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ON THE COMPUTATION OF FIXED POINTS IN THE
PRODUCT SPACE OF UNIT SIMPLICES AND AN
APPLICATION TO NONCOOPERATIVE N PERSON
GAMES*

G. vAN DER LAAN AND A. J. J. TALMAN

Vrije Universiteit

In this paper an algorithm based on the principle of simplicial approximation is introduced
to compute fixed points of upper semicontinuous point to set mappings from the product
space S of unit simplices into itself. The algorithm 1s a modification of an algorithm,
introduced in an earlier paper. The main feature is that it starts with an arbitrary chosen point
in S and that the triangulation of S depends on the starting point. Moreover, the algorithm
can terminate with a non-full-dimensional subsimplex, yielding a good approximation. An
application is given for non cooperative n person games, where S 1s the strategy space. Some
computational experiences are given.

1. Introduction. In their paper [9] Lemke and Howson showed that a bimatrix
game can be formulated as a linear complementarity problem. The generalization to »
person games was found independently by Rosenmiiller [12] and Wilson [17]. Using
features of this nonconstructive method Garcia, Lemke and Liithi [3] developed an
algorithm to compute an equilibrium point for noncooperative n person games. This
algorithm is based on the ideas of the algorithm introduced by Scarf [13] and [14] for
computing fixed points of a continuous function on the unit simplex. Scarf’s algorithm
is characterized by a particular subdivision of the unit simplex and by a start in a
corner. More efficient methods on the unit simplex have been given by Eaves [1],
Kuhn and MacKinnon [5] and van der Laan and Talman [6]. The generalization to
mappings on R” can be found in Eaves and Saigal [2], Merrill [10], Todd [16] and van
der Laan and Talman [7].

In this paper we will modify the algorithm of van der Laan and Talman to compute
a fixed point of a continuous function on the product space of unit simplices. In
particular the equilibrium strategies of n person games will be computed. §2 gives a
short description of the algorithm developed in [6]. The triangulation of the product
space of unit simplices is given in §3. In §4 an integer labelling rule is given and it 1s
proved that the algorithm’s terminal subsimplex, provides a good approximation of a
fixed point. §5 presents the modification of the algorithm. The generalization for
vector labelling is given in §6. In §7 we consider the problem of the n person game. §8
shows some computational experiences and conclusions are drawn.

2. Description of van der Laan and Talman’s algorithm for the unit simplex. In this
section we give a concise description of the algorithm of van der Laan and Talman [6}
for a continuous function f from the unit simplex S™ into itself. We restrict ourselves

to integer labelling.
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2 G. VAN DER LAAN AND A. J. J. TALMAN

Assume that we use the standard triangulation of the (m — I)-dimensional unit
simplex, 1.e., this triangulation 1s the analogon of the triangulation of R”, introduced
by Kuhn [4] (see also Scarf [14] and Todd [15]). Any point x of the simplex receives an
integer label'//(x) defined by i(x) =k i [(x) —x, & fi((X)—=ix;, i=1,.:., m, and
x, > 0 where k 1s the lowest index which satisfies this condition. Note that this i1s a
proper labelling. A completely labelled subsimplex, 1.e., a simplex having all its n
vertices labelled differently, 1s a good approximation of a fixed point.

The algorithm starts with one point of the grid, say ©", which can be chosen
arbitrarily, e.g., by prior information. From that point, a zero-dimensional face, a path
of adjacent faces is generated by unique replacement steps, until a completely labelled
subsimplex 1s found. To do so the unit simplex 1s subdivided into regions A(7), with T
a proper subset of I = {1,..., m}, defined by

A(TYy=Tx &S| x=0p" 3

l Ne(j+1) —e(j):A>0,;€T

jET
where e( /) 1s the jth unit vectorand j+ 1 =11f j = m.

