
DOI: 10.1007/s004549910012

Discrete Comput Geom 23:171–189 (2000) Discrete & Computational

Geometry
© 2000 Springer-Verlag New York Inc.

On the Complexity of the Union of Fat Convex Objects in the Plane∗

A. Efrat1 and M. Sharir1,2

1 School of Mathematical Sciences, Tel Aviv University,
Ramat Aviv 69978, Israel
{alone,sharir}@math.tau.ac.il

2 Courant Institute of Mathematical Sciences, New York University,
New York, NY 10012, USA

Abstract. We prove a near-linear bound on the combinatorial complexity of the union of
n fat convex objects in the plane, each pair of whose boundaries cross at most a constant
number of times.

1. Introduction

Let C be a collection ofn compact convex sets in the plane, satisfying the following
properties:

(i) The objects inC areα-fat, for some fixedα ≥ 1; that is, for eachc ∈ C there
exist two concentric disksD ⊆ c ⊆ D′ such that the ratio between the radii of
D′ andD is at mostα; see, e.g., [2].

(ii) For any pair of distinct objectsc, c′ ∈ C, their boundaries intersect in at mosts
points, for some fixed constants.

See [21] for more details concerning fat objects in the plane and in higher dimen-
sions. Fat objects have recently been studied rather extensively, because in typical
input scenes objects are very likely to be fat rather than long and skinny. The gen-
eral goal of these studies is to design algorithms that are more efficient when their
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input objects are fat, and this has been successful in many instances, including mo-
tion planning amidst fat obstacles [21], [22], binary space partition for fat objects
[1], [4], visibility, hidden surface removal and depth orders [2], [14], range search-
ing, point location, and data structures for similar kinds of queries [9], [13], [17],
[18].

Our goal in this paper is to derive a near-linear upper bound on thecombinato-
rial complexity of the unionU = ⋃

C, where we measure the complexity by the
number of intersection points between the boundaries of the sets ofC that lie on
∂U .

There are not too many results of this kind. IfC is a collection ofα-fat triangles,1 then
the complexity ofU is O(n log logn) (with the constant of proportionality depending on
α) [16], and this bound improves toO(n) if the triangles are nearly of the same size [2]
or are infinite wedges [10]; see also [3]. See also [23] for additional results concerning
fat polygons. IfC is a collection ofn pseudodisks(arbitrary simply connected regions
bounded by closed Jordan curves, each pair of whose boundaries intersect at most twice),
then the complexity ofU is O(n) [15]. Of course, without any additional conditions,
the complexity ofU can beÄ(n2), even for the case of (nonfat) triangles. Even for fat
convex objects, something like condition (ii) must be assumed, or else the complexity
of the union might be arbitrarily large.

The main result of this paper is

Theorem 1.1. The combinatorial complexity of the union of a collectionC that satisfies

conditions(i) and (ii) is O(n1+c
√

log logn/ logn), for some constant c that depends onα
and s.

Theorem 1.1 constitutes significant progress in the study of the union of planar
objects, an area that has many algorithmic applications, such as finding the maxi-
mal depth in an arrangement of fat objects (see [12]), hidden surface removal in a
collection of fat objects in 3-space [14], and point-enclosure queries in a collection
of fat objects in the plane [13]. The proof of Theorem 1.1 is given in the following
sections, and consists of the following stages. First, in Section 2, we review the no-
tion of regular and irregular vertices, and recall the linear relationship between them
due to Pach and Sharir [19]. Then, in Section 3, we introduce the machinery to be
used in the proof. Informally, if our objects were fat convex polygons, then a near-
linear bound on the complexity of their union is known [16]. Consequently, we replace
each object inC by an inscribed fat polygon, which leaves out a collection of con-
vex “caps,” whose properties are analyzed in detail. Finally, the proof of Theorem 1.1
itself is given in Section 4. The proof is somewhat involved and consists of several
steps. An informal overview of the proof is given at the beginning of Section 4. The
paper is concluded in Section 5 with a discussion of open problems related to our
result.

1 For triangles, there is an equivalent definition of fatness that requires all angles to be at least some fixed
constantα0; in [16], this is calledα0-fatness.
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2. Regular and Irregular Vertices

LetC be a collection ofn compact convex sets in the plane, and letU denote their union.
We assume that these regions are in general position, so that each pair of boundaries
intersect in a finite number of points and properly cross at each point of intersection, and
no three boundaries have a common point. (In this section we make no other assumptions
on C.) As already mentioned, we measure the combinatorial complexity ofU by the
number of vertices of thearrangementA(C) of (the boundary curves of the objects in)
C that lie on∂U . (See [20] for details concerning arrangements; the vertices in question
are points of intersection between pairs of boundaries of regions inC.) We classify the
arrangement vertices into two categories:

regular vertices: these are intersections between pairs of boundaries that intersect at
only two points, and

irregular vertices: these are all the other boundary intersection points.

(In the preliminary version of the paper [11], we have referred to regular and irregular
vertices astouchingandshattering, respectively. The terms regular and irregular are
taken from [19].)

Let R(C) (resp.I (C)) denote the number of regular (resp. irregular) vertices ofU .
We use the following result of Pach and Sharir [19]:

Theorem 2.1.

