
On the Computation of a Bivariate ¿-Distribution*

By D. E. Amos and W. G. Bulgren

Abstract. The cumulative bivariate i-distribution associated with random

variables Ti = Xl/(S/k)1'2, T2 = X2/(S/k)U!! is considered where Xh X2 are

bivariate normal with correlation coefficient p and S is an independent x2 random

variable with k degrees of freedom. Representations in terms of series and simple,

one-dimensional quadratures are presented together with efficient computational

procedures for the special functions used in numerical evaluation. |

Preliminary Representations. The bivariate ¿-distribution derived below has

been of interest to many authors [1], [3], [8], [15]. The work of Dunnett and Sobel [2]

on the cumulative distribution in terms of incomplete beta functions stands out for

computational convenience. These results, coupled with the more recent work of

Gautschi [7] on efficient computational procedures for many of the special functions,

makes these results even more accessible. The need for other computational formulae

stems from possible losses of significance by subtraction in numerical evaluation. A

simple quadrature derived below overcomes this difficulty and certain series

representations offer computational advantages for large degrees of freedom.

The usual procedure for deriving this ¿-distribution starts with the bivariate

normal with correlation matrix S associated with the random variables Xi, X2 and

a x2-distribution with k degrees of freedom associated with an independent random

variable S,

"(I" *> - 5¡iF «»[-{i ■rt)/21 '    /<s) " ¥4wi) S"'"'V'" '

The distribution of the variables Ti = X1/(S/k)V2 and Ti = X2/(S/ky<2 is con-

structed according to

P(T1 =g h, Ti Ú ti) = f*N[Xi è ¿1(-^)1/2,X2 g ti(j^yi2\sjf(s)ds

where N is the cumulative of the distribution to (au, x-f).

An exchange of integrals and a scaling of the variables yields

P(T, g h, Ti ^ ti) =

(D

(2)

2T|S|1/2r(l + k/2)

/t2   rt1   /-m

/     /    exp [—w[l 4- Q(vi, vi)/k]]uk/2dudvidv2
—oo      —oo       0

1        p  f'1_dvjdvi

2lr|2|1'2-/-J-41        1   ., .1
|^1 +-^-Q(vi, vi)J

l+k/2
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320 D.   E.   AMOS  AND  W.   G.   BTJLGREN

Here the integrand is the density function for Ti and T2 with

-tù
and    Q(vi, vi) =

i'í 2pviPi + vi

1- P

where p, — 1 < p < 1, is the correlation coefficient. The exchanges of integrals and

sums are justified on the basis of absolute convergence.

Quadrature Formulae. We start with (1) in the form

P =
1 /co rt2/vk   rti/vk

uße~u J I exp [ — uQ(xi, xi)]dxidx2du
7r|S|1/2r(fc/2) ■'o

and rotate the x\, Xi axes so that the quadratic form

2 „    _   ^   ,      _   2

2
Q(xi>Xi) = *i   -2pXlXi + Xi   = pirt)

1 — p

has only sums of squares. The eigenvalues of S_1 are Xi,2 = 1/(1 ± p) with eigen-

vectors the columns of

L =
)l/2

.1/2

,1/2

,1/2,

This 45° rotation of axes x = Lv reduces Q to XiVi2 + X2V22. A further change of

scale v = Mw with

M =
X,1/2

0

gives Q = W12 + W12 under the transformation x — LMw. The region of integration

in the w\, w2 plane is now the sector labeled Rw in Fig. 1. The determinant

\LM\ = I S|I/2 is the Jacobian of the transformation.

