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This work concerns the formulation and solution of a multi-period security-

constrained optimal power flow problem for real-time electricity market operations. 

The solution of the proposed problem is intended to be part of the core pricing 

procedure for electricity trading in open markets where real energy, reactive energy, 

voltages support, and other system resources and services can all be traded in discrete 

bids and offers. Traditionally, real-time dispatching operations only involve solving 

single-period security-constrained optimal power flow problems. This work 

demonstrates the need for solving multi-period security-constrained optimal power 

flows. The nonsmoothness of the offer/bid-driven optimal power flow problem is 

studied. Three techniques, namely, a trust-region based augmented Lagrangian 

method, a step-controlled primal-dual interior point method, and a modified 

constrained cost variables method, are developed for reliable and efficient 

computation of large-scale nonsmooth optimal power flows. Numerical studies show 

that these techniques are reliable and better than some existing ones. To reduce the 

computational complexity, two decomposition techniques are proposed and studied. In 

the first one, the auxiliary problem principle method is extended to handle inequality 

constraints created from generator ramping limits. In the second one, binding time-

coupling and contingency-coupling constraints are estimated, ranked, and filtered 



 

before the computation is decomposed and parallelized using standard block matrix 

computation techniques. According to experimental results, the most promising way 

of solving large-scale multi-period security-constrained optimal power flow problems 

in real time is to combine the second decomposition method with the modified 

constrained cost variables method. The optimal power flow formulation and relevant 

computation techniques proposed in this work balance the needs for: (1) deterministic 

convergence, (2) accurate computation of nodal prices, (3) support of both smooth and 

nonsmooth costings of a variety of resources and services, such as real energy, 

reactive energy, voltage support, etc., (4) full active and reactive power flow modeling 

of large-scale systems, and (5) satisfactory worst-case performance that meets the real-

time dispatching requirement. 
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Chapter 1 

Introduction 

This work concerns the computation and application of multi-period security-

constrained optimal power flow (OPF) for real-time electricity market operations. OPF 

has been one of the most widely studied subjects in the power system community 

since Carpentier first published the concept in 1962 [1]. Together with unit 

commitment, it forms the basis of economic planning and operation of electric power 

systems. With the deregulation of the power industry at its full swing, new variants of 

OPF have been studied and applied to market applications ranging from day-ahead 

market settlements to real-time pricing, from systems scheduling to generators 

dispatching. In its most classical mathematical representation, OPF takes in AC power 

balancing equations as nonlinear constraints, and minimizes the system’s total 

operations cost based on pre-determined loads, generator capabilities, and cost curves. 

Transmission and voltage constraints are often integrated into this optimization 

problem as well, to characterize the actual power system’s behaviors. Over the years, 

researchers have extended the OPF to include security constraints, and examined 

various algorithmic techniques that can speed up the computation. References [2-6] 

captured most of the work done in the 1970s and the 1980s, a time when several 

constrained optimization techniques such as the Lagrangian relaxation method, the 

penalty function method, and the sequential quadratic programming (SQP) method 

emerged as the leading nonlinear programming (NLP) methods for solving nonlinear 

OPF problems. The gradient method and the Newton’s method were often used to 
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solve the underlying unconstrained optimization problems. In recent years, algorithms 

based on the primal-dual interior point method (PDIPM) have become popular [7-13]. 

To further speed up the computation of large-scale security-constrained optimal power 

flow (SCOPF), several decomposition and parallelization techniques have been 

studied [14-34].  

Despite the advancements made, full-scale AC OPF’s have not been widely 

adopted in real-time operations of large-scale power systems. Instead, system 

operators often use simplified OPF tools that are based on linear programming (LP) 

and decoupled (DC) system models [35-39]. Historically, this is mainly due to the lack 

of powerful computer hardware and efficient AC OPF algorithms. With the advent of 

fast low-cost computers, however, speed has now become a secondary concern, after 

algorithm robustness. The remaining prevalent argument for using LP-based DC OPF 

instead of NLP-based AC OPF is that LP algorithms are deterministic and always 

yield solutions albeit not necessarily the desired ones, while NLP algorithms are less 

robust and often experience convergence problems.  

The emergence of electricity markets poses new challenges to the solution of OPF 

problems. Electricity markets are typically organized in two-settlement setups where 

unit commitment problems are solved in day-ahead markets, and SCOPF problems are 

solved every 20 minutes or so in real-time markets [36-39]. Unlike in a regulated 

system where the goal of computing OPF is merely minimizing the smooth quadratic 

cost of real-energy production, OPF computation is now part of the core pricing 

mechanism for electricity trading in deregulated markets where real energy, reactive 

energy, voltages support, and other system resources and services can all (in theory) 

be traded in discrete bids and offers [29, 30, 36-40]. In order to meet their legal 

obligations of providing timely market settlements and to ensure market fairness and 

efficiency, regional transmission organizations (RTO) and independent system 
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operators (ISO) must adopt OPF tools that provide (1) deterministic convergence, (2) 

accurate computation of nodal prices, (3) support of both smooth and nonsmooth 

costings of a variety of resources and services, such as real energy, reactive energy, 

voltage support, etc., (4) full active and reactive power flow modeling of large-scale 

systems, and (5) satisfactory worst-case performance that meets the real-time 

dispatching requirement. Most prior research on OPF has focused on performance 

issues in the context of regulated systems, without giving much emphasis to 

requirements (1)-(3).  

This work attempts to address some of the computational challenges brought up 

by the deregulation. Three separate techniques, namely, a trust-region based 

augmented Lagrangian method (TRALM), a step-controlled primal-dual interior point 

method (SC-PDIPM), and a modified constrained cost variables (MCCV) method, are 

proposed for reliable and efficient computation of large-scale market-based OPF’s. A 

comprehensive multi-period security-constrained OPF is formulated to replace the 

standalone single-period OPF that is used in today’s real-time dispatching operations. 

In order to reduce the computational complexity of solving the comprehensive OPF 

problem, two decomposition techniques are proposed: one is based on the auxiliary 

problem principle (APP) [42], and the other is based on parallel block matrix 

computation and a technique that estimates and reduces binding constraints. In the 

former, the APP method used in [18, 19, 22, 24, 26-30] is modified to handle 

inequality constraints created from generator ramping limits. In the latter, the number 

of generator ramping constraints is reduced through a procedure that estimates, ranks, 

and selectively eliminates binding and non-binding constraints; the underlying matrix 

computation is then decomposed and parallelized at the block level without incurring 

much overhead of matrix fill-ins.  

This chapter introduces some background information about electricity markets, 
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and reviews the computational techniques related to the solution of OPF problems. 

Chapter 2 introduces and compares several new nonsmooth optimization techniques 

that are tailored to the solution of market-based OPF’s with piecewise costs. Chapter 3 

details the two new decomposition techniques designed for solving the comprehensive 

multi-period security-constrained OPF problem. The work is concluded in Chapter 4.  

 

1.1 Organization and operation of electricity markets 

The electric power industry around the world has been undergoing increasingly 

intensive restructuring and deregulation in the past two decades [42]. In the United 

States, the Public Utility Regulatory Policies Act passed by the Congress in 1978 laid 

the groundwork for deregulation and competition by opening wholesale power 

markets to non-utility producers of electricity. The Congress voted to promote greater 

competition in the bulk power market with the passage of the Energy Policy Act of 

1992. In 1996, the Federal Energy Regulatory Commission (FERC) implemented 

plans to allow wholesale competition in the electricity market. In the same year, FERC 

issued its famous Order 888, requiring utilities to open their transmission lines to 

competitors. Soon after, regional transmission organizations (RTO) and independent 

system operators (ISO) were formed in many parts of the country to administer open, 

competitive and nondiscriminatory wholesale markets for electricity and to ensure 

reliable, safe and efficient operation of major transmission systems. The established 

markets often utilize bid processes for electricity and transmission usage, enabling 

utilities and other market participants to offer electricity at competitive prices, rather 

than regulated rates. Today, these ISO’s or RTO’s typically operate two types of 

markets: the day-ahead markets, which schedule electricity transactions and commit 

power generating units at least several hours ahead the operating day, and the real-
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time markets, which balance the electricity supplies and demands in real-time, provide 

up-to-minute spot prices, and ensure safe operation of the systems. In day-ahead 

scheduling operations, the unit commitment tool collects forecasted loads and market 

information, and solves a multi-period security-constrained optimization problem to 

find the cost-minimizing operation schedule for the next 24 hours. In real-time 

dispatching operations, the SCOPF tool takes in the operation schedule committed in 

the day-ahead market, receives more accurate loads information, and finds the most 

economical way of dispatching generators to meet the forecasted loads securely for the 

next 5 to 20 minutes. In both markets, locational marginal prices (LMP), which are 

used for final billings, are computed along with the solution of the underlying 

optimization problems. 

 

1.2 Real-time market-based OPF 

Although some simplified forms of OPF’s have been used in real-time market 

operations for years now, their legitimacies have never been thoroughly evaluated. 

These OPF variants are often derived from the classical OPF formulation 
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],1[],,1[],,1[ NLkNGjNBi ∈∈∈ ,                         (1-1) 

where the objective function is the sum of all generation costs, FA and FR represent 

nodal balances of real and reactive power, SF and ST are branch power flows that are 

subject to the normal thermal limits Snt-max, real generations P, reactive generations Q, 

and voltages V are subject to the box limits established by the operator, and NB, NG, 

and NL stand for the number of buses, the number of generators, and the number of 

branches, respectively. In practice, the nonlinear power balancing equations and the 

branch power flow constraints are often linearly approximated to reduce the 

computational complexity.  

The simplified OPF’s derived from (1-1) fail to account for several important 

aspects of the electricity markets, which shall be detailed in the sections below. 

 

1.2.1 Offer/bid-driven costings of energy and non-energy resources 

Unlike the energy-cost minimization role that the traditional OPF plays in the 

operation of a regulated power system, the objective of a market-based OPF is to 

minimize the total operations cost based on offers and bids placed for both energy and 

non-energy resources and services. Market operators may also choose to include 

additional cost items to model reliability and other public goods. As a result, the cost 

curves embedded in the objective function of the market-based OPF differ from those 

of the traditional OPF in three aspects:  

• Shape – The cost curves derived from market offers and bids are in nonsmooth 

piecewise forms, while the cost curves used in the traditional OPF are often in 

smooth quadratic forms. Figure 1.1 illustrates the two different shapes of cost 

curves. Since the ability of placing fine-grain offers/bids is desirable to many 

market participants, market-based OPF tools must handle extremely 

nonsmooth objective functions. Note that cost curves in the market-based OPF 
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Figure 1.1 Example energy cost curves used in OPF’s: (a) a quadratic energy cost 

curve for the traditional OPF; (b) a 3-segment piecewise linear energy cost curve for 

an offer/bid-driven market-based OPF. 
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may also take non-convex forms, which further complicates the optimization. 

• Dimension – The traditional OPF only concerns energy costs, while the 

market-based OPF deals with both energy costs and non-energy costs that are 

associated with ancillary services, such as reactive-power generation, voltage 

support, transient stability control, etc. Therefore, cost curves in the market-

based OPF span more dimensions than their counterparts in the traditional 

OPF. For example, Figure 1.2 illustrates two curves for costing the voltage and 

phase angle difference.  

• Longevity – Energy cost curves in the traditional OPF are mainly associated 

with fuel consumptions, and therefore, do not vary much in real-time 

operations. To the contrary, cost curves in the market-based OPF are driven by 

fluctuating offers and bids, which change at least on an hourly basis. As a 

result, the optimal dispatch may also change significantly from period to 

period in real-time operations, even if loads remain unchanged. Figure 1.3 

demonstrates this phenomenon using a 30-bus power system example. As the 

degree of price fluctuation increases, the period-to-period dispatch change 

becomes increasingly constrained by generator ramping limits. Consequently, 

how the system is dispatched for the immediate next time period will not only 

determines the cost of operations for that single time period, but also affect the 

dispatches and cost of operations for several time periods further down the line. 

Therefore, the real-time market-based OPF must be formulated as a multi-

period problem that takes into account generator ramping limits and costs of 

future operations, as opposed to the single-period problem in (1-1).  