R(C) ≤ 2I (C)+ 6n− 12,

for n ≥ 3.

3. Caps, Inscribed Fat Polygons, and Their Properties

We now return to the case whereC is a collection of compact convex sets satisfying
conditions (i) and (ii) in the Introduction. Letc ∈ C. We inscribe inc a convex polygon
Pc defined as follows. We choose some constant integer parametert > 12, which also
satisfies

α sin(2π/t)

1− (πα/t) tan(π/t)
< 1 (1)

(clearly, this can always be enforced ift = Ä(α) is chosen sufficiently large), and define
θj = 2π j/t , for j = 0,1, . . . , t − 1. For eachj , let wj = wj (c) denote the (unique)
point on∂c that has a tangent (that is, a supporting line) at orientationθj (tangents are
assumed to be oriented so thatc lies to their left). We also definew′j , for j = 1, . . . , t−1,
to be the point on∂c such that the length of the portion of∂c extending counterclockwise
from w0 to w′j is j/t times the perimeter ofc. Pc is defined to be the convex polygon
whose vertices arew0, . . . , wt−1, w

′
1, . . . , w

′
t−1. (Note thatPc may have fewer than 2t−1

vertices; this will be the case when some pointwi accidentally coincides with some point
w′j , or when∂c contains nonsmooth points whose tangent orientations span a sufficiently
large interval, in which two or more pointswi will coincide.) The differencec\Pc is the
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Fig. 1. The inscribed polygonPc and the corresponding caps; one inner fat triangle is also illustrated.

union of at most 2t − 1 capsof c, where a cap is an intersection ofc with a halfplane.
The chord of a cap is the intersection ofc with the line bounding the corresponding
halfplane. An illustration of such an inscribed polygon and of the corresponding caps is
shown in Fig. 1.

Lemma 3.1. The polygons Pc areα′-fat, for

α′ = α

1− (πα/t) tan(π/t)
.

Proof. Sincec is α-fat, there exist two concentric disksD1 ⊆ c ⊆ D2, with respective
radii r1, r2, such thatr2 ≤ αr1. Clearly,Pc ⊆ D2. Let K be one of the caps that constitute
c\Pc, and assume thatD1 intersects the chordpq of K . It must do so at two points, or
else its interior would have containedp or q, contradicting the assumption thatD1 ⊆ c.
By definition, there exist two tangents toc, τp at p andτq atq, whose orientations differ
by at most 2π/t , and the distancepq is smaller thanσ/t , whereσ is the perimeter of
c. Let d denote the distance from the centerO of D1 to pq. It is easy to see thatr1 − d
is at most the height topq in the triangle bounded bypq, τp andτq (see Fig. 2), and a
simple exercise shows that this height is at most(pq/2) tan(π/t). Hence

r1− d ≤ pq

2
tan

π

t
<
σ

2t
tan

π

t
≤ 2παr1

2t
tan

π

t
= παr1

t
tan

π

t
,

where the last inequality follows from the fact thatc ⊆ D2. Hence

d ≥ r1

(
1− πα

t
tan

π

t

)
.

This implies that the disk concentric withD1 and having radiusr1(1− (πα/t) tan(π/t))
is contained inPc, and this completes the proof of the lemma.
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Fig. 2. The proof of Lemma 3.1.

Let c ∈ C, and letO denote the common center of two disksD1 ⊆ Pc ⊆ D2,
such that their respective radiir1, r2 satisfyr2 ≤ α′r1. Let pq be an edge ofPc. The
convexity of Pc and the fact thatD1 ⊆ Pc are easily seen to imply that the angleOpq
must be at least the angleβ betweenOp and the tangent toD1 from p, which satisfies
sinβ = r1/|Op| ≥ r1/r2 ≥ 1/α′. Similarly, the angleOqp must also be at least
arcsin(1/α′). It follows that we can find a pointv insideOpq, such that all the angles of
the trianglevpq are at least

β0 = min

{
arcsin

(
1

α′

)
,
π

3

}
.

Note that, by the choice oft in (1),β0 > 2π/t .
We repeat this analysis to each edge of each polygon, and replace the polygonsPc by

the collection of resulting trianglesvpq. We refer to these triangles asinner fat triangles.
Let T = T (C) denote the collection of inner fat triangles. Clearly,|T | ≤ (2t − 1)n. As
an immediate consequence of [16], we have:

Lemma 3.2. The union UT of the triangles inT has O(n log logn) vertices.

Note that the unionUT does not necessarily cover the whole interior of a polygon
Pc. Nevertheless, it covers the portion of any such polygon that lies near its boundary.

Let v be an irregular vertex of∂U , incident to two setsa,b ∈ C. Let Ka, Kb be the
respective caps ofa, b that containv, and letpaqa, pbqb denote their respective chords.
Consider the convex setR= Ka ∩ Kb.

Lemma 3.3. At least one of the chords paqa, pbqb meets∂R.

Proof. Indeed, suppose to the contrary that both chords are disjoint fromR. It follows
that R= a∩ b, and that∂R contains at least four points of intersection between∂a and
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Fig. 3. Two intersecting caps without a chordal intersection.

