
On the Computation and Communication Complexity of Parallel SGD with

Dynamic Batch Sizes for Stochastic Non-Convex Optimization

Hao Yu 1 Rong Jin 1

Abstract

For SGD based distributed stochastic optimiza-

tion, computation complexity, measured by the

convergence rate in terms of the number of

stochastic gradient calls, and communication com-

plexity, measured by the number of inter-node

communication rounds, are two most important

performance metrics. The classical data-parallel

implementation of SGD over N workers can

achieve linear speedup of its convergence rate but

incurs an inter-node communication round at each

batch. We study the benefit of using dynamically

increasing batch sizes in parallel SGD for stochas-

tic non-convex optimization by charactering the

attained convergence rate and the required num-

ber of communication rounds. We show that for

stochastic non-convex optimization under the P-L

condition, the classical data-parallel SGD with

exponentially increasing batch sizes can achieve

the fastest known O(1/(NT)) convergence with

linear speedup using only log(T) communication

rounds. For general stochastic non-convex opti-

mization, we propose a Catalyst-like algorithm

to achieve the fastest known O(1/
p
NT) conver-

gence with only O(
p
NT log(T

N)) communica-

tion rounds.

1. Introduction

Consider solving the following stochastic optimization

min
x2Rm

f(x)
∆
= Eζ⇠D[F (x; ζ)] (1)

with a fixed yet unknown distribution D only by accessing

i.i.d. stochastic gradients rF (·; ζ). Most machine learning

applications can be cast into the above stochastic optimiza-

tion where x refers to the machine learning model, random

1Machine Intelligence Technology Lab, Alibaba Group
(U.S.) Inc., Bellevue, WA. Correspondence to: Hao Yu
<eeyuhao@gmail.com>.

Proceedings of the 36
th International Conference on Machine

Learning, Long Beach, California, PMLR 97, 2019. Copyright
2019 by the author(s).

variables ζ ⇠ D refer to instance-label pairs and F (x; ζ)
refers to the corresponding loss function. For example, con-

sider a simple least squares linear regression problem: let

ζi = (ai, bi) 2 D be training data collected offline or on-

line1, where each ai is a feature vector and bi is its label,

then F (x; ζi) =
1
2 (a

T

i x� bi)
2. Throughout this paper, we

have the following assumption:

Assumption 1.

1. Smoothness: The objective function f(x) in problem

(1) is smooth with modulus L.

2. Unbiased gradients with bounded variances: As-

sume there exits a stochastic first-order oracle (SFO)

to provide independent unbiased stochastic gradients

rF (x; ζ) satisfying

Eζ⇠D[rF (x; ζ)] = rf(x), 8x.

The unbiased stochastic gradients have a bounded vari-

ance, i.e., there exits a constant σ > 0 such that

Eζ⇠DkrF (x; ζ)�rf(x)k2  σ2 (2)

When solving stochastic optimization (1) only with sampled

stochastic gradients, the computation complexity, which is

also known as the convergence rate, is measured by the

decay law of the solution error with respect to the num-

ber of access of the stochastic first-order oracle (SFO)

that provides sampled stochastic gradients (Nemirovsky &

Yudin, 1983; Ghadimi et al., 2016). For strongly convex

stochastic minimization, SGD type algorithms (Nemirovski

et al., 2009; Hazan & Kale, 2014; Rakhlin et al., 2012)

can achieve the optimal O(1/T) convergence rate. That is,

the error is ensured to be at most O(1/T) after T access

of stochastic gradients. For non-convex stochastic mini-

mization, which is the case of training deep neural networks,

1Note that if the training data is from a finite set collected of-
fline, the stochastic optimization can also be written as a finite sum
minimization, which is a special case of the stochastic optimization
with known uniform distribution D. However, for online training,
since (ai, bi) is generated gradually and disclosed to us one by
one, we need to solve the more challenging stochastic optimization
with unknown distribution D. The algorithms developed in this
paper does not requires any knowledge of distribution D.

Parallel SGD with Dynamic Batch Sizes for Stochastic Non-Convex Optimization

SGD type algorithms can achieve an O(1/
p
T) convergence

rate2. Classical SGD type algorithms can be accelerated

by utilizing multiple workers/nodes to follow a parallel

SGD (PSGD) procedure where each worker computes local

stochastic gradients in parallel, aggregates all local gradi-

ents, and updates its own local solution using the average of

all gradients. Such a data-parallel training strategy with N
workers has O(1/(NT)) convergence for strongly convex

minimization and O(1/
p
NT) convergence for smooth non-

convex stochastic minimization, both of which is N times

faster than SGD with a single worker (Dekel et al., 2012;

Ghadimi & Lan, 2013; Lian et al., 2015). This is known as

the linear speedup3 (with respect to the number of nodes)

property of PSGD.

However, such linear speedup is often not attainable in

practice because PSGD involves additional coordination

and communication cost as most other distributed/parallel

algorithms do. In particular, PSGD requires aggregating

local batch gradients among all workers after evaluations of

local batch SGD. The corresponding communication cost

for gradient aggregations is quite heavy and often becomes

the performance bottleneck.