A t-dimensional face o will be called a simplex of region A (7)), if all points of the
relative interior of o are also interior points of 4(7). Then the algorithm generates
simplices of A(T) if and only 1if 7 1s the current set of labels found. As soon as a new
label 1s found, say label j, the algorithm continues with simplices of 4(7 U {/}) by
extending the current simplex 7 of A(7) to a simplex o of A(7 U {j}), such that 7 is a
facet of o. If, however, a replacement step would imply a change from a simplex of
A(T) to an adjacent simplex of A(T U {k}\{/j}) for some j € T,k & T, then the
vertex, which 1s to be removed, 1s the only one in the interior of 4(7) and the other are
points of A(7\{)}). Instead of replacing this vertex by a new one in the interior of
A(T U {k}\{j}), 1t 1s deleted, whereas the vertex with label ;j (there will be exactly
one, since j € T) 1s now removed. Then the algorithm continues in a unique way with
simplices of A(7°\{/}). In van der Laan and Talman [6] it is proved that a completely
labelled subsimplex will always be found within a finite number of 1terations.

3. The triangulation of the product space of unit simplices. Let S be the (m — 1)-
dimensional unit simplex, 1e., §™ = {x € RY [ Y% _,x, = 1}. Let § = []7_,S" be the
product space of n unit simplices §™. We denote >"_, m, by M and an element x of §

By =t ke x") where 1*’ s an element of S™. Let y be a continuous function

from S into itself, 1.e., y(x) = (y '(x), . ..y"(x))is an element of S. To compute a fixed
point of y we will modlfy the algorithm descrlbed In the previous section. To do so we
need a trlanﬂulatmn of S. For some ¢ let w", . . .. ~ be 7+ 1 affinely independent
points in R". Then the convex hull o(w", . ... W )— Z, oAw'|A > 0 for all /i and
S _oA, =1} is called a r-dimensional simplex or 7-simplex with vertices w", . . . | w'. A
simplex 7 1s a face of a simplex o if all the vertices of 7 are vertices of a. If the number
of vertices of the face 7 of o 1s one less than the number of vertices of o, then 7 is
called a facet of o

DEFINITION 3.1. A collection G of m-simplices 1s a triangulation of C if the relative
interiors of the faces of all simplices partition C.

To triangulate § we define the block diagonal matrix O by

B Sreb « YRR PR
e kel

0 O o Te QH

—— o
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where Q; 1s the m; X m, matrix defined by

— *

i 0 EPE o 1
) a0 e e 0
0, = : Lt i

70 o 2000 U SR

The ith column of Q will be denoted by g(i)i=1, ..., M.

[t can easily be seen that the matrix Q, induces the standard triangulation of the unit
simplex S$™. Define §™(d)) as the set of points of S§”% induced by the regular grid of
size aﬂ,., 1.e., the elements of §™(d,) are the points (x4, . . . , x;{ﬂ_) such that

fﬂj

J = 7J J 1 ve 1 =
x] = z]/d where z/ is a nonnegative integer and ;:l zl=d.

Let D be the diagonal matrix defined by

D0 0

0 D :

D= 2 -
SR

0 i -

where D, 1s the m; X m; diagonal matrix with elements 1 /d; on the diagonal. Let § (d)
be the set of points x = (x', ..., x") such that x/ is an element of S”?f(af,-) and let 0" be
an arbitrarily chosen point of S(d).

Moreover, let (j,m;) be the set of elements (j, k) such that k € [,,. Let J' be the
collection of all subsets 7" of UJ.I(j, mj) such that for all j there 1s at least one element
(j,k) € I(j,m) not in T, and let 52 be the subset of J' such that for all j there is
exactly one element (j/,k) € 1(j, m;) not in 7. For all T € 9' the subset A(T) of S is

defined by

g

A(T) = {x eS|x=0"+ > A(j,k)Dgq(j, k) for nonnegative numbers A(/, k)
(,k)ET J

where g(j, k)= q(k + 3/_\m,). Clearly, the relative interiors of all A(T), T € oFL.

=]

partition S. Note that A(7) depends on the point v".

LeEMMA 3.2. (a) The product space S is the union of the subsets A(1), T € 9°.
) ATV A(T,) = A(T, 0 T,) for all T}, T,/ € 5~

Proor. To prove part (a) let x be an arbitrary point of S. Then there is a unique
T, €' such that x € A(T,) and A(j,k) >0 for all (j,k) € T,. For all T, C 52 such
that T, C T,, we have now that x = o? + >iner,NJj,k)Dq(j, k) with A(/,k) =0 for
all (j,k) € T,\T,, i.e, x is an element of A(T3). The proof of part (b) follows
immediately from the definition of A(7) and the fact that the A(j, k)’s are unique.