∂b. Moreover, letO be an interior point ofR, and consider∂Ka and∂Kb as graphs of
two respective functionsr = Ka(θ), r = Kb(θ), in polar coordinates aboutO. Note that
∂R is the graph of the pointwise minimum ofKa andKb. There is an angular intervalIa

over whichKa(θ) is attained at the chord ofKa, and a similar intervalIb for the chord
of Kb. These intervals must be disjoint, or else∂R would overlap at least one of these
chords, contrary to assumption. See Fig. 3.

Let u (resp.w) denote the first vertex of∂R that we encounter as we rotate aboutO
clockwise (resp. counterclockwise) fromIa (clearly, no vertex of∂R has an orientation
in Ia). In the angular interval that runs counterclockwise fromu tow, the boundary ofR
is attained by∂b. Moreover, as we traverse, in counterclockwise direction, the portion
of ∂b that lies on∂Kb, we first encounteru and thenw, and the reverse order is obtained
along∂a. See Fig. 3.

Let θa
u , θa

w denote the orientations of the tangents toa at u andw, respectively, and
let θb

u , θb
w denote the corresponding tangent orientations forb. (If any of these tangents

is not unique, we fix an arbitrary tangent among those that are available.) The circular
counterclockwise order of these four orientations is(θa

u , θ
b
u , θ

b
w, θ

a
w), and they partition

the circular range of orientations into four angular intervals that we denote by(θa
u , θ

b
u ),

(θb
u , θ

b
w), (θ

b
w, θ

a
w), and(θa

w, θ
a
u ). Each of the second and fourth intervals has length at

most 2π/t (since the endpoints of any of these intervals are two tangent orientations
within a single cap), and each of the first and third intervals has length at mostπ (the
total amount by which the tangent to the convex setR can turn at a fixed point of its
boundary is at mostπ ). It follows that each of the lengths of the first and third intervals
is at leastπ − 4π/t > 2π/3.

We now repeat the whole analysis in the last two paragraphs by interchanginga and
b. This yields two verticesu′, w′ of ∂R, such that the turning angle of the tangents to
R at each of these vertices is also greater than 2π/3. It is easily verified that among the
verticesu, w,u′, w′ there exist at least three distinct vertices, or else∂a and∂b would
have intersected at only two points, contrary to assumption. We have thus obtained at
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Fig. 4. Illustrating the various cases in Lemma 3.4.

least three vertices ofR such that the turning angle of the tangents at each of them is
greater than 2π/3, which is impossible, because the overall turning angle for a convex
set is 2π . This contradiction completes the proof of the lemma.

Lemma 3.4. Let Ka be a cap of some set a∈ C, with chord ea, and let1b be an inner
fat triangle inT , obtained from the polygon Pb, for some b∈ C, such that the chord eb
of1b (i.e., the side of1b that is also a chord of an adjacent cap of b) crosses∂Ka. Then
one of the following cases must occur:

(i) ea crosses∂1b (as in Fig. 4(i)).
(ii) Ka contains a vertex of1b that is an endpoint of eb (as in Fig. 4(ii)).

(iii) 1b contains a vertex of Ka (as in Fig. 4(iii)).
(iv) ∂Ka and∂1b cross exactly twice, at two points that lie on∂a and on eb, and ea

is disjoint from Ka ∩ 1b. Furthermore, let Kb denote the cap of b that shares
the same chord eb with 1b. Then either Kb contains an endpoint of ea (as in
Fig. 4(iv.a)),or ∂a and∂b intersect only twice(as in Fig. 4(iv.b)).

Proof. Suppose that cases (i) and (ii) do not occur. That is,ea does not cross∂1b and
no vertex of1b that is an endpoint ofeb lies in Ka. Theneb must intersect∂Ka at two
points,u, v, both lying on∂a. Thereforeeb splitsKa into two subregions, the regionK ′a
that containsea, and the complementary regionK ′′a . Denote the range of the orientations



178 A. Efrat and M. Sharir

Fig. 5. Two patterns of intersection of a capKa and an inner fat triangle1b.

of the tangents toa at the points ofKa by (θ0, θ
′
0), whereθ0 < θ ′0 ≤ θ0+ 2π/t . Clearly,

the orientations ofea and ofeb also lie in this range. Two cases can arise:

Case(1):1b overlaps K′a and is disjoint from K′′a (see Fig. 5(a)). If K ′a is fully contained
in 1b, thenu andv are the only two points of intersection between∂Ka and∂1b, and,
moreover,1b contains both vertices ofKa, so we are in case (iii). Otherwise, since, by
assumption,1b does not intersectea and does not have a vertex insideK ′a, one of its
other edges,f , must also cross∂Ka twice, at two pointsw, z, lying on ∂a, so that the
four pointsw,u, v, z appear in this order along∂Ka. In this case the orientation off
also lies in the range(θ0, θ

′
0), and thus the angle betweene and f , which is≥ β0, is at

most 2π/t , a contradiction.