Since the number of inter-node communication rounds in

PSGD over multiple nodes is equal to the number of batches,

it is desirable to use larger batch sizes to avoid communica-

tion overhead as long as the large batch size does not damage

the overall computation complexity (in terms of number of

access of SFO). For training deep neural networks, practi-

tioners have observed that SGD using dynamically increas-

ing batch sizes can converges to similar test accuracy with

the same number of epochs but significantly fewer number

of batches when compared with SGD with small batch sizes

(Devarakonda et al., 2017; Smith et al., 2018). The idea of

using large or increasing batch sizes can be partially backed

by some recent theoretical works (Bottou et al., 2018; De

et al., 2017). It is shown in (De et al., 2017) that if the

batch size is sufficiently large such that the randomness, i.e.,

variances, is dominated by gradient magnitude, then SGD

essentially degrades to deterministic gradient descent. How-

ever, in the worst case, e.g., stochastic optimization (1) or

large-scale optimization with limited budgets of SFO access,

SGD with large batch sizes considered in (De et al., 2017)

can have worse convergence performance than SGD with

fixed small batch sizes (Bottou & Bousquet, 2008; Bottou

et al., 2018). For strongly convex stochastic minimization,

it is proven in (Friedlander & Schmidt, 2012; Bottou et al.,

2For general non-convex functions, the convergence rate is
usually measured in terms of krf(x)k2 which in some sense can
be considered as the counterpart of f(x)� f(x∗) in convex case
(Nesterov, 2004; Ghadimi & Lan, 2013).

3The linear speedup property is desirable for parallel com-
putating algorithms since it means the algorithm’s computation
capability can be expanded with perfect horizontal scalability.

2018) that SGD with exponentially increasing batch sizes

can achieve the same O(1/T) convergence as SGD with

fixed small batch sizes, where T is the number of access of

SFO. The results in (Friedlander & Schmidt, 2012; Bottou

et al., 2018) are encouraging since it means using exponen-

tially increasing batch sizes can preserve the low O(1/T)
computation complexity with log(T) communication com-

plexity that is significantly lower than O(T) required by

SGD with fixed batch sizes for distributed strongly convex

stochastic minimization. However, the computation and

communication complexity remains under-explored for dis-

tributed stochastic non-convex optimization, which is the

case of training deep neural networks. While work (Smith

& Le, 2018; Smith et al., 2018) justify SGD with increasing

batch sizes by relating it with the integration of a stochastic

differential equation for which decreasing learning rates

can roughly compensate the effect of increasing batch sizes,

rigorous theoretical characterization on its computation and

communication complexity (as in (Nemirovski et al., 2009;

Bottou et al., 2018)) is missing for stochastic non-convex

optimization. In general, it remains unclear “If using dy-

namic batch sizes in parallel SGD can yield the same fast

O(1/
p
NT) convergence rate (with linear speedup with

respect to the number of nodes) as the classical PSGD for

non-convex optimization?” and “What is the corresponding

communication complexity of using dynamic batch sizes to

solve distributed non-convex optimization?”

Our Contributions: This paper aims to characterize both

computation and communication complexity when using

the idea of dynamically increasing batch sizes in SGD to

solve stochastic non-convex optimization with N paral-

lel workers. We first consider non-convex optimization

satisfying the Polyak-Lojasiewicz (P-L) condition, which

can be viewed as a generalization of strong convexity for

non-convex optimization. We show that by simply expo-

nentially increasing the batch sizes at each worker (for-

mally described in Algorithm 1) in the classical data-parallel

SGD, we can solve non-convex optimization with the fast

O(1/(NT)) convergence using only O(log(T)) communi-

cation rounds. For general stochastic non-convex optimiza-

tion (without P-L condition), we propose a Catalyst-like

(Lin et al., 2015; Paquette et al., 2018) approach (formally

described in Algorithm 2) that wraps Algorithm 1 with an

outer loop that iteratively introduces auxiliary problems. We

show that Algorithm 2 can solves general stochastic non-

convex optimization with O(1/
p
NT) computation com-

plexity and O(
p
TN log(T

N)) communication complexity.

In both cases, using dynamic batch sizes can achieve the

linear speedup of convergence with communication com-

plexity less than that of existing communication efficient

parallel SGD methods with fixed batch sizes (Stich, 2018;

Yu et al., 2018).

Parallel SGD with Dynamic Batch Sizes for Stochastic Non-Convex Optimization

2. Non-Convex Minimization Under the P-L

Condition

This section considers problem (1) satisfying the Polyak-

Lojasiewicz (P-L) condition defined in Assumption 2.

Assumption 2. The objective function f(x) in problem

(1) satisfies the Polyak-Lojasiewicz (P-L) condition with

modulus µ > 0. That is,

1

2
krf(x)k2 � µ(f(x)� f⇤), 8x (3)

where f⇤ is the global minimum in problem (1).

The P-L condition is originally introduced by Polyak in

(Polyak, 1963) and holds for many machine learning mod-

els. Neither the convexity of f(x) nor the uniqueness of its

global minimizer is required in the P-L condition. In partic-

ular, the P-L condition is weaker than many other popular

conditions, e.g., strong convexity and the error bound con-

dition, used in optimization literature (Karimi et al., 2016).

See e.g. Fact 1.

Fact 1 (Appendix A in (Karimi et al., 2016)). If smooth

function φ : R
m 7! R is strongly convex with modulus

µ > 0, then it satisifes the P-L condition with the same

modulus µ.

One important example is: f(x) = g(Ax) with strongly

convex g(·) and possibly rank deficient matrix A, e.g.

f(x) = kAx� bk2 used in least squares regressions.

While f(x) = g(Ax) is not strongly convex when A is

rank deficient, it turns out that such f(x) always satisfies

the P-L condition (Karimi et al., 2016).

Consider the Communication Reduced Parallel Stochastic

Gradient Descent (CR-PSGD) algorithm described in Al-

gorithm 1. The inputs of CR-PSGD are: (1) N , the number

of parallel workers; (2) T , the total number of gradient eval-

uations at each worker; (3) x1, the common initial point at

each worker; (3) γ > 0, the learning rate; (4) B1, the initial

SGD batch size at each worker; (5) ρ > 1, the batch size

scaling factor. Compared with the classical PSGD, our CR-

PSGD has the minor change that each worker exponentially

increases its own SGD batch size with a factor ρ. Since Bt

increasingly exponentially, it is easy to see that the “while”

loop in Algorithm 1 terminates after at most O(log T) steps.