 

1.2.2 N-1 security constraints  

Electric power systems, like any other critical infrastructures supporting modern  
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Figure 1.2 Example cost curves used in a market-based OPF for costing the voltage at 

a given bus and the phase angle difference between two buses: (a) a 4-segment 

piecewise linear voltage cost curve; (b) a 3-segment piecewise linear delta-angle cost 

curve. 
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Figure 1.3 Example optimal generator dispatches of a 30-bus 6-generator power 

system under different conditions: (a) a normalized 24-hour load curve showing the 

load changes assumed in the experiment; (b) optimal dispatches for four time periods 

3:40 (green), 4:00 (blue), 16:40 (yellow), and 17:00 (red) under the static-cost 

condition, showing only small changes from period to period; (c) optimal dispatches at 

3:40 (green), 4:00 (blue), 16:40 (yellow), and 17:00 (red) under the dynamic-cost  

condition (100% period-to-period fluctuations in energy offer prices), showing 

significant changes from period to period. 
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Figure 1.3 (Continued) 
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societies, must be designed and operated securely. The exact security rules being used 

vary from country to country and from operator to operator. The underlying principles, 

however, are the same and usually center around the so-called N-1 security 

requirement, i.e. to operate the system in a way that no single credible contingency 

(failure of a single bulk power facility or significant load change) can cause wide-

spread system security problems, which typically include:  

• Thermal limits violations 

• Voltage instabilities 

• Transient instabilities 

Thermal limits are the most common constraints on transmission lines and 

transformers. Excessive power transfers across these devices can cause overheating, 

which will sag transmission lines, damage transformer insulations, and even trigger 

wide-spread cascading outages. In (1-1), these thermal limits are represented by the 

inequality constraints placed on pre-contingency branch power flows. Similarly, 

constraints limiting post-contingency branch flows with higher “emergency” limits 

can be added into the OPF formulation to represent the N-1 thermal security 

requirement, provided that post-contingency flows can be obtained directly (as 

functions of post-contingency control and states variables) or indirectly (through linear 

approximation around pre-contingency flows) in the extended OPF formulation.  

Voltage instabilities stems from the attempt of load dynamics to restore power 

consumption beyond the capability of the combined generation and transmission 

systems after contingencies [43]. Transient instabilities arise from the loss of 

synchronism among machines due to contingencies [44]. An actuate assessment of 

voltage stabilities and transient stabilities requires tedious time-domain simulations of 

power systems dynamics, and is therefore impractical for integration with the real-

time OPF. In practice, operators place pre-contingency or post-contingency surrogate 
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steady-state limits on voltages, transmission line flows, and phase angles to 

approximate the voltage and transient stability requirements [36-39].  

In operating electricity markets, RTO’s and ISO’s need to integrate the above N-1 

security constraints into their real-time security-constrained OPF’s to obtain 

dispatches that are both economical and secure. Due to computational constraints and 

the lack of a clear regulatory definition of system security, however, different market 

operators have adopted different ways of implementing such SCOPF’s.  

At NYISO, post-contingency system states are modeled as being linearly 

dependent on pre-contingency states. Security constraints on these post-contingency 

states can thus be converted into constraints on pre-contingency states and added into 

the OPF through linear transformations. For example, to take into account 

contingencies that involve outages of transmission lines and/or generators, post-

contingency real-power line flows are linearized through the use of power transfer 

distribution factors (PTDF) and generation shift factors (GSF), and get integrated into 

the OPF as  
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where R represents real components of branch power flows, R
ci-max is the vector of 

proxy real branch-flow limits established for contingency ci, S
let-max is the vector of 

long-term emergency thermal limits placed on transmission lines and transformers, 

and NC stands for the number of contingencies. Obviously, the applicability of (1-2) is 
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limited, due to its lack of nonlinearity considerations pertaining to the reactive power 

flows, voltage stabilities, and transient stabilities.   

At PJM, no post-contingency constraint appears in the OPF. Instead, a single set 

of pre-contingency surrogate limits derived from a comprehensive security analysis of 

all credible contingencies replace the original limits placed on voltages and branch 

power flows as 
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where V
pc-min, V

pc-max, and S
pc-max represents pre-contingency surrogate limits. In 

addition, pre-contingency limits Δθpc-min and Δθpc-max may be placed on phase angle 

differences among buses as 

],1[2],,1[1

maxpc
2,121

minpc
2,1

NBiNBi

iiiiii

∈∈

Δ≤−≤Δ −− θθθθ
.              (1-4) 

Such method takes into account all N-1 security constraints without increasing the 

complexity of the OPF. Yet, in using a single set of pre-contingency limits as opposed 

to multiple sets of post-contingency limits, (1-3) and (1-4) may over-constrain pre-

contingency system states and lead to sub-optimal dispatches.  

Variable duplication is another prominent way of integrating N-1 security 

constraints. In [2, 3, 5, 13-15, 29, 30, 34], a separate set of variables are created for 

each contingency case to represent the corresponding post-contingency system states. 

Post-contingency surrogate limits are then applied to those duplicated states. For 

example, to handle a branch-outage contingency, the duplicated variables and 
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constraints are added into the OPF as 
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             (1-5) 

where Pci, Qci, Vci, and θci are the variables duplicated for contingency ci, VG
ci and VG 

represent the voltages at generator buses, FA
ci, FR

ci, SF
ci, and ST

ci represent nodal 

power balances and branch flows that take into account the system’s status change 

under contingency ci, Vci-min, Vci-max, Sci-max, Δθci-min, and Δθci-max are post-contingency 

surrogate limits on voltages, branch flows, and phase angle differences. In (1-5), post-

contingency states and pre-contingency states are tied together by the equality 

constraints placed on the control variables P, P
ci, VG, and VG

ci. Essentially, this 

preventive OPF formulation assumes that neither human interventions nor automatic 

control actions can take place in time to change the immediate post-contingency 

steady states once a contingency occurs. Compared to the first two OPF formulations 

described in this section, (1-5) reflects N-1 security requirements more accurately. It is, 

however, still far from being perfect. Most notably, it neglects the roles that AGC 
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generators play in post-contingency recoveries, and fails to consider the scenarios 

where generators run out of reactive power in response to contingencies. Besides, as 

one will see in later chapters, the couplings among pre-contingency variables and post-

contingency variables introduce a large number of matrix fill-in’s when the OPF 

problem is solved using Newton-like methods that involve direct sparse matrix 

factorizations, and the computational overhead associated with these matrix fill-in’s 

makes it hard to solve any large-scale security-constrained OPF problem in real-time.   

The SCOPF formulations discussed so far all assume that there is no time for the 

operator to conduct re-dispatches after the occurrence of a contingency. The power 

systems, however, are designed and operated with layers of margins. For example, 

short-term (15 ~ 30 minutes) emergency ratings of transmission lines are much higher 

than the normal and long-term (several hours) ones; surrogate limits for transient and 

voltage stabilities contain margins to account for the time (several minutes) that it 

takes for the systems to reach steady states. As a result, the operator will usually have 

enough time to do a re-dispatch after the occurrence of a contingency, as long as the 

solution of the SCOPF respects the security limits containing margins. This leads to 

another way of formulating SCOPF through variable duplications, i.e. eliminating the 

equality constraints tying pre-contingency and post-contingency control variables in 

(1-5) and replacing them with generator capacity limits or ramping limits (to be 

addressed in the next section) placed on post-contingency real and reactive power 

generations. This way of formulating SCOPF is more accurate and flexible. It is also 

easier to solve if one can accurately predict the binding generator ramping constraints 

and remove the non-binding ones.  

 

1.2.3 Generator ramping limits 

The scheduled output of a generator is often limited by its ramp rate, i.e. the speed at 
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which it can increase or decrease its real and reactive power generations. For most 

generators, the ramp rate is at least one percent of the generation capacity per minute 

[36, 37]. The unit commitment problem for day-ahead scheduling operations 

integrates generator ramping limits as  

]24,1[],,1[

),min(),max( max
1,,

min
1,

∈∈

Δ+≤≤Δ− −−

tNGj

PTRAPPPTRAP jDjtjtjjDjtj
,            (1-6) 

where Pj, t is the real-power output of generator j during time period t, RAj is the real-

power ramp rate of generator j, and ΔTD is the length (60 minutes) of a single time 

period in the day-ahead scheduling model. (1-6) couples the twenty-four hourly 

schedules, which are to be collectively optimized.  

The OPF for real-time dispatching operations can model generator ramping limits 

in the same way as 

],[],,1[

),min(),max(

00

max
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min
1,

MtttNGj

PTRAPPPTRAP jRjtjtjjRjtj

+∈∈

Δ+≤≤Δ− −−
,            (1-7) 

where ΔTR is the length (5-20 minutes) of a single time period in real-time dispatching 

operations, t0 identifies the upcoming time period, and M is the number of additional 

future time periods to consider in deciding the dispatch for time period t0. Existing 

real-time OPF’s do not optimize multiple consecutive dispatches on a collective basis. 

Instead, they set M to zero and optimize the dispatch for the upcoming time period 

without any forward consideration of its impact on the optimality of future dispatches. 

Such simplification is somewhat ironic, given that generator ramping limits are more 

likely to be active and have effects on OPF solutions in real-time operations than in 

day-ahead scheduling operations. To take into account the couplings among dispatches 

for different time periods, one must solve a multi-period OPF that co-optimizes 

dispatches for the next M+1 periods in a look-ahead style. In such formulation, in 
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addition to (1-7), system states for each of the additional M periods are constrained in 

the same as they would be in a single-period standalone OPF. The objective function 

in (1-1) is replaced with:  

 .              (1-8) ∑
+

=

Mt

tt

tttt
VQP

VQPC
0

0
,,,

),,,(min θ
θ

Essentially, as illustrated in Figure 1.4, the suggested formulation uses a sliding-

window scheme that always requires the next dispatch to be optimized based on a 

“window” of forecasted future system conditions.  

Figure 1.5 illustrates the difference between the cumulative cost of running 72 

consecutive periods (24 hours) of real-time operations using standalone OPF’s and 

that of running the same operations using 3-period look-ahead OPF’s. Multi-period 

OPF’s yield more economical solutions on a daily basis, for both the 30-bus system 

example and the 2383-bus system example. In Figure 1.6, one can see that the overall 

daily operations cost decreases as the size of the look-ahead window M increases. For 

the 30-bus system, no further improvement is observed for M beyond 3. Although the 

cost improvement that multi-period OPF’s provide is small (single-digit) in percentage 

terms, it is quite significant by the industry’s standards and very large in dollar terms. 

To put it into perspectives, on the day of April 19, 2007, one percent of the daily 

operations cost of PJM roughly amounts to one million US dollars. Appendix B gives 

a more detailed comparison of the operations costs, dispatches, and LMPs generated 

by standalone OPF’s and those by multi-period OPF’s using a 3-bus system example. 

 

1.2.4 A comprehensive formulation of real-time market-based OPF 

In light of the above analysis, a comprehensive real-time market-based OPF is 

formulated as 
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Figure 1.4 Illustration of the sliding-window scheme used in the multi-period OPF. 

Each bar represents a whole set of system states, costs, and constraints related to the 

standalone dispatch optimization for that period. The sliding box (window) spans M+1 

periods (one upcoming period and M look-ahead periods) and moves from left to right 

one block at a time. At time t0, it contains all information that goes into the multi-

period OPF to be solved for the upcoming dispatch.  
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Figure 1.5 Illustration of the growing difference between the cumulative cost of 

running real-time operations using standalone OPF’s and that of running real-time 

operations using 3-period look-ahead OPF’s: (a) 72-period (24-hour) cumulative cost 

differences for a 30-bus system; (b) 72-period (24-hour) cumulative cost differences 

for a 2383-bus system. Positive differences indicate that multi-period OPF’s offer cost 

savings. The experiment adopts the same load profile as used in Figure 1.3, assumes 

100% period-to-period fluctuations in energy offer prices, and set the ramping limit 

RA of each generator to be 1% of the generator’s capacity per minute. 
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Figure 1.5 (Continued) 
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Figure 1.6 Cumulative costs of running 72-period (24-hour) real-time operations with 

multi-period OPF’s that adopt different look-ahead sizes. The experiment adopts the 

same 30-bus system model and load profile as used in Figure 1.3, assumes 100% 

period-to-period fluctuations in energy offer prices, and set the ramping limit RA of 

each generator to be 1% of the generator’s capacity per minute. 
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where generator ramping limits RS are placed on the aggregates of real and reactive 

power ramp rates ra and rr. When only real-power ramping limits are considered, the 
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comprehensive real-time market-based OPF problem is written as 

             (1-10) 
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The solution of (1-10) is the central theme of the rest of this work. The methods 

discussed will be applicable to the solution of (1-9) as well. 

Hereinafter, the generator ramping constraints established among variables 
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representing system states for different time periods, 

),min(),max( max
1,,

min
1, jRjtjtjjRjtj PTRAPPPTRAP Δ+≤≤Δ− −− , 

are referred as the time-coupling constraints, or simply the time-couplings, while the 

ramping constraints established among variables representing system states for 

different pre-contingency and post-contingency cases,   

),min(),max( max
,,

min
, jRjtj

ci
tjjRjtj PTRAPPPTRAP Δ+≤≤Δ− , 

are referred as the contingency-coupling constraints or the contingency-couplings.  

 

1.3 Nonlinear programming techniques 

For most real-size power systems, the problem formed in (1-10) is a large-scale 

constrained nonlinear optimization problem. Over the past two decades, research on 

large-scale nonlinear programming has proliferated. Among the techniques developed, 

augmented Lagrangian methods (ALM) are most reliable and usable for solving 

general-purpose constrained optimization problems [45]. Yet, their reliabilities largely 

depend on what methods are used to solve the converted unconstrained optimization 

problems. Trust-region methods (TRM) represent the state-of-the-art of globally 

convergent unconstrained optimizations [46-50]. Surprisingly, the combined use of 

TRM and ALM has not been reported in the power system community.  In fact, there 

has been no mention of trust-region methods in any OPF literature, probably in part 

due to the timely introduction of more efficient primal-dual interior point methods 

(PDIPM). PDIPM is a major development that has merged LP and NLP. It resulted in 

a reassessment of how constraints are treated in NLP [51, 52]. For most nonlinear 

optimization problems, PDIPM achieves great computational efficiency, but often at 

the cost of losing the global convergence guarantee.  
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This section briefly reviews the NLP methods mentioned above, in preparation 

for later discussions on new OPF formulations and algorithms.  

