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Abstract. The authors of [Proc. Natl. Acad. Sci. USA, 110 (2013), pp. 6634–6639] proposed
sparse Fourier domain approximation of solutions to multiscale PDE problems by soft threshold-
ing. We show here that the method enjoys a number of desirable numerical and analytic properties,
including convergence for linear PDEs and a modified equation resulting from the sparse approxi-
mation. We also extend the method to solve elliptic equations and introduce sparse approximation
of differential operators in the Fourier domain. The effectiveness of the method is demonstrated on
homogenization examples, where its complexity is dependent only on the sparsity of the problem and
constant in many cases.
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1. Introduction. PDEs with multiple length scales are fundamental to mod-
eling various physical problems, including composite materials, wave propagation in
inhomogeneous media, crystalline solids, and flows with high Reynolds number (fluid
mechanics). Typically, these problems involve a wide range of scales, with each scale
corresponding to a level of physical processes. However, in some cases, the problem
is scale separable, in the sense that the mathematical representation of the dynamics
involves one fine scale and one coarse scale. Even in this case, accurate numerical
methods for solving these PDEs can be computationally expensive since resolving
both the coarse and fine scales simultaneously requires a spatial resolution dominated
by the fine scale.

Over the past decades, various approaches have been taken to overcome this diffi-
culty. In some cases, it is possible to derive an asymptotic approximation for the effect
of small scales on the solution [11]. When this is not possible, many other techniques
have been proposed. A multiscale finite element method can be used to solve linear
elliptic homogenization equations (see [8]) and has found many applications to other
multiscale problems. The equation-free methods use accurate small scale and short
time solvers to capture fine scale behavior and use them to govern the related coarse
scale behavior [9]. The heterogeneous multiscale method [14] is a general numerical
approach which also uses the scale separation of the problem to generate solvers on
the micro- and macroscopic levels. In [10], a projection based approach is used to con-
struct an adaptive multiscale algorithm for elliptic homogenization equations. And
more recently, a sparse transform method [5] exploits the scale separability of linear
homogenization problems to construct a fast direct solver. The body of literature on
multiscale models is large, and we mention only some of the popular methods. For
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ON THE COMPRESSIVE SPECTRAL METHOD 1801

more detail on general numerical methods for multiscale problems see [27, 14] and the
citations therein.

In this work, we will focus our attention on linear PDEs with multiscale behavior
either in the medium or in a source term. Following the work of [13], which used
an L1 optimization method to compress the Fourier coefficients of the solution, we
build efficient solvers for periodic multiscale problems. In particular, we will use the
sparse Fourier structure of solutions to construct numerical methods which solve the
problem directly, without separating the micro- and macroscales explicitly.

L1 optimization and its related models are at the center of many problems in the
fields of imaging science and data analysis; see, for example, [2, 17, 18, 16]. Due to the
connection with sparse models for compressive sensing, recent works have introduced
L1 techniques for numerical PDEs. For example, in [13], L1-regularized least squares
was used to sparsely approximate the Fourier coefficients in multiscale dynamic PDEs
(and in this work we expand that approach). In [21, 22, 23], eigenfunctions with com-
pact support were constructed to efficiently solve problems in quantum mechanics.
Also, in [24], an L1 nonlinear least squares model was used to sparsely recover co-
efficients of a second order ODE which are related to constructing intrinsic mode
functions. In [25], low-rank libraries are used to sparsely approximate solutions to
dynamical systems and thereby identify bifurcation regimes. Some theoretical results
are provided in [20] for PDEs with L1 terms, related to some of these models. For
more detailed analytic results, see [26, 1, 28], which laid the theoretical groundwork
for these equations.

In this paper, we continue the work of [13] to leverage the sparsity of solutions
in order to design an efficient numerical scheme. However, we also impose sparsity
of the update operator to improve the complexity while retaining a similar level of
accuracy. We show some theoretical results for the sparse spectral scheme and sparse
operator-sparse solution spectral scheme. In particular, we provide error bounds
between the solution and the sparse approximation as well as complexity bounds on
the algorithm. Also, we continue to make connections between L1 based methods
and multiscale problems through a denoising interpretation of the homogenization
expansion of the solution.

The outline of this work is as follows. In section 2, we recall the explicit scheme
from [13] and in section 3 propose an implicit version as well as a sparse operator
approximation. Theoretical results are provided in section 4. A discussion on well-
posedness is given in section 5, and a denoising interpretation of the method is given
in section 6. In section 7, some algorithmic analysis is provided. The algorithm is
tested on numerical examples in section 8, with concluding remarks given in section
9.

1.1. Notation.
• a (or A for anisotropic problems) – the medium inhomogeneity. â′ is the
sparse approximation of â.

• μ – the shrink size variable. μ′ is the corresponding variable for sparse oper-
ator approximation.

• k – the Fourier space variable, with positive and negative frequencies.
• Q – either a general numerical scheme or the matrix corresponding to a one-
step linear numerical scheme.

• L – an elliptic operator. L̂ is the operator when applied in the Fourier domain
and L̂h is its discretization. L̂′

h is the sparse approximation.
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Fig. 1. Left: Solution of (2.1) with Fourier-sparse initial data in physical space. The small
rectangle shows the axis limits of the zoomed in plot to the right. Right: Zoomed in, showing fine
scale oscillations. Bottom: solutions in Fourier space (the y-axis for all Fourier space plots is on a
log10 scale). Of the N = 2048 Fourier coefficients, only 153 have magnitude larger than 10−10.

2. Preliminaries. We will consider linear multiscale problems where the solu-
tions are sparse in the Fourier domain [5, 13]. For example, consider the parabolic
problem

∂uε

∂t
− ∂

∂x

(
a(x/ε)

∂uε

∂x

)
= 0 on [0, 2π] periodic,

uε(x, 0) = uε
0(x), a(x/ε) oscillatory.

(2.1)

Figure 1 shows the solution in physical and Fourier space. This phenomenon is com-
mon in multiscale PDEs: distinct length scales manifest strikingly as sparsity in the
frequency domain.

To compute solutions which are truly sparse in the frequency domain (and not just
approximately sparse with many noisy small magnitude coefficients), it was proposed
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in [13] to solve an �1-regularized least squares problem to obtain a sparse approxima-
tion of û (the Fourier transform of u). We summarize the method here.

Given numerical iterates ûn, . . . , ûn−q and a numerical update scheme of the form

ûn+1 = Q(ûn, . . . , ûn−q),

the scheme is modified by defining the auxiliary variable v̂ = Q(ûn, . . . , ûn−q) and
solving

(2.2) ûn+1 = argmin
w

μ‖w‖1 + 1

2
‖w − v̂‖22,

where the �1 norm for complex arguments w is ‖w‖1 =
∑

i |wi|, where | · | denotes
magnitude. Note that the �1 norm is taken in the Fourier domain and not physical
space.