Let 7 be the number of elements of 7 € §' and let o(w’, y') = o lwiint . swt)be a
t-simplex in S with vertices w’, . .., w' such that

wl=10"+ > u(j,k)Dq(j.k) fornonnegative integers u(j,k)
G lET

and

wi=w '+ Dq(yf), T PR AL
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where. 7 =ilyi ;0 s v,') is a permutation of the elements of 7. Observe that all
vertices are elements of A4 (7). Hence, o(w”,y7) is a simplex of 4(7). Moreover, let x
be an element of A(7). So there are unique nonnegative numbers A k), Clik)e T
such that

x=v"+ > A, k)Dq(j,k)
(k)ET

Let w” = 0" + ZU oer(J,K)Dq(j, k) with u(j, k) = entier (A(/, k)) nonnegative inte-
gers, and let y' be a permutation of the elements of 7 such that

z(y]T) > z(y;) iy iy 2 Z(YIT)

where z(/, k) = A(j k) — u(j,k). Then x is a point in a(w", vy 7). Hence, the collection
of mmphces o(w’,y") cover A(T). Furthermore, let By = = 2(v1 ), Bi=z(y)) -
syt Dyt =1 ,t—1,and B, = z(y,"). Then x =3_,B8,w" and x lies in the open
face of o w1th vertlces w' having positive ;. Analogously to the proof in Todd [15, pp.

30, 31] this face 1s the only open face in A(7T) containing x. Consequently for any
T € ' we have the following corollary.

COROLLARY 3.3.  The collection of all t-simplices o(w°,y") triangulates A(T).

THEOREM 3.4.  The product space S is triangulated by the union of the simplices
induced by the triangulation of A(T), T € 9°.

PROOF. We have to prove that for any pair T, T, € 5° the triangulation of

A(T, N T,) induced by the triangulation of A4 (T)) is the tnangulatlon of A(T,N T,)
induced by the triangulation of 4(T,).

Let 7', and T, be two different elements of 9% and let o, be a 51mplex of A(T,) with

vertices -wi, s w'~". Since w?€ A(T,), we have wi =0’ + Z““ET n(j, k)
Dg(j,k) for unique nonnegative integers u(j,k) and w! = W +Z,_,Dq(yIT')
h=1,..., M— . for some permutation y,"' of the elements of T,.

Clearly if wi & A(T,), then w”&A(T)h—l M — 7, and o, N A(T,) 1s

empty. Hence 1f o, N A(T,) is not empty, w! € A(T) Furthermore if for some A,
O0< h< M— n, whEA(T)ﬂA(Tz)—A(T ﬂ T,), then
(@) u(j,k)=0, for all (j,k)& T, N T,.

(b) %' €T, Ty for all i ="1;.. i3 A
This implies that w, EA(T M T)for all:—O skt

Because 7', # T 2 w =" A(T, N T’,). So there exists an integer h*, 0 < h* < M —
n — 1, such that Won 2z wf' are points of 4(7T,) N A(T,), whereas w{"“, P
are not. Hence, w?- B> =+ ZU wer, L(J,k)Dq(j, k) for unlque Integers p(j,k) and
wi=w"'+ Dq(y, 2) fori= 1, , h* for any permutation y ™ of the elements of 75,
such that y,">2=y./4 for i=1,..., h*. For all permutations y’* satisfying the last
condition, the simplex o(wg, ey W) with wo = wii=0,...,h* and w!
=w, '+ Dqg(y,),i=h*+1,..., M — n, is a simplex induced by the triangulation
of A(T,).

So, the triangulations of A(7, N T,) induced by the triangulation of A(T,)) 1s
consistent with that induced by the triangulation of A(T,), for all T, and T, € 9°,
which proves the theorem.

From the proof it follows directly that the triangulation of A(T, N T,) induced by
those of A(7,) (and A4(T,)) is the triangulation of A(T, N T,) introduced above.

Theorem 3.4 is clarified by Figure 3.1.0Observe that the dimension of S is M — n.
which is also the dimension of each region A(7), T € 92. In §4. every point in S
receives a label induced by the function y(x), which is an element of Ui=11(j, m).
Note that this set contains M elements.
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FIGURE 3.1. n=2; m=m,=2; d, =4, d, =6;

T = {(1,1)); T, = {(1,2); (2 1)).