 

1.3.1 Augmented Lagrangian methods 

In solving a constrained optimization problem of the form 

0)(
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,             (1-11) 

augmented Lagrangian methods convert the problem into a sequence of unconstrained 

optimization problems with penalty terms. For example, using quadratic penalties and 

squared slack variables, (1-11) can be converted into an iterative series of 
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which is equivalent to 
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          (1-13) 

after the minimization with respect to the slack variables Zk in iteration k. In (1-12) 

and (1-13), λk and μk are Lagrange multipliers, Wk and Uk are penalty parameters, and 

ni is the number of inequality constraints. In the so-called “multiplier method”, λk, μk, 

W
k, and Uk are updated after each iteration of unconstrained optimization as 
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where 0 < γW, γU < 1 and βW, βU > 1 are constants, and r is the equality constraint 

index. Convergence is achieved when  
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             (1-15) 

are satisfied. In (1-15), ελ and εμ are two constant tolerance parameters that are greatly 

less than one, and the variable tolerance parameter εk decreases to a near-zero value ε∞ 

as the iteration number k increases. Combined with a suitable unconstrained 

optimization algorithm, the above augmented Lagrangian method solves large-scale 

nonlinear constrained optimization problems very reliably.  

 

1.3.2 Trust-region methods 

Trust-region methods represent a category of globally convergent unconstrained 

optimization algorithms. In solving an unconstrained optimization problem 

)(min Xf
X

              (1-16) 

using the Newton’s method, each pure Newton step is obtained by minimizing over S 

29 



  

the second-order Taylor series approximation of f around the trial solution Xk, given by 

SXfSSXfXfSf kTTkkk )(
2

1
)()()( 2∇+∇+= .           (1-17) 

The problem with the Newton’s method is that the iterative step S is not always on the 

descent direction because it often lies outside the small neighborhood where the 

approximation in (1-17) stays valid. Trust region methods address this issue by using a 

restricted Newton step S
k obtained from the minimization of f

k(S) over a small 

neighborhood Δk, the trust region, as 
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It is known that the restricted Newton step Sk is essentially a solution of  

)())(( 2 kkk XfSIXf −∇=+∇ α ,            (1-19) 

where I is the identity matrix and αk is a nonnegative scalar. Trust region methods can 

therefore be viewed as a special category of damped Newton’s methods. In order to 

maintain the trustworthy of the trust region, one needs to check the validity of the 

Taylor series approximation within the region Δk, and adjust Δk if necessary. 

Algorithm 1.1 illustrates how this is done in the context of solving (1-16) using a 

classic trust-region method.  

To solve the sub-problem in (1-18) and (1-19), [47] applied the Newton 

procedure to solve for αk in: 
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This computation typically involves several rounds of Cholesky factorizations of the 

damped Hessian matrix of f(X). 

30 



  

 

Algorithm 1.1 

doend

if end

else

andifelse

if

if end

else

if

dowhile

1

||||

||||

)(

)()(

)(minarg

)(
2

1
)()(

||)(||

0

,givenbeand,0,10,10Let

1

2
1

1
1

1

1

||||

2

00
21

+=

Δ=Δ

Δ=Δ

Δ==>

=Δ

≤

=

+=

>

−+
=

=

∇+∇≡

>∇

=

>Δ<<<<<<

+

+

+

+

+

Δ≤

kk

S

S

XX

SXX

S

XfSXf

SS

SXfSSXfS

Xf

k

X

kk

kk

kkk

kk

k

kk

kkk

k

kk

kkk
k

k

kS

k

k
X

TTk
X

k

k
X

γ

ηρ

γ

τρ

τρ

ψ
ρ

ψ

ψ

ε

γγητ

 

31 



  

To reduce the computation overhead, Coleman et al. proposed a two-dimensional 

trust-region method for solving large-scale optimization problems [48, 49]. In their 

proposed method, the trust region formed by ||S|| ≤ ∆k in (1-18) is replaced by a two-

dimensional region that spans the gradient direction and the direction generated by a 

modified PCG or Cholesky procedure. Nevertheless, our experiments show that 

neither the PCG nor the Cholesky variation of this 2-D trust-region method is able to 

solve large-scale OPF problems without running into numerical difficulties. 

 

1.3.3 Primal-dual interior point methods 

The primal-dual interior point method (PDIPM) and its many variations have become 

the algorithms of choice for solving OPF’s over the past decade [7-13]. PDIPM relates 

to the barrier method, which formulates the Lagrangian of (1-11) as 
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where γ is a positive scalar and Z is the vector of positive slack variables. The first-

order Karush-Kuhn-Tucker (KKT) condition of (1-21) is written as 
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where e is the unitary vector and […] diagonalizes the enclosed vector. The Newton’s 

method can be used to solve (1-22). Each Newton step involves the solution of  
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which can be reduced into   
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The barrier method and PDIPM maintain the strict feasibility of the trial solution by 

truncating the Newton step according to 

μαμμ

λαλλ

α

α

μμξα

ξα

μ

Δ+=

Δ+=

Δ+=

Δ+=

Δ−=

Δ−=

<Δ

<Δ

d

d

p

p

mm

m

d

mm

m
Z

p

ZZZ

XXX

ZZ

)1,)/(minmin(

)1,)/(minmin(

0

0

,            (1-25) 

where ξ is a constant scalar marginally less than one. When γ is zero, (1-22) becomes 

the first-order KKT condition of the original optimization problem (1-11). In PDIPM, 

γ is called the parameter of perturbation and must converge to zero during the Newton-

like iterations. One way of setting γ is through the use of the primal-dual distance, 

which is defined for the mth inequality constraint as the product of Gm(X) and μm. For 
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example,  

niZT /)(μσγ =              (1-26) 

ties γ to the average of distances from the current solution to the optimal point. The 

constant σ, referred to as the parameter of the direction combination, satisfies 

10 <<σ  and defines the trajectory to the optimal solution by combining the affine-

scaling direction (σ = 0) and the centralization direction (σ = 1).  

Other PDIPM variants, such as the predictor-corrector interior point method, 

improve the performance by reducing the number of matrix factorizations at the cost 

of increased number of iterations [8]. The overall complexities of these variants, 

however, remain the same.  

The classic PDIPM algorithm described above is not globally convergent, 

because it only concerns the first-order KKT condition. Studies reported in [12, 51] 

seek to improve the convergence through line searching and damped Newton 

procedures. The desired property of global convergence, however, comes at the cost of 

performance. 

  

1.4 Nonsmooth optimizations 

The term “nonsmooth” refers to situations in which smoothness (or differentiability) is 

not postulated [53]. An optimization problem is nonsmooth if its objective function or 

any of its constraints is nonsmooth. The piecewise cost function in the OPF is a 

natural source of nonsmoothness, as shown in Figure 1.1 and 1.2. Traditional NLP 

algorithms described in the previous section are built on smoothness assumptions and 

therefore cannot be extended to solve nonsmooth optimization problems directly. The 

gradients and Hessians that these algorithms depend on do not even exist at the 

breakpoints of piecewise functions. The study in [53] provides a theoretical 
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framework for nonsmooth analysis using generalized gradients and generalized 

Jacobians. The market-based OPF problem with piecewise costs is a Class-5 

composite nonsmooth problem [54], i.e. the nonsmooth objective function is made up 

piecewise from a finite number of smooth functions, and its generalized gradients and 

Hessians at any given point can be evaluated directly from the underlying smooth 

functions. There are two categories of methods available for the solution of Class-5 

problems. In the first one, algorithmic techniques are tailored to the composite 

nonsmooth optimization. In the second one, reformulations are carried out to 

transform nonsmooth optimization problems into equivalent or approximately 

equivalent smooth optimization problems. With the maturity of constrained nonlinear 

programming, the reformulation approach has become more attractive and shall be the 

focus of this study. In the section below, Class-5 composite nonsmooth optimization 

problems are further classified into several sub-categories. Relevant nonsmooth 

optimization techniques are then reviewed.  

 

1.4.1 Further classification of Class-5 problems 

Class-5 composite nonsmooth optimization problems can be further classified into 

eight categories listed in Table 1.1 according to three tests: 

• I – Whether the piecewise portion of the objective function is strictly convex; 

• II – Whether the piecewise portion of the objective function is linear; 

• III – Whether the problem is in a minimax form. 

A Class-5 problem is a minimax problem if its is in the form of 

)(max)(min
...,,1

XfXf s
dsnRX =∈

≡ ,             (1-27) 

where fs’s are smooth functions. It is easy to see that, if a Class-5 problem passes Test 

II, it will either pass both of the other two tests or fail both. Hence, Category 2 and 5  
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Table 1.1 Eight categories of Class-5 composite nonsmooth optimization problems 

classified according the three tests on convexity, piecewise linearity, and minimax 

conformity. The categories marked with “Phantom” contain no meaningful problem.   

  

Category Test I Test II Test III 

1 Yes Yes Yes 

2 (Phantom) Yes Yes No 

3 Yes No Yes 

4 Yes No No 

5 (Phantom) No Yes Yes 

6 No Yes No 

7 No No Yes 

8 No No No 
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listed in Table 1.1 are phantom categories that do not need further considerations. 

The OPF problems constructed with the cost curves shown in Figure 1.1 and 1.2 

belong to Category 1. Figure 1.7 shows example objective functions from the other 

five non-phantom categories. These functions do not necessarily reflect costing 

schemes used in today’s market operations; but they represent some potential ways of 

improving the costing flexibility and versatility for future markets. For simplicity, 

hereinafter, the underlying optimization problem is assumed to consist of only one 

piecewise function and is to be solved in a one-dimensional space.  

 

1.4.2 Separable programming approach 

For a smooth nonlinear optimization problem in the form of 

nimxg
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m

r
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)(min

=≤

== ,            (1-28) 

the separable programming method approximates f(x), hr(x)’s, and gm(x)’s with 

piecewise linear functions and restates the problem as 
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Figure 1.7 Illustration of example objective functions of Class-5 composite nonsmooth 

optimization problems in Category 3, 4, 6, 7 and 8: (a) Category-3 objective function 

generated from two reciprocal functions and one linear function; (b) Category-4 

objective function generated from two quadratic functions and one linear function; (c) 

Category-6 objective function generated from three linear functions; (d) Category-7 

objective function generated from two reciprocal functions and one linear function; (e) 

Category-8 objective function generated from two linear functions and one quadratic 

function. 

38 



  

 

 

 

 

 

 

 

 

 

 

 

(a) 

 

 

 

 

 

 

 

 

 

 

 

(b) 

39 



  

Figure 1.7 (Continued) 
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Figure 1.7 (Continued) 
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where ns is the number of segments contained in each piecewise linear function, and 

xv’s are the ns+1 distinctive values of x at the breakpoints of the piecewise linear 

functions [55]. Assuming xv’s are uniformly spread, the larger the ns, the better (1-29) 

approximates (1-28). The adjacency constraint at the end of (1-29) complicates the 

solution of the problem. When hr(x)’s and gm(x)’s are convex and f(x) is strictly 

convex, however, this adjacency constraint can be safely removed. Problem (1-29) 

without the adjacency constraint is a smooth LP problem and can be easily solved. The 

accuracy of the smooth programming method greatly depends on the granularity of the 

linearization. Formulating and solving (1-29) with a larger ns yields a solution closer 

to that of (1-28), but consumes more memory and computation time due to the 

overhead associated with more variables and constraints.  

The reformulation technique above can be borrowed to handle some of the Class-

5 composite nonsmooth optimization problems. Suppose now that f(x) in (1-28) is 

already a piecewise linear function, as opposed to a smooth function, while hr(x)’s and 

gm(x)’s are smooth functions, one can reformulate the problem as 
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where xv’s are the values of x at the ns+1 breakpoints of the piecewise linear objective 
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function f(x). In (1-30), hr(x)’s and gm(x)’s are not linearized because linearity and 

separability is not a requirement when NLP methods are used to solve the problem. As 

before, when f(x) is strictly convex, i.e. the problem of interest is a Category-1 

problem, the adjacency constraint can be safely removed, and (1-30) can be solved 

with traditional smooth NLP algorithms.  

For Category-3 and Category-4 problems whose convex objective functions 

consist of nonlinear pieces, the reformulation in (1-30) is not applicable. One can still 

apply the linearization trick to the objective functions as done in (1-29), provided that 

the memory and computation overhead is not a concern. Alternatively, (1-28) with a 

convex nonlinear piecewise objective function can be reformulated as 
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where xv’s are still the values of x at the ns+1 breakpoints of the piecewise objective 

function f(x), and fv(yv) is the shifted vth segment of the objective function and is 

defined by 

)()( vvvv yxfyf +≡              (1-32) 

in the range [xv, xv+1]. This method has been used in several OPF studies to handle 

piecewise linear costs associated with real-energy productions [12, 13]. Essentially, 

each block of generation offer presented in Figure 1.1 is treated as the product of an 

independent generator and gets assigned a separate control variable in the OPF. A 
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given physical unit’s contribution to the objective function therefore turns into the 

aggregate cost of several smoothly priced resources from smaller virtual units. 