For a one-step linear updating scheme, (2.2) can be written as

ûn+1 = argmin
w

μ‖w‖1 + 1

2
‖w −Qûn‖22,

where Q is the matrix which advances the discretized solution forward in time. L1-
regularized least squares is amenable to a number of efficient solution methods; see,
e.g., [19]. The problem can also be generalized to any basis or overcomplete dictionary,
but we restrict our attention to Fourier modes. In fact, due to the orthogonality of
the Fourier modes, (2.2) decouples and the minimizer can be given exactly:

ûn+1 = shrink(v̂, μ) := max(|v̂| − μ, 0)
v̂

|v̂| .

For a concrete example, the forward Euler method applied to ∂uε

∂t = ∂
∂x

[
a(x/ε)∂u

ε

∂x

]
has the form

ûn+1 = ûn + dt i k â ∗ (i k ûn),

where k is the wave number and ∗ represents convolution. This becomes

ûn+1 = shrink ( ûn + dt i k â ∗ (i k ûn), μ )

in the sparse spectral form. By exploiting sparsity in the frequency domain, the
proposed method can rely on sparse data structures to allow for high resolution with
faster numerical simulations.

3. Proposed methods. In this section, we will discuss two new extensions of
the sparse spectral method, namely an implicit version and a sparse operator/sparse
solution version. Each comes with its own advantages, which we will analyze in
subsequent sections.

3.1. Implicit variation. For many classes of problems at high spatial resolu-
tion, explicit schemes are impractical due to the severe time step restriction required
for stability. We can construct an implicit scheme for the problems we are considering,
which avoids these restrictions at the expense of solving a more complex L1 problem
at each time step.
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1804 ALAN MACKEY, HAYDEN SCHAEFFER, AND STANLEY OSHER

Consider the general linear parabolic equation ut + Lu = f with schemes of the
form

Qûn+1 = ûn + dtf̂h.

The simplest implicit version is backward Euler:

(I + dtL̂h)û
n+1 = ûn + dtf̂h,

where L̂ denotes the representation of L in the Fourier basis, L̂h denotes the discretized
version of this operator with respect to a grid size h > 0, and f̂h denotes the Fourier
transform of f sampled at the corresponding grid points.

For a scheme of this form, the analogue of (2.2) is

(3.1) ûn+1 = argmin
w

μ‖w‖1 + 1

2
‖Qw − (ûn + dtf̂h)‖22,

which does not have a simple explicit representation. In addition, the optimality
condition for (3.1) requires inverting the matrix QTQ, which will often be badly
conditioned.

When L is a uniformly elliptic operator, the eigenvalues of Q = I + dtL̂h are
positive, and so we can instead consider the sparse scheme defined by

(3.2) ûn+1 = argmin
w

μ‖w‖1 + 1

2
wTQw − wT (ûn + dtf̂h).

Similarly for time-independent problems, i.e., Lu = f , the corresponding energy
is

û = argmin
w

μ‖w‖1 + 1

2
wT L̂hw − wT f̂h.

Note that when μ = 0, this is the standard variational principle for elliptic operators.
We will see that solving the implicit schemes with the L1 term directly is often too
slow to be practical. The reason is that directly applying this variational principle to
find the solution does not use the fact that the solution is sparse in order to speed up
computations. However, in section 7.1 we will show that it is possible to construct an
efficient algorithm for approximately solving the resulting optimality condition arising
from (3.2).

3.2. Sparse operator approximation. For uniformly elliptic linear operators,
for example of the form

Lu = −div(a(x, x/ε)∇u),

the standard spectral discretization

L̂hû = k â ∗ (k û)

requires a convolution at each iteration, which can be costly even when û is sparse.
However, because the diffusion coefficient a is scale separated, we can define a sparse
approximation of L̂h by

L̂′
hû = k â′ ∗ (k û),
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where â′ is a sparse approximation of â. We can choose â′ to solve

â′ = argmin
w

μ′‖w‖1 + 1

2
‖w − â‖22,

which again results in a closed form solution given by the soft thresholding â′ =
shrink(â, μ′). An alternative is

â′ = argmin
w

μ′‖w‖0 + 1

2
‖w − â‖22,

where the L0 “norm” ‖ · ‖0 counts the number of nonzero entries. In this case, the
solution is given by hard thresholding â—setting all coefficients smaller in magnitude
than some threshold equal to zero.

Soft thresholding is contractive and benefits from many desirable smoothing prop-
erties which make it preferable for the sparse approximation of the solution, which
will be discussed below in section 6. For a sparse approximation of the operator, the
benefits of a particular choice of thresholding are less clear, and therefore we consider
both.

4. Theoretical remarks. The compressive spectral method, or sparse scheme,
inherits many appealing properties of the underlying numerical method it approxi-
mates. In general, it is at least as stable as the original scheme and retains the order
of accuracy.

4.1. Contraction and linear convergence. The following two theorems show
that the explicit and implicit numerical schemes are contractive. This result is similar
to those found in [1].

Theorem 4.1. For the explicit scheme generating time steps by

ûn+1 = shrink((I − dtL̂h)û
n + dtf̂ , μ),

if ||I − dtL̂h||op ≤ 1, then the iterations are contractive; i.e., ||un+1 − un||2 ≤ ||un −
un−1||2.

Here ‖ · ‖op denotes the �2 operator norm, or largest singular value.

Theorem 4.2. For the implicit scheme, if L̂h is positive semidefinite, then the
iterations are contractive, ||un+1 − un||2 ≤ ||un − un−1||2, for all dt > 0.

The proofs of these two theorems are similar and reside in the appendix.
The method is also convergent. In particular, for the correct scaling of μ, we have

the following theorem.
Theorem 4.3 (linear convergence, explicit scheme). Let S denote a linear spec-

tral numerical update scheme, generating time steps as

ûn+1 = Q(ûn, . . . , ûn−k),

and let Sμ denote the spectrally sparse scheme, which generates time steps as

ûn+1
μ = shrink(Q(ûn

μ, . . . , û
n−k
μ ), μ).

Then if S is consistent and stable (and hence converges), and if μ = O(dt1+δ) for
some δ > 0, then the compressive scheme Sμ converges. If μ = O(dtp) with p at least
the order of the local truncation error of S, then the order of convergence of S is not
impacted.
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1806 ALAN MACKEY, HAYDEN SCHAEFFER, AND STANLEY OSHER

For the implicit scheme, the analogous theorem is the following.
Theorem 4.4 (linear convergence, implicit scheme). Let S denote an implicit

linear spectral numerical update scheme for the PDE ut + Lu = f on a domain Ω
discretized with N grid points, generating time steps as

(I + dtL̂h)û
n+1 = ûn + dtf̂h,

and let Sμ denote the spectrally sparse scheme, which generates time steps according
to (3.2):

ûn+1 = argmin
w

μ‖w‖1 + 1

2
wT (I + dtL̂h)w − wT (ûn

μ + dtf̂h).

Then if S is consistent and stable (and hence converges), and if μ = O(dt1+δ) for
some δ > 0, then the spectrally sparse scheme Sμ converges. If μ = O(dtp) with p at
least the order of the local truncation error of S, then the order of convergence of S
in L2 is not altered.