Case(2):1b overlaps K′′a and is disjoint from K′a (see Fig. 5(b)). We claim that in this
case1b fully containsK ′′a , sou andv are the only two intersection points of∂Ka and
∂1b. Since the orientations ofeb and of the tangents (or, rather, any tangents) toa at
u and atv all lie in the range(θ0, θ

′
0), it follows that the angles betweene and these

tangents are both at most 2π/t . However, the angles of1b at the endpoints ofeare both
≥ β0, and are therefore larger. It follows that the triangle bounded bye and by two such
tangents is fully contained in1b, from which the claim follows readily.

Finally, suppose thatKb does not contain any of the endpointsea. Let p andq be the
endpoints ofea, so thatp,u, v,q appear in this order along∂a. Then the portion of∂Kb

along∂b must cross the portion of∂Ka along∂a at least twice, at one pointw between
p andu and at another pointz betweenv andq (see Fig. 4(iv.b)). We claim thatw and
z are the only two intersection points of∂a and∂b. Indeed, suppose, with no loss of
generality, thatea lies along thex-axis and thatKa lies above it. Thenγa ≡ ∂a∩ Ka is a
downward-concavex-monotone arc. Moreover, the absolute value of the orientation of
eb is at most 2π/t , so the orientation of any tangent toγb ≡ ∂b∩ Kb has absolute value
≤ 4π/t , which is easily seen to imply thatγb is alsox-monotone and downward-convex.
It follows thatγa andγb cross each other exactly twice (atw andz). We claim that there
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can be no other point of intersection between∂a and∂b. Indeed, any such point must
lie either in the halfplane belowea or in the halfplane aboveeb. Consider the halfplane
H lying belowea (the second case, where we consider the halfplane aboveb, is treated
in a fully symmetric manner). It is easy to see that any such intersection must lie onγb.
However, ifγb reachesH it must crossea twice. Arguing as above, it follows that the
portion ofγb in H is fully contained in the inner fat triangle ofPa that hasea as a chord,
and hence it cannot intersect∂a at all. This shows that condition (iv) holds, and thus
completes the proof of the lemma. (Note that these arguments also imply that, in any
configuration of case (iv),∂a∩ Ka and∂b∩ Kb can intersect in at most two points; they
intersect in one or zero points if and only ifKb contains an endpoint ofea.)

4. The Analysis of the Complexity of the Union

The proof proceeds by induction onn, keepingα and s fixed. Let F(n) denote the
maximum number of vertices of the union of any collectionC of n compact convex
objects, satisfying conditions (i) and (ii) of the Introduction. We will show thatF(n) ≤
n1+c
√

log logn/logn, wherec is a sufficiently large constant, depending onα ands. By
choosingc sufficiently large, this will hold for alln ≤ n0, where the value ofn0 will be
defined below. Suppose then thatn > n0 and that the claim holds for alln′ < n.

Overview of the Proof. The proof proceeds through several reduction steps, each mak-
ing the problem more restricted. In the first step we exploit the fatness of the objects to
show that the plane can be covered by a system of axis-parallel rectangles such that each
vertexv of the union can be assigned to a rectangleR that contains it so that at least
one of the two sets whose boundaries containv is relatively large with respect toR, and
hence can be stabbed by at least one ofO(1) points scattered aroundR. This is important,
because the boundary of the union of a collectionC1 of convex sets that all contain a
fixed point O can be regarded as the upper envelope of the individual boundaries, in
polar coordinates aroundO, and thus has near-linear complexity. We have thus reduced
the problem into that of bounding the number of “mixed” vertices of the union of two
collectionsC1, C2 of fat convex objects (vertices lying on the boundaries of an object in
C1 and of an object inC2), so that all objects inC1 contain a fixed pointO.

In the second step we replace each object ofC2 by its inner inscribed fat polygon,
and bound the complexity ofU ∗ = U1 ∪ Ũ2, whereU1 is the union ofC1 andŨ2 is
the union of the fat inner polygons of the objects inC2. Each of the unionsU1 andŨ2

has near-linear complexity, so it suffices to bound the number of “mixed” vertices of
the union. By passing rays fromO through each vertex ofU1, we partition the plane
into a near-linear number of wedges, and we bound the number of mixed vertices ofU ∗

within each slice separately, using several charging schemes, where the mixed vertices
are charged to vertices ofU1 or of Ũ2, leading to a near-linear bound on the number of
these vertices.

Finally, in the third step we bound the number of mixed vertices of the union of
C1 ∪ C2. The analysis here is somewhat more involved. Several kinds of vertices can be
charged to vertices of unions analyzed in the preceding steps. Other kinds of vertices are
charged to intersections of boundaries that lie at shallow depth, meaning that they are
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not vertices of the union but are contained in only a small number of objects. Using the
Clarkson–Shor analysis technique, this leads to a recurrence formula forF(n), whose
solution yields the desired bound.

Step I. For eachc ∈ C, let Qc denote a smallest axis-parallel square enclosingc. We
construct a two-dimensional hereditary segment tree on the collectionQ = {Qc | c ∈ C}
as follows. We construct a one-dimensional segment treeT1 on thex-projections of the
squares inQ. We makeT1 hereditary, as in [5], by propagating a squareQc that is
normally stored at some nodeξ of T1 to all ancestors ofξ . In this manner, each node
ξ of T1 stores two lists: the standard listL1(ξ) of squares stored atξ (we refer to these
squares aslong), and a listS1(ξ) of squares that were propagated toξ from its (proper)
descendants (we refer to these squares asshort). The total length of all these lists is still
O(n logn).