Meanwhile, we note that inter-worker communication is

used only to aggregate individual batch SGD averages and

happens only once in each “while” loop iteration. As a

consequence, CR-PSGD only involves O(log T) rounds of

communication. The remaining part of this section further

proves that CR-PSGD has O(1/(NT)) convergence.

Similar ideas of exponentially increasing batch size appear

in other works, e.g., (Hazan & Kale, 2014; Zhang et al.,

2013), for different purposes and with different algorithm

Algorithm 1 CR-PSGD(f,N, T,x1, B1, ρ, γ)

1: Input: N , T , x1 2 R
m, γ , B1 and ρ > 1.

2: Initialize t = 1
3: while

Pt
τ=1 Bτ  T do

4: Each worker i observes Bt unbiased i.i.d. stochas-

tic gradients at point xt given by gi,j
∆
=

rF (xt; ζi,j), j 2 {1, . . . , Bt}, ζi,j ⇠ D and cal-

culates its batch SGD average ḡt,i =
1
Bt

PBt

j=1 gi,j .

5: Aggregate all ḡt,i from N workers and compute their

average ḡt =
1
N

PN
i=1 ḡt,i.

6: Update xt+1 over all N workers in parallel via:

xt+1 = xt � γḡt.

7: Set Bt+1 = bρtB1c where bzc represents the largest

integer no less than z.

8: Update t t+ 1.

9: end while

10: Return: xt

dynamics. In this paper, we explore this idea in the con-

text of parallel stochastic optimization. It is impressive

that such a simple idea enables us to obtain a parallel algo-

rithm to achieve the fast O(1/(NT)) convergence with only

O(log T) rounds of communication for stochastic optimiza-

tion under the P-L condition. When considering stochastic

strongly convex minimization that is a subclass of stochastic

optimization under the P-L condition, the O(log T) com-

munication complexity attained by our CR-PSGD is signifi-

cantly less than the O(
p
NT) communication complexity

attained by the local SGD method in (Stich, 2018).

The next simple lemma relates per-iteration error with the

batch sizes and is a key property to establish the convergence

rate of Algorithm 1.

Lemma 1. Consider problem (1) under Assumptions 1-

2. If we choose γ < 1
L in Algorithm 1, then for all t 2

{1, 2, . . . , }, we have

E[f(xt+1)� f∗)]  (1� ν)E[f(xt)� f∗] +
γ(2� Lγ)

2NBt

σ
2

(4)

where f⇤ is the global minimum in problem (1) and ν
∆
=

1
2γµ(1� Lγ) satisfies 0 < ν < 1.

Proof. Fix t � 1. By the smoothness of f(x) in Assump-
tion 1, we have

f(xt+1)

f(xt) + hrf(xt),xt+1 � xti+
L

2
kxt+1 � xtk2

(a)
=f(xt)� γhrf(xt), ḡti+

L

2
γ
2kḡtk2

=f(xt) + γhḡt �rf(xt), ḡti � γkḡtk2 +
L

2
γ
2kḡtk2

Parallel SGD with Dynamic Batch Sizes for Stochastic Non-Convex Optimization

(b)

f(xt) +
γ

2
kḡt �rf(xt)k2 +

γ

2
(Lγ � 1)kḡtk2

(c)

f(xt) +
γ

4
(Lγ � 1)krf(xt)k2 +

γ

2
(2� Lγ)kḡt �rf(xt)k2

(d)

f(xt) +
1

2
γµ(Lγ � 1)(f(xt)� f∗)

+
γ

2
(2� Lγ)kḡt �rf(xt)k2 (5)

where (a) follows by substituting xt+1 = xt � γḡt; (b) fol-

lows by applying elementary inequality hu,vi  1
2kuk2 +

1
2kvk2 with u = ḡt � rf(xt) and v = ḡt; (c) follows

by noting that Lγ � 1 < 0 under our selection of γ and

applying elementary inequality ku+ vk2 � 1
2kuk2�kvk2

with u = rf(xt) and v = ḡt �rf(xt); and (d) follows

by noting that γ(Lγ � 1) < 0 under our selection of γ and

krf(xt)k2 � 2µ(f(xt)� f⇤) by Assumption 2.

Defining ν
∆
= 1

2γµ(1�Lγ), subtracting f⇤ from both sides

of (5), and rearranging terms yields

f(xt+1)� f⇤

(1� ν)(f(xt)� f⇤) +
γ

2
(2� Lγ)kḡt �rf(xt)k2

(6)

Taking expectations on both sides and noting that

E[kḡt �rf(xt)k2]  1
NBt

σ2, which further follows from

Assumption 1 and the fact that each ḡt is the average of

NBt i.i.d. stochastic gradients evaluated at the same point,

yields

E[f(xt+1)� f⇤]  (1� ν)E[f(xt)� f⇤] +
γ(2� Lγ)

2NBt
σ2

It remains to verify why 0 < ν < 1. Since γ < 1
L , it is

easy to see ν > 0. Next, we show 1
2γµ(1 � Lγ) < 1. By

the smoothness of f(x) (and Fact 3 in Supplement 6.1), we

have

1

2
krf(x)k2  L(f(x)� f⇤), 8x (7)

By Assumption 2, we have

1

2
krf(x)k2 � µ(f(x)� f⇤), 8x (8)

Inequalities (7) and (8) together imply that µ  L, which

further implies that 1
2γµ(1�Lγ)  1

2γL(1�Lγ) < 1.

Remark 1. Note that by adapting steps (b) and (c) of (5)

in the proof of Lemma 1, i.e., using inequalities with slightly

different coefficients for the squared norm terms, we can

obtain (4) with different ν values. Larger ν variants (with

possibly more stringent conditions on the selection rule of γ)

may lead to faster convergence (but with the same order) of

Algorithm 1. This paper does not explore further in this di-

rection since the current simple analysis is already sufficient

to provide the desired order of convergence/communication.