The proofs can be found in the appendix.

4.2. Sparse operator approximation: Implicit solver. We now consider
the error incurred by the sparse operator approximation proposed in section 3.2. The
continuum case is discussed in detail, and the proof for the case of discretized operators
is completely analogous.

The usual discretization in Fourier space of a general, anisotropic, divergence form
elliptic operator

Lu = −div(A(x)∇u) + b(x) · ∇u+ c(x)u

results in a matrix (corresponding to convolution) which is dense. However, it is still
approximately sparse when the coefficients A and b are. Approximating A and b by
A′ and b′ which are truly sparse in Fourier space yields an operator which is far more
efficient to store and to work with but incurs some error. Theorem 4.5 quantifies this
error.

Theorem 4.5. Let u1 and u2 be solutions to

−div(A1∇u1) + b1 · ∇u1 + c1u1 = f,(4.1a)

−div(A2∇u2) + b2 · ∇u2 + c2u2 = f(4.1b)

on a domain Ω ⊂ R
d with periodic boundary conditions and the constraint∫

Ω

u1 =

∫
Ω

u2 = 0.

Require also that

wTAiw ≥ λ‖w‖2,
ci − 1

2
div(bi) ≥ 0

for i = 1, 2. Then

‖u1 − u2‖H1 ≤ Cλ−2

(
dmax

i,j
‖(Â1)ij − (Â2)ij‖1

+ Cmax
i

‖(b̂1)i − (b̂2)i‖1 + C2‖ĉ1 − ĉ2‖1
)
‖f‖2,
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where C = C(Ω) is the constant from Poincare’s inequality [7], and the Fourier series
of the matrices and vectors Ai and bi are taken entrywise.

This form, in terms of ‖(Â1)ij − (Â2)ij‖1, ‖(b̂1)i − (b̂2)i‖1, and ‖ĉ1 − ĉ2‖1, is
particularly useful because the coefficients will be approximated in Fourier space.
The reader familiar with energy estimates for elliptic equations will see that the
requirements of the theorem are not the most general possible, and the proof can
be modified to handle other cases individually when different estimates are desired.

Proof. Subtracting the first equation of (4.1) from the second and then adding
and subtracting A1∇u2, b1∇u2, and c1u2 gives

−div(A1∇w)− div[(A1 −A2)∇u2] + b1 · ∇w + (b1 − b2)∇u2 + c1w + (c1 − c2)u2 = 0,

and after multiplying by w and integrating by parts, we glean that

λ

∫
Ω

|∇w|2 dx ≤
∫
Ω

∇wTA1∇w +

(
c1 − 1

2
div(b1)

)
w2 dx

≤ ‖A1 −A2‖op‖∇u2‖2‖∇w‖2 + ‖b1 − b2‖∞‖∇u2‖2‖w‖2 + · · ·
‖c1 − c2‖∞‖u2‖2‖w‖2.

Using Poincare’s inequality and ‖A1 −A2‖op ≤ d‖A1 −A2‖∞,

λ

∫
Ω

|∇w|2 dx ≤(
d‖A1 −A2‖∞ + C‖b1 − b2‖∞ + C2‖c1 − c2‖∞

) ‖∇u2‖2‖∇w‖2,

and thus

(4.2) ‖∇w‖2 ≤ λ−1
(
d‖A1 −A2‖∞ + C‖b1 − b2‖∞ + C2‖c1 − c2‖∞

) ‖∇u2‖2.

Similarly, multiplying the equation for u2 by u2, integrating by parts, and applying
Poincare’s inequality yields

‖∇u2‖2 ≤ Cλ−1‖f‖2.

Substituting this into (4.2) and using Poincare’s inequality again, we get

‖u1 − u2‖H1 ≤ Cλ−2
(
d‖A1 − A2‖∞ + C‖b1 − b2‖∞ + C2‖c1 − c2‖∞

) ‖f‖2.
The form stated in the theorem follows after

‖A‖∞ = max
i,j

‖Aij‖∞ ≤ max
i,j

‖Âij‖1

and the analogous inequality with b.
In practice, memory is not a concern due to the convolutional structure of the

matrix L̂h representing an elliptic operator in Fourier space, but the sparse structure
of the operator dramatically reduces computation complexity (section 7.2).

4.3. Sparse operator approximation: Explicit solver. The discrete ana-
logue of Theorem 4.5 covers numerical schemes with implicit time steps, each of
which requires solving an elliptic problem with a sparsely approximated operator.
Effectively, it allows us to estimate

‖Q−1 − P−1‖op,
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where P is a sparse matrix approximating that of the discretized full elliptic operator
Q, and ‖ · ‖op refers to the L2 matrix operator norm, or largest singular value. On
the other hand, for explicit schemes, we are concerned about

‖Q− P‖op,
which we will consider directly.

Theorem 4.6. Let L be the elliptic operator defined by

Lv = −div(a∇v),

and let Q be its Fourier discretization,

Qû = k âh ∗ (k û),
where k denotes the vector of Fourier mode frequencies and ah is the discretized do-
main inhomogeneity coefficient in the elliptic operator. Analogously, let

P û = k â′h ∗ (k û).
Then

‖Q− P‖op ≤ K2‖âh − â′h‖1,
where K is the highest frequency on the grid.

In the case of a square grid [1, . . . , N ]d, K = N/2. The result may be dismaying

at first glance because it appears that the approximation error ‖âh − b̂h‖1 must be
decreased faster than O(1/N2) just to remain stable. However, this type of bound is
natural, since the operators’ norms themselves are

‖P‖op ≈ ‖Q‖op = O(K2).

The large operator norm is normalized by the stability condition dt = O(dx2), so one
can think of these bounds in the update sense as

‖(I − dtQ)− (I − dtP )‖op ≤ ‖âh − â′h‖1.
Proof. The result is a simple consequence of Young’s inequality: ‖f ∗ g‖2 ≤

‖f‖1‖g‖2. We have

‖Q− P‖op = sup
||û||=1

‖(Q− P )û‖2

= ‖k(âh − â′h) ∗ (kû)‖2
≤ ‖k(âh − â′h)‖1‖kû‖2
≤ K2‖âh − â′h‖1.

The proof clearly generalizes to hyperbolic operators of the form Qû = â ∗ (ik û)
as well.

For an example, recall the forward Euler discretization of a parabolic PDE:

ûn+1 = (I − dtL̂h)û
n

over a time interval [0, T ]. If ‖âh − â′h‖1 = δ, approximating Q by P incurs an
additional local truncation error of magnitude δK2dt at each time step.

As the grid is refined, the CFL condition requires that K2dt stay approximately
constant, so that the approximation error per step remains approximately constant.
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5. The modified equation perspective. Using the variational principle for
the explicit scheme applied to the parabolic equation yields the following first order
optimality condition:

0 ∈ ûn+1 − (1 − dtL̂h)û
n − dtf̂h + μ∂‖ûn+1‖1,

which is equivalent to

0 ∈ ûn+1 − ûn

dt
+ L̂hû

n − f̂h +
μ

dt
∂‖ûn+1‖1.