Hereinafter, the reformulation method in (1-31) is referred as the decoupled power 

offer and bid (DPOB) method. 

 

1.4.3 Constrained cost variables (CCV) method 

For Class-5 problems that can be expressed in the minimax form, constrained cost 

variables can be introduced to turn the nonsmooth optimization problems into smooth 

ones [56]. This technique has been utilized to solve OPF problems in MATPOWER 

[57]. In CCV, each piecewise function in the objective is replaced by a helper cost 

variable that is constrained by several accompanying inequality constraints, one for 

each piece of the piecewise function. The new inequality constraints build a basin 

equivalent to requiring the helper variable to lie in the epigraph of the cost curve. 

When the new objective function is minimized, helper cost variables are pushed 

against their basins. Figure 1.8 illustrates the concept of CCV transformation using the 

piecewise cost curve shown in Figure 1.2. In this example, yi is the helper variable that 

replaces the piecewise cost term related to the voltage Vi in the objective function. The 

four accompanying inequality constraints for yi are 

4,...,1for0)( =≤−+− vyCVVm iiviviiv ,            (1-33) 

where miv’s are the slopes of the four cost curve segments, and Viv’s and Civ’s are the 

values of Vi and Ci at the first four breakpoints of the cost curve.  

Like the separable programming method, the CCV method transforms a 

nonsmooth optimization problem into a smooth one and relies on good smooth 

constrained optimization techniques to solve the transformed problem. The scopes of 

the two methods, however, are different. The separable programming method is  
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Figure 1.8 Illustration of the CCV transformation of a piecewise linear objective 

function using the voltage-cost example shown in Figure 1.2 
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applicable to Class-5 problems in Category 1, 3, and 4, while the CCV method is 

applicable to problems in Category1, 3, and 7. In Chapter 2, the CCV method will be 

extended to solve problems in Category 4, 6, and 8. When solving non-convex 

problems, however, global optimization techniques must be adopted as the underlying 

NLP methods in order to achieve globally optimal solutions.  

 

1.5 Decomposition and parallelization 

Solving the comprehensive OPF in (1-10) is a daunting task. When using NLP 

algorithms such as the trust-region based augmented Lagrangian method and the 

primal-dual interior point method, the computational complexity mainly comes from 

the factorization of Hessian matrices in the form of   
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where J is the Hessian matrix to be factorized. In (1-34), each diagonal block D is 

evaluated with respect to variables representing system states for a single time period 
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and a single base or contingency case. The off-diagonal blocks, E’s, arise due to the 

contingency-couplings in (1-10), while K’s come from the time-couplings. The exact 

structures of D’s, E’s, and K’s depend on the underlying NLP algorithm used, and will 

be reviewed in later chapters when the complexity of each algorithm is analyzed. For 

now, it suffices to know that the size of J is (M+1)×(NC+1) times that of the Hessian 

matrix of a base-case single-period OPF. Due to the presence of off-diagonal 

elements, direct factorizations of J are impractical both in terms of computation time 

and in terms of memory requirements. As a result, one must seek techniques that can 

decompose and parallelize the task of solving (1-10) into smaller and more 

manageable sub-problems.  

 

1.5.1 Benders decomposition 

Benders decomposition [58] is a technique that has been frequently used in the 

solution of unit commitment and security-constrained OPF problems [3, 5, 14, 21, 23, 

31-34]. In dealing with SCOPF, the base case (master problem) is first optimized, after 

which contingency analysis and re-dispatches are performed for each N-1 contingency 

case. In case of running into infeasibility, linear inequality constraints known as 

Benders cuts are added to the base-case problem to represent the level of infeasibilities 

of the N-1 cases. The master problem is then resolved. This procedure repeats until the 

master problem is solved with all N-1 cases becoming secure. Results of using this 

decomposition technique have been mixed. Linearization errors and possible cyclic 

introduction of contingency violations necessitate large number of iterations, 

especially for AC OPF problems. In [34], a heuristic method is proposed to reduce the 

number of iterations; but the results reported in the same paper show that convergence 

is still not a guarantee and the heuristic method may generate dispatches that are 

different from the expected ones. The presence of time-couplings further complicates 
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the application of the Benders decomposition technique to the solution of (1-10). 

Unlike the hub-and-spoke contingency-couplings formed among pre-contingency 

system states and their post-contingency counterparts, the time-couplings among 

system states for different time periods form a long serial chain of dependencies that 

dictates more nested levels of Benders decompositions, making convergence even 

harder to achieve.  

 

1.5.2 Auxiliary problem principle 

The auxiliary problem principle (APP) was by and large developed by Cohen as a 

technique that allows one to find the solution of a complex optimization problem by 

solving a sequence of simpler auxiliary problems [41]. It is particularly useful for 

decomposing large-scale non-separable problems into smaller and more manageable 

ones. Consider an optimization problem of the form 
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The solution of (1-35) through the augmented Lagrangian methods involves creating 

non-separable quadratic penalty terms, and is therefore not decomposable. It is shown 

in [24, 41] that solving (1-35) is equivalent to solving a sequence of auxiliary 

problems in the form of 
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where k is the iteration number, and β and γ are constant parameters that satisfy β ≥ 2γ. 

In (1-36), each sub-problem concerns only a single subset of variables and can be 

solved using a good NLP algorithm of choice. Convergence is achieved if X and λ’s 

iteration-to-iteration changes are smaller than a pre-determined tolerance and equality 

constraints among X are satisfied.  

The above APP technique has been successfully applied to the solution of OPF 

and unit commitment problems in several published studies [5, 18, 19, 22, 24, 26-30]. 

Carpentier and Bornard in [5] and Murillo-Sánchez and Thomas in [18, 22] use APP 

to temporally decompose unit commitment and OPF problems. For a problem in the 

form of 

{ }DXdSXsXfXf ∈∈+ )(,)(|)()(min 21 ,            (1-37) 

where  represents pre-contingency constraints and/or constraints for the time 

period T, and   represents post-contingency constraints and/or constraints 

for the time period T+1, they first convert it to  

SXs ∈)(

DXd ∈)(

{ }0,)(,)(|)()(min 21 =−∈∈+ XYDYdSXsYfXf           (1-38) 

through variable duplications, and then apply the APP technique to solve the problem 

by treating XY −  as the Θ in (1-35). Kim and Baldick in [19, 24] and Chen, Thorp, 

and Mount in [29, 30] took a different path by spatially decomposing large-scale 

OPF’s into multiple smaller regional ones. In their experiments, the system is first 

partitioned into several smaller regional ones linked by tie lines; dummy buses are 

created around those tie lines in order to separate the OPF into independent pieces, 

with fictitious variables and equality constraints linking them together; APP is then 

invoked to decouple the fictitious equality constraints and turn the problem into a 

sequence of multiple small-scale OPF problems.  

The two APP decomposition methods mentioned above are not very effective in 
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solving the problem in (1-10). First, the success of the spatial decomposition technique 

largely depends on the granularity of the partition. Coarse partition tends to be more 

APP-friendly, but does not significantly remedy the matrix factorization problem 

associated with off-diagonal blocks in (1-34). Fine-grain partition, on the other hand, 

greatly reduces the sizes of those off-diagonal matrix blocks and the factorization 

complexity, but hurts the convergence of the APP because it involves too many tie 

lines and dummy constraints. Second, the temporal decomposition does not address 

the issue of handling inequality constraints, and is therefore not suitable for the 

solution of (1-10).   

 

1.5.3 Decomposition at the matrix computation level 

Given the Hessian matrix in (1-34), it is tempting for one to seek ways of 

decomposing the task of factorization by exploiting the structure of the matrix. One 

way of doing so is to reorganize J into a blocked diagonal bordered (BDB) form and 

parallelize the factorization block-wise. As pointed out in [13], however, the border 

blocks become dense during the factorization. The size of each dense sub-matrix is 

proportional to the number of generators in the system. Therefore, it remains 

prohibitedly expensive to solve (1-10) using decomposed blocked factorizations. An 

alternative approach is proposed in [13]. Since some NLP algorithms like the PDIPM 

described in 1.3.3 only require the solution of linear systems in their iterative steps, as 

opposed to matrix factorizations, one can use iterative methods like GMRES to 

replace the direct methods that involve matrix factorizations. Although good results 

have been reported, one should note that the success of an iterative method often 

hinges on the quality of its preconditioning procedures. The pre-conditioner adopted in 

[13] relies on proximities among pre-contingency system states and post-contingency 

system states. Such relations are unlikely to exist among system states of different 
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time periods, or among system states coupled by severe contingencies like generator 

outages. In addition, due to its exclusion of matrix factorizations, the method 

discussed in [13] does not allow one to validate the second-order KKT condition by 

checking the definiteness of the Hessian matrix. 

 

1.6 Contributions of this work 

This work analyzes the computational challenges of solving real-time market-based 

OPF’s. It demonstrates, for the first time, the need for a comprehensive multi-period 

security-constrained OPF in the operation of real-time electricity markets. The 

nonsmoothness of offer/bid-driven market-based OPF’s is emphasized in the study. 

Three techniques, namely, a trust-region based augmented Lagrangian method 

(TRALM), a step-controlled primal-dual interior point method (SC-PDIPM), and a 

modified constrained cost variables (MCCV) method, are proposed for reliable and 

efficient computation of large-scale nonsmooth market-based OPF’s. In order to 

reduce the computational complexity of solving the multi-period SCOPF problem, two 

new decomposition techniques are proposed. In the first one, the APP decomposition 

method is modified to handle inequality constraints created from generator ramping 

limits. In the second one, binding time-coupling and contingency-coupling constraints 

are estimated, ranked, and filtered, before the OPF computation is decomposed and 

parallelized using standard block matrix computation techniques.  
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Chapter 2 

Nonsmooth optimization for market-

based optimal power flow 

This chapter concerns the solution of market-base optimal OPF problems through the 

use of nonsmooth optimization techniques. Three separate techniques, namely, a trust-

region based augmented Lagrangian method (TRALM), a step-controlled primal-dual 

interior point method (SC-PDIPM), and a modified constrained cost variables 

(MCCV) method, are proposed for reliable and efficient computation of large-scale 

nonsmooth market-based OPF’s. TRALM integrates the augmented Lagrangian 

method and the trust-region unconstrained optimization technique to achieve 

algorithm robustness. SC-PDIPM amends the primal-dual interior point method with a 

step-control procedure to enhance the convergence of market-based OPF computation. 

The MCCV method is an extension of the CCV method introduced in Chapter 1 that 

handles both minimax and non-minimax problems.  

 

2.1 Trust-region based augmented Lagrangian method 

As pointed out in Chapter 1, market-based OPF’s are often formulated with 

nonsmooth objective functions that are derived from discrete market offers and bids. 

For example, assuming that only piecewise linear real-energy cost is considered, the 

objective function of a market-based OPF takes the form of 
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where r’s represent the underlying offer prices, i.e. the slopes of the cost curves, d’s 

are the real-power outputs at various breakpoints on the piecewise cost curves (d0 ≡ 0), 

and each NS represents the number of linear pieces contained in a given piecewise 

linear cost curve. Costs for reactive energy, voltage support, and other more complex 

resources and services can take similar forms. In order to solve such nonsmooth 

market-based OPF’s using second-order NLP algorithms, one must first convert the 

nonsmooth problems into smooth ones. One way of doing so is to smooth these 

piecewise objective functions in the regions around their breakpoints so that they 

become differentiable. For example, the nonsmooth objective function in (2-1) can be 

approximated by trigonometric functions as 
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where α is a small positive constant that controls the precision of the approximation. 

Figure 2.1 illustrates how the smoothing is done on a price-power curve.  
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Figure 2.1 Trigonometric smoothing of a 3-segment price-power curve 
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 Once the objective function is smoothed, one can treat the OPF problem as a 

smooth constrained optimization problem and apply the augmented Lagrangian 

method together with the trust-region method to solve it. Unlike the Newton’s method, 

the trust-region method can handle abrupt changes of Hessian derivatives (shown by 

the price “jumps” in Figure 2.1) through its trust-region sizing procedures, and 

therefore assures global convergence. The combined trust-region based augmented 

Lagrangian algorithm is shown in Algorithm 2.1.  