The suggested finer development on ν can improve the con-

stant factor in the rates but does not improve their order.

Nevertheless, it is worthwhile to point out that the finer

development on ν can be helpful to guide practitioners to

tune Algorithm 1 according to their specific minimization

problems.

The O(1
NT) convergence with O(log T) communication

rounds is summarized in Theorem 1.

Theorem 1. Consider problem (1) under Assumptions 1-2.

Let T > 0 be a given constant. If we choose B1 � 2, γ < 1
L

and 1 < ρ < 1
1�ν

, where4 ν
∆
= 1

2γµ(1�Lγ), in Algorithm

1, then the final output xt returned by Algorithm 1 satisfies

E[f(xt)� f⇤] c1(f(x1)� f⇤)

T 1+δ
+

c2
NT

=O(
1

T 1+δ
) +O(

1

NT
) (9)

where δ
∆
= logρ(

1
1�ν

) � 1 > 0, c1
∆
= 1

1�ν

�

B1

ρ�1

�1+δ
, c2

∆
=

ρ2γ(2�Lγ))σ2

(1�(1�ν)ρ)(ρ�1) , and f⇤ is the minimum value of problem

(1).

Proof. See Supplement 6.2.

Remark 2. Since δ > 0, O(1
T 1+δ) decays faster than

O(1
NT) when T is sufficiently large. In fact, we can even

explicitly choose suitable ρ to make δ sufficiently large, e.g.,

we can choose 1 < ρ <
q

1
1�ν

to ensure δ > 1 such that

O(1
T 1+δ) < O(1

T 2). In this case, as long as T � N , which

is almost always true in practice, the error term on the right

side of (29) has order O(1
NT).

Recall that if f(x) is strongly convex with modulus µ,

then it satisfies Assumption 2 with the same µ by Fact

1. Furthermore, if f(x) is strongly convex with modulus

µ > 0, we know problem (1) has a unique minimizer x⇤ and

kx� x⇤k2  2
µ (f(x)� f(x⇤)) for any x. (See e.g. Fact 4

in Supplement 6.1.) Thus, we have the following corollary

for Theorem 1.

Corollary 1. Consider problem (1) under Assumptions 1

where f(x) is strongly convex with modulus µ > 0. Un-

der the same conditions in Theorem 1, the final output xt

returned by Algorithm 1 satisfies

E[kxt � x⇤k2] 2c1(f(x1)� f(x⇤))

µT 1+δ
+

2c2
µNT

=O(
1

T 1+δ
) +O(

1

NT
) (10)

where δ, c1, c2 are positive constants defined in Theorem 1

and x⇤ is the unique minimizer of problem (1).

4It is shown at the bottom of the proof for Lemma 1 that ν is
ensured to satisfy 0 < ν < 1 under the selection γ < 1

L
.

Parallel SGD with Dynamic Batch Sizes for Stochastic Non-Convex Optimization

Algorithm 2 CR-PSGD-Catalyst(f,N, T,y0, B1, ρ, γ)

1: Input: N , T , θ, y0 2 R
m, γ , B1 and ρ > 1.

2: Initialize y(0) = y0 and k = 1.

3: while k  b
p
NT c do

4: Define hθ(x;y
(k�1)) using (11). Update y(k) via

y
(k)

= CR-PSGD(hθ(·;y
(k−1)

), N, b
q

T/Nc,y(k−1)
, B1, ρ, γ)

5: Update k k + 1.

6: end while

Remark 3. Recall that O(1/T) convergence is optimal

for stochastic strongly convex optimization (Nemirovsky &

Yudin, 1983; Rakhlin et al., 2012) over single node. Since

the convergence of Algorithm 1 scales out perfectly with re-

spect to the number of involved workers and strongly convex

functions are a subclass of functions satisfying the P-L con-

dition, we can conclude the O(1
NT) convergence attained

by Algorithm 1 is optimal for parallel stochastic optimiza-

tion under the P-L condition. It is also worth noting that we

consider general stochastic optimization (1) such that ac-

celeration techniques developed for finite sum optimization,

e.g., variance reduction, are excluded from consideration.

3. General Non-Convex Minimization

Let f(x) be the (stochastic) objective function in problem

(1). For any given fixed y, define a new function with

respect to x given by

hθ(x;y)
∆
= f(x) +

θ

2
kx� yk2 (11)

It is easy to verify that if f(x) is smooth with modulus L and

θ > L, then hθ(x;y) is both smooth with modulus θ+L and

strongly convex with modulus θ � L > 0. Furthermore, if

rF (x; ζ) are unbiased i.i.d. stochastic gradients of function

f(·) with a variance bounded by σ2, thenrF (x; ζ)+θ(x�
y) are unbiased i.i.d. stochastic gradients of hθ(x;y) with

the same variance.

Now consider Algorithm 2 that wraps CR-PSGD with

an outer-loop that updates hθ(x;y
(k�1)) and applies CR-

PSGD to minimize it. Note that hθ(x;y
(k�1)) augments

the objective function f(x) with an iteratively updated

proximal term θ
2kx� y(k�1)k2. The introduction of prox-

imal terms θ
2kx� y(k�1)k2 is inspired by earlier works

(Güler, 1992; He & Yuan, 2012; Salzo & Villa, 2012;

Lin et al., 2015; Yu & Neely, 2017; Davis & Grimmer,

2017; Paquette et al., 2018) on proximal point methods,

which solve an minimization problem by solving a se-

quence of auxiliary problems involving a quadratic prox-

imal term. By choosing θ > L in (11), we can en-

sure hθ(x;y
(k�1)) is both smooth and strongly convex.