Taking μ = δdt and formally sending dt and h to zero leads to

(5.1) ût + L̂û− f̂ ∈ −δ∂‖û‖1
or

(5.2) ût + L̂û = f̂ − δp(û),

where p(û) denotes the particular element of the subdifferential so that the differential
inclusion (5.1) is an equality. The sparse scheme applied to hyperbolic and elliptic
problems yields analogous modified equations. We consider this to be the modified
equation in the sense that the numerical scheme is directly solving this problem. The
subgradient contribution is a vanishing “compression” term which may be interpreted
as a force which pushes the solution u toward the nearest (in the L1 proximal sense)
union of low dimensional subspaces spanned by the Fourier basis.

Well-posedness for the modified equation is guaranteed via the theory of differ-
ential inclusions on Banach spaces (see, e.g., [1, 4]). The theorem below summarizes
these results in the current context.

Theorem 5.1 (well-posedness). Let u(t) satisfy the differential inclusion

∂tu(t) ∈ −A(u(t))− δ∂||û(t)||L1

with u(0) in the domain of the monotone (single-valued) operator A. Then for all
δ ≥ 0, there exists a unique solution u(t) defined for all t ≥ 0 which is the solution to

∂tu(t) = −A(u(t))− δp(û(t))

for some p ∈ ∂||û(t)||L1 .
Finally, we mention that if we want to directly compare the error between the

solutions of the original and modified equations, the error grows linearly in time (at
worst).

Theorem 5.2. Let u be the solution to

ut + Lu = f,

and let uδ solve

(ûδ)t + L̂ûδ − f̂ ∈ δ∂‖ûδ‖1.
Then

||u(t, ·)− uδ(t, ·)||2 ≤ 2δt.

The proof is direct and can be found in the appendix. Similar results are easily
proved for the elliptic and hyperbolic cases using only that ‖p(û)‖∞ ≤ 1 and standard
energy estimates; this approach also provides a simple alternate proof.
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1810 ALAN MACKEY, HAYDEN SCHAEFFER, AND STANLEY OSHER

6. Denoising perspective. Soft thresholding also appears in early methods for
signal denoising using wavelets [6]. We refer the reader to that work for full details
and list here only the analogues of its major results in the current context.

Consider the following denoising problem: we wish to recover a signal f ∈ R
n

from noisy observations d = f + w, ||w||1 ≤ μ, by soft-thresholding discrete Fourier
transform (DFT) coefficients by μ. This approach enjoys the following properties:

• (Smoothing) The recovered signal fμ satisfies ||fμ||Hk ≤ ||f ||Hk for any

Sobolev norm ‖ · ‖Hk . In particular, |f̂μ(k)| ≤ |f̂(k)| for all frequencies k.
• (Near optimality) fμ is near-minimax:

sup
||f ||

Hk≤C1

sup
||w||1≤μ

||fμ − f ||2l2n ≤ 4 inf
f̃

sup
||f ||

Hk≤C1

sup
||w||1≤μ

||f̃(d)− f ||2l2n ,

where f̃(d) is any other estimator of f .
The smoothing property guarantees that the recovered signal is “noise-free”; the near
optimality property guarantees that for worst-case signals of bounded Sobolev norm
and noise of bounded �1 norm, the result recovered by soft thresholding is nearly the
“optimal” (see [6]).

Next, consider the solution uε to the standard parabolic multiscale problem

∂uε

∂t
− ∂

∂x

(
a(x, x/ε)

∂uε

∂x

)
= 0 on [0, 2π] periodic, uε(x, 0) = uε

0(x).

The theory of asymptotic homogenization (see, e.g., [11]) can be used to show that
at time point tn, the exact solution uε satisfies

uε(x, tn) = u0(x, t
n) + εu1(x, x/ε, t

n) + ε2R(x, tn)

with |R̂(x, t)| ≤ C. This expansion is valid as long as we assume that the equation is
taken on a periodic domain and a(x) is as smooth as we like. For a numerical solution,
the asymptotic expansion can be easily modified to include truncation error τn+1 as
follows: if we let vn+1 denote the numerical solution at time tn+1, then

vn+1 = u0(x, t
n+1) + εu1(x, x/ε, t

n+1) + ε2R(x, tn+1)− τn+1.

This form allows us to draw a connection between the denoising and homoge-
nization problems: for an appropriate threshold choice μ, the compressive spectral
method denoises vn+1 as

vn+1 = u0(x, t
n+1) + εu1(x, x/ε, t

n+1)︸ ︷︷ ︸
signal

+ ε2R(x, tn+1)− τn+1︸ ︷︷ ︸
noise

and attempts to recover the first terms in the asymptotic expansion. This interpre-
tation is valid between any two time steps, but may not hold globally.

7. Efficient implementation. In this section, we describe important details
pertaining to the numerical method and algorithm considerations. Using a concrete
example, we show that a favorable complexity can be achieved.

7.1. The Proximal-Galerkin algorithm. The implicit scheme described above
requires fast minimization of the energy (3.2), and differs from many cases where L1

regularization is added because the problem, e.g., compressed sensing [2], TV min-
imization [12], or basis pursuit [3], is ill-posed without it. For the multiscale PDE

D
ow

nl
oa

de
d 

01
/2

9/
15

 to
 1

31
.2

15
.7

0.
23

1.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

ON THE COMPRESSIVE SPECTRAL METHOD 1811

problem, this is not the case since an appropriately discretized version of (3.2) will be
well-posed and can be solved by inverting a linear system

Qû = f̂ ,

where Q is a positive-definite (and even sparse, in physical rather than Fourier space)
matrix. If the elliptic operator is discretized appropriately, fast and extensively stud-
ied preconditioned conjugate gradient solvers are available. So, to be competitive,
the compressive implicit scheme must leverage sparsity of the solution û to perform
the (approximate) linear inversion Qû = f̂ quickly. For this purpose, we propose the
hybrid proximal gradient descent and Galerkin approximation algorithm described
below, which is related to the procedure described in [5].

First, let D be the diagonal part of Q. Since Q is the matrix corresponding
to a Fourier-space discretized elliptic operator, D is the matrix corresponding to a
multiple of the Fourier-space discretized Laplacian. We take n ∼ 10, μ > 0, ω > 0
and initialize the solution to be zero (i.e., û = 0).

The Proximal-Galerkin algorithm

for j = 1:n do
û = shrink

(
û+ ωD−1(f̂ −Qû), μ

)
;

end for
set I = supp(û);

set û = argmin
w: supp(w)⊆I

1
2‖Qw − f̂‖22;

Return û.

The algorithm begins with a few iterations of the proximal gradient method ap-
plied to the energy

E(w) = μ‖w′‖1 + 1

2
w′TQ′w′ − w′T f̂ ′,

where

Q′ = D−1/2QD−1/2,

f̂ ′ = D−1/2f̂ ,

w′ = D1/2w.