•W

Figure 1
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The point (¿i/fc1/2, ti/k112) transforms into the point (71, 72) where

7l=(¿2  +   ¿l)(-|-)1/2> 72   =    (¿2   -   U)(±y

* = » - tan"^^)1'2,        6i = x + tan-1^^)1''

</5 = tan-1 — . 7i > 0
7i

= 7T 4- tan-1 — ,    71 < 0 .
Ti

Here we take — w/2 < tan_12 < x/2 with the usual convention ¡p = 7r/2 for 71 = 0

and 72 > 0, ip = —-jt/2 for 71 = 0 and 72 < 0 and ip = 0 for 71 = 72 = 0. The

integration now proceeds in polar coordinates

1 çx reí   r«,

P = *Y(k/2) h  uK"e~U ■/.! L  r

X exp (—w[(7i + r cos 9)   + (ji + r sin 6)'])drdddu

(3) 1 f62      f°°
P = 2-n-r(k/2) L. dd L

u~1+k'2

2rY(k/2)JH      \

X exp (- (1 + 7i2 + yi2)u) /   exp (-v - 2(uv)V2K(d))dvdu
J 0

after a change of variables r = (v/u)1'2. The last integral is related to the parabolic

cylinder function, D-2, and

(4) P = ^^ j" I" --^e-^D^u^midudS

where

«'2

H(6) = 1 + 7i2 + 722 -
2 ,   . 2     2T(0)

2     '

7Í (9) = 7! cos 9 + 72 sin 9 = (712 + 72V'2 cos (6 - <p) .

Case 1. K(9) ^ 0 or cos (0 - <p) ̂  0.

In this case the Laplace transform is readily available from tables (see formula

(15) of the Appendix) giving

«   F< - a.(t + i)(i + T,- + T,V»C K'-I^ ' - «"-' <• - *>>
where c = ((712 4- 722)/(l + 7i2 + yi2))1'2 and F is the Gauss hypergeometric func-

tion. For numerical evaluation, the right side of the expression

! _ C2C0S2 («-„)- 1 + (7i2 + 722) sin2^ - y)

l + 7i   +72

is used to prevent losses of significance when c cos (9 — p) is close to 1. The series

for the hypergeometric function is fairly rapidly convergent with all positive terms,
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although the analytic continuation formula is valuable when sin (9 — <p) is close to 1

[4, p. 108]:

f(l, y ; ̂ P, 1 - a,) = (fc + 1)f(i, -; -; x)
(6)

- 2'"'rri'/y)/2> ^» -*>-"""•■ **•■

The parameters of this F function also satisfy a condition for quadratic transforma-

tions of the argument [4, p. 64]. Exchanging the order of integration in (3) leads to

formula (5) through D-k. There is an alternate form which corresponds with results

of Case 2 which is obtained in the Appendix, namely

Px-
2»(fc+ l)(l + 7i  +72)

(7)

X

/fc - 1 3 - fc fc + 3  1 - c |cos (9 - <p)\\

["    I    2    '     2    '     2    '_2_        _)
Jei ri + c|cos(0-«)|T'!+1)/21 + c [cos (9 - <p)\~\lH

2 J
Case 2. K(8) < 0 or cos (8 - <p) < 0.

In this case the results for the Laplace transform (4) are presented in the

Appendix. The application of (16) in (4) gives

Pi =
2w(k+ l)(l + 7i   +722)

(8) (k - 1 3 - fc fc + 3  1 + c |cos (8 - <p)\\
f'a    \    2    '     2    '     2    '_2_/

Ai " |~1 - c [cos (9 - y)|~|(*+1)/2

The series for the integrand in numerical evaluation is not useful for large fc because

of losses of significance due to small differences of large numbers, although the

ultimate convergence rate is faster than in Case 1. For odd fc in (7) and (8) the F

function is a polynomial of degree max {0, (fc — 3)/2j which is best computed by

the analytic continuation formula

(k + 3V (k + l\
Jk- 1 3-fc fc + 3    \ _    \   2   /   \   2   /    (k - 1 3 - fc  1 - fc      _   \

V   u   '    2    '    2    ;xJ Y(k) \   2    '     2    '     2    ' X)

+ ek(l - x)ik+1)'2F(2,k;^;l - x)

where

tk = 0 ,    fc odd

= 1 ,    fc even

since most terms of the F on the right are positive. For even fc, neither series on the
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ON  THE  COMPUTATION   OF A  BIVARIATE  ¿-DISTRIBUTION 323

right terminates and the convergence is slow for x close to zero and fc large. Thus, for

k large and even and x near the middle of [0, 1], one can expect poor results in

numerical computation.