Normally, in applying fixed point algorithms, the number of labels 1s one more than
the dimension of the problem, while the algorithm can only terminate with a full-
dimensional completely labelled simplex. The algorithm to be described 1n §5, how-
ever, will terminate with a simplex with at least min, m, and with at most M — n + 1
labels, to yield a good approximation.

4. Integer labelling and approximation. To apply an algorithm based on simplicial
subdivision we have to label every point of the product space S.

A point x = (x', ..., x") of S receives an integer label /(x) by the following rule:_
[(x)=(J,k) 1t (,k) 1s the lexicographic least index such that x;: > Qand pe(x)—-x;
< yi(x)— x) for all (i,h) € I(i,m,),i=1,...,n.

Note that the labelling rule is proper in the sense that /(x) # (/,k) if 1; =0, A face
will be called completely labelled if all its vertices have a different label.

A completely labelled face with set of labels L is a j-stopping face, if, for all
Je=tlls o = m;, (j,k) 1s an element of L, whereas at least one (i,h) € I(i,m;) 1s not in
L, for all i # ;.

Let the norm of a vector z in R"” be the supremum norm, 1.e., |z||=
max. (|z:]). Let ||x — X|| < 8§ imply || y(x) — p(X)|| < € and let the grid be so fine

= i

that || x — X|| < § if x and X are points in the same face. Then we have the following
theorem.

THEOREM 4.1. Let X be any point in a j-stopping face t. Then

LX) — X|| S(e+ S)mj - max (m; — 1).

I

ProOF. Let x(1),x(2), ..., x(m,) be the m; vertices of 7 such that /(x(k)) = (J, k).
Since > 7V, y;{(x) = ’Lle,{ (= 1), we must have by definition of the labelling rule

Y(x(k)) = x(k) <0, k=1,...,m,

Hence, for any X 1n the face,
YU(E) = X[ = yi(%) — yi(x(k)) = (% — x{(k))

+yi(x(k)) — x{(k)

< €+ 0, k=l,...,mj.

On the other hand, we have,

PWE)=X == D {y;(f)—f{} > = (myi 1)(e +:5), ke =1, .0, m,

i=s]
%=k
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In particular, this inequality holds for X = x(1). Then, again by the labelling rule,

Ya(x(1)) = x4(1) > p{(x(1)) — *{(1) > —(m; — 1)(e + 5),
=l . .0 msEF .

So, for any X in the face,

)f}f()_‘) g Ei: =)’f:(f) _)’;:(x(l)) ' (ff: = x,‘:(l)) +y,j(x(l)) 57 -’5;:‘(1)
> —€ — 5—(mj— I)(e+0)= —m;(e+ 0)

and
O T kz [ ye(X) — X } <(m; — D)my(e + ),
k =

h=1,...,m;i+].
Combining all of this together, we obtain for any X 1n the face,
|y (%) = X/|| <(m; — 1)(e + 8)
and
|y'(X) — X'|| <(m; — D)m(e+8), i#].
Therefore,

|y(X) — X|| <(e+ 0)m; - max,_.;(m; — 1).

S. The application of van der Laan and Talman’s algorithm. In a particular grid, let
v’ be the starting point. Assume that for the triangulation of §3 the algorithm
generates a face 7(w", . .., w') and a set T of ¢ labels such that there is a permutation
v' of the elements of T and an M-dimensional nonnegative integer vector R with the
following properties:

(1) the (k + S _', m,)th component of R is zero if (i,k) & T;

2) w'= 0"+ 2. kherR(j,k)Dq(j, k), where R(j,k) 1s the (k + S ' m,)th com-
ponent of R;

B)w=w "+ Dq(yfr), forii =12, o .od;

(4) all elements of 7" are a label of one of the vertices of the face and two vertices,
say w'' and w", have the same label; one of them must be just found, say w".

Observe that such a face 1s a simplex of 4(7).

Now the algorithm replaces the vertex w'' according to Table 5.1 by a new vertex,
producing a new simplex of the triangulation of 4(7'), and its label 1s computed.

As we will show below, when continuing the algorithm by replacing the vertex
having the same label as that of the new vertex, one of the following cases must occur:

(a) the algorithm finds a label (i, k) not in T;

(b) R(j,k) becomes negative for some (/,k) in 7.