This is a simple Jacobi preconditioning of the analogous energy with Q, w, and f̂ .
Rather than iterating proximal gradient to convergence, which would be too slow, the
algorithm stops after just a few iterations with rough approximation. The support of
that solution is used to identify the Fourier modes with largest magnitude coefficients,
and then a Galerkin approximation is computed over those modes. Due to sparsity
in the Fourier domain, the linear solve associated with the Galerkin part is small and
inexpensive—computational complexity depends on the grid mesh size only through
the sparsity of the solution.

7.2. Algorithm complexity. The pseudospectral approach of computing the
convolution

k â ∗ (k û)
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1812 ALAN MACKEY, HAYDEN SCHAEFFER, AND STANLEY OSHER

uses an FFT, and for an N -gridpoint problem this reduces the computational com-
plexity per iteration from O(N2) to O(N logN). We now consider the computational
complexity of the sparse spectral method, which must be comparable to O(N logN)
to be practical.

Suppose that the sparsely approximated operator is defined as P û = k â′ ∗ (k û),
where the sparsity (number of nonzeros) of â′ is m, and that the sparsity of û is r.
By treating the â′ ∗ û sparse convolution as a summation of sparse vectors, it can be
accomplished with complexity

(7.1) O(mrmin(log r, logm)),

free of any dependence on the full problem size N , by storing the sparse vectors â′ and
û as sorted linked lists and computing the sum as a merge operation, with a priority
queue. For the modest one-time cost of initializing a length N array, the complexity
can be decreased to

(7.2) O(mr)

by leaving the sparse vectors unsorted. We iterate over the mr nonzero coefficients
which must be added and use an auxiliary array to keep track of the partial result.
When a new coefficient of the partial result becomes nonzero, it is placed in a growing
list of indices. After we have visited each of the mr coefficients to be added, we iterate
over the list of nonzero indices, perform the shrink operation on the corresponding
auxiliary array entry holding the partial result, and copy the outcome into a list which
holds the final result. Along the way, we “zero out” the entry of the partial result
array, never incurring another O(N) cost.

Finally, if the problem is elliptic or requires implicit time steps and the Proximal-
Galerkin algorithm is used, the complexity includes a term

O(r3),

the cost of the Galerkin linear solve over the support found with proximal gradient.
Both (7.1) and (7.2) are preferable to the O(N logN) cost of the pseudospectral

method for very sparse problems and in the homogenization limit discussed next
in section 7.3. For the numerical examples considered in this limit, m and r stay
approximately constant, leading to computation time which does not increase as the
grid is refined.

One key to the effective application of the sparse spectral method is proper dis-
cretization. For a typical homogenization problem, we are interested in the solution
of an equation such as

−div(a(x/ε)∇u) = f

for ε close to zero, and we might choose the inhomogeneity coefficient

a(x) = 1 +
1

2
sinπx.

This choice is ideally sparse in the Fourier domain, with only three nonzero entries
regardless of N , using the standard uniform grid. If ε = 1/1000, then â still has
only three nonzeros. However, choosing ε = 1

707
√
2
results in â being completely

dense. These two choices of ε differ by less than 10−6, and the first leverages extreme
sparsity in the problem while the second does not. This example shows that it is
prudent to assume a certain relationship between the grid spacing and ε, considered
next.
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7.3. Homogenization limit. For homogenization problems in particular, where
one is interested in the limit ε → 0, we can keep Nε fixed as the grid is refined. Em-
pirically, we have observed that this keeps the sparsity of the operator and of the
solution approximately constant. For a simple case of this Nε = c (c a constant)
limit, the following theorem guarantees the sparsity of the operator remains fixed
along a subsequence.

Theorem 7.1. Let Lε be the elliptic operator defined as

Lεv = −div(a(x/ε)∇v),

and let

Qε,Nu = k âN ∗ (k û)
be its Fourier discretization on an N -point discretization of [0, 2π). Then Qε,N and
Qε/2,2N are equally sparse; that is,

(7.3) #{k : | ˆa2N (k)| ≥ λ} = #{k : |âN (k)| ≥ λ/2}
for all λ > 0.

See the appendix for a proof. Note that the theorem assumes the standard defi-
nition of the DFT on N grid points,

FN [a(x)](k) =
N−1∑
j=0

a

(
2πj

N

)
e−2πijk/N ,

which is not unitary. This accounts for the appearance of λ/2 rather than λ on the
right-hand side of (7.3). This factor cancels out in the end because with this definition
of the DFT, the �1 norm in Theorems 4.5 and 4.6 should be scaled by 1/N .

The complexities (7.1) and (7.2) become very favorable in the Nε = c limit, where
m and r remain nearly constant or grow approximately logarithmically with N as the
grid is refined. In each case we observed, the overall algorithm complexity is linear or
sublinear in N .

8. Numerical examples. In [13], the authors demonstrated the effective appli-
cation of the compressive spectral method to a variety of problems. Here, we expand
on those results and give examples of the additions to the method proposed in this
paper: the implicit scheme and sparse operator approximation.

8.1. Transport equation, 1D. The PDE considered is the traveling wave equa-
tion

ut + a(x)ux = 0,

x ∈ [0, 2π] periodic,

u(x, 0) = sin(x)

with oscillatory coefficient

a(x) =
1

8
exp

(
0.6 + 0.2 cosx

1 + 0.7 sin 128x

)
.

The update is given by leap frog time discretization:

ûn+1 = ûn−1 − 2dtâ ∗ (ik ûn).
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Fig. 2. Left: True (blue) and sparse operator/sparse solution (green) solutions in physi-
cal space. The two curves lie almost on top of each other. Right: Zoomed in true (blue) and
sparse (green “×”) solutions. Bottom: True (blue) and sparse (red “◦”) solutions in Fourier space.
N = 4096, operator nonzeros = 107, solution nonzeros = 153. Color is available only in the online
version.

We choose the above form for a throughout this section, because it is less sparse than
simple trigonometric functions.

The grid sizes considered are N = 210, . . . , 214, the values of other parameters are
dt = 6.25×10−6, ‖â− â′‖1 = 10−2, μ = 1.2×10−5, and the simulation is run to a final
time t = 0.5.

Figure 2 shows the full spectral and compressive spectral (sparse operator/sparse
solution) solutions on coarse and fine scales. The compressive scheme correctly cap-
tures the largest Fourier coefficients of the solution, discarding all but 3.7%, and the
operator approximation discards all but 2.6%. The “true” solution was computed on
a fine grid with finite difference methods.

Figure 3 shows the L2 error and sparsity of the compressive spectral approxima-
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Fig. 3. Left: Sparse operator/full solution (blue), full operator/sparse solution (green, dashed),
and sparse operator/sparse solution (red “×”) L2 distance to the full spectral solution as the grid is
refined. The y axis has a log10 scale. Right: Number of nonzero Fourier coefficients of the operator
(blue) and solution (green, dashed) as the grid is refined. The y axis has a log2 scale. Color is
available only in the online version.

tions as the grid is refined with dt held constant. Error is computed as the L2 distance
to the full spectral solution. The error of the sparse operator/sparse solution scheme
is dominated by the sparse approximation of the solution; spurious modes in the leap
frog scheme make a sparse approximation of it difficult. Over the range of grids con-
sidered, sparsity of the operator eventually becomes constant while sparsity of the
solution grows about linearly. The complexity of the compressive spectral method is
thus linear in N over the grid sizes considered.