 

2.1.1 Complexity of TRALM 

The complexity of TRALM, in the context of solving the comprehensive market-based 

OPF problem formulated in (1-10), is a function of the system size (NB, NG, NL), the 

system topology, offer/bid granularities (NS’), and cost curves smoothing accuracies 

(α’s). The look-ahead window size (M) and the number of contingencies (NC) are 

considered constants. For simplicity, let us assume that all cost curves have the same 

NS and α, and buses and generators are evenly spread across the network. Then, the 

overall complexity can be expressed as  

),,,,(

),,,,(

),,,,(

α

α

α

NSNLNGNBCOMP

NSNLNGNBNI

NININSNLNGNBCOMP

FACTTRALMCOPF

TRM

TRSALMTRALMCOPF

−−

−

×

××=

,            (2-3) 

where NIALM is the number of iterations taken to solve the constrained optimization 

problem using Algorithm 2.1, NITRM is the number of iterations taken to solve each 

underlying unconstrained optimization problem using Algorithm 1.1, NITRS is the 

number of matrix factorizations involved in the computation of one single trust-region 

step (1-20), and COMPCOPF-TRALM-FACT is the complexity of factorizing the damped 

Hessian matrix in (1-20). NIALM and NITRS are insensitive to system size and therefore 
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Algorithm 2.1 

 

1. Smooth the objective function of the market-based OPF according to the 

trigonometric smoothing technique demonstrated in (2-1) and (2-2); 

2. ; Initialize the primal variables, dual variables, penalty parameters, 

and tolerance parameters that are used in (1-13), (1-14), and (1-15); 

0←k

3. while the convergence criteria in (1-15) is not met do 

a. Form the unconstrained optimization problem in (1-13) with the latest 

trial variables and parameters for iteration k; 

b. Solve (1-13) with the trust-region method shown in Algorithm 1.1, 

using the direct method for matrix factorizations; 

c. Update the primal variables for iteration k+1 using the solution gained 

from 3.b 

d. Update the dual variables and penalty parameters for iteration k+1 

according to (1-14); 

e. With 10 <<π , update the gradient tolerance parameter εk in (1-15) 

according to ; ),max(1 ∞+ ← επεε kk

f.    1+← kk

end do 
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treated as constants. ),,,,( αNSNLNGNBNITRM  can be empirically derived through 

numerical experiments and will be shown in later sections. To estimate 

),,,,( αNSNLNGNBCOMP FACTTRALMCOPF −− , recall the structure of the Hessian matrix 

J in (1-34). For TRALM,  in (1-34) is a (2NB+2NG) by (2NB+2NG) sparse matrix 

that represents the diagonal block of the Hessian matrix corresponding to the set of 

variables ( , , , ) for the time period t and the contingency case ci (ci = 0 

is for the base case);  and  are sparse matrices of the same size, but with non-

zero entries (two per row/column) only in the ( , ) portion, representing 

generator ramping limits. The damped Hessian matrix in (1-20) has the same structure 

as that of J, which is independent of NS and α. Therefore, the factorization complexity 

for the solution of (1-20) degenerates into . Due 

to the presence of ’s and ’s, matrix fill-ins created in a direct factorization of 

the damped Hessian matrix will at least amount to a dense NG by NG matrix. As a 

result, the factorization complexity for the comprehensive OPF problem can be 

expressed as 

ci
tD

ci
tP ci

tQ ci
tV ci

tθ
ci
tE tK

ci
tP ci

tP

),,( NLNGNBCOMP FACTTRALMCOPF −−

ci
tE tK

)()()(),,( 3NGONLONBONLNGNBCOMP FACTTRALMCOPF ++=−− .         (2-4) 

The overall complexity of solving (1-10) using TRALM is  

)]()()([

),,,,(

),,,,(

3NGONLONBO

NSNLNGNBNI

NININSNLNGNBCOMP

TRM

TRSALMTRALMCOPF

++

×

××=−

α

α

.  (2-5) 

For systems with large numbers (hundreds or even thousands) of generators, the 

complexity in (2-5) is clearly unacceptable for real-time applications. In Chapter 3, 

algorithms will be introduced to decompose the comprehensive OPF into multiple 

single-period base-case OPF’s. In that case, with a good preconditioned factorization 

algorithm such as the one used in UFSparse, the complexity of the factorization 
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becomes linear, i.e. 

)()()(),,( NGONLONBONLNGNBCOMP FACTTRALMOPF ++=−− .            (2-6) 

The overall complexity of TRALM applied to the single-period base-case OPF is 

therefore 

)]()()([

),,,,(

),,,,(

NGONLONBO

NSNLNGNBNI

NININSNLNGNBCOMP

TRM

TRSALMTRALMOPF

++

×

××=−

α

α

.            (2-7) 

 

2.2 Step-controlled primal-dual interior point method 

To apply the primal-dual interior point method to the solution of (1-10), one first 

needs to carry out the same cost-curve smoothing procedure as illustrated in (2-2) and 

Figure 2.1. Since the PDIPM method introduced in Chapter 1 is not a global 

convergent algorithm, one cannot apply it directly to the smoothed problem, whose 

objective function is still subject to abrupt derivative changes. As shown in the 118-

bus OPF example in Figure 2.2, the gradient and Hessian variables used in (1-23) and 

(1-24) change drastically from iteration to iteration when dealing with the market-

based OPF, destroying the strong descending property of Newton steps.  

In order to overcome the above difficulty, we can introduce a step control 

procedure in the PDIPM algorithm to prevent bold Newton steps from destroying the 

descending property. At each PDIPM iteration, the Newton step is first computed as 

described in Chapter 1, and then shortened recursively until the quadratic 

approximation of the Lagrangian along the shortened step is close to the actual 

Lagrangian. Empirically, it is more efficient to start applying such step control 

procedure after the normal PDIPM step fails to improve the gradient condition or the  
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Figure 2.2 Progression of PDIPM iterations in solving a single-period 118-bus market-

based OPF problem (NS = 3, α = 0.01) 
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feasibility condition. The whole step-controlled primal-dual interior point method 

(SC-PDIPM) is shown in Algorithm 2.2. Although it uses PDIPM as the baseline 

algorithm, the same step control concept applies to other interior point methods as 

well. As shown in Figure 2.3, with step adjustments, SC-PDIPM is now able to reduce 

both system cost and gradients continuously along the progression of iterations. 

 

2.2.1 Complexity of SC-PDIPM 

Like that of TRALM, the complexity of SC-PDIPM in the solution of the 

comprehensive market-based OPF problem in (1-10) can be expressed as 

 
),,(

),,,,(),,,,(

NLNGNBCOMP

NSNLNGNBNINSNLNGNBCOMP

FACTSCPDIPMCOPF

SCPDIPMSCPDIPMCOPF

−−

− ×= αα
,    (2-8) 

where NISCPDIPM is the number of major iterations taken in Algorithm 2.2 and 

COMPCOPF-SCPDIPM-FACT is the complexity of the matrix factorization in (1-24). The 

computational effort of the inner loop of Algorithm 2.2 is negligible. Again, recall the 

structure of the Hessian matrix J in (1-34),  is a (4NB+2NG) by (4NB+2NG) 

sparse matrix that corresponds to ( , , , , ) in this case, while  and 

 still only have non-zero entries (two per row/column) representing generator 

ramping limits in the ( , ) portion. Similarly, without any decomposition, 

COMPCOPF-SCPDIPM-FACT is   

ci
tD

ci
tP ci

tQ ci
tV ci

tθ
ci
tλ

ci
tE

tK

ci
tP ci

tP

)()()(),,( 3NGONLONBONLNGNBCOMP FACTSCPDIPMCOPF ++=−− ,      (2-9)   

while the matrix factorization complexity for the single-period base-case OPF is  

)()()(),,( NGONLONBONLNGNBCOMP FACTSCPDIPMOPF ++=−− .        (2-10) 

Although the size of the Hessian matrix used in SC-PDIPM is larger than that in 

TRALM, the underlying constants implied in (2-9) and (2-10) are not significantly  
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Algorithm 2.2 
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Figure 2.3 A comparison of PDIPM and SC-PDIPM in solving the single-period 118-

bus market-based OPF problem (NS = 3, α = 0.01) 
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different from those in (2-4) and (2-6), because the numbers of non-zero entries are 

essentially the same in the two cases. The overall complexity of SC-PDIPM for 

solving the comprehensive OPF is  

 
)]()()([

),,,,(),,,,(

3NGONLONBO

NSNLNGNBNINSNLNGNBCOMP SCPDIPMSCPDIPMCOPF

++

×=− αα
, (2-11) 

where NISCPDIPM will be empirically derived from numerical experiments later. And 

the complexity of solving the single-period base-case OPF is  

 .  (2-12) 
)]()()([

),,,,(),,,,(

NGONLONBO

NSNLNGNBNINSNLNGNBCOMP SCPDIPMSCPDIPMOPF

++

×=− αα

 

2.3 Modified constrained cost variables method (MCCV) 

The CCV formulation introduced in Chapter 1 is an effective way of turning Category 

1, 3, and 7 nonsmooth optimization problems into smooth ones. An extension to CCV 

is proposed here to make it also applicable to problems in Category 4, 6, and 8. Let us 

consider two adjacent finite segments of a piecewise objective function f(x) and the 

underlying functions fl(x) and fr(x) representing them shown in Figure 2.4. Assume 

that the two endpoints of the left segment fl(x) are a and b, and the two endpoints of 

the right segment fr(x) are b and c. In Figure 2.4, the solid line representing f(x) falls 

below fl(x) in part of the [b, c] range, and thus cannot be uniformly expressed as the 

maximum of its member functions fl(x) and fr(x) in [a, c]. In order to use the CCV 

reformulation technique, one can define new member functions fl’(x) and fr’(x) as  

⎪⎩

⎪
⎨
⎧

≤

>+= ∫
bxxfl

bxdxxrlbfl
xfl

x

b

if),(

if,)(')(
)('                         (2-13) 
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fr(x)/ fr’(x) 

fl’(x) 
fr’(x) 

fr(x) 
b

fl(x) 

c 

a

fl(x)/fl’(x) 

 

Figure 2.4 Illustration of the function extension procedure of MCCV: fl’(x) and fr’(x) 

replace fl(x) and fr(x) in regions beyond the breakpoint b to the right and to the left, 

respectively; the objective function f(x), represented by the solid line, can be expressed 

as the maximum of fl’(x) and fr’(x) in [a, c]; The original optimization problem is 

turned into a minimax problem once the function extension procedure is done on all 

member functions and breakpoints of f(x). 
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to replace the member functions fl(x) and fr(x) in the objective function. The two 

extended functions fall below the desired CCV epigraph in regions beyond the 

breakpoint b to the right and to the left, respectively. Once this procedure is carried out 

for all segments and breakpoints of the piecewise objective function f(x), one can 

rewrite the objective function as the maximum of all its extended member functions, 

reformulate the minimax optimization problem using the CCV reformulation 

technique introduced in Chapter 1. Algorithm 2.3 outlines the modified CCV method 

together with PDIPM as the underlying NLP solver. Note that for non-convex 

problems that fall into Category 6 and 8 listed in Table 1.1, in order to achieve the 

global optimum, the proposed MCCV method must be used in conjunction with global 

optimization techniques, which are out of the scope of this work. 

 

2.3.1 Complexity of MCCV 

The complexity of MCCV, with PDIPM as the underlying NLP solver, is 
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,          (2-14) 

where NIMCCV is the number of PDIPM iterations taken. Similar to the factorization 

complexity of SC-PDIPM, the complexity of a Hessian matrix factorization involved 

in MCCV is 

)(

)()()(),,,( 3
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NGONLONBONSNLNGNBCOMP FACTMCCVCOPF

+

++=−−
          (2-15) 

for the multi-period security-constrained OPF problem in (1-10), and the overall 

complexity of solving (1-10) without using decomposition techniques is 
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If decomposition techniques are used, the complexity of factorizing the Hessian matrix 

for a single-period base-case OPF is 
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and the overall complexity of solving the single-period base-case OPF is 
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In the above analysis, the number of individual cost curves included in the objective 

function is assumed to be on the order of O(NB)+O(NG)+O(NL). The extra linear term 

O(NS) arises from the non-zero elements of  in (1-24), which 

are created due to the presence of extra inequality constraints accompanying 

constrained cost variables. Note that this extra term would be O(NS
3) for the separable 

TXGZXG )(]/[)( ∇∇ μ
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programming and DPOB methods introduced in Chapter 1. 

 

2.4 Numerical results 

The new OPF algorithms and the MCCV reformulation method have been tested and 

compared with some existing OPF techniques using the power system models listed in 

Table 2.1 (See Appendix A for details). Tests were carrier out on a PC with Intel 

3.3GHz P4 processor (2MB L2 cache), 2GB memory, and Linux 2.6.9 kernel. All 

optimization programs and auxiliary numerical utilities, except the LU and Cholesky 

factorization modules, were developed in house using Standard C and compiled using 

the GCC 3.4.4 compiler. LU and Cholesky factorizations were implemented using the 

UFsparse package [59]. The parameters used in PDIPM, TRALM, SC-PDIPM, 

MCCV, and cost-curve smoothing, unless stated otherwise, were set according to 

Table 2.2. All experiments assumed flat starting points, i.e. unit voltages, zero phase 

angles, and generator outputs at the midpoints between maximum generations and 

minimum generations. Market offers and bids were randomly generated.  

 

2.4.1 Convergence and performance 

Table 2.3 compares the convergence and performance properties of four algorithms in 

the solution of classical single-period base-case OPF problems. TRALM and SC-

PDIPM converged in all cases, while MINOS [57, 60] failed to solve large-scale 

OPF’s and PDIPM failed to solve OPF’s with piecewise costs. SC-PDIPM is faster 

than TRALM and better suited for real-time applications. 