We now take each nodeξ of T1, and construct a secondary hereditary segment tree
T (ξ)

2 on they-projections of the squares inL1(ξ) ∪ S1(ξ). Again, each nodeη of any
secondary tree stores two lists: the standard listL2(η) of “long” squares, and a listS2(η)

of “short” squares, propagated from the proper descendants ofη. The total size of the
structure isO(n log2 n).

Let v be a vertex of the union, lying on the boundaries of two setsa,b ∈ C. We take
the leafζ of T1 whosex-interval contains thex-coordinate ofv, and consider the path
from ζ to the root ofT1. There is a unique nodeξ on that path such that one ofQa, Qb

is stored atL1(ξ) and the other square is stored atL1(ξ) ∪ S1(ξ). Repeating this for the
secondary treeT (ξ)

2 and they-coordinate, we obtain a unique nodeη of T (ξ)

2 (in fact of
the whole structure) such thatv lies in the rectangleRη, defined as the cartesian product
of the x-interval associated withξ and they-interval associated withη, and such that
one of the squaresQa, Qb is stored atL2(η) and the other is stored atL2(η) ∪ S2(η).

Our strategy is thus to iterate over all verticesη of all the secondary treesT (ξ)

2 , and,
for each fixedξ, η, prove a near-linear upper bound on the number of verticesv of U ,
incident to a pair of objectsa,b ∈ C, satisfying

• v ∈ Rη;
• both squaresQa, Qb are inL2(η) ∪ S2(η) (and thus also inL1(ξ) ∪ S1(ξ)); and
• at least one of these squares is inL1(ξ), and at least one is inL2(η).

We prune the setsL2(η), S2(η), so as to retain only squaresQa whose objecta intersects
Rη. Clearly, thea andb above are not pruned by this rule. We continue to use the same
notationL2(η), S2(η) for the pruned sets.

Let ξ andη be fixed.

Lemma 4.1.

(a) Suppose that the height of Rη is larger than or equal to its width. Then there exists
a set Pη of O(1) points, all lying in the rectangle R′η obtained by scaling up Rη
by a factor of2 about its center, such that any a∈ C with Qa ∈ L2(η) has a
nonempty intersection with Pη.

(b) Suppose that the height of Rη is smaller than its width. Then there exists a set Pη
of O(1) points, as above, such that any a∈ C with Qa ∈ L1(ξ)∩ (L2(η)∪S2(η))

has a nonempty intersection with Pη.
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Proof. Consider the proof of (a). Leta ∈ C be such thatQa ∈ L2(η). Since (i)a
intersectsRη, (ii) the y-projection ofQa contains that ofRη, (iii) the y-projection of
R′η is at least as large as itsx-projection, and (iv)a is α-fat, it follows that the area of
a ∩ R′η is at least some fixed portion of the area ofR′η (see [13]). Hence, if we place a
sufficiently dense grid ofO(1) points withinR′η, at least one of them will lie ina. The
proof of (b) is fully symmetric.

Let Pη be the point set yielded by Lemma 4.1, and fix a pointp in Pη. Let C1(p)
(resp.C2(p)) denote the collection of setsa ∈ C that contain (resp. do not contain)p,
and whose enclosing squaresQa are inL2(η) ∪ S2(η). The preceding analysis implies
that each vertexv of U that satisfies the above conditions has at least onep ∈ Pη such
that one of the sets whose boundaries containv lies in C1(p) and the other set lies in
C1(p) ∪ C2(p).

All these reductions imply that it suffices to solve the following problem: We are given
two familiesC1, C2 of α-fat convex objects in the plane, each pair of whose boundaries
intersect at mosts times. We are also given that all the objects inC1 contain a fixed point,
which from now on we take to be the origin. We want to obtain a near-linear upper bound
for the number of vertices of the union ofC1∪ C2 that lie on the boundary of at least one
set inC1.

Once this has been accomplished, we sum these bounds, for the setsC1(p), C2(p),
over theO(1) points p ∈ Pη, and over all nodesξ ∈ T1 and η ∈ T (ξ)

2 , to obtain
an overall near-linear bound. The exact details are somewhat more complex, because
they involve the derivation of a recurrence formula forF(n); see toward the end of the
proof.

Put m1 = |C1| andm2 = |C2|. Let U1 denote the union ofC1. If we represent the
boundary of everyc ∈ C1 as the graph of a functionr = rc(θ) in polar coordinates, the
boundary ofU1 is the graph of the upper envelope of these functions. Since any pair
of these functions intersect in at mosts points, the number of vertices ofU1 is at most
λs(m1) [20].

For eacha ∈ C2, we construct an inner fat inscribed polygonPa, as in Section 3, with
the additional proviso that the vertices ofPa also include the two points on∂a that have
extreme clockwise and counterclockwise orientations about the origin. (Sincea does not
contain the origin, these points are well defined, except that any of them may actually
be replaced by a radially directed segment on∂a; in this case, the two endpoints of such
an interval are assumed to be vertices ofPa.)