The defects of this case can be remedied however by considering

*.« - im-.) + ̂ TJ^*°-'"^\4)
in Eq. (4) where $ is the confluent hypergeometric function. Then we have

M + A
p       p_V   2    /_ [H c cos (9 - <p)dd

- ,_Vrr(|)(1+7l.+^r•'mi-'-/»-»ir'

since $(3/2, 3/2; x) = e*.
In summary, the quadrature formulae may be expressed by (i)

p = o » ,,wi! 2^ 2^2/.21{e)d9
2ir(fc + 1)(1 + 7i   + 72 )      '«i

where 1(6) may have one of the forms,

(k - 1 3 - fc fc + 3  1 - c cos (9 - y)\

\   2    '     2    '     2    ' 2 /
1(8) =

l + ccos(0-y)T*+1)/2

or

7(9)
- «/i  A. fc + 3, 1 + (7i2 + 722) sin2 (9 - y A

-'U-Ti—tt~,-:~~;—2";—i-/>   cos (9 - <p) ̂  u

(k - 1 3 - fc fc + 3  1 + c |cos (9 - g»)p\

\   2    '     2    '     2    ' 2 /

|~1 - C |CQS (9 - y)l"|

and (ii)

JkTwi->   cos (0- <f) <0

P =
2,r(fc+ l)(l + 7i2 + 72

T2  „A      fc     fc + 3    , 2 2   7. .V.
»V^A      \ '~2'~~2~'    ~ c cos   (       VV

_   f" g(9)c COS (9- y)

Vxr(|)(i + 7i2 + 722)-2 9l[1 - °2 cos2 (9 - ^)]t
(fc+1) /2 "ö

where

5(9) = 0   if cos (9 - <f>) ̂

= 1    if cos (9 — <p)

so   c,( r-' + rf )■»,
< Q ) ^1 + 7i   + 72 /
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324 D.  E.  AMOS AND  W.   G.  BULGREN

This latter formula is recommended for numerical quadrature together with (6) for

arguments of F close to 1. Details are given under Computational Considerations.

Series Representations. The integral representation (3) provides a starting

point for several series. We use first the formula [5, p. 7]

z COS 6 "V"* T   /   \ n €n   =    1, TO   =   U
e        = 2^«/*(z)costo9, _ „'      , n

71=^0 -    ¿i,   IL   7e   K)

on the last integral of (3) where In is the modified Bessel function of the first kind.

This produces the Laplace transform of In which we evaluate by means of [6, p. 197 ]

f°°   _pi„_i/2r   ,     .1/2-.,,       Y(ß + v + 1/2)       a" / 1 a  \
¡o"    l       hÁ2at    )dt=      Y(2V+1)      ^^T2Aß + V + ^'2v+hT)

where $> is the confluent hypergeometric function. Then, with A = (712 + 722)1/2 we

have,

p_       1       ; (-1)"   r(i + TO/2)
2wY(k/2)¿í     to     e"   T(1 + to)

X An /" u-1+{k+n)/2 exp [- (l + 7i2 + 722)to]*(- + 1, to + 1, A2u)du

X /    cos to (0 - <p)dd

and with (13) and (14),

Jk + n\
y^   (-l)X&(9i,92)   X\    2    / (_e\n

¿i (1 + 7i2 + 72Y/2 Jn+l\\2J

T\2)

2,r1/2r(fc/2) SS (1 + 7l" + 722)

., „( n to + fc       ,        i\
X F\-^- + 1, ——, to + 1, c J

where

/ 2    1 2      \l/2
_ I     7i   + 72       \

M + 7i2 + 722'

Sn(81,8i) =81-8!, to = 0

= 2sin^^cos^ + f^£),       to^O.

One obtains this same result if the integrals in (3) are exchanged. In the next section

under numerical considerations, this formula is recommended together with methods

for computing F(n/2 + 1, (to + fc)/2, to + 1, c2).
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A simple series expansion of exp [ — 2 (uv)U2 K(8)] in (3) leads to the represen-

tation,

1 (-C)" T\      2)    [« n  f0 v
2    . 2^/2        /        ,     A   J.     C0S    (0  -  f-

7i  + 72 )      Jn + 1\ Jei
(U)  P = o w2w,/9, £ n,\!    v/2     /    Ta  /    cos" (9 - <p)dd

2ir    Y(k/2) n=o (1 + 71   + 72 )       Jn + 1\ Ja

This integral in 0 can be expressed in terms of incomplete beta functions which are

extensively tabulated.