One pitfall of SC-PDIPM, like that of PDIPM, is its lack of global convergence 

guarantee. Some variations of PDIPM can improve the convergence through the use of 

line searching and/or damped Newton procedures [12, 51], but only at the cost of  
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Table 2.1 Summary of the power system models used in the study 

 

System Buses Generators Branches Load (MW) 

1 30 6 41 189 

2 57 7 80 1,250 

3 118 54 186 4,242 

4 300 69 411 23,525 

5 2383 327 2896 24,558 

6 2935 956 7028 394,794 

 

 

 

Table 2.2 Parameters used in PDIPM, TRALM, SC-PDIPM, and MCCV  

 

NS = 3, α = 0.04 

TRALM PDIPM/SC-PDIPM 

ελ 5e-3 Τ 0.25 κ 0.5 Z0 1.0 

εμ 1e-1 Η 0.75 η 0.1 λ0 0.0 

ε0 2e0 γ1 0.1 ε 1e-5 μ0 1.0 

ε∞ 1e-2 γ2 2.0 X0 flat start γ0 1.0 

βW, U  = 3 γW, U = 0.33 ξ = 0.99995 σ 0.1 
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Table 2.3 Comparisons of the execution time (sec.) and numbers of iterations (shown 

in parenthesis) of four algorithms in the solution of single-period base-case OPF’s 

 

Solving OPF’s with Quadratic Costs 

System MINOS PDIPM TRALM SC-PDIPM 

1 0.06 (350) 0.05 (13) 0.20 (134) 0.07 (13) 

2 0.07 (179) 0.11 (14) 0.40 (146) 0.17 (17) 

3 1.2 (1579) 0.37 (21) 2.3 (441) 0.57 (24) 

4 6.3 (3654) 1.2 (29) 4.8 (420) 1.3 (24) 

5 FAIL 12 (33) 168 (1834) 14 (33) 

6 FAIL 22 (34) 680 (2842) 26 (34) 

Solving OPF’s with Piecewise Costs 

System MINOS PDIPM TRALM SC-PDIPM 

1 0.04 (163) 0.66 (171) 0.34 (221) 0.15 (26) 

2 0.07 (184) 0.93 (126) 0.40 (171) 0.47 (45) 

3 0.9 (1190) FAIL 3.7 (698) 1.9 (77) 

4 3.8 (2002) 27 (689) 6.7 (544) 4.0 (72) 

5 FAIL FAIL  202 (2193) 54 (122) 

6 FAIL FAIL 1011 (4310) 161 (204) 
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losing performance advantage. In [12], Jabr et al. demonstrate cases in which PDIPM 

would fail. Experiments in this study, however, show that SC-PDIPM, as PDIPM in 

the context of solving OPF’s with quadratic costs, consistently converges to the 

desired OPF solutions, with both the first-order and the second-order KKT conditions 

satisfied. The failure of PDIPM demonstrated in [12] might be attributed to the special 

OPF formulation used in [12] that treats all constraints as inequality constraints. The 

encouraging results reported in this study imply that the OPF problem’s nonlinearity is 

relatively mild and its region of attraction is large enough to counter occasional ill-

defined Newton steps.  

Table 2.4 compares three different OPF formulations (the classical, DPOB, and 

MCCV) in the solution of market-based OPF’s, with PDIPM or SC-PDIPM as the 

underlying NLP algorithm. MCCV and DPOB in conjunction with PDIPM offer better 

performances than the combination of the classical formulation and SC-PDIPM. 

Compared to DPOB, the classical formulation and MCCV have the advantages of 

being extendable to solving nonsmooth problems in all categories listed in Table 1.1.  

 

2.4.2 Accuracy 

Given a benchmark OPF solution  

),,,,,,( *
,,,,

*
,

*****
STSFVQPFRFAVQPC ±±±μλθ

 

and a solution  

),,,,,,( ,,,,, STSFVQPFRFAVQPC ±±±μλθ
 

generated by a new OPF tool under study, one can use the following metrics to verify 

the legitimacy of the new tool: 
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Table 2.4 Execution time (sec.) and numbers of iterations (shown in parenthesis) of 

solving differently formulated OPF’s 

 

OPF’s with Convex Piecewise Linear Costs 

System Classical-SC-PDIPM DPOB-PDIPM MCCV-PDIPM 

1 0.15 (26) 0.06 (13) 0.06 (15) 

2 0.47 (45) 0.11 (13) 0.17 (22) 

3 1.9 (77) 0.39 (19) 1.9 (109) 

4 4.0 (72) 1.3 (30) 1.2 (28) 

5 54 (122) 13 (35) 15 (43) 

6 161 (204) 32 (47) 49 (78) 
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Small δ’s indicate good OPF solutions. 

Table 2.5 lists the result of a cross examination of OPF solutions generated by 

MINOS, TRALM, SC-PDIPM, DPOB-PDIPM, and MCCV-PDIPM. The small values 

reported in Table 2.5 indicate that all methods proposed are valid for the computation 

of large-scale market-based OPF’s.  

The parameter α used in cost-curve smoothing has an impact on the accuracies of 

TRALM and SC-PDIPM’s solutions. As shown in Table 2.6, smaller α’s yield more 

accurate solutions. In practice, 0.04 is small enough for α to ensure satisfactory results. 

Since the experiments in this study only use quadratic costs and piecewise linear 

convex costs, the piecewise function extension procedure in (2-13) is not invoked for 

MCCV. Hence, MCCV’s results do not vary with α.  

 

2.4.3 Scalability 

The time taken to solve an OPF problem depends on both the number of iterations 

taken and the computational complexity of a single iteration. Assuming a constant 

transmission network density and a constant fill-in ratio for the sparse matrix 

factorization, the complexity of a single PDIPM, TRALM, or SC-PDIPM iteration is 

O(NB) for single-period base-case OPF problems. Although the exact relationship  
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TABLE 2.5 Accuracies of OPF solutions computed by different algorithms (300-bus 

system, MINOS as the reference)  

 

Algorithm δC δX δλ δμ 

TRALM 5.2e-4 2.6e-2 1.6e-3 9.0e-3 

SC-PDIPM 5.2e-4 2.7e-2 1.6e-3 8.6e-3 

DPOB-PDIPM 2.9e-7 1.3e-3 1.0e-4 3.6e-4 

MCCV-PDIPM 7.1e-5 5.4e-4 5.5e-5 8.6e-5 

 

  

Table 2.6 Accuracies of several OPF solutions computed by SC-PDIPM with different 

α values (300-bus system, MCCV-PDIPM as the reference) 

 

α δC δX δλ δμ 

0.1 1.3e-3 4.6e-2 3.6e-3 2.4e-2 

0.04 5.2e-4 2.7e-2 1.6e-3 8.6e-3 

0.01 1.3e-4 6.9e-3 4.1e-4 2.1e-3 
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between the system size and the number of iterations is unclear, one can identify some 

general trends from Table 2.3 and 2.4. First, the number of iterations rises as the 

system size increases. Second, the rising paces for PDIPM and SC-PDIPM are much 

slower than those of MINOS and TRALM, suggesting that SC-PDIPM and MCCV-

PDIPM are more scalable and better suited for large-scale systems. Third, as indicated 

in (2-5), (2-7), (2-11), (2-12), (2-16), and (2-18), other system details such as the 

number of generators can also have impacts on the algorithm complexities. Omitting 

those system-specific characteristics, the overall complexity of solving single-period 

base-case OPF can be approximated by , where ε is a small number that 

falls between 0.1 and 0.2 for SC-PDIPM and MCCV-PDIPM according to the results 

in Table 2.3 and 2.4.  

)( 1 ε+NBO

The number of segments (NS) contained in piecewise cost curves also impacts the 

performance of second-order NLP-based OPF algorithms. Table 2.7 lists the execution 

time and numbers of iterations taken by SC-PDIPM, DPOB-PDIPM, and MCCV-

PDIPM to solve a 2935-bus OPF with different NS values. The number of iterations 

taken by SC-PDIPM grows approximately linearly with NS, while those by DPOB-

PDIPM and MCCV-PDIPM are insensitive to NS. One should note that DPOB and 

MCCV’s scalabilities are limited to small NS’s. For large NS’s, DPOB dictates 

dense ’s and is therefore unscalable both in terms of speed and in terms of 

memory requirement. MCCV, on the other hand, does not encounter such problem, 

because each accompanying constraint that it adds to the problem only contains small 

and fixed number of variables. Depending on the underlying computing platform used, 

the extra memory required by MCCV to accommodate new inequality constraints and 

helper cost variables may or may not be an issue. That said, one does not need to 

worry about DPOB and MCCV’s scalabilities for today’s electricity market operations, 

where NS is often capped around 10~20. In the future, however, fine-grain trading  

)(XH∇
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Table 2.7 Execution time (sec.) and numbers of iterations taken to solve a single-

period base-case 2935-bus OPF with different NS values 

 

SC-PDIPM 

NS # Its. Time NS # Its. Time 

3 204 161 4 218 173 

5 217 172 6 263 210 

7 323 263 8 344 278 

9 362 292 10 402 328 

DPOB-PDIPM 

NS # Its. Time NS # Its. Time 

3 47 32 4 48 33 

5 46 33 6 48 35 

7 47 35 8 45 35 

9 46 36 10 46 37 

MCCV-PDIPM 

NS # Its. Time NS # Its. Time 

3 78 49 4 98 61 

5 72 46 6 98 62 

7 76 49 8 87 56 

9 74 48 10 97 62 
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could be instituted and present significant challenge to the two alternative OPF 

formulations. 

 

2.5 Remarks 

In this chapter, three new techniques (TRALM, SC-PDIPM, and MCCV) are proposed 

to solve market-based nonsmooth OPF problems. Numerical studies show that these 

techniques are reliable and better than some existing ones. MCCV-PDIPM and SC-

PDIPM are particularly good for real-time applications due to their efficiencies, while 

TRALM can be applied as a backup technique that offers global convergence 

guarantee. The CCV method has been extended to solve Class-5 composite nonsmooth 

problems in all categories discussed in Chapter 1. When dealing with non-convex 

costs, however, the methods discussed in this work must be combined with global 

optimization techniques in order to achieve global optimal solutions. Compared to the 

separable programming approach DPOB, MCCV offers better scalability with regards 

to NS because it avoids increasing the number of non-zeros per row/column in 

. In the future, one needs to pay attention to DPOB and MCCV’s large 

memory requirements as the market embraces finer-grain electricity trading.  

)(XH∇
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Chapter 3 

Multi-period security-constrained 

optimal power flow 

This chapter discusses the solution of the multi-period security-constrained OPF 

problem formulated in (1-10). In Chapter 1 and Chapter 2, we have seen that the main 

difficulty of solving the comprehensive OPF problem is the excessive computation 

overhead (on the order of O(NG
3)) associated with matrix fill-ins that are created 

during the factorization of Hessian matrices. Two decomposition methods are 

proposed in this Chapter to address the issue. In Chapter 3.1, the auxiliary problem 

principle method introduced in Chapter 1 is extended to treat the time-coupling and 

contingency-coupling inequality constraints in (1-10) and make the problem 

decomposable. Chapter 3.2 introduces a look-ahead OPF method that estimates the 

binding generator ramping constraints ahead of time and reduces the number of time-

coupling and contingency-coupling constraints that go into (1-10). In both methods, 

the dense sub-matrices presented in the factorized Hessian matrix are either eliminated 

or shrunk significantly. This will allow us to adopt the algorithms in Chapter 2 to 

solve (1-10) without incurring much computational overhead.  

 

3.1 Modified APP method 

The APP method introduced in Chapter 1 has been applied with a limited degree of 
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success to the decomposition of OPF problems whose sub-problems are coupled by 

equality constraints [5, 18, 19, 22, 24, 26-30]. The comprehensive OPF in (1-10), 

however, is a collection of optimization problems that are linked by inequality 

(generator ramping) constraints, and therefore cannot be directly solved using the APP 

method in (1-35) and (1-36).  

For an optimization problem in the form of 

{ }0,)(,)(|)()(min 21 ≤−∈∈+ MM XYDYdSXsYfXf ,              (3-1) 

where XM and YM are subsets of X and Y, one may tempt to first convert the coupling 

inequality constraints into equality ones through the introduction of new variables as 

{ }
{ } {

)(),('

0,)(|),('),('|),(
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11
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≤−∈≡∈
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,         (3-2) 

and then apply the APP method in Chapter 1 to decompose the problem into a sub-

problem on (X, ZM) and a sub-problem on Y, which are coupled by the equality 

constraints  instead of inequality constraints. Unfortunately, this method 

fails to yield convergence when generator ramping constraints are binding. Table 3.1 

and Figure 3.1 show the results of solving an example 30-bus comprehensive OPF 

using the stated method.  