Let Ũ2 denote the union of the polygonsPa, for a ∈ C2. Note that any vertex of̃U2 is
also a vertex of the union of the inscribed fat triangles of the polygonsPa. By the result
of [16] (see also Lemma 3.2), the number of vertices ofŨ2 is thusO(m2 log logm2).

Step II. As an intermediate step, we bound the complexity ofU ∗ = U1 ∪ Ũ2. It suffices
to bound the number of “mixed” vertices ofU ∗, that is, vertices that lie on both∂U1 and
∂Ũ2. To begin with, we take eacha ∈ C1 and modify its inner fat inscribed polygonPa

by adding all the vertices of∂U1 that lie on∂a as vertices ofPa. We obtain a collection
of new polygonsP∗a , such that any one of them may now have more than a constant
number of vertices. Still, the overall number of their vertices isO(λs(m1)). Note that
the new polygonsP∗a are at least as fat as the original polygons.
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Fig. 6. The unionU1 of C1 and its decomposition into slices. A sliceσ and its containing wedgeW(σ ) are
shown.

Next, we take each pointw which is either a vertex ofU1 or a vertex of somePa, for
a ∈ C1, and connect it by a straight segment to the origin. These segments partitionU1

into “slices,” each bounded by two of these segments and by a portion of the boundary
of a single set inC1. Each slice is further subdivided, by thechord connecting its two
vertices, into a cap (as in Section 3) and a triangle with the origin as a vertex. We also
define thewedge W(σ ) of a sliceσ to be the positive hull ofσ (it is the wedge with the
origin as apex and with two bounding rays containing the segments boundingσ ). See
Fig. 6 for an illustration.

Let v be amixedvertex, that is, a vertex lying on the boundary of a seta ∈ C1 and
on the boundary of a polygonPb for someb ∈ C2. Letσ be the slice ofU1 that contains
v, and lete be the edge ofPb that containsv. Suppose first thatPb and the origin lie
on opposite sides of the line containinge. If e intersectsσ ∩ ∂a at two points, then
Lemma 3.4(iv) implies thatPb (or, more precisely, the inner fat triangle ofPb having
e as an edge) andσ intersect in just two points (one of which isv), sov is a regular
vertex ofU ∗ (viewed as the union of the slices and the inscribed fat polygons of the sets
in C2). By Theorem 2.1, the number of such vertices is at most 2I + 6(m1 +m2)− 12,
whereI is the number of irregular vertices ofU ∗. It thus suffices to bound the number of
irregular mixed vertices ofU ∗, so the above case can be ignored. Ife intersectsσ ∩ ∂a
only atv, then it must intersect the chord ofσ , or end inside the cap. This means that if
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we follow e from v into σ , we encounter there a vertex of the unionS1∪ Ũ2, whereS1 is
the star-shaped polygon composed of all the slice chords. We then chargev to the first
such vertex that we encounter, and note that this charging is unique.

Lemma 4.2. The complexity of S1 ∪ Ũ2 is O((λs(m1)+m2) log logn).

Proof. We take the modified inscribed fat polygonsP∗a , for a ∈ C2, and replace each
of them by their corresponding inner fat triangles, as in Section 3. It is clear that∂S1 is
contained in the boundary of the union of these triangles. It follows that every vertex of
S1∪ Ũ2 is also a vertex of the union ofO(λs(m1)+m2) α

′-fat triangles, and the lemma
thus follows from [16].

Hence, the number of mixed verticesv in the preceding case, in whichPb and the
origin lie on opposite sides of the line containinge, is O((λs(m1)+m2) log logn).

We may therefore assume thatPb and the origin lie on the same side of the line
containinge. The intersection ofeand ofσ ∩ ∂a consists of one or two points. Suppose
first that there is only one point of intersection, namelyv. We tracee from v into σ , and
note that the line containinge must intersect the boundary of the cap ofσ at another
pointv′. If we encounter a vertexw of Ũ2 (which can be the endpoint ofe or an earlier
point one) before reachingv′, we chargev tow and note thatw can be charged at most
twice, once along each of the two edges of∂Ũ2 incident to it. The overall number of
such verticesv is O(m2 log logm2).

Otherwise we reachv′, which, by assumption, necessarily lies on the chord ofσ . As
above,v′ is a vertex of the unionS1∪Ũ2, and we can chargev tov′, note that the charging
is unique (it can occur only once, along the single edge of∂(S1 ∪ Ũ2) that is incident to
v′ and lies on∂Ũ2), and conclude, by Lemma 4.2, that the number of verticesv in this
subcase isO((λs(m1)+m2) log logn).

Suppose then thate intersectsσ ∩∂a at two points,v andv′, and that its portion within
σ contains no vertex of̃U2 (otherwise we can chargev to the first such vertex alonge,
as above). Hencev′ is also a vertex ofU ∗. If e terminates within the wedgeW(σ ) of
σ , we can chargev andv′ to such an endpoint. This charging is “almost unique”: Since
these wedges are pairwise openly disjoint, the endpoint determinese (there are in fact
two choices fore) andσ (there can be two choices forσ if the endpoint lies on a wedge
boundary), sov andv′ are also determined (at worst there can be four such pairs). The
total number of verticesv in this subcase is thusO(m2). We may thus assume thate
fully crosses the wedgeW(σ ).