Figure 4 considers the same problem but with a resonant forcing term

f(x) = esin(x/128)
2

with N = 2048 and all other parameters the same as the nonforced problem. The
solution has 11.3% nonzero Fourier coefficients, with ‖ufull − usparse‖2 = 2.5×10−3.
The resonant forcing causes sharp and irregular oscillations at the fine scale, which
make the problem less sparse, but the compressive scheme still captures the correct
behavior.

8.2. Elliptic problem, 1D. The PDE considered is the elliptic problem

−(a(x)ux)x = sin 2x,

x ∈ [0, 2π] periodic,∫
u dx = 0

with

a(x) = exp

(
0.6 + 0.2 cosx

1 + 0.7 sinx/ε

)

such that Nε = 8 and the usual spectral operator discretization:

L̂hû = k âh ∗ (k û) = f̂ .
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Fig. 4. Left: True (blue) and sparse operator/sparse solution (green) solutions with resonant
forcing term in physical space. Right: Zoomed in true (blue) and sparse (green “×”) solutions. Bot-
tom: True (blue) and sparse (red “◦”) solutions in Fourier space. N = 2048, operator nonzeros =
86, solution nonzeros = 231. Color is available only in the online version.

This time we consider the homogenization limit, keeping Nε = 8 with ε = 1
64 ,

1
128 , . . . ,

1
1024 , and set ‖â − â′‖1 = 1× 10−4. Parameter values for the Proximal-Galerkin
algorithm are n = 10, μ = 5×10−8, and ω = 5×10−3.

Figure 5 shows the full spectral and compressive spectral solutions on coarse and
fine scales. Both the sparse solution and operator approximation keep 8.5% of the
coefficients. Note that the full result and the sparse operator/sparse solution result
lie almost on top of each other, even at the resolution of the fine scale.

Figure 6 shows error (L2 distance to the full spectral solution) and sparsity un-
der refinement. “Sparse operator” refers to the solution obtained with the sparsely
approximated operator, using either a high accuracy conjugate gradient solve or the
Proximal-Galerkin algorithm. “Sparse solution” refers to the use of the Proximal-
Galerkin algorithm, with either the full or sparse operator.

Approximation error does not increase while both the solution and the operator
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Fig. 5. Left: True (blue) and sparse operator/sparse solution (green) solutions in physical
space. The small rectangle shows the axis limits of the zoomed in plot to the right. Right: Zoomed
in true (blue) and sparse (green “×”) solutions. Bottom: True (blue) and sparse (red “◦”) solutions
in Fourier space. N = 1024, operator nonzeros = 86, solution nonzeros = 87. Color is available only
in the online version.

sparsity remain approximately constant, leading to computation time approximately
independent of N . With N = 213, the sparse approximation maintains six digits of
accuracy with only 1.1% of the coefficients of both the operator and the solution.

Figure 7 illustrates that for a fixed number of nonzero coefficients, the sparse
operator approximation incurs smaller error than the solution approximation.

8.3. Parabolic problem, 1D. The PDE we consider here is the parabolic equa-
tion

ut − (a(x)ux)x = 0,

x ∈ [0, 2π] periodic,

u(x, 0) = 1 + cos(x− π)
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Fig. 6. Left: Sparse operator/full solution (blue), full operator/sparse solution (green, dashed),
and sparse operator/sparse solution (red “×”) error under the homogenization limit. The y axis
has a log10 scale. Right: Number of nonzero Fourier coefficients of the operator (blue) and solution
(green, dashed) as the grid is refined. Color is available only in the online version.
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Fig. 7. Pareto curves showing the tradeoff between approximation error and sparsity of the
operator (blue) and solution (green, dashed). Color is available only in the online version.

with

a(x) = exp

(
0.6 + 0.2 cosx

1 + 0.7 sinx/ε

)
.

We again consider the Nε = 8 limit, ε = 1
64 ,

1
128 , . . . ,

1
1024 , and set ‖â− â′‖1 = 1×10−2

and dt = 1×10−2 for all N . Parameter values for the Proximal-Galerkin algorithm
are n = 10, μ ranges from 5×10−6 to 6.4×10−6, and ω = 1×10−2.

Figure 8 compares the solutions on coarse and fine scales. The sparse solution
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Fig. 8. Left: True (blue) and sparse operator/sparse solution (green) solutions in physical space.
Right: Zoomed in true (blue) and sparse (green “×”) solutions. Bottom: True (blue) and sparse
(red “◦”) solutions in Fourier space. N = 2048, operator nonzeros = 64, solution nonzeros = 65.
Color is available only in the online version.

retains 3.2% of the coefficients, and the operator is also approximated with 3.2%.
Figure 9 shows error and sparsity under refinement. Approximation error decreases
while sparsity of both the operator and the solution stays constant. The overall
complexity is thus constant in N over the range of grid sizes considered. For this
problem, sparse approximation of the operator incurs most of the error.

8.4. Elliptic problem, 2D. We consider the elliptic problem

−div(a(x)∇u) = 10 sinx sin y,

x, y ∈ [0, 2π] periodic,∫
u dxdy = 0
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Fig. 9. Left: Approximation error of the sparse operator/full solution (blue), full opera-
tor/sparse solution (green, dashed), and sparse operator/sparse solution (red “×”) error under the
homogenization limit. The y axis has a log10 scale. Right: Number of nonzero Fourier coefficients
of the operator (blue) and solution (green, dashed) are constant as the grid is refined. Color is
available only in the online version.
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Fig. 10. Full (left) and sparse (right) solutions on a log scale in Fourier space. Note
that the great majority of coefficients in the sparse solution are exactly zero. N = 1024, ε =
1

128
, operator nonzeros = 1972, solution nonzeros = 1874.

with

a(x, y) = exp

(
0.6 + 0.2 cosx

1 + 0.7 sinx/ε
+

0.6 + 0.2 cos y

1 + 0.7 sin y/ε

)

on an N × N grid such that Nε = 8, with ε = 1
16 ,

1
32 , . . . ,

1
256 and ‖â − â′‖1 = 1.