0=− MM ZY

To be able to handle the inequality coupling constraints in (3-1), one can 

decompose the problem into the following iterative set of auxiliary problems: 
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Table 3.1 Results of solving 30-bus multi-period market-based OPF’s using the classic 

APP method (M = 2, TR = 20 minutes, t0 → 8:00PM). No contingency is considered.  

 

Time Period 
Number of Binding 

Ramping Limits 
Number of APP 

Iterations 

RA = 1% of generator capacity per minute 

t0 0 5 

t0 + 1 1 FAIL 

RA = 2% of generator capacity per minute 

t0 0 5 

t0 + 1 0 6 

t0 + 2 0 6 

t0 + 3 0 5 

t0 + 4 0 7 

t0 + 5 0 7 

t0 + 6 0 5 

t0 + 7 2 FAIL 
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(a) 

 

(b) 

Figure 3.1 Progressions of APP iterations demonstrating the failure of the APP 

method in the solution of a 30-bus multi-period market-based OPF (M = 2, TR = 20 

minutes, t0 → 8:00PM): (a) result of solving the OPF with ramp limits set to 1% of 

generator capacity per minute; (b) result of solving the OPF with ramp limits set to 2% 

of generator capacity per minute. Delta is defined as the infinite norm of X and λ’s 

relative iteration-to-iteration changes and Θ in (1-36). No contingency is considered in 

this example. 
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where k is the iteration number. As in (1-36), convergence is achieved if X, Y, and μ’s 

iteration-to-iteration changes are smaller than the tolerance and the inequality 

constraints among X and Y are satisfied. The handling of inequality constraints and the 

scaling of penalty parameters in (3-3) are similar to those of the augmented 

Lagrangian method discussed in Chapter 1 and Chapter 2. Figure 3.2 and 3.3 show the 

results of solving the same 30-bus multi-period OPF problem as in Table 3.1 and 

Figure 3.1 using the modified APP method.  

Although the multi-period security-constrained OPF problem in (1-10) is now 

decomposable using the modified APP method, the large number of sequential 

iterations required, as shown in Figure 3.2, is still a significant computational hurdle 

for most real-time applications. For larger power systems, the modified APP method 

has difficulty of achieving consistent convergence.  

 

3.2 Estimation and reduction of binding ramping constraints  

In Chapter 1, it has been stated that the chief obstacle of decomposing the multi-period 

security-constrained OPF problem at the matrix computation level is the matrix fill-ins 
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Figure 3.2 Results of solving 72 consecutive 30-bus multi-period market-based OPF’s 

using the modified APP method (M = 2, TR = 20 minutes, t0 → 8:00PM, RA = 1% of 

generator capacity per minute): (a) Iterations taken to solve the multi-period OPF’s 

with κ = 1.5; (b) Iterations taken to solve the multi-period OPF’s with κ = 4. No 

contingency is considered in this example. 
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Figure 3.2 (Continued) 
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Figure 3.3 Progressions of APP iterations showing the success of the modified APP 

method in solving the 30-bus multi-period market-based OPF for the t0 + 1 time period 

(M = 2, TR = 20 minutes, t0 → 8:00PM, RA = 1% of generator capacity per minute, κ 

= 4). Delta is defined as the infinite norm of X, Y and μ’s relative iteration-to-iteration 

changes and (Y – X) for binding Y ≤ X in (3-1) and (3-3). No contingency is considered 

in this example. 
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associated with the time-coupling and contingency-coupling generator ramping 

constraints. If the number of such coupling inequality constraints can be significantly 

reduced, one would be able to reorganize the Hessian matrix in (1-34) into the BDB 

form with much thinner boarder blocks, making it possible to decompose and 

parallelize the underlying matrix computation without much overhead.  

While the number of generator ramping constraints in (1-10) is large, the number 

of binding ones can be small and manageable. The number of binding time-coupling 

constraints largely depends on the volatility of the market. Table 3.2 shows how this 

number changes with the volatility of the market, which is defined as the average 

period-to-period price fluctuation in percentage. The number of binding contingency-

coupling constraints is determined by both the number of credible contingencies and 

the magnitudes of impacts that these credible contingencies have on the system. The 

number of credible contingencies identified by the contingency selection program is 

usually very small compared to the size of the system [5, 14, 33, 34]. The number of 

binding and treatable ones is even smaller, because most credible contingencies are 

either too severe to be treated in real-time dispatching operations, or too trivial to 

move the post-contingency dispatches close to the ramping limits. For example, an 

experiment of solving a 24-hour 30-bus comprehensive OPF shows that none of the 42 

single-branch outage contingencies and the 6 single-generator outage contingencies is 

relevant: the single-generator outage contingencies are not treatable in real-time 

operations without commitment of new spinning reserve, the outage of No. 10 or No. 

36 branch creates islands, and the rest single-branch outage contingencies are trivial.      

Eliminating non-binding generator ramping constraints from (1-10) requires 

identification of which constraints are binding and which ones are not. Although an 

accurate identification is impossible without actually solving (1-10), one can gain a 

reasonably good estimate by solving a series of single-period OPF’s for the future
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Table 3.2 Number of generators that hit ramping limits in the solution of 30-bus multi-

period market-based OPF’s for 72 consecutive time periods. (M = 3, TR = 20 minutes). 

Volatility is measured by the average period-to-period price fluctuation in percentage.  

 

Market 

Volatility (%) 

Max Number of Ramp-Limited 

Generators 

0 1 

10 2 

20 2 

30 2 

40 4 

50 4 

60 5 

70 5 

80 5 

90 6 

100 6 
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periods in a look-ahead style, as outlined in Algorithm 3.1. In this method, a base-case 

single-period OPF is solved for each time period ],[ 00 Mttt +∈  as 
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where the ramping constraints between Pt and Pt-1 in (1-10) are approximated by the 

constraints between Pt and Pt0-1. Since Pt0-1 is readily available from the state 

estimator, the problem in (3-4) for each time period ],[ 00 Mttt +∈  can be solved 

independently. Similarly, a single-period OPF is solved for each contingency case 
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Algorithm 3.1 

 

1. Solve all individual single-period OPF’s in (3-4) and (3-5) in parallel; 

2. Estimate the binding ramping constraints based on the test in (3-6); 

3. Formulate the comprehensive OPF in (3-7) with the estimated binding 

ramping constraints obtained from Step 2; 

4. Solve (3-7) with TRALM, SC-PDIPM, or MCCV-PDIPM, with the underlying 

Hessian matrix reordered into the BDB form and relevant matrix computation 

decomposed and parallelized at the block level.  
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Once the above individual single-period OPF’s have been solved, one can estimate the 

list of binding ramping constraints based on the following test: 
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In (3-6), P
* is from the solutions of (3-4) and (3-5); neighboring dispatches are 

checked against each other to determine whether the ramping constraints between 

them are likely binding. The estimated set of binding ramping constraints is then used 

as a proxy for the actual binding set in the reformulation of (1-10), given by 

               (3-7) 
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Now, one can solve (3-7) using TRALM, SC-PDIPM, or MCCV-PDIPM introduced 

in Chapter 2. Since the off-diagonal blocks of the Hessian matrix have been greatly 

shrunk as a result of the transformation in (3-7), one can reorder the Hessian matrix 

into the BDB form, and decompose and parallelize the NLP at the block matrix 

computation level with much less overhead. Table 3.3 compares the results of solving 

the original comprehensive OPF problem in (1-10) and the approximated 

comprehensive OPF problem in (3-7). The approximated comprehensive OPF offers a 

similar level of improvement over the single-period OPF as the original 

comprehensive OPF does.  

As stated before, the number of binding contingency-coupling constraints is small 

and negligible. In a volatile market, however, the number of binding time-coupling 

constraints can become too large for one to adopt matrix-level decompositions, due to 

the overhead associated with matrix fill-ins. In such case, one can limit the list of 

estimated binding time-coupling constraints to a fixed size, and take only those 

constraints that are most critical to the optimization. Algorithm 3.2 integrates this 

procedure with Algorithm 3.1 to reduce the complexity of solving the comprehensive 

OPF. For comparisons, Algorithm 3.2 offers two ways of selecting the list of binding 

time-coupling constraints: one based on the magnitudes of ramping limits violations  
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Table 3.3 Comparisons of cumulative objective values of solving the 30-bus 

comprehensive multi-period security-constrained OPF’s for 72 consecutive periods 

(TR = 20 minutes) with and without the estimation and reduction (ER) of binding 

ramping constraints procedure in Algorithm 3.1. 

 

Market 

Volatility (%) 
M = 0 M = 3 without ER M = 3 with ER 

0 3.3634e5 3.3634e5 3.3634e5 

10 3.1826e5 3.1818e5 3.1818e5 

20 2.9987e5 2.9971e5 2.9971e5 

30 2.8134e5 2.8099e5 2.8102e5 

40 2.6250e5 2.6174e5 2.6175e5 

50 2.4299e5 2.4194e5 2.4196e5 

60 2.2326e5 2.2196e5 2.2200e5 

70 2.0340e5 2.0147e5 2.0160e5 

80 1.8363e5 1.8123e5 1.8138e5 

90 1.6501e5 1.6302e5 1.6308e5 

100 1.5043e5 1.4495e5 1.4602e5 
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Algorithm 3.2 

 

1. Solve all individual single-period OPF’s in (3-4) and (3-5) in parallel; 

2. Estimate the binding ramping constraints based on the test in (3-6); 

3. If ER is set to VF 

a. Rank the estimated binding ramping constraints obtained from Step 2 

according to their |  values; )(|
*

1,

*

, Rjtjtj TRAPP Δ±− −

else if ER is set to CF 

b. Rank the estimated binding ramping constraints obtained from Step 2 

according to their associated generator capacity  values; max
jP

end if 

4. Select MB highest ranked constraints from the list obtained in Step 3  

5. Formulate the comprehensive OPF in (3-7) with the selected estimated binding 

ramping constraints obtained from Step 4; 

6. Solve (3-7) with TRALM, SC-PDIPM, or MCCV-PDIPM, with the underlying 

Hessian matrix reordered into the BDB form and relevant matrix computation 

decomposed and parallelized at the block level.  
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(ER is set to VF) and the other based on generator capacities (ER is set to CF). In the 

former, a fixed number (MB) of estimated binding time-coupling constraints acquired 

through (3-6) with largest  values are retained in (3-7), 

while the rest are ignored. In the latter, MB estimated binding time-coupling 

constraints whose corresponding generators have largest capacities are selected. Table 

3.4 shows the results of solving the 30-bus comprehensive multi-period security-

constrained OPF’s using Algorithm 3.2. It is evident that selecting binding constraints 

based on magnitudes of violations is better than selecting constraints based on 

generator capacities, as it yields results closer to the ideal ones (those computed 

without ER).  

|)(|
*

1,

*

, Rjtjtj TRAPP Δ±− −

The number of estimated binding time-coupling constraints (MB) selected in 

Algorithm 3.2 affects both the optimality and the efficiency of the OPF computation.  

Table 3.5, 3.6, and 3.7 compare the results of solving (3-7) using Algorithm 3.2 with 

different MB values. The larger the MB is, the better the results match the ideal ones. 

Setting MB to ten percent of the total number of generators is often enough to generate 

satisfactory results. A large MB, however, may hurt the performance of the 

computation. In Algorithm 3.1 and 3.2, the bottleneck of the computation lies in Step 

4 and Step 6, respectively, assuming standard block matrix computation techniques are 

used to handle the BDB Hessian matrix [61] and the load of the computation is 

coarsely and uniformly distributed among (M+1)×(NC+1) identical computational 

nodes. The nodal complexity of Algorithm 3.2 is similar to the complexity of solving a 

single-period base-case OPF using TRALM, SC-PDIPM, or MCCV-PDIPM, except 

that there is an additional cubic term on MB that is associated with the factorization of 

the dense boarder matrix block. Using TRALM, the nodal complexity of Algorithm 

3.2 is 
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Table 3.4 Comparisons of cumulative objective values of solving the 30-bus 

comprehensive multi-period security-constrained OPF’s for 72 consecutive periods 

(TR = 20 minutes) with and without the estimation and reduction (ER) of binding 

ramping constraints procedure in Algorithm 3.2. 