Traceσ ∩ ∂a from v and fromv′ into Pb. If we reach an endpointw of σ ∩ ∂a along
one of these arcs (as in Fig. 7(a)), we chargev andv′ to w, note that, as above,w can
be charged at most twice, and conclude that the number of verticesv in this subcase
is O(λs(m1)). Otherwise, each of these arcs is crossed by another edge of the inner fat
triangle1 bounded bye (see Figure 7(b)). The analysis in Lemma 3.4 implies that it is
impossible that such an edgee′ 6= ecrosses both arcs, and it is impossible for such ane′

to cross the same arc twice (in both cases one of the angles of1would have to be at most
2π/t < β0). Since the common endpointz of e ande′ lies outside the wedgeW(σ ), it
follows that as we tracee′ from z, we first meet the wedge boundary (still outsideσ) and
then crossσ ∩ ∂a. Since this must also hold for the third edgee′′ of 1, it follows that
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Fig. 7. Two cases wherePb and the origin lie on the same side of the line containinge.

the vertexq of 1 wheree′ ande′′ meet must lie insideσ . We can thus chargev andv′

to q, note that the charging is unique (knowingq we also knowσ and1), and conclude
that the number of verticesv in this subcase isO(m2).

We have thus shown that the complexity ofU ∗ is O((λs(m1)+m2) log logn).

Step III. We finally turn to estimate the number of mixed vertices of the unionU of
C1 ∪ C2.

First, we take all the mixed vertices ofU ∗ and connect them to the origin, thereby
splitting some of the slices ofU1 that were constructed at step II into subslices. The total
number of new slices isO((λs(m1) + m2) log logn). Second, we concentrate only on
irregular vertices of the union. We later exploit Theorem 2.1 to take into account regular
vertices as well.

Let v be an irregular vertex ofU , lying on the boundary of a seta ∈ C1 and a set
b ∈ C2. Let σ be the (new) slice ofU1 containingv. With no loss of generality, we may
assume that when we follow∂σ from v in the counterclockwise direction, we enter into
b. The complementary type of irregular vertices (where we enterb as we go clockwise
from v along∂σ ) will be handled by a fully symmetric analysis.

We further classify these vertices into two subcategories: For eachb ∈ C2, the two
tangents from the origin tob divide∂b into two arcs, one being “visible” from the origin
and the other being “invisible.” We refer to these portions as thelower boundaryand
upper boundaryof b, respectively. We consider separately verticesv as above that lie on
the lower boundaries of the sets ofC2 and vertices that lie on the upper boundaries.

Irregular Vertices on Lower Boundaries. Let v andv′ be two vertices as above, lying
within a single new sliceσ and incident to the lower boundaries of two respective and
distinct setsb, b′ ∈ C2, see Fig. 8. With no loss of generality, assume thatv lies clockwise
to v′. Consider the portionγ of ∂a betweenv andv′. The arcγ partially overlaps the
interior of b nearv and it must cross∂b again. If it only crosses the lower boundary of
b, then it is easily checked that∂a and∂b intersect only twice, sov is a regular vertex,
contrary to assumption. Hence,γ also crosses the upper boundary ofb. However, then,
by construction,γ must also cross the boundary ofPb, and thus it must contain a vertex



On the Complexity of the Union of Fat Convex Objects in the Plane 185

Fig. 8. The case of vertices on lower boundaries.

of U ∗, which implies, by construction, thatv andv′ cannot belong to the same new slice,
again a contradiction.

We thus conclude that any new slice can have at most one vertex of the union of
the type under consideration (i.e., a vertex that lies on the lower boundary of the set of
C2 it is incident to and we enter this set as we follow∂σ counterclockwise from that
vertex), so the number of these vertices isO((λs(m1)+m2) log logn). By repeating the
analysis to the complementary type of lower-boundary vertices, we conclude that the
overall number of vertices on lower boundaries isO((λs(m1)+m2) log logn).

Irregular Vertices on Upper Boundaries. We fix the new sliceσ , as above, and consider
the numberNσ of sets inC2 whose upper boundaries are incident to verticesv of the
above kind that lie onσ ∩ ∂a. If such a setb has a supporting line that passes through
the origin and is contained in the wedgeW(σ ), then we charge the corresponding vertex
or vertices to that line. This charging is almost unique, since the line determines both
the setb and the sliceσ . Hence the number of verticesv of this kind is at mostsm2. We
can therefore exclude such pairs(b, σ ) from our analysis.

Letv andv′ be two vertices as above, lying within a single new sliceσ , incident to the
upper boundaries of two respective and distinct setsb, b′ ∈ C2, and have the property that
we enterb (resp.b′) as we move fromv (resp.v′) along∂σ counterclockwise; see Fig. 9.
With no loss of generality, assume thatv lies clockwise tov′. Consider the portionγ of
∂a (the set ofC1 that boundsσ ) betweenv andv′. As above, the arcγ partially overlaps
the interior ofb nearv and it must cross∂b again. If it crosses the lower boundary of
b, then, arguing as above,γ must contain a vertex ofU ∗, which is impossible. Hence
γ only crosses the upper boundary ofb. The same argument also implies thatγ cannot
cross the lower boundary ofb′.

