s u c h  that M(x, j ,  ZIDj)="no" for all 
j ~ q. The existence of at least one such string z is guaranteed by the local lemma 
[Sp]. It is easy to see that FP ~_ PLL __. TFNP. 

Class PLL contains several interesting problems in combinatorics, for which no 
polynomial algorithm is known. Examples: Given a directed graph with indegree 
and outdegree eight, find an even cycle [All l; or, given a set of clauses with eight 
literals in each, and with at most 10 appearances of each variable, find a satisfying 
truth assignment [Kra] .  In fact, it has some (unfortunately, rather unnatural) com- 
plete problems. Certain important problems in PLL have been recently shown to 
be in FP (in fact, NC l-A12]). For example: Given an appropriately sparse regular 
hypergraph, find a coloring of its vertices with two colors so that no hyperedge is 
monochromatic. Despite this breakthrough, however, a general technique for 
making the local lemma constructive seems to remain an important open question. 

If we rely on the crude probabilistic method, the situation is much less 
interesting. Define for a moment the class PPM (for polynomial probabilistic 
method) to have the same definition with PLL, except that the condition now 
becomes weaker: 

a(x,j) >_ 
j = l  21DJI ~ 1 .  

If this condition does not hold, a simple argument establishes that at least one 
string satisfying M(x, j, zip j)= "no" for all j~< q exists [Sp]. In fact, a calculation 
shows that a constant fraction of all strings satisfy this condition, and hence finding 
one is solvable by a randomized algorithm: PPM ~_ FZPP (the class of search 
problems that can be solved conclusively by randomized algorithms). A little more 
care establishes a stronger result. 

PROFOSITION 2. PPM = FP. 

The algorithm in the proof of Proposition 3 finds the bits of z one-by-one, always 
choosing the bit that maximizes the probability that a string satisfying all condi- 
tions on the remaining bits exists. Unfortunately, there seems to be no obvious way 
of extending this strategem to PLL. 

Are there other natural examples of inefficiently constructive proofs of existence, 
or have we exhausted all such naturally occurring problems? Let us end by intro- 
ducing another subset of TFNP which seems to be distinct from FP and the classes 
defined above: A problem in the class PPP (for polynomial pigeonhole principle) 3 
is again defined in terms of a machine M. Given an input x, the set of ,,solutions" 
is once more S(x)= y,~p(Ixl)l and for any y ~ S(x), M(x, y)~ S(x). The desired out- 
put is either a solution y e S(x) such that M(x, y) = 00 . . .  0, or a pair of y, y' ~ S)x 
such that M(x, y )=M(x ,  y'); one of the two is guaranteed to exist by the 
pigeonhole principle. It is easy to see that PPP has a rather natural complete 

problem: 

3 The same class was independently defined by Steve Cook [Co]. 
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PIGEONHOLE CIRCUIT. Given a Boolean circuit C with n inputs and n out- 

puts - -by  this we mean a directed acyclic graph with nodes labeled AND (indegree 

two), OR (indegree two), NOT (indegree one), x; with 1 <i<~n (indegree zero), 

and with n designated output nodes--ei ther find an input x such that C(x)= O n 
(here by C(x) we denote the output of C on input x, defined the obvious Way) or 

two inputs x ~ x' such that C(x)= C(x'). 

It is perhaps amusing to note that the same problem only with monotone circuits 
(Boolean circuits without N O T  gates) is in FP  (Proof If the circuit is monotone, 

then it is easy to see that among 0;1 ~- +;, i = 0, ..., n, either there are two inputs that 

produce the same output or an input that outputs 00- . -0) .  For  another example, 
the following natural problem is in PPP,  but is not known to be in FP  (or 

PPP-complete). 

EQUAL SUMS. Given n positive integers whose sum is less than 2 " -  1, find two 

subsets with the same sum. 

As it turns out, P P P  is closely related to much more familiar issues. Recall that 

a one-way permutation is a polynomial-time algorithm ~r mapping X n to itself for 

each n, such that for all x ¢  y, z~(x)¢ 7r(y) such that it is exponentially hard to 

recover x from 7r(x). The existence of such algorithms is a widely accepted 

strengthening of P # NP. 

PROPOSITION 3. I f  PPP = FP then one-way permutations do not exist. 

Proof Suppose that P I G E O N H O L E  CIRCUIT is in FP. Then we could invert 

any alleged one-way length-preserving polynomially computable permutation ~r by 

the following: Given x, in order to find a y such that l r (y )=  x, we turn the algo- 

rithm for ~ (on inputs of length Ixt) into a circuit, and add an exclusive-or of the 

output with the bitstring x. We then apply to the resulting circuit C the assumed 

polynomial algorithm for P I G E O N H O L E  CIRCUIT. Since ~ is a permutation, the 

algorithm cannot return two inputs with the same output, so it must return a y 

such that C(y)= 0; that is, I t (y )=  x. | 

As was observed by Steve Vavasis and Mihalis Yannakakis, P P P  is also related 
with the other classes we considered. 