TABLE 5.1
s is the index of the vector which must be replaced
w? becomes v becomes R becomes
s=0 H’0+£I('}'|) (Y5 - Yes Y1) K+ e(Y)
l Wy Bl H’JU (Yl """ Ys—1>Ys+19 Vso Ys42r « ¢+ 'Yr) R

s = w? — g(y,) (s Wotis b e Yii) R —e(v,)




COMPUTATION OF FIXED POINTS IN PRODUCT SPACE OF UNIT SIMPLICES i

FIGURE 5.1. n=m =my,=2;d,=4; d,=6;
o0=(L, 3 L ) () =la)=1(d)=I(g) = (2,2);
[(b)y=I(c)=Il(e)=I(f)=I(h)=(],2):
()= I(j)=(2,1); {(k)y=(1,1) or (2,2).

In case (a) the current simplex o(W", . .., w') of A(T) is completely labelled and the
algorithm terminates if o is a j-stopping face for some ;. Otherwise the algorithm
continues with a (¢ + 1)-dimensional simplex of A(T U {(i,k)}) with vertices the 7 + |
current points w’, ..., w’ and a new point w'*', obtained by summing up W' and
Dq(i, k), and the labelset 7" U ((i,k)). Clearly, this extension 1s always feasible. After
computing the label of the new point the algorithm continues as before. In case (b) the
replacement step is not performed but the algorithm continues with the (7 — 1)-
dimensional simplex (W, . .., W'~ "Yof A(T\{(j,k)}) and the labelset T\{(/,k)] and
removes the vertex with label (/, k). The algorithm starts with the one dimensional
simplex a(v’ v") of A(/(v")), where o' =0’ + Dq(!/( 0")). with R the zero vector and
with 7= {/(v")} by computing /(v') and comparing it with [(v"). As proved in van der
Laan and Talman [6], both the start and the replacement steps are unique. So, if all
replacement steps are feasible, the algorithm generates a path of adjacent simplices of
variable dimension such that the common facets of two adjacent simplices of A(7')
carry all the labels of T. Therefore a stopping face will be always found, since the
number of faces in the product space S is finite and cycling cannot occur. The
algorithm i1s illustrated 1n Figure 5.1.

Finally, we will show that all replacement steps are feasible. Clearly, a replacement
step is not feasible if and only if the vertex to be replaced 1s not on some boundary
face of S. whereas the remaining points are all on that boundary face. So, let w" be the
vector to be replaced, for some 5,0 < s < ¢, and let o aepa =t sl Sl he
the remaining vertices of the face on, say the (/,k)th boundary face of S. 1e.. the
(k + SV, _ m,)th component of w" is equal to 4, and the same component of the other
vertices is equal to zero. Let 7.7’ and R be the current ones of Table 5.1. If the
starting point ©” is not on the (j, k)th boundary face, (j,k) must be an element of 7.
Hence, 7., , = (/. k).s < t — 1, and at least one of the vertices of face 7 must have label
(j.k). Since we have a proper labelling, w" is the only one and can therefore not be
replaced. In the case that ¢’ is on the (j,k)th boundary face of S, either one of the
vertices has label (/, k) which 1s identical to the case just menﬁtioned, or (/,k) 1s not an
element of 7. In that case s = ¢ and the ¥,th component of R becomes negative, since
W' is the only vertex of 7 in the interior of 4 (7). Consequently, the replacement step 1s
not performed but w' is deleted and the algorithm continues with a (r —1)-
dimensional simplex of 4(T\{(/,k)}. This together proves that every replacement step

must be feasible.

6. Vector labelling. In this section we generalize the algorithm for vector labelling.
A point x = (x',...,x") of S receives a vector label /(x) € R " by the following rule

(%)= X =y(xX)+ 6,

where e is the vector (1, ..., 1).
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Let for some T €9 ,0(w’ ..., w’") be a t-simplex of 4(T). Then the facet
rw?, ..o,whwtt L w') of o has a feasible solution if the system of linear
equations

! M=
20 Adl(w') + hZ wpe(m,) = e,
i= = |

1555

where (7,, ..., m,_,) 1s a permutation of the elements of U ;(j,m;) not in T and
where e(w,,)—- e(k+2{i}m) if @, =(j,k), has a nonnegatwe solution AY, i=
Livssp®= o4l i tand gt =10 i M =L

LeMMA 6.1. If a facet 7(w°, ..., w* " \w'*' . . w") in A(T) has a feasible solu-

tion, then
[ M—1
M z A:*+ 2 ”’h = M
i=() h=1
3

PROOF. The system of linear equations is

2 /\;"(w'; —y(w") 5 e) + Z w e(m,) = e.