Parameter values for the Proximal-Galerkin algorithm are n = 20, μ between 4×10−4

and 32×10−4, and ω = 2×10−2.
Because the full and spectral solutions are very close to each other in physical

space and an overlaid comparison of surfaces is difficult, Figure 10 shows the solutions
on a log scale in Fourier space. Of the 220 coefficients in the full solution, the sparse
solution and operator retain just 0.2% while maintaining four digits of accuracy. Fig-
ure 11 shows that approximation error decreases slightly with constant sparsity and
computation time. For some grid sizes, the sparse operator/sparse solution scheme
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Fig. 11. Left: Approximation error of the sparse operator/full solution (blue), full opera-
tor/sparse solution (green, dashed), and sparse operator/sparse solution (red “×”) error under the
homogenization limit. The y axis has a log10 scale. Right: Number of nonzero Fourier coefficients
of the operator (blue) and solution (green, dashed) are constant as the grid is refined. Color is
available only in the online version.
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Fig. 12. Left: energy spectrum decay of the full and sparse solutions. The plot shows just
the largest 4500 coefficients of the full solution, the support of which contains all coefficients of the
sparse solution. Right: fraction of sparse modes appearing among the largest n true modes, as a
function of n.

actually attains a lower error than the sparse operator/full solution scheme, evidence
of the denoising effect discussed in section 6.

To compare the Fourier coefficients of the full and sparse solutions more accu-
rately, the left panel of Figure 12 shows the magnitude of the 4500 largest Fourier
coefficients of the true solution sorted in descending order. The magnitude of the
corresponding sparse solution Fourier coefficients is also shown, with an upward bias
to account for all the wave numbers not present. The right panel shows the fraction of
full solution wave numbers which are captured by the sparse scheme. The compressive
scheme correctly identifies all 500 of the largest modes in the full solution and about
68% of the full solution’s largest 1800 modes.
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9. Conclusion. In this paper, we have proposed a sparse operator approxima-
tion and an efficient method for extending the work of [13] to implicit solvers (section
3). We have proven the convergence of the original compressive spectral scheme [13]
and the new variants, including a modified equation which shows that the effect of
soft thresholding is equivalent to including an L1 subgradient term in the PDE. Also,
we connect the homogenization problem with that of signal denoising via wavelet
thresholding. For PDEs with sparse initial data or forcing terms, the new meth-
ods are asymptotically preferable to the pseudospectral approach. The methodology
presented here could be translated to other pseudospectral methods which employ
alternative bases. Computationally, this amounts to replacing the FFTs in the pseu-
docodes above with the appropriate transformation. This could be useful in cases
where the solutions are sparse against another known basis.

Appendix. Before giving the proofs of the theorems from section 4.1, we recall
the definition of Bregman distance (also known as Bregman divergence).

Definition A.1. Let J be a convex function and u, v be points in the domain of
J . Also let p be an element of the subdifferential of J , i.e., p ∈ ∂J(v). We define the
Bregman distance between u and v as

Dp
J(u, v) = J(u)− J(v) − 〈p, u− v〉.

In general, the Bregman distance is not symmetric and does not obey the triangle
inequality, so it is not a distance in the typical sense.

In what follows, we will also use basic facts regarding monotone operators.
Definition A.2. Let A be a multivalued map from V into itself. We call A

monotone if and only if for any u, v ∈ Dom(A) and any values Au and Av might take
on,

〈u− v,Au−Av〉 ≥ 0.

If A = ∂F is the subdifferential of a convex function, then it is monotone.
We can now give the proof of Theorem 4.1, in which we omit hats for notational

clarity.
Proof. Consider the iterations for arbitrary points un and vn:

μp(un+1) +
un+1 − un

dt
= −L̂hu

n + f,

μp(vn+1) +
vn+1 − vn

dt
= −L̂hv

n + f.

By taking the difference between these two equations we arrive at

μ(p(un+1)− p(vn+1)) +
1

dt
(un+1 − vn+1)− 1

dt
(un − vn) = −L̂h(u

n − vn),

and taking the inner product of this equation with un+1 − vn+1 yields

μ
〈
p(un+1)− p(vn+1), un+1 − vn+1

〉
+

1

dt

〈
un+1 − vn+1, un+1 − vn+1

〉
− 1

dt

〈
un − vn, un+1 − vn+1

〉
=

〈
−L̂h(u

n − vn), un+1 − vn+1
〉
.
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Rearranging terms and taking upper bounds we get the following:

μdt
〈
p(un+1)− p(vn+1), un+1 − vn+1

〉
+ ||un+1 − vn+1||2

=
〈
un − vn, un+1 − vn+1

〉
+
〈
−dtL̂h(u

n − vn), un+1 − vn+1
〉

=
〈
(I − dtL̂h)(u

n − vn), un+1 − vn+1
〉

≤ ||(I − dtL̂h)(u
n − vn)||||un+1 − vn+1||

≤ ||(I − dtL̂h)||op||un − vn||||un+1 − vn+1||.

Note that μdt
〈
p(un+1)− p(vn+1), un+1 − vn+1

〉
is nonnegative by monotonicity of

the subgradient of a convex function. We show this here by using the nonnegativity
of Bregman distance:

0 ≤ Dp
F (u

n+1, vn+1) +Dp
F (v

n+1, un+1)

= F (un+1)− F (vn+1)− 〈
p(vn+1), un+1 − vn+1

〉
+ F (vn+1)

− F (un+1)− 〈
p(un+1), vn+1 − un+1

〉
=

〈
p(un+1)− p(vn+1), un+1 − vn+1

〉
.

Combining the positivity of the subgradient terms with the equation above provides
us with the following bound (assuming ||(I − dtL̂h)||op ≤ 1):

||un+1 − vn+1|| ≤ ||(I − dtL̂h)||op||un − vn|| ≤ ||un − vn||
as desired.

Proof of Theorem 4.2. Considering the optimality condition for the energy (3.2)
defining the implicit scheme, we see that the iterations for un and vn can be written
as

μp(un+1) +
un+1 − un

dt
= −L̂hu

n+1 + f,

μp(vn+1) +
vn+1 − vn

dt
= −L̂hv

n+1 + f.

(If the operator L̂h being considered in (3.2) is not positive semidefinite, then use
(3.1) instead.) By taking the difference between these two equations we arrive at

μ(p(un+1)− p(vn+1)) +
1

dt
(un+1 − vn+1)− 1

dt
(un − vn) = −L̂h(u

n+1 − vn+1).

Next, taking the inner product of this equation with un+1 − vn+1 yields

μ
〈
p(un+1)− p(vn+1), un+1 − vn+1

〉
+

1

dt

〈
un+1 − vn+1, un+1 − vn+1

〉
− 1

dt

〈
un − vn, un+1 − vn+1

〉
=

〈
−L̂h(u

n+1 − vn+1), un+1 − vn+1
〉
.

Rearranging terms and taking upper bounds we get the following:

μdt
〈
p(un+1)− p(vn+1), un+1 − vn+1

〉
+ ‖un+1 − vn+1‖2

=
〈
un − vn, un+1 − vn+1

〉
+
〈
−dtL̂h(u

n+1 − vn+1), un+1 − vn+1
〉
.

D
ow

nl
oa

de
d 

01
/2

9/
15

 to
 1

31
.2

15
.7

0.
23

1.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

1824 ALAN MACKEY, HAYDEN SCHAEFFER, AND STANLEY OSHER

As in the explicit timestep case,
〈
p(un+1)− p(vn+1), un+1 − vn+1

〉 ≥ 0, and so

||un+1 − vn+1||2 ≤ 〈
un − vn, un+1 − vn+1

〉
+
〈
−dtL̂h(u

n+1 − vn+1), un+1 − vn+1
〉
.