PROPOSITION 4. PPAD ~_ PPP. 

Proof We can reformulate any problem in PPAD with graph G as a problem 
in P P P  by defining To(x) to be equal to: (a) x itself if x is a sink; (b) GZ(x) if x is 

a nonstandard source; and (c) G(x) otherwise. It is easy to see that from any 
confluence of values of zr we can recover a nonstandard source or a sink of G. | 
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There is a host of open problems left open by this work. We mention some 
below: 

(1) Define other complexity classes that are syntactic subclasses of TFNP 
and containing natural, important problems, by isolating other styles of "inef- 
ficiently constructive proofs of existence." We currently know of no such problems. 

(2) Naturally, one has to consider whether PPA=FP .  Even the weaker 
result PPAD -- FP would have the remarkable consequence that BROUWER e FP, 
obviously by an algorithm that somehow circumvents the lower bound in [HPVl. 
We consider this very unlikely. 

(3) Is 2D-SPERNER PPAD-complete? At present we seen no way of 
defeating the problem created by crossings of the tubes. (A similar difficulty is 
present at the two-dimensional case of TUCKER.) The graph G(x) related to any 
problem in PPA is, of course, always planar, but this cannot be used, as the 
construction requires strictly local knowledge at each point. If 2D-SPERNER is not 
PPAD-complete, then we have an interesting hierarchy of problems collapsing to 
the third level, where 1D-SPERNER represents FP (it embodies binary search in 
an exponential domain), 3D-SPERNER represents PPAD, and 2D-SPERNER, 
some other intermediate class. 

(4) Can we show more problems complete for PPA and PPAD--especially 
ones that do not have a Turing machine embedded in the input? For example, is 
SMITH PPA-complete? We strongly suspect that it is. Also, is the "equal sums 
problem" complete for PPP? 

(5) Is PPA = PPAD? If we define a version of PPAD so that we are only 
looking for a nonstandard sink, not a source (a class apparently adding no natural 
problems of interest), is this version equal to PPAD? (In a preliminary version of 
this paper [Pa2] it was erroneously stated that it is.) Is PPP = PPAD? 

(6) Is PPAD a subset of PLS? Is PPA related to FZPP? 

(7) Although our complexity classes group together total functions whose 
totality is proved by fairly elementary techniques (the parity argument, the 
pigeonhole principle, and so on), apparently these proofs are still not elementary 
enough. It follows from the results in Sam Buss's thesis [Bul that, if the proof of 
totality for a function in FNP can be expressed in the logical language S~ 
(a natural formulation of polynomially bounded arithmetic), then the function is 
polynomially computable. The question thus arises: As a small first step towards 
separating these classes from FP, can one show that for some of our problems 
totality cannot be shown within this language? It is known that a relativized 
version of the pigeonhole principle cannot be proved in the S 1 framework. 

(8) I suspect that all these classes can be separated in all possible ways by 
oracles. See [BCPP] for several such separation results. 
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(9) Finally, is FACTORING in one of these classes (or some other class 
capturing a more general combinatorial style of existence proofs)? We would not 
be very surprised if it were, as the arguments underlying Fermat's theorem and 
Pratt's proof [Pr]  do have a subtly combinatorial flavor. 

ACKNOWLEDGMENTS 

While wondering aloud about the problems in this paper, I benefited tremendously from discussions 
with several people. Nimrod Megiddo introduced me to problems NASH and P-LCP and collaborated 
with me in my first attempt at understanding the issue. Mihalis Yannakakis encouraged me to look for 
a syntactic formulation of PPA. Steve Vavasis pointed out to me the difficulty related to the directed 
version of the parity argument, by catching a key error in an earlier version of Theorem 14. Noga Alon 
brought to my attention many of the references related to the local lemma and Chrvalley's theorem, and 
Svatopluk Poljak reminded me of Smith's theorem. Mike Saks turned me to the local lemma and 
suggested Proposition 3. Elias Koutsoupias pointed out Proposition 2, and Steve Vavasis and Mihalis 
Yannakakis, Proposition 4. Emo Welzl suggested the EQUAL SUMS problem, and Sam Buss, the 
connection fo S~. Steve Cook independently came up with the idea of the class PPP based on the 
pigeonhole principle. Manuel Blum and Stuart Kurtz contributed to my understanding of the issue of 
"semantic classes." Finally, my coauthors in [BCPP]  made several valuable corrections and suggestions. 