{558

Summing up over all components we obtain

N Ar E E(W’f—y,‘(w)+l)>+2ph=M

135S LH,;—lk—l )

Since for all i, 37wl =3%_, yl(w)=1, for j=1,...,n, the lemma follows
immediately.
A t-dimensional simplex o(w"’, ..., w’) of A(T) for some T € 9" will be called

completely labelled if the set of linear equations

t M—1t—1

>NI(w') + 2 we(m)=e

has a nonnegative solution A* and p;} for some permutation (7, ..., m,,_,_,) of
M — 1 — 1 elements of the M — ¢ elements of U /(j,m;) not in T.

Clearly, following the proof of Lemma 6.1, this solutlon has the property that
MEI=UAI* 75 2;:4= l{_I u’h -

A face of A(T), T €9, having a feasible solution such that u* =0 for all A, is
called a stopping face. Observe that a stopping face is either a (+ — 1)-dimensional
facet of a simplex of 4(T) or it is completely labelled 7-simplex of A (T).

In the following theorem let o(w’, ..., w’) be a simplex of A(T) such that either o
1s a (completely labelled) stopping face with solution A*, i =0, ..., or o has for
some 5,0 < s < ¢, a facet fr(w W ‘,w”', ..., w") which is a stopping face
with solution A*, i=0,...,s — 1 el , 1. In the latter case we define A* = 0.

THEOREM 6.2.  Let ||x — X|| < & imply || y(x) — y(X)|| < € and let the grid be so fine

that ||x — X|| < 6 if x and X are points in the same simplex of the triangulation of S.
Then || y(w*) — w*|| < €, where w* =" _ A*w'

ProOF. Since for all A, pf = 0 we can rewrite the set of linear equations as

2. A= 1)
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Hence w* = S\ _ A*w' ="' _A*y(w'). Moreover X;_oA* = 1. Therefore

7w = Wl = I 2 Aty (w*) = 3 Ay (w)]

4 [
% 2 MDA = v ik

The theorem means that w* is a good approximation of a fixed point of y.

We now give a short description of how to apply the algorithm, described in the
previous section, for veetor labelling.

Starting in a point v°, with grid size vector d, the algorithm computes [(v”) and
makes a pivot step with /(v") in the set Iu = e, where I is the M-identity matrix. If the
(i, h)th unit column is eliminated, the point v’ = ' + Dq(i, h) 1s calculated, its vector
label /(v') is computed and a pivot step is made in the new system of equations. If the
vector /(v?) is eliminated, v° is replaced according to Table 5.1. and a pivot step is
made with the label of a new vertex etc. As soon as a unit vector is eliminated again,
say e(j,k), (j,k)# (i,h), a completely labelled simplex of A({(i,/)}) 1s found and,
analogously to the case of integer labelling, the algorithm proceeds with a one higher
dimensional simplex of 4 ({(i,h)} U {(j,k)}) by adding Dq(j, k) to the last vertex of
the current face. The algorithm continues with alternating pivot and replacement steps.
In general, if a unit column is eliminated, i.e., a completely labelled simplex is found,
the dimension is increased in the same way. If, however, in a replacement step a
component of R, say the hth, becomes negative the replacement step is not performed,
the last vertex w’ of the current simplex a(w’, . .., w') is deleted while a pivot step is
made with the Ath unit vector since w' = w'~' + Dg(h). The algorithm terminates if a
stopping face is found. Since the set of all feasible solutions is bounded (see Lemma
6.1), the pivot steps can be always carried out and they are also unique assuming
nondegeneracy. To resolve degeneracy, e.g., by lexicographic rules, we refer to Eaves
(1] or Todd [15]. In the following we will assume that degeneracy does not occur. Of
course if a stopping face is found, the solution is degenerated, but then a good
approximation is found (see Theorem 6.2.).

Again, see [6] and also [7], the start and all replacement steps are unique whereas the
extension to a higher dimensional simplex is always feasible and unique. So, if the
replacement steps are also feasible, the algorithm generates a path of adjacent
simplices of variable dimension such that the common facets of two adjacent simplices
of A(T) have a feasible solution.