A more exotic formulation is obtained if the Sonine product [5, p. 98]

Se-" = 2'r» ¿ (-1)> + v)Cny(y)I,+n(z)
71=0

is used in (3). Here again the factor in 9 is separated and we obtain using (13) and

(14),

p r\~2~/       f, (-!)> +fc- 2)Gn(8lt82)     V\2 + V     (c\
*(k - l)(k - 2) ¿I (1 + 7l2 + 722)Ä/2 Jn + k-j\ \2/

XF(^p,f + l;TO + fc-l;c2)

where Gn(8\, 82) is an integral of the Gegenbauer polynomial Cnik~2)(cos(9 — <p))

/«2-*>
C„ci;_2,(cos0)d0.

•ll-HP

But

C^^ = tiw^^{n-2m)e

and

n (a   a\ _ v (fc      2)m(fc      2)„_m „     .        .
C?„(0i, 02) - JL, m!(n _ m),      &„(*, 02)

where

Sn,m(9l,8l)  =02-01, to = 2m

„  .    (to — 2m) ,.        „ .         (to — 2toi) ,„    .   .       „ ,
2 sin-5-¿ (02 - 0i) cos ■*-2-  (0i + Ö2 - 2<P)

TO — 2m
to t¿ 2m

and (o)m = a(a + 1) ■ ■ • (a + m — 1).

The case for p = 0, fc = 1 can be integrated in closed form
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326 D.  E.  AMOS AND  W.   G.  BULGREN

while for fc = 1 and any p, series (10) with the aid of (12) can be written as the

solution of a potential problem in the unit circle

2tt J6i-t 1 + r  —

r2)dd

+ r  — 2r cos (9 - <p)

1       _j 2v ¡ 0 \       u2 + v2 ^ 1
— tan    —2-;-h. 2  .    2   . .
X U2  + y2   _   1 (1  ) U    +  V     < 1

where —ir/2 ^ tan-1 t ;£ ir/2 and

2r sin <p 1 — r
u =

2

A (1 + r2 + 2r cos <p) ' A (1 + r2 + 2r cos <p)

A = tan ((02 - ir)/2) .
v+ 72

H- M + 7i2 + 722

The fact that 9i — t = — (8i — t) has been used together with the conformai map

of the unit circle into the upper half w-plane

i   (1 — z)      i i  .,
W = Ají+T)>   |2| = 1

with z = exp [i(8i — t)]—r w — 1, z = exp [ — i(8i — t)] —> w = — 1.

Computational Considerations. For numerical evaluation, attention was directed

toward (9) and (10), although (11) appears to be a possibility in view of Gautschi's

[7] results. The quadrature in (9) (together with (6)) presented no problems in a

Romberg integration routine, and series (10) reproduced the quadrature results

(except for occasional discrepancies in the fifth digit) in comparable computer time

for fc ^ 2 with a maximum of 350 terms. Actually fewer terms (50 to 100) were

required for the larger fc values since the variance of the distribution decreases with

fc (approaching that of a normal distribution) giving smaller c values for a given

percent point. For fc = 1, the series required more than 400 terms in some cases for

just three-decimal place agreement ; while five-decimal place agreement between the

quadrature and series was the norm for fc ̂  2 on relative and absolute error tests of

5 X 10-6 respectively. The quadrature mesh size was halved while the upper index

of the truncated series was incremented by 50 terms until the respective tests were

met.