For strongly convex hθ(x;y
(k�1)), Theorem 1 and Corol-

lary 1 show that CR-PSGD(N, b
p

T/Nc,y(k�1), B1, ρ, γ)
can return an O(1p

NT
) approximated minimizer with only

O(log(T
N)) communication rounds. The ultimate goal of

the proximal point like outer-loop introduced in Algorithm 2

is to lift the ”communication reduction” property from CR-

PSGD for non-convex minimization under the restrictive PL

condition to solve general non-convex minimization with

reduced communication. Our method shares a similar phi-

losophy with the “catalyst acceleration” in (Lin et al., 2015)

which also uses a “proximal-point” outer-loop to achieve

improved convergence rates for convex minimization by lift-

ing fast convergence from strong convex minimization. In

this perspective, we call Algorithm 2 “CR-PSGD-Catalyst”

by borrowing the word “catalyst” from (Lin et al., 2015).

While both Algorithm 2 and “catalyst acceleration” use an

proximal point outer-loop to lift desired algorithmic prop-

erties from specific problems to generic problems, they are

different in the following two aspects:

• The “catalyst acceleration” in (Lin et al., 2015; Paque-

tte et al., 2018) is developed to accelerate a wide range

of first-order deterministic minimization, e.g., gradient

based methods and their randomized variants such as

SAG, SAGA, SDCA, SVRG, for both convex and non-

convex cases. In particular, it requires the existence of

a subprocedure with linear convergence for strongly

convex minimization. It is remarked in (Lin et al.,

2015) that whether “catalyst” can accelerate stochastic

gradient based methods for stochastic minimization

in the sense of (Nemirovski et al., 2009)5 remains un-

clear. In contrast, our CR-PSGD-Catalyst can solve

general stochastic minimization, which does not nec-

essarily have a finite sum form, with i.i.d. stochastic

gradients. The used CR-PSGD subprocedure that is

different from linear converging subprocedure used in

(Lin et al., 2015; Paquette et al., 2018).

• The “proximal point” outer loop used in “catalyst accel-

eration” is solely to accelerate convergence (Lin et al.,

2015; Paquette et al., 2018). In contrast, the “proxi-

mal point” outer loop used in our CR-PSGD-Catalyst

provides convergence acceleration and communica-

tion reduction simultaneously. Our analysis is also

significantly different from analyses for conventional

“catalyst acceleration”.

Since each call of CR-PSGD in Algorithm 2 requires only

5For finite sum minimization, it is possible to develop linearly
converging solvers by using techniques such as variance reduction.
However, for general strongly convex stochastic minimization, it is
in general impossible to develop linearly converging stochastic gra-
dient based solver and the fastest possible convergence is O(1/T)
(Rakhlin et al., 2012; Hazan & Kale, 2014; Lacoste-Julien et al.,
2012). That is, stochastic minimization fundamentally fails to
satisfy the prerequisite in (Lin et al., 2015; Paquette et al., 2018).

Parallel SGD with Dynamic Batch Sizes for Stochastic Non-Convex Optimization

O(log(T
N)) inter-worker communication rounds and there

are
p
NT calls of CR-PSGD, it is easy to see CR-PSGD-

Catalyst in total uses O(
p
NT log(T

N)) communication

rounds. The O(
p
NT log(T

N)) communication complex-

ity of CR-PSGD-Catalyst for general non-convex stochas-

tic optimization is significantly less than the O(T) com-

munication complexity attained by PSGD (Dekel et al.,

2012; Ghadimi & Lan, 2013; Lian et al., 2015) or the

O(N3/4T 3/4) communication complexity required by lo-

cal SGD6 (Yu et al., 2018). The next theorem summarizes

that our CR-PSGD-Catalyst can achieve the fastest known

O(1/
p
NT) convergence that is previously attained by the

PSGD or local SGD.

Theorem 2. Consider problem (1) under Assumption 1. If

we choose θ > L, B1 � 2, γ < 1
θ+L and 1 < ρ < 1

1�ν
,

where ν
∆
= 1

2γ(θ�L)(1� (θ+L)γ), in Algorithm 2 and if

T � max{N,N
� 4c1(θ+L)2

(θ�L)2

�
2

1+δ , N(c1)
2

1+δ }, then we have

1p
NT

√
NTX

k=1

E[krf(y(k))k2] = O(
1p
NT

)

where {y(k), k � 1} are a sequence of solutions returned

from the CR-PSGD subprocedure.

Proof. For simplicity, we assume
p
NT and

p

T/N are

integers and hence b
p
NT c =

p
NT and b

p

T/Nc =
p

T/N . This can be be ensured when T = N3q2 where q

is any integer. In general, even if
p
TN or

p

T/N are non-

integers, by using the fact that 1
2z  bzc  z for any z � 2,

the same order of convergence can be easily extended to the

case when
p
NT or

p

T/N are non-integers.

Fix k � 1 and consider stochastic minimization

minx2Rm hθ(x;y
(k�1)). Since hθ(x;y

(k�1)) is strongly

convex with modulus θ � L > 0, we know hθ(x;y
(k�1))

also satisfies the P-L condition with modulus θ � L by Fact

1. At the same time, hθ(x;y
(k�1)) is smooth with modulus

θ + L. Note that our selections of B1, γ and ρ satisfy the

condition in Theorem 1 for stochastic minimization under

the P-L condition. Denote y
(k)
⇤

∆
= argmin

x2Rm

{hθ(x;y
(k�1))}.