As argued in §5, an infeasible replacement step would occur if in a certain face
(W, ..., w"), for some (j,k), the (k+ 3/_{m)th component of w’, for some
5. 0's s t s d; and 1f the same component 1S zero for the other vertices, while w* has
to be replaced However if the starting point v° is not on the ( j, k)th boundary face of
S, we have the following lemma.

LEMMA 6.3. If the set of linear equations

{ M—1

20 N(wh) + hz wee(m,) = e
= =1
B

has a feasible solution, then WL i s W e L i a stopping face.

ProOOF. If a set of linear equations has a nonnegative solution A* and p,f, then from
Lemma 6.1.

[ M=l
M.ZO A¥+ hz_:l wF= M

I5%S
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which implies that either >,  A*=1 or 3, A* < 1. In the first case =0, h
=1,..., M — 1 1implying that 7 is a stopping face. In the latter case. observe that
(j.k) € T, since v” is not on the (j, k)th boundary face. Hence 7, # (/. k) for all 4 and
the (kK + 3/_ m,)th component of the set of linear equations is

A (W = i)+ 1) = 1.
yl(w')

B 3Ky

{

Since w// = 0, for i # s it follows that 3, A* > 1 which contradicts SA* < 1.

The lemma means that if the system has a solution, the algorithm terminates with
he stopping face 7(w" ..., w* "Wt . W), yielding an approximation of a
1xed point on the (/,k)th boundary face of S. Otherwise there is no feasible solution.
excluding that " has to be replaced. If v” is on the (j, k)th boundary face, w* can also
not be replaced, using the same argument as in the previous section, combined with
Lemma 6.3.

By the unicity of the pivot and the replacement steps it cannot happen that the
algorithm generates a simplex visited already before. Therefore we can conclude that a
stopping face must be always found, since all replacement steps are feasible and the
number of faces of the triangulation of S is finite.

Finally we have the following lemma.

LEMMA 6.4. For some j, let o(w", ..., w') be a completely labelled simplex such that
Jor R =100 M= R ) e 10 m,. Then o is a stopping face.

PROOF. Since, for all h, =, # (j,k) for all k, we obtain by summing up the
equations over the m;, components ( j, k)

[ ’?if

2 N2 (W =—yl(w)+1)= ki

Since >0_ wl =3%_ y/(w)=1 for i=0,...,t, we have that >icoA¥ =1 and
hence, from Lemma 6.1., we get p* = 0 for all A.

Analogously to the case of integer labelling, we call such a face a j-stopping face. In
general, the algorithm will terminate with such a face.

7. The application of the algorithm to noncooperative n person games. The nonco-
operative n person game can be characterized by n players, indexed OV, 7= Lo o,
and by m, pure strategies for player j, indexed by k =1, . . ., m,, for all j. Denote by
the strategy vector i= (i), ..., i, E [ = Ly, X+ o X 1, that player j. uses his ith
pure strategy, where 7, = {1, ..., m}. Let a/(i) be the loss to player j if strategy i is
played. Without loss of generality we can assume that all losses are positive. Further
we assume that m, < oo, all j. For j=1,...,n let §” denote the set of mixed
strategies of player j, i.e., x/ € §” is the vector of probabilities that the jth player uses
his strategies. Then S = []"_, S"” is the product space of the mixed strategies of the
players.

[f x =(x',...,x")is an element of S. then the expected loss to player j is given by

i €1 k=1

T'he marginal loss to player j, when he plays his Ath pure strategy, is defined by

where the sum is taken over all i € I with i, = A.
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DEFINITION 7.1. An equilibrium point 1s a vector x* € § such that

mh(x*) p(x) h=l,...,mj;j=1,...,n

To prove there exists always an equilibrium point we define a continuous function y
from S to itself such that a fixed point of y 1s an equ111br1um To construct y, denote

max( p/(x) — m/(x),0) by bf(x) for h = 1, ,ma j=1, , n; and define y;(x) by
4 h h ]? j Vh
. x;{+ b;f(_x)
yijl(x)_ ] b h=11'*'1mj;j=1, ,n
1'% 2ibe ()

Then y(x) = (y'(x), ..., y"(x)) where Y (x) = (y] (%), . =%, ynllf(x)).