Altogether, 1335 comparisons were made on parameter values

P = -.9, -.5, 0, .5, .9       fc = 1, 2, 5, 10, 25, 50

and (íi, ¿2) pairs on circles about the origin at 45° angular spacing beginning at 45°

and ending at 225° since there is symmetry about the line ¿1 = ¿2. The increment in

the radii varied with fc to cover the most significant portion of each distribution. The

computation in the (¿1, ¿2) plane was terminated for a given p and fc on the condition

P ^ .99 on the 45° ray. The computations were done in single-precision arithmetic

(approximately 10^ digits) on a CDC 3600 computer. A relative error test of

5 X 10~7 was used for the w functions described below.
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The computation of F(l, fc/2, (fc + 3)/2, x) for (9) is rapid with the series ex-

pansions about 0 and 1 since a; or 1 — x can always be taken less than 1/2. The

continued fraction [4, p. 88]

Rn = 1
1   —  VnXJRn+l

(b + w - l)(c + w - 2)
Un      (c + 2n - 3)(c+2to- 2) '

_n(c — b + n — 1)
Vn~ (c + 2n- 2)(c + 2n - 1) '

F(l,b;c;x) = 1/R,

also shows promise in numerical evaluation. Notice that the continued fraction may

be used on the right side of (6) also.

The computation of F((n + fc)/2, to/2 + 1 ; to + 1 ; c2) produced some difficulties.

For large fc, the series representations about 0 and 1 do not converge rapidly enough

in the middle of the interval to be useful. Furthermore, the parameters for even fc

put the F function in the exceptional (logarithmic) case and makes evaluation more

difficult about 1. The following recursion methods proposed by Gautschi [7] were

used with success. Note that the contiguous relation

(c — a)F(a — 1, b; c; z) + (2a — c — az + bz)F(a, b; c; z)

= a(l - z)F(a+ l,b;c;z)

produces a recurrence relation in the parameter a.

Case 1. fc odd, fc «£ 1.
The contiguous relation above, under the parameterization

a = (to+ 1)/2 + tto,        b = to/2 + 1, c = to+1

reduces to

1     ["to + 1 - 2m 4m + (1 - 2m)z    1        _ fc - 3
Vm+1 - 1 - z U + 1 + 2m Vm-1 +    (to + 1 + 2m)   "-J ' m ~ h ¿' ' ' *'     2

„In +1,        to   ,   ,       ,.1 ^ir. fc— l
Vm = F\--^-- + m,— + l;n+l;zj ,m = 0,1,2, •••,—— •

It is clear that the difference equation with the initial values

yo=F((n+l)/2,n/2+ l;n+ l;z) ,       yx = F((n + 3)/2, to/2 + 1;to+ 1;z)

generates a "dominant" solution so that forward recurrence works. Now, y0 and j/i

can be identified in terms of simple algebraic quantities

_T_ 2"(l - to(1 - z)1'2)

(i-z)i'2(i + (l-zyy    Vx   (n + D(i-z)3/2(i + d-2)i/2r'

TO ̂   1

by means of the relations
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328 D.  E.  AMOS AND  W.   G.  BULGREN

w        i   x o      ^             1         (\+(l- z)ll2\-2a
F(a,a+ h;2a;z) =      _ y-y——'—J       ,

„/to + 1 to   ,   ,        .il 4       d „( n   n + 1        \
F\^+1>Y+1->n+V>Z)=n-+ldzFK2>—-'n-'Z)-

For to = 0, and allk ^ 1

F(l,k/2;l;z)= (1 - z)-k'2.

Case 2. k even, fc ̂  2.
The contiguous relation under the parameterization

a = to/2 + m ,       b = to/2 +1,       c = to + 1

gives

1     \n + 2-2m           .  J(2m - 1) - (m - l)z]
** = T^z L    TO + 2m     ^ + 2-ro-+2^-»-J '

1   o fc~2m = 1,2, •••,—2~

with

y„ = F(n/2 + m, to/2 + 1, to + 1; z) ,        m = 0, 1, • • -, fc/2

yo = F(n/2,n/2+ l;n+l;z),        yi = F(n/2+ 1, to/2 + l;n+l;z).