Recall that y(k) is the solution returned from CR-PSGD

with
p

T/N iterations. By Theorem 1, we have

E[hθ(y
(k);y(k−1))� hθ(y

(k)
∗ ;y(k−1))]

 c1

(T

N
)
1+δ

2

E[hθ(y
(k−1);y(k−1))� hθ(y

(k)
∗ ;y(k−1))] +

c2p
NT

(12)

6For non-convex optimization, local SGD is more widely
known as periodic model averaging or parallel restarted SGD since
each worker periodically restarts its independent SGD procedure
with a new initial point that is the average of all individual models
(Yu et al., 2018; Wang & Joshi, 2018; Jiang & Agrawal, 2018).

where δ
∆
= logρ(

1
1�ν

) � 1 > 0, c1
∆
= 1

1�ν

�

B1

ρ�1

�1+δ
, and

c2
∆
= ρ2γ(2�(θ+L)γ))σ2

(1�(1�ν)ρ)(ρ�1) are absolute constants independent

of T .

Since hθ(·;y
(k�1)) is smooth with modulus θ+L and y

(k)
⇤

minimizes it, by Fact 3 (in Supplement 6.1), we have

1

2(θ + L)
krhθ(y

(k);y(k�1))k2

hθ(y
(k);y(k�1))� hθ(y

(k)
⇤ ;y(k�1)) (13)

One the other hand ,we also have

hθ(y
(k−1);y(k−1))� hθ(y

(k)
∗ ;y(k−1))

(a)

 θ + L

2
ky(k−1) � y

(k)
∗ k2

(b)

(θ + L)ky(k) � y
(k)
∗ k2 + (θ + L)ky(k) � y

(k−1)k2
(c)

 θ + L

(θ � L)2
krhθ(y

(k);y(k−1))k2 + (θ + L)ky(k) � y
(k−1)k2

(14)

where (a) follows from Fact 2 (in Supplement 6.1)

by recalling again that hθ(·;y
(k�1)) is smooth with

modulus θ + L and y
(k)
⇤ minimizes it; (b) fol-

lows because ky(k�1) � y
(k)
⇤ k2  2ky(k) � y

(k)
⇤ k2 +

2ky(k) � y(k�1)k2, which further follows by applying ba-

sic inequality ku� vk2  2kuk2 + 2kvk2 with u =

y(k) � y
(k)
⇤ and v = y(k) � y(k�1); and (c) follows

because ky(k) � y
(k)
⇤ k2  1

(θ�L)2 krhθ(y
(k);y(k�1))k2,

which further follows from by Fact 5 (in Supplement 6.1) by

noting that hθ(·;y
(k�1)) is strongly convex with modulus

θ � L and y
(k)
⇤ minimizes it.

Substituting (13) and (14) into (12) and rearranging terms
yields

⇣ 1

2(θ + L)
� c1(θ + L)

(θ � L)2
1

(T

N
)
1+δ

2

| {z }

∆
=α

⌘

E[krhθ(y
(k);y(k−1))k2]

 c1(θ + L)

(T

N
)1+δ

E]ky(k) � y
(k−1)k2] + c2p

NT
(15)

Note that T � N
� 4c1(θ+L)2

(θ�L)2

�
2

1+δ ensures the term marked

by an underbrace in (15) satisfies α � 1
4(θ+L) . Thus, (15)

implies that

1

4(θ + L)
E[krhθ(y

(k);y(k�1))k2]

c1(θ + L)

(T
N)1+δ

E]ky(k) � y(k�1)k2] + c2p
NT

(16)

By the definition of hθ(·;y
(k�1)), we have

rhθ(y
(k);y(k�1)) = rf(y(k)) + θ(y(k) � y(k�1)).

Parallel SGD with Dynamic Batch Sizes for Stochastic Non-Convex Optimization

This implies that

krf(y(k))k2 2krhθ(y
(k);y(k−1))k2 + 2θ2ky(k) � y

(k−1)k2
(17)

Combining (16) and (17) yields

E[krf(y
(k)

)k2
]


⇣ 8c1(θ + L)2

(T

N
)1+δ

+ 2θ
2
⌘

E[ky(k) � y
(k−1)k2

] +
8c2(θ + L)p

NT

(a)


⇣

8c1(θ + L)
2
+ 2θ

2
⌘

E[ky(k) � y
(k−1)k2

] +
8c2(θ + L)p

NT
(18)

where (a) follows because (T
N)1+δ � 1 as long as T � N .

Since T � Nc
2

1+δ

1 ensures c1

(T

N
)
1+δ

2

 1, by (12), we have

E[hθ(y
(k);y(k�1))� hθ(y

(k)
⇤ ;y(k�1))]

E[hθ(y
(k�1);y(k�1))� hθ(y

(k)
⇤ ;y(k�1))] +

c2p
NT

(19)

Cancelling the common term on both sides and substituting

the definition of hθ(·;y
(k�1)) into (19) yields

E[f(y(k)) +
θ

2
ky(k) � y(k�1)k2]

E[f(y(k�1))] +
c2p
NT

(20)

Rewriting this inequality as E[ky(k) � y(k�1)k2] 
2
θ
E[f(y(k�1))� f(y(k))] + 2c2

θ
p
NT

and substituting it into

(18) yields

E[krf(y(k))k2]

2

θ

⇣

8c1(θ + L)2 + 2θ2
⌘

E[f(y(k−1))� f(y(k))]

+
⇣16c1(θ + L)2

θ
+ 12θ + 8L

⌘ c2p
NT

(21)

Summing this inequality over k 2 {1, . . . ,
p
NT} and di-

viding both sides by a factor
p
NT yields

1p
NT

√
NTX

k=1

E[krf(y(k))k2]

2

θ

⇣

8c1(θ + L)2 + 2θ2
⌘
E[f(y(0))� f(y

√
NT)]p

NT

+
⇣16c1(θ + L)2

θ
+ 12θ + 8L

⌘ c2p
NT

(a)

 2

θ

⇣

8c1(θ + L)2 + 2θ2
⌘f(y(0))� f∗

p
NT

+
⇣16c1(θ + L)2

θ
+ 12θ + 8L

⌘ c2p
NT

=O(
1p
NT

) (22)

where (a) follows because f⇤ is the global minimum of

problem (1).