If L̂h is positive semidefinite, then we have

||un+1 − vn+1||2 ≤ 〈
un − vn, un+1 − vn+1

〉 ≤ ||un − vn||||un+1 − vn+1||,
and by canceling out terms we get the contractive inequality

||un+1 − vn+1|| ≤ ||un − vn||
as desired.

Proof of Theorem 4.3. We assume that S is stable in the following sense:

||ûn+1|| ≤ ||ûn||
for some lp norm; common choices would be the l2 or l∞ norms. Because the shrink
operator decreases the magnitude of each component of a vector, it will (strictly,
because μ > 0) decrease whatever norm is chosen (in fact, the shrink operator is a
contraction in all lp norms). It follows easily that

||ûn+1
μ || ≤ ||Q(ûn

μ, . . . , û
n−k
μ )|| ≤ ||ûn

μ||
so that the stability of S implies the stability of Sμ. In fact, Sμ is more stable than
S.

The key observation for showing consistency of Sμ is that while shrink(·, μ) is
nonlinear, the amount of this nonlinearity is bounded. In particular,

shrink(x, μ) = x+O(μ)

for any x, with |O(μ)| ≤ μ. Applying this observation to the definition of the sparse
scheme and assuming (for the purpose of local truncation analysis) that both schemes
have the same starting points ûn

μ = ûn, . . . , ûn−k
μ = ûn−k,

ûn+1
μ = shrink(Q(ûn

μ, . . . , û
n−k
μ ), μ)

= Q(ûn
μ, . . . , û

n−k
μ ) +O(μ)

= Q(ûn, . . . , ûn−k) +O(μ)

= ûn+1 +O(μ).

This shows that locally, S and Sμ differ only by an O(μ) quantity. This quantity may
naively be accounted for as part of the local truncation error for the sparse scheme,
in which case

τnμ = τn +O(μ),

where τn denotes the local truncation error of S and τnμ the local truncation error
of Sμ.

For the consistency of Sμ, we need the local truncation error to be greater than
first order, assuming the consistency of S and that μ = O(dt1+δ) yields this result.
When μ = O(dtp) for some p such that τn = O(dtp) as well, τnμ = O(dtp) and the
order of convergence of the scheme is unchanged.
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Proof of Theorem 4.4. First, recall that the optimality condition for (3.2) is

(A.1) μp(ûn+1
μ ) + (I + dtL̂h)û

n+1
μ − ûn

μ + dtf̂h = 0,

where p(ûn+1
μ ) ∈ ∂‖ûn+1

μ ‖1. For simplicity of notation, let w := (ûn+1
μ − ûn+1).

Assuming (again for the purpose of local truncation analysis) that both schemes have
the same starting point ûn

μ = ûn, subtracting the ordinary backward Euler update
from this gives

(I + dtL̂h)w = μp(ûn+1
μ ),

which implies

‖(I + dtL̂h)w‖∞ ≤ μ.

Then, using the fact that L̂h is positive definite, we get

‖(I + dtL̂h)w‖∞
‖w‖2/N1/2

≥ ‖(I + dtL̂h)w‖2
‖w‖2 ≥ 1,

which gives

‖w‖L2(Ω) ∼ ‖w‖2
N1/2

≤ μ.

So, as with the explicit scheme,

ûn+1
μ = ûn+1 +O(μ) (in L2(Ω))

=⇒ τnμ = τn + O(μ),

which yields consistency if μ = O(dt1+δ) with δ > 0, and implies the order of conver-
gence is the same as that of the ordinary spectral scheme if μ = O(dtp) with p such
that τn = O(dtp).

To prove stability of the scheme, return to (A.1) with f = 0 and take the inner
product with ûn+1

μ to get

μ‖ûn+1
μ ‖1 + (ûn+1

μ )T (I + dtL̂h)û
n+1
μ − (ûn+1

μ )T ûn
μ = 0,

which leads to

‖ûn+1
μ ‖22 ≤ 〈ûn+1

μ , ûn
μ〉 − μ‖ûn+1

μ ‖1 − dt(ûn+1
μ )T L̂hû

n+1
μ

≤ 〈ûn+1
μ , ûn

μ〉
≤ ‖ûn+1

μ ‖2‖ûn
μ‖2

and

‖ûn+1
μ ‖2 ≤ ‖ûn

μ‖2
as desired.

Proof of Theorem 5.2. We have

d

dt

1

2
||u(t, ·)− uδ(t, ·)||22 = 〈u− uδ, ∂tu− ∂tuδ〉

= 〈u− uδ,−Lu+ f − (−Luδ + f − δ∂||û(t)||1)〉
= −〈u− uδ, Lu− Luδ〉+ δ 〈u− uδ, ∂0||ûδ||1〉
≤ δ 〈u− uδ, ∂0||ûδ||1〉
≤ δ||u− uε||2.
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1826 ALAN MACKEY, HAYDEN SCHAEFFER, AND STANLEY OSHER

It follows that

d

dt
||u(t, ·)− uε(t, ·)||2 ≤ 2δ,

from which the result follows.
Proof of Theorem 7.1. Let FN [a(x/ε)](k) denote the DFT of a(x/ε) on the grid;

that is,

FN [a(x/ε)](k) =

N−1∑
j=0

a

(
2πj

Nε

)
e−2πijk/N .

Then

F2N

[
a

(
x

ε/2

)]
(2k) =

2N−1∑
j=0

a

(
2πj

2N ·ε/2
)
e−2πi 2k

2N j

=

N−1∑
j=0

a

(
2πj

Nε

)[
e−2πijk/N + e−2πi(j+N)k/N

]

=

N−1∑
j=0

a

(
2πj

Nε

)[
e−2πijk/N + e−2πijk/N e−2πik

]

= 2FN [a(x/ε)](k)

so that the even coefficients of F2N [a( x
ε/2)] are just those of FN [a(x/ε)]. Also,

F2N

[
a

(
x

ε/2

)]
(2k + 1) =

2N−1∑
j=0

a

(
2πj

2N ·ε/2
)
e−2πi 2k+1

2N j

=

N−1∑
j=0

a

(
2πj

Nε

)[
e−2πi 2k+1

2N j + e−2πi 2k+1
2N (j+N)

]

=
N−1∑
j=0

a

(
2πj

Nε

)
e−2πi 2k+1

2N j
[
1 + e−2πi 2k+1

2

]

=

N−1∑
j=0

a

(
2πj

Nε

)
e−2πi 2k+1

2N j
[
1 + e−πi

]

= 0

so that all odd coefficients vanish. These equalities give (7.3).
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[22] V. Ozoliņš, R. Lai, R. Caflisch, and S. Osher, Compressed modes for variational problems

in mathematics and physics, Proc. Natl. Acad. Sci. USA, 110 (2013), pp. 18368–18373.
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