Here again forward recursion works, but the computation of y0 and yx is not as

simple as in Case 1. The relations

-4 d
yo [<Wv(f,f; „;,)],

4   á „/ to   to \
2/1 =: — XF\Y'T'n'7'

(1  - 2)-1+K/2  &

d_

TO    ¿2 '

a w - ¿rfr++w (TTTr- K» + 1- ' + '* + »= ITi) ■  l' + 2l>2

provide the identification in terms of Legendre functions of the second kind :

1/2 tY n   I
„        A¡-.\        T   rlYJ    (*YJn   to        \
Q—i—)=2n/2jn+a u/ fvt' tï w; v •

Differentiation together with

Q/(a;) =--2 [xQ,(x) - Q,+i(x)]
1 — x

produces
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X =  (2 - z)/z ,

rT(±±l)
2/0 = -?—\-[Q_i+„/2(a0 + Qn/i(x)]

r1/2r(y)2"/2

1        2"r(^)

2/1 = -,-: -y~^-[Q-i+7»/2(a;) - Qn/i(x)] .
1      z    i/2r( n \n/2

* rV2~r

Thus, for to odd, to ^ 1, we must generate the half-odd Legendre functions of the

second kind starting with

«-*« - U-t)'"k(C-tt)"
where K is the complete elliptic integral of the first kind. The procedure of Gautschi

[7] is very efficient since all half-odd functions can be produced to a specified relative

error by means of the algorithm :

m _   2v + 1_1_        w —bm _
'" O/,,     I     1 \ ■ 1/2 . Nl/2 '       rm-\ w , Wl I7, ? 1,   • • ■ ,   1

A" + 1J x + (x   — 1) am + rm"

s w = n sw , = rw , (X   4- s M)

wo    = ;—;-^, w™ = rmLiWm-i , m = 1,2, ■ ■ -, M
Xo + s

— \mx   , _ 2m — 1 _
a™ — o™   ii>">» — o™   ii' m — 1,2,2m + 1'   m 2m + 1

x/21/2

(x - l)1
iNl/2, Xo = 1, Xm = 2 ,        m = 1, 2,

with

Wrn = Q_i/2+m(a0 = lim wjv) ,       m = 0, 1, 2, • • -, M .
C—»00

Here, at least two applications of the procedure are needed for different values of

v : vi > vi > largest index of interest = M. The results for the indices of interest are

tested for relative error and the procedure for v% > v2 is reapplied if the two sets of

numbers do not compare favorably. Here,

_   Qm+l /l(x)   _   .. (»)
' m y-. /   \ illll rm

*¿m—l/1\X) v^ai

and the asymptotic form for large v was used for Qr(x) to start the recursion with

m = v. For to even, to S: 2, the computational procedure is the same as for odd to

except for the replacements
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woM = Qo(x) = -^- In (    _ 1 ),     wm = Qm(x) = lim wnM

2m + 1 , m ,  0
am = —-¡—- x,     bm = ,       m = 1, 2, • • • .

m + 1 m + 1

w _ 2(v + 1) 1

(2v + 3) x+{x2-iy2

and the fact that the s sequence need not be generated because of the explicit form

for wo. As explained in the reference, the Q's are "minimal" solutions of a three-term

recurrence relation

wm+i + amwm + bmwm-i = 0 ,       m = 1, 2, • • • .

The algorithm for these solutions constitutes backward recurrence on the ratios

followed by forward recurrence and normalization. In this analysis normalization

(finding the constant of proportionality) is achieved by summing the series

QO

s = XoQ_i/2(a:) + ]£ XmQ_i/2+m(a;)
771=1

in the first case and specifying Qo(x) in the second case. For to fixed and moderately

large (50-100), Qn/i(x) decreases rapidly as x increases past 5. Better scaling results

for both large and small x by modification of the algorithm to incorporate z~n/2 as a

multiplying factor of Qnn(x). The new algorithm for odd and even to is

wm = [(x+l)/2]-ll2+mQ-ll2+m(x),   wm=[(x+l)/2]mQm(x) ,   m = 0, 1, 2, • • •

M _  (X + 1)     („) („) —b~m_
' V Ci '*        1 '77t— 1

z am + rm

m = v, v — 1, ■ • -, 1

-    _ (* + l)       r    _ (s + l)2 h

wmM = fi'iiwi^,,        m =1,2, ...,M

with normalization achieved by computing

W0 = ((,+11)/2)1/2    and    W°=Q0{X)-

Q-i/i(x) is obtained from the original algorithm. The expressions for y0 and y\

become

2"T

2/0 =

2/1

(H1)
-r(f)

rr(n±l)

-wm-\(x) + wm(x)\■2

(1   - 2)t* "Áf)
I-2-)Wnr-\(x)   —  Wm(x)\
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for each sequence corresponding to even and odd to.