REFERENCES 

[AFK] 

[Al l ]  
[AI2] 

[AD] 

[BCPP]  

[Be] 

[Bu] 

[Co] 
[CD] 

[Fr]  

[FT]  

[HV] 

[GN]  

N. ALON, S. FRIEDLAND, AND G. KALAI, Regular subgraphs of almost regular graphs, 
J. Combin. Theory Ser. B 37, No. 1 (1984), 79-91. 
N. ALON, private communication, May 1990. 
N. ALON, A parallel algorithmic version of the local lemma, in "Proceedings, 1991 FOCS," 
pp. 586-593. 
K. J. ARROW AND G. DEBREU, Existence of an equilibrium for a competitive economy, 
Econometriea 27, No. 3 (1954). 
P. BEAME, S. A. COOK, C. H. PAPADIMITRIOU, AND T. PITASSI, The relative complexity of NP 
search problems, manuscript, 1993. 
C. H. BENNET, "[TIME, SPACE] (T, S)_~ REVERSIBLE [TIME, SPACE] (T 1"58s, S log T) 

for Multitape Turing Machines," IBM Yorktown Heights report, Novermber 1984. 
S. Buss, "Bounded Arithmetic," Bibliopolis, Naples, Italy, 1986; Ph.D. thesis, Princeton 
University, 1985. 
S. A. CooK, private communication, February 1991. 
R. W. COTTLE AND G. B. DANTZIG, Complementary pivot theory of mathematical program- 
ming, Linear Algebra AppL 1 (1986), 103-125. 
R. M. FgEUND, Variable dimension complexes. Part I. Basic theory, Math. Oper. Res. 9, No. 4 
(1984), 479-497. 

R. M. FREUND AND J. RODD, A constructive proof of Tucker's combinatorial lemma, 
J. Combin. Theory Ser. A 30 (1981), 321-325. 

M. HIRSCH AND S. VAVASIS, Exponential lower bounds for finding Brouwer fixpoints, in 
"Proceedings, 1987 FOCS," pp. 401-410; M. HmSCH, C. H. PAPADIMITRIOU, AND S. VAVASIS, 
Exponential lower bounds for finding Brouwer fixpoints, J. Complexity 5 (1989), 379-416. 
D. GALE AND H. NI~.ID6, The Jacobian matrix and global univalence of mappings, Math. 
Ann. 159 (1965), 81-93. 



532 CHRISTOS H. PAPADIMITRIOU 

EJPY] 

[Kra] 
[Kou] 
[Kr] 

[Le] 

[LH] 

[Lo] 

IMP] 

[Pa l l  

[Pa2] 

[PSY] 

[PPT] 

[Pr] 
[ss] 

[Si] 

[Sp] 

[Th] 

[To] 

[Uz] 

D. S. JOHNSON, C. H. PAPADIMITRIOU, AND M. YANNAKAKIS, HOW easy is local search?, in 
"Proceedings, 26th Annual Symp. Foundations Comput. Sci., 1985," pp. 39-42; J. Comput. 
System Sci. 37 (1988), 79-100. 
J. KRATOCnVm, private communication, July 1990. 
E. KOUTSOUPIAS, private communication, August 1990. 
M. W. KRENTEL, Structure of locally optimal solutions, in "Proceedings, 30th Annual Symp. 
Foundations Comp. Sci., 1989," pp. 216-221. 
C. E. LEMICE, Bimatrix equilibrium points and mathematical programming, Management Sci. 
11 (1965), 681-689. 
C. E. LEMKE AND J. T. HAWSON, JR., Equilibrium points in bimatrix games, J. SlAM 12 
(1964), 413-423. 
L. LovAsz, "Combinatorial Problems and Exercises," North Holland, Amsterdam, 1981. 
N. MEGIDDO AND C. H. PAPADIMITRIOU, "m Note on Total Functions, Existence Theorems, 
and Computational Complexity," IBM Research Report RJ 7091, 1989. 
C. H. PAPADIMITRIOU, The adjacency relation on the travelling salesman polytope is 
NP-complete, Math. Programming (1977). 
C. H. PAPADIM~TR~OU, On graph-theoretic lemmata and complexity classes, in "Proceedings, 
FOCS, 1990. 
C. H. PAPADIM1TRIOU, A. S. SCHAFFER, AND M. YANNAKAKIS, On the complexity of local 
search, in "Proceedings, STOC, 1990." 
S. POLJAK, D. TURZIK, AND P. PUDLAK, Extensions of k-subsets to (k + 1)-subsets: Existence 
versus constructability," Comment. Math. Univ. Carolin. 23, No. 2 (1982), 337-349. 
V. R. PRATT, Every prime has a succinct certificate, SlAM J. Comput. 5, (1974). 
H. SCARF AND J. SHOVEN (Eds.), "Applied General Equilibrium Analysis," Cambridge Univ. 
Press, Cambridge, UK, 1984. 
M. SIPSER, On relativization and the existence of complete sets, in "Proceedings, 9th ICALP, 
1982." 
J. SPENCER, "Then Lectures on the Probabilistic Method," SIAM, CBMS-NSF Regional 
Conference Series, No. 52, Philadelphia, 1987. 
A. THOMASON, Hamilton cycles and uniquely edge colourable graphs, Ann. Discrete Math. 3 

(1978), 259-268. 
M. TODD, Orientation in complementary pivot algorithms, Math. Oper. Res. 1, No. 1 (1976), 
54-66. 
H. UZAWA, Walras's existence theorem and Brouwer's fixpoint theorem, Econ. Stud. Quart. 13 
(1962), 59-62. 