4. Experiments

To validate the theory developed in this paper, we conduct

two numerical experiments: (1) distributed logistic regres-

sion and (2) training deep neural networks.

4.1. Distributed Logistic Regression

Consider solving an l2 regularized logistic regression prob-

lem using multiple parallel nodes. Let (zij , bij) be the

training pairs at node i, wherezij 2 R
d are d-dimension

feature vectors and bij 2 {�1, 1} are labels. The problem

can be cast as follows:

min
x2Rd

1

N

N
X

i=1

1

Mi

Mi
X

j=1

log(1 + exp(bij(z
T

ijxi)) +
1

2
µkxk2

(23)

where N is the number of parallel workers, Mi are the

number of training samples available at node i and µ is the

regularization coefficient.

Our experiment generates a problem instance with d = 500,

N = 10, Mi = 104, 8i 2 {1, 2, . . . , N} and µ = 0.001.

The synthetic training feature vectors zij are generated from

normal distribution N (I, 4Id). Assume the underlying clas-

sification problem has a true weight vector xtrue 2 R
d gen-

erated from a standard normal distribution and then gener-

ate the noisy labels bij = sign(zTijx
true + ξi) where noise

ξi ⇠ N (0, 1). Note that the distributed logistic regression

problem (23) is strongly convex and hence satisfies As-

sumption 2. We run Algorithm 2, the classical parallel SGD,

and “local SGD” with communication skipping proposed

in (Stich, 2018) to solve problem (23). For strongly convex

stochastic optimization, all these three methods are proven

to achieve the fast O(1
NT) convergence. The communi-

cation complexity of these three methods are O(log(T)),
O(T) and O(

p
NT), respectively. Our Algorithm 1 has the

lowest communication complexity. In the experiment, we

choose N = 10, T = 10000, x1 = 0, B1 = 2, γ = 0.1
and ρ = 1.1 in Algorithm 1; choose fixed batch size 2 and

learning rate 0.1 in the classical parallel SGD; choose fixed

batch size 2, learning rate 0.1 and the largest communica-

tion skipping interval for which the loss at convergence does

not sacrifice in local SGD. Figures 1 and 2 plot the objective

values of problem (23) versus the number of SFO access

and the number of communication rounds, respectively. Our

numerical results verify that Algorithm 1 can achieve sim-

ilar convergence as existing fastest parallel SGD variants

with fewer communication rounds.

Parallel SGD with Dynamic Batch Sizes for Stochastic Non-Convex Optimization

Figure 1. Distributed logistic regression: loss v.s. number of SFO

access.

Figure 2. Distributed logistic regression: loss v.s. number of com-

munication rounds.

4.2. Training Deep Neural Networks

Consider using deep learning for the image classification

over CIFAR-10 (Krizhevsky & Hinton, 2009). The loss

function for deep neural networks is non-convex and typ-

ically violates Assumption 2. We run Algorithm 2, the

classical parallel SGD, and “local SGD” with communi-

cation skipping in (Stich, 2018; Yu et al., 2018) to train

ResNet20 (He et al., 2016) with 8 GPUs. It has been shown

that the “local SGD”, also known as parallel restarted SGD

or periodic model averaging, can linearly speed up the par-

allel training of deep neural networks with significantly less

communication overhead than the classical parallel SGD

(Yu et al., 2018; Lin et al., 2018; Wang & Joshi, 2018; Jiang

& Agrawal, 2018). For both parallel SGD and local SGD,

the learning rate is 0.1, the momentum is 0.9, the weight

decay is 1e� 4, and the batch size at each GPU is 32. For

local SGD, we use the largest communication skipping in-

terval for which the loss at convergence does not sacrifice.

For Algorithm 2, we use B1 = 32, ρ = 1.02 and γ = 0.1.

In our experiment, each iteration of Algorithm 2 executes

CR-PSGD (Algorithm 1) to access one epoch of training

data at each GPU. That is, the T parameter in each call of

Algorithm 1 is 50000. The Bτ parameter in Algorithm 1

stop growing when it exceeds 512.

Figure 3. Training deep neural networks: loss v.s. number of SFO

access.

Figure 4. Training deep neural networks: loss v.s. number of com-

munication rounds.

5. Conclusion

In this paper, we explore the idea of using dynamic batch

sizes for distributed non-convex optimization. For non-

convex optimization satisfying the Polyak-Lojasiewicz (P-

L) condition, we show using exponential increasing batch

sizes in parallel SGD as in Algorithm 1 can achieve O(1
NT)

convergence using only O(log(T)) communication rounds.

For general stochastic non-convex optimization (without

P-L condition), we propose a Catalyst-like algorithm that

can achieve O(1p
NT

) convergence with O(
p
TN log(T

N))

communication rounds.

Parallel SGD with Dynamic Batch Sizes for Stochastic Non-Convex Optimization

References

Bertsekas, D. P. Nonlinear Programming. Athena Scientific,

second edition, 1999.

Bottou, L. and Bousquet, O. The tradeoffs of large scale

learning. In Advances in Neural Information Processing

Systems (NIPS), 2008.

Bottou, L., Curtis, F. E., and Nocedal, J. Optimization

methods for large-scale machine learning. SIAM Review,

60(2):223–311, 2018.

Davis, D. and Grimmer, B. Proximally guided stochastic

subgradient method for nonsmooth, nonconvex problems.

arXiv:1707.03505, 2017.