Appendix. We wish to evaluate

/=  i" e-°trl+tsl2D-v(±2(kt)ll2)dt
J 0

for z > k = 0, ß > 0. We start with

r
\    '2    /

r
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D-,(z) = 2-"e7-/2  -z2/4

/l+A    \2' 2' 2/

+ —+ V2
V     2/.A+r   3    zg>\

\   2    '2'2/

<l)
Then,

2-t(|)

- r(iiz) A
-(z+«i,-1+0/2 í»(|-,y;2fcí)d¿

(l-,)/2 \        2/    /°°    -(,+/;)'.-l+(3+l)/2,/l + f    3     0,   \

2    ' 2

for z > k > 0 since $(a, c; a.) ~ Y(c)/Y(a) exxa~c for a: —> ». The Laplace transform

(13) P e'pttb-lHa, c; yt)dt = ^ i/o, 6; c; ̂ ) ,        \p\ > \y\
J o p \ P '

converts the right side to

ri

)-»/2

(2 + fc)(3/2

\2/r\2/ „/j! A J_     2fc  \
/l + v\       \2' 2' 2'z + kJ

(   2fc   V'2 V y)r\~t~)    /l + , fl+1, 3.    2fc  \
\z + fc/ _/ „ N, V   2    '     2    ' 2 ' 2 + fc/

<i)

and with the Legendre formula

(14)

we have

r(2a) = -T72 r(2)r(2+i/2)
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I =
2l-0->'/2irl/2

(z + fc)"/2

Y(ß)

Ç±JLtl)

{±\J>±È±±)    , x
\2/   V      2 /     fv_ l_   1_     2fc   \

(—)\z + k/ KDKi)
v pAiZ (3+1  A     2fc   \
*    V   2    '     2    ' 2 ' 2 + fc/

For the positive sign, this is the right side of an analytic continuation formula for

F(v/2, ß/2, (v + ß + l)/2, (z - k)/(z + k)). Therefore, one gets the standard result

found in most tables,

l/2ol-0_„/2
7T      L

¡\-'tr^'2D-vC2(kt)lß)dt =
•'o (z + k)

(15)
X

ros)

^±|±i)
A    \2' 2 '

+ 0+1   z_-±

2 'z + k

There is, however, a more coherent way of presenting both results in terms of

associated Legendre functions, by means of the relation

(-1 — r2Y'22Tß     -
U      X \l2     -PZ(±x) =

f('- ß + V   1 + V ~ M- —• r2)
V 2    ' 2        ' 2 '    /

rH-^X' + ̂J

■ 1    <   .1'    <    1

if we let j> = (0 - v - l)/2 and ¡s = (1 - y - 0)/2.

Then,

7 =
l/20(l-3)/2

7T       Z rC3)

(z + k) (3/2 (1 - iT'T/(±i)

where

We also have

/   2fc   V'2
x = \7+k)   ' z> k.
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p^ = rli^(f^fy/H-?'i; + 1;1-p;V)'   -K»<1
so that

(16)

l/29(l-3)/2r/,-,
I = _     it   2 Y(ß)     ^ (1 ± x)a-,-fi,2

(z + k)ß/2Y[

(l + v - ß   l + O-i,   1+v + ß   1 Tx\

*     \        2        ' 2 ' 2 '     2    / '

Notice that a quadratic transformation [4, p. 112]

F(a, 1 - a; c; z) = (1 - z^F^p, ^±Jp-; c; 42(1 - 2)) ,

Re 2 < 1/2, [42(1 - 2)| < 1

applies for the negative sign in the argument of 7^ giving formula (15). On the other

hand this quadratic transformation does not apply to the other sign since the argu-

ment is greater than 1/2.
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