We claim that∂b and∂b′ must intersect within the wedge bounded by the two rays
Eov, Eov′, emerging from the origin towardv andv′, respectively. Indeed, if this were false,
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Fig. 9. ∂b and∂b′ must cross inside the wedge bounded between the raysEov and Eov′.

then either the rayEov would have to intersectb′ in a segment disjoint from the segment
ov, or the ray Eov′ would have to intersectb in a segment disjoint fromov′ (in the present
subcase, both rays must cross both objects). However, either of these configurations
would imply thatγ crosses the lower boundary of eitherb or b′, which, as we have just
argued, is impossible. This establishes our claim. See Fig. 9 for an illustration.

We choose some threshold parameterk, and consider the following two cases:

Case(a): Nσ ≤ k. Since the boundary of each of theseNσ sets intersects∂a in at most
s/2 verticesv of the type considered here, it follows thatσ ∩ ∂a contains at mostsk/2
such vertices. Summing this bound over all new slicesσ with Nσ ≤ k, the overall number
of vertices ofU of this type in these slices is at most

O(k(λs(m1)+m2) log logn).

Case(b): Nσ > k. As argued above, the boundary of each of theNσ sets ofC2 that are
incident to the vertices under consideration intersects at leastk other such boundaries
within the angular span ofW(σ ). It follows that the arrangementA(C2) containsÄ(kNσ )
vertices atlevelat mostk (i.e., vertices contained in at mostk other sets ofC2). On the
other hand, arguing as in case (a), the number of verticesv of the above kind that
are incident toσ ∩ ∂a is ≤ sNσ /2. Hence, the number of these vertices is at most
O(Nσ /(kNσ )) = O(1/k) times the number of vertices ofA(C2) within W(σ ) at level
at mostk. Summing this inequality over all relevant slicesσ , the overall number of such
vertices is

O

(
1

k
F≤k(C2)

)
,
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whereF≤k(C2) is the number of vertices ofA(C2) at level at mostk. Using the Clarkson–
Shor probabilistic analysis technique [6], we haveF≤k(C2) = O(k2F(m2/k)). By the
induction hypothesis, we have

F
(m2

k

)
≤
(m2

k

)1+c
√

log log(m2/k)/ log(m2/k)
= m2

k
· 2c
√

log log(m2/k) log(m2/k)

≤ m2

k
· 2c
√

log(m2/k) log logn.

Hence, collecting all bounds, and taking into account regular vertices too (using Theo-
rem 2.1), we obtain that the number of mixed vertices ofU is at most

C
(
k(λs(m1)+m2) log logn+m2 · 2c

√
log(m2/k) log logn

)
,

for some constantC that depends onα ands.
As outlined above, we now sum this bound over all nodesξ andη of our segment

tree and over the constant number of “stabbing points” (the points ofPη) used in each
secondary nodeη, observing that the sums of the quantitiesm1, m2 are bothO(n log2 n).
Hence the total number of vertices of the union is

C
(
kλs(n) log2 n log logn+ n log2 n · 2c

√
log(n/k) log logn

)
. (2)

Using the inequality

√
logn−

√
log(n/k) = logk√

logn+√log(n/k)
≥ logk

2
√

logn
,

we obtain

Cn log2 n · 2c
√

log(n/k) log logn ≤ Cn log2 n · 2c
√

logn log logn

2(c/2) logk
√

log logn/ logn

≤ n · 2c
√

logn log logn · C log2 n

k(c/2)
√

log logn/ logn
.

We now choosek = 2c′
√

logn log logn, for some constantc′ < c, and observe that the
above bound becomes

n · 2c
√

logn log logn · C log2−cc′/2 n¿ n · 2c
√

logn log logn,

provided thatc andc′ are sufficiently large. The left term of (2) is also seen to be much

smaller thann · 2c
√

logn log logn, assumingc > c′ andn is sufficiently large. Hence, with
an appropriate choice ofn0, c, andc′, the induction assertion also holds forF(n). This
concludes the proof of Theorem 1.1.
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5. Conclusions

In this paper we have established a near-linear upper bound on the complexity of the
union ofn compact convexα-fat objects so that each pair of object boundaries intersect
in at most some constant number of points.

This result raises several open problems:

• The first problem is to reduce the upper bound to a bound of the formO(n polylog
(n)). A significant step toward this goal has recently been accomplished (after the
original submission of this paper) by Efrat [7] and by Efrat and Katz [8], with
the only reservation that the sets that they consider must essentially have bounded
curvature.
• Another problem is to extend our result to nonconvex fat regions. Here the notion

of fatness is less clearly defined; see [21] for several possible definitions. The
previously cited papers [7], [8] obtain partial results in this direction.
• Finally, the challenge is to extend this result to three and higher dimensions. In

3-space the goal is to obtain near-quadratic bounds on the complexity of the union
of fat convex objects of various kinds. Most instances of this problem are wide
open. Even the case of the union of (arbitrarily aligned) cubes is not known.
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