 

Market 

Volatility (%) 
M = 0 

M = 3 

without ER 

M = 3 with ER-

VF, MB = 2 

M = 3 with ER-

CF, MB = 2 

0 3.3634e5 3.3634e5 3.3634e5 3.3634e5 

10 3.1826e5 3.1818e5 3.1818e5 3.1824e5 

20 2.9987e5 2.9971e5 2.9971e5 2.9983e5 

30 2.8134e5 2.8099e5 2.8102e5 2.8130e5 

40 2.6250e5 2.6174e5 2.6189e5 2.6233e5 

50 2.4299e5 2.4194e5 2.4207e5 2.4264e5 

60 2.2326e5 2.2196e5 2.2225e5 2.2281e5 

70 2.0340e5 2.0147e5 2.0198e5 2.0272e5 

80 1.8363e5 1.8123e5 1.8169e5 1.8297e5 

90 1.6501e5 1.6302e5 1.6323e5 1.6474e5 

100 1.5043e5 1.4495e5 1.4610e5 1.4831e5 
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Table 3.5 Comparisons of cumulative objective values of solving the 30-bus 

comprehensive multi-period security-constrained OPF’s for 72 consecutive periods 

(TR = 20 minutes, Market Volatility = 100%) using Algorithm 3.2 (ER set to VF) with 

different MB’s 

 

MB M = 3 with ER-VF 

0 (M = 0) 1.5043e5 

1 1.4831e5 

2 1.4610e5 

3 1.4607e5 

4 1.4606e5 

5 1.4602e5 

6 (without ER) 1.4495e5 
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Table 3.6 Comparisons of cumulative objective values of solving 118-bus 

comprehensive multi-period security-constrained OPF’s for 72 consecutive periods 

(TR = 20 minutes, Market Volatility = 100%) using Algorithm 3.2 (ER set to VF) with 

different MB’s 

 

MB M = 3 with ER-VF 

0 (M = 0) 3.4328e6 

5 3.3717e6 

10 3.3376e6 

15 3.3231e6 

20 3.3044e6 

25 3.2984e6 

without ER 3.2885e6 
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Table 3.7 Comparisons of cumulative objective values of solving 2383-bus 

comprehensive multi-period security-constrained OPF’s for 72 consecutive periods 

(TR = 20 minutes, Market Volatility = 100%) using Algorithm 3.2 (ER set to VF) with 

different MB’s 

 

MB M = 3 with ER-VF 

0 (M = 0) 3.1131e7 

10 3.0905e7 

20 3.0874e7 

30 3.0861e7 

40 3.0854e7 

50 3.0854e7 

without ER 3.0854e7 
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Using SC-PDIPM, the nodal complexity is 
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And Using MCCV-PDIPM, the nodal complexity is 
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Thus, a good choice of MB requires balancing the conflicting needs for both optimal 

OPF results and good computational performance. For systems with thousands of 

buses or more, the computational effort represented by the cubic terms on MB in (3-8), 

(3-9), and (3-10) is less than that represented by the linear terms, as long as MB is in 

the low hundreds or less.   
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Chapter 4 

Conclusions 

This work proposes, for the first time, the formulation and solution of a multi-period 

security-constrained OPF problem for real-time operations of electricity markets. The 

proposed OPF is intended to be part of the core pricing mechanism for electricity 

trading in open markets where real energy, reactive energy, voltages support, and 

other system resources and services are all traded in discrete bids and offers. 

Traditionally, real-time dispatching operations only involve single-period SCOPF’s. 

This work demonstrates the need for comprehensive multi-period SCOPF’s.  

The nonsmoothness of offer/bid-driven OPF’s is studied. Three techniques, 

namely, a trust-region based augmented Lagrangian method (TRALM), a step-

controlled primal-dual interior point method (SC-PDIPM), and a modified constrained 

cost variables (MCCV) method, are developed for reliable and efficient computation 

of large-scale nonsmooth market-based OPF’s. Numerical studies show that these 

techniques are reliable and better than some existing ones. MCCV (in conjunction 

with PDIPM) and SC-PDIPM are particularly good for real-time applications due to 

their efficiencies, while TRALM can be applied as a backup technique that offers 

global convergence guarantee. The CCV method has been extended to solve all Class-

5 composite nonsmooth problems. Compared to the separable programming method 

DPOB, MCCV offers better scalability.  

To reduce the computational complexity of solving the multi-period SCOPF 

problem, two decomposition techniques are proposed and studied. In the first one, the 
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APP decomposition method is extended to handle the inequality constraints that result 

from generator ramping limits. In the second one, binding time-coupling and 

contingency-coupling constraints are estimated, ranked, and filtered before the OPF 

computation is decomposed and parallelized using standard block matrix computation 

techniques. According to experimental results, the most promising way of solving 

large-scale multi-period SCOPF problems in real time is to combine the second 

decomposition method with the MCCV method. 

The OPF formulation and relevant computation techniques proposed in this work 

balance the needs for: (1) deterministic convergence, (2) accurate computation of 

nodal prices, (3) support of both smooth and nonsmooth costings of a variety of 

resources and services, such as real energy, reactive energy, voltage support, etc., (4) 

full active and reactive power flow modeling of large-scale systems, and (5) 

satisfactory worst-case performance that meets the real-time dispatching requirement. 

 

4.1 Limitations of this work 

This work does not address the issue of global optimality. As mentioned in the 

discussion of MCCV, market-based OPF’s containing non-convex costs demand 

complimentary global optimization techniques. Global optimization is, however, often 

a tedious computational task. It remains to be seen whether any recent development in 

the field of global optimization can bear fruits for real-time market-based OPF 

applications [62-64].  

 Infeasibility of the comprehensive multi-period SCOPF is another topic that is 

missing from this work. As pointed out earlier, most contingencies are either too 

trivial to influence OPF results or too severe to be remedied by available dispatchable 

reserves. In fact, it will most likely prove vain to consider contingencies at all in the 
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real-time OPF. To this end, the hourly balancing market might be a better place to 

address the issue of infeasibility and security constraints [36, 39]. Since generator 

units are free to be brought on-line or off-line in the balancing market, a balancing 

market evaluation (BME) requires the solution of a unit commitment problem. It will 

be worthwhile to study the integration of the real-time comprehensive OPF and the 

BME operations in the future.  
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Appendix A 

System data 

In this study, the 30-bus, 57-bus, 118-bus, and 300-bus system data are from the 

MATPOWER software package [57], and the 2383-bus and 2935-bus system data are 

proprietary and derived from real power systems.  

To create random piecewise linear energy-cost data for a generator whose 

minimum real-power output is Pmin and maximum real-power output is Pmax, the range 

of real-power output is first divided into NS blocks:  

[Pmin,  Pmin + (Pmax – Pmin)/NS ),  

[Pmin + (Pmax – Pmin)/NS,  Pmin + 2(Pmax – Pmin)/NS ), 

[Pmin + 2(Pmax – Pmin)/NS,  Pmin + 3(Pmax – Pmin)/NS ), 

    … 

 [Pmin + (NS – 2)(Pmax – Pmin)/NS,  Pmin + (NS – 1)(Pmax – Pmin)/NS ), 

 [Pmin + (NS – 1)(Pmax – Pmin)/NS,  Pmax]. 

The maximum energy offer price Rmax is randomly generated in the range [$50/MWh, 

$100/MWh] with a uniform probability distribution. Then, for the ith block of real-

power generation above, the energy offer price is set to i·Rmax/NS. The cost at the 

minimum-output point Pmin is set to Pmin ·Rmax/NS.  

To create random quadratic energy-cost data for a generator, two parameters, a 

and b, are randomly generated with uniform probability distributions in [$50/MWh, 

$100/MWh] and [$0.0025/(MWh)2, $0.005/(MWh)2], respectively. The energy cost is 

then expressed as a·P + 0.5 b·P2, where P is the real-power output of the generator.  
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Appendix B 

Single-period OPF vs. multi-period 

OPF in a 3-bus system example 

The traditional single-period real-time OPF and the newly proposed multi-period real-

time OPF are compared below using a 3-bus system example shown in Figure B.1. 

The MATPOWER-format [57] data of the 3-bus system is: 

 

baseMVA = 100; 

bus = [ 

  1   3     0     0   0   0   1   1   0   230   1   1.1   0.9; 

  2   2   35   10   0   0   1   1   0   230   1   1.1   0.9; 

  3   1   35   10   0   0   1   1   0   230   1   1.1   0.9; 

]; 

gen = [ 

  1   0   0   50   -50   1   100   1   80   0; 

  2   0   0   50   -50   1   100   1   60   0; 

]; 

branch = [ 

  1   2   0.01   0.05   0.0   50   80   100   0   0   1; 

  1   3   0.01   0.05   0.0   50   80   100   0   0   1; 

  2   3   0.01   0.05   0.0   50   80   100   0   0   1; 

]; 

areas = [ 

  1   1; 

]; 

 

Loads and offer prices of 72 consecutive 20-minute periods (for one operating day) are 

listed in Table B.1, B.2, and B.3, and illustrated in Figure B.2 and B.3. In this       
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Figure B.1 System diagram of a 3-bus power system 
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Table B.1 72-period load levels (MW) at Bus 2/3 of the 3-bus power system (Bus 1’s 

load is fixed at zero.) 

 

Period Load Period Load Period Load Period Load 

1 35 19 33.394 37 38.211 55 43.028 

2 35 20 33.394 38 38.211 56 43.028 

3 35 21 33.394 39 38.211 57 43.028 

4 33.716 22 34.679 40 37.89 58 43.349 

5 33.716 23 34.679 41 37.89 59 43.349 

6 33.716 24 34.679 42 37.89 60 43.349 

7 33.073 25 36.284 43 37.248 61 42.385 

8 33.073 26 36.284 44 37.248 62 42.385 

9 33.073 27 36.284 45 37.248 63 42.385 

10 32.752 28 37.89 46 36.606 64 41.101 

11 32.752 29 37.89 47 36.606 65 41.101 

12 32.752 30 37.89 48 36.606 66 41.101 

13 32.11 31 38.532 49 36.927 67 39.174 

14 32.11 32 38.532 50 36.927 68 39.174 

15 32.11 33 38.532 51 36.927 69 39.174 

16 32.431 34 38.532 52 38.853 70 36.606 

17 32.431 35 38.532 53 38.853 71 36.606 

18 32.431 36 38.532 54 38.853 72 36.606 
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Table B.2 72-period offer prices ($) for Generator 1 of the 3-bus power system  

 

Period Price Period Price Period Price Period Price 

1 15.421 19 27.413 37 25.436 55 28.7 

2 15.421 20 27.413 38 25.436 56 28.7 

3 15.421 21 27.413 39 25.436 57 28.7 

4 28.735 22 8.398 40 16.9 58 28.511 

5 28.735 23 8.398 41 16.9 59 28.511 

6 28.735 24 8.398 42 16.9 60 28.511 

7 25.586 25 37.002 43 35.442 61 4.0555 

8 25.586 26 37.002 44 35.442 62 4.0555 

9 25.586 27 37.002 45 35.442 63 4.0555 

10 4.4703 28 17.915 46 10.441 64 21.444 

11 4.4703 29 17.915 47 10.441 65 21.444 

12 4.4703 30 17.915 48 10.441 66 21.444 

13 19.391 31 12.321 49 15.736 67 17.789 

14 19.391 32 12.321 50 15.736 68 17.789 

15 19.391 33 12.321 51 15.736 69 17.789 

16 3.4034 34 7.9868 52 59.126 70 5.4889 

17 3.4034 35 7.9868 53 59.126 71 5.4889 

18 3.4034 36 7.9868 54 59.126 72 5.4889 
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Table B.3 72-period offer prices ($) for Generator 2 of the 3-bus power system 

 

Period Price Period Price Period Price Period Price 

1 6.5221 19 32.112 37 22.098 55 59.647 

2 6.5221 20 32.112 38 22.098 56 59.647 

3 6.5221 21 32.112 39 22.098 57 59.647 

4 41.462 22 3.5328 40 31.847 58 8.634 

5 41.462 23 3.5328 41 31.847 59 8.634 

6 41.462 24 3.5328 42 31.847 60 8.634 

7 51.431 25 7.9453 43 75.378 61 19.604 

8 51.431 26 7.9453 44 75.378 62 19.604 

9 51.431 27 7.9453 45 75.378 63 19.604 

10 27.607 28 49.257 46 22.728 64 43.159 

11 27.607 29 49.257 47 22.728 65 43.159 

12 27.607 30 49.257 48 22.728 66 43.159 

13 47.221 31 41.608 49 62.14 67 47.715 

14 47.221 32 41.608 50 62.14 68 47.715 

15 47.221 33 41.608 51 62.14 69 47.715 

16 18.904 34 2.007 52 117.11 70 44.698 

17 18.904 35 2.007 53 117.11 71 44.698 

18 18.904 36 2.007 54 117.11 72 44.698 
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Figure B.2 Illustration of 72-period load changes at Bus 2/3 of the 3-bus power system 
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Figure B.3 Illustration of offer-price fluctuations in the 3-bus system example 
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experiment, reactive power is assumed to be constant and have no associated cost. 

Real-time dispatches are generated for the concerned 72 periods using single-period 

OPF’s and multi-period OPF’s; their associated operations costs, generator outputs, 

and LMPs are compared in Figure B.4, B.5, and B.6, which show that multi-period 

OPF’s achieve approximately 4% daily cost savings over single-period OPF’s, and 

yield noticeably different dispatches and LMPs. 
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Figure B.4 Illustration of the growing difference between the cumulative cost of 

running real-time operations of the 3-bus power system using single-period OPF’s and 

that of running the same operations using 3-period look-ahead OPF’s. (* Percentage 

cost savings are defined as the multi-period OPF’s cumulative dollar savings divided 

by the whole-day operations cost yielded by single-period OPF’s.)  
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Figure B.5 Comparison of the generator outputs of the 3-bus power system dispatched 

by single-period OPF’s and those by 3-period look-ahead OPF’s.  
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Figure B.6 Comparison of the LMPs of the 3-bus power system generated by single-

period OPF’s and those by 3-period look-ahead OPF’s. 
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