De, S., Yadav, A., Jacobs, D., and Goldstein, T. Automated

inference with adaptive batches. In International Confer-

ence on Artificial Intelligence and Statistics (AISTATS),

pp. 1504–1513, 2017.

Dekel, O., Gilad-Bachrach, R., Shamir, O., and Xiao, L.

Optimal distributed online prediction using mini-batches.

Journal of Machine Learning Research, 13(165–202),

2012.

Devarakonda, A., Naumov, M., and Garland, M. Adabatch:

Adaptive batch sizes for training deep neural networks.

arXiv:1712.02029, 2017.

Friedlander, M. P. and Schmidt, M. Hybrid deterministic-

stochastic methods for data fitting. SIAM Journal on

Scientific Computing, 34(3):1380–1405, 2012.

Ghadimi, S. and Lan, G. Stochastic first-and zeroth-order

methods for nonconvex stochastic programming. SIAM

Journal on Optimization, 23(4):2341–2368, 2013.

Ghadimi, S., Lan, G., and Zhang, H. Mini-batch stochastic

approximation methods for nonconvex stochastic com-

posite optimization. Mathematical Programming, 155

(1-2):267–305, 2016.

Güler, O. New proximal point algorithms for convex mini-

mization. SIAM Journal on Optimization, 2(4):649–664,

1992.

Hazan, E. and Kale, S. Beyond the regret minimization bar-

rier: an optimal algorithm for stochastic strongly-convex

optimization. Journal of Machine Learning Research,

2014.

He, B. and Yuan, X. An accelerated inexact proximal point

algorithm for convex minimization. Journal of Optimiza-

tion Theory and Applications, 154(2):536–548, 2012.

He, K., Zhang, X., Ren, S., and Sun, J. Deep residual

learning for image recognition. In IEEE conference on

computer vision and pattern recognition (CVPR), 2016.

Jiang, P. and Agrawal, G. A linear speedup analysis of dis-

tributed deep learning with sparse and quantized commu-

nication. In Advances in Neural Information Processing

Systems (NeurIPS), 2018.

Karimi, H., Nutini, J., and Schmidt, M. Linear conver-

gence of gradient and proximal-gradient methods under

the Polyak-Lojasiewicz condition. In Joint European Con-

ference on Machine Learning and Knowledge Discovery

in Databases, 2016.

Krizhevsky, A. and Hinton, G. Learning multiple layers of

features from tiny images. Technical report, University

of Toronto, 2009.

Lacoste-Julien, S., Schmidt, M., and Bach, F. A sim-

pler approach to obtaining an O(1/t) convergence

rate for the projected stochastic subgradient method.

arXiv:1212.2002, 2012.

Lian, X., Huang, Y., Li, Y., and Liu, J. Asynchronous

parallel stochastic gradient for nonconvex optimization.

In Advances in Neural Information Processing Systems

(NIPS), 2015.

Lin, H., Mairal, J., and Harchaoui, Z. A universal catalyst

for first-order optimization. In Advances in Neural In-

formation Processing Systems (NIPS), pp. 3384–3392,

2015.

Lin, T., Stich, S. U., and Jaggi, M. Don’t use large mini-

batches, use local SGD. arXiv:1808.07217, 2018.

Nemirovski, A., Juditsky, A., Lan, G., and Shapiro, A. Ro-

bust stochastic approximation approach to stochastic pro-

gramming. SIAM Journal on optimization, 19(4):1574–

1609, 2009.

Nemirovsky, A. S. and Yudin, D. B. Problem complexity

and method efficiency in optimization. 1983.

Nesterov, Y. Introductory Lectures on Convex Optimization:

A Basic Course. Springer Science & Business Media,

2004.

Paquette, C., Lin, H., Drusvyatskiy, D., Mairal, J., and

Harchaoui, Z. Catalyst for gradient-based nonconvex

optimization. In International Conference on Artificial

Intelligence and Statistics (AISTATS), pp. 1–10, 2018.

Polyak, B. T. Gradient methods for minimizing function-

als. Zhurnal Vychislitel’noi Matematikii Matematicheskoi

Fiziki, pp. 643–653, 1963.

Rakhlin, A., Shamir, O., and Sridharan, K. Making gradi-

ent descent optimal for strongly convex stochastic opti-

mization. In Proceedings of International Conference on

Machine Learning (ICML), 2012.

Parallel SGD with Dynamic Batch Sizes for Stochastic Non-Convex Optimization

Salzo, S. and Villa, S. Inexact and accelerated proximal

point algorithms. Journal of Convex Analysis, 19(4):

1167–1192, 2012.

Smith, S. L. and Le, Q. V. Understanding generalization

and stochastic gradient descent. In Proceedings of the

International Conference on Learning Representations

(ICLR), 2018.

Smith, S. L., Kindermans, P.-J., Ying, C., and Le, Q. V.

Don’t decay the learning rate, increase the batch size. In

Proceedings of the International Conference on Learning

Representations (ICLR), 2018.

Stich, S. U. Local SGD converges fast and communicates

little. arXiv:1805.09767, 2018.

Wang, J. and Joshi, G. Cooperative SGD: A unified frame-

work for the design and analysis of communication-

efficient SGD algorithms. arXiv:1808.07576, 2018.

Yu, H. and Neely, M. J. A simple parallel algorithm with

an O(1/t) convergence rate for general convex programs.

SIAM Journal on Optimization, 27(2):759–783, 2017.

Yu, H., Yang, S., and Zhu, S. Parallel restarted SGD

with faster convergence and less communication: De-

mystifying why model averaging works for deep learning.

arXiv:1807.06629, 2018.

Zhang, L., Yang, T., Jin, R., and He, X. O(log T) projec-

tions for stochastic optimization of smooth and strongly

convex functions. In International Conference on Ma-

chine Learning (ICML), pp. 1121–1129, 2013.