Using Brouwer’s fixed point theorem. Owen [11] proved that there exists a fixed
point of y and that this point must be an equilibrium point. So, with the algorithm
described in the previous section, an equilibrium point can be computed. However, we
will apply the algorithm with a labelling rule, based on the following complementarity
conditions, which are equivalent with the equilibrium condition (cf. [3]),

x,ﬁ[m;{(x) e uf'(x)] =0 where v/(x) = min, m/ (x),

m),-
x; >0 and le,{=l fork=l,...,,mjandj=1,...,n.

Therefore we define /(x) = (j, k) if (j,k) is the lexicographic least index with x/ < 0
and m/(x) — v/(x) > m/(x) — v'(x) for all i and A in case of integer labelling and
I(x) € R™ with

l;,f(x) = m,{(x) — vf(x) + 1 if x,{ > 0,
= | if x£=0,

in case of vector labelling.
Clearly, a j-stopping face yields a good approximation for an equilibrium point.

8. Computational experiences and conclusions. We applied the algorithm for two
noncooperative three-person games each person having three strategies. For the first
game the data of game 2 of Garcia, Lemke and Liithi [3] were used. The data of the
second example are given in Table 8.2. Instead of the standard triangulation of §™ we
used a triangulation of 7", the affine hull of S, as proposed in van der Laan and
Talman [8]. This triangulation is induced by the m; X m; matrix Q;, with diagonal
elements 1 — m; and off-diagonal elements 1. A point out51de S recewed the label of 1ts
projection (per player) on the boundary of S. For both examples, the algorithm was
started with grid sizes @; = 3! for j = 1,2,3. The factor of incrementation was set equal
to two and the algorlthm was termmated with d; equal to 384. This is equal to a grid
size of 665 in the algorithm of Garcia, Lemke and Lithi [3]. In the first stage the
starting point was chosen as (1/3, ..., 1/3) for both games. If the algorithm termi-
nated with a stopping face 1(w", . . ., w‘), the new starting point in the next stage was

chosen to be

and

0= > A*w'/ >, AF for vector labelling

'In the first example d, = 6 for the case with vector labelling.
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TABLE 8.1

Game 1. The approximate fixed point was

x* = (0.3904, 0.2959, 0.3138; 0.3889, 0.2970, 0.3141:
0.9690, 0.0310, 0) in case of integer labelling; and
x*=(1,0,0;0, 1,05 0, 1,0) in case of vector labelling

Integer labelling Vector labelling
Gridsize [terations Accuracy [terations Accuracy
6 68 0.25 43 0.18
24 191 0.075 150 0
96 275 0.012 - -
384 322 0.003 - -
TABLE 8.2

The number in the (j, k)th row and the ( I, s Ix, ) th column is the loss of player J if j uses his kth pure
strategy and if for h = 1,2, player k), uses his i, th pure strategy, with k,, k, + j and k, < k,

(1, 1) (152 (1,3) (2;1) (2,2) (2,3) 3, 1) 3, 2) (3. 3)

(1, 1) 2 3 4 2 3 3 4 I 5
(1,2) | l 4 3 4 | 6 8 2
(1.:3) 4 7 2 4 5 5 3 6 4
(2, 1) 5 6 7 4 8 9 3 5 I
(2.2) | I 3 3 2 | 2 2 4
(2,3) ) 3 6 5 3 6 7 5 8
(3.1 ] 3 5 ] 6 2 | 2 4
(3,2) 2 6 5 3 3 7 8 5 5
(3, 3) 5 2 2 4 6 5 8 | 3
TABLE 8.3
Game 2.

x* = (0.4286, 0.5714, 0; 0, 1, 0; 0, 0.6650, 0.3350),
in case of integer labelling; and
x* = (0.4284, 0.5716, 0; 0, 1, 0; 0, 0.6667, 0.3333),
in case of vector labelling

Integer labelling Vector labelling
Gridsize [terations Accuracy [terations Accuracy
6 27 0.2 40 0.06
24 53 0.07 55 0.005
96 84 0.02 71 0.001
384 113 0.004 87 0.0005

where W' is the projection of w' on the boundary of S, if w' is not in S. Note that
> A* converges to one if the aﬁ.’s go to infinity. The results are shown in Tables 8.1 and

8.3. (The tables show the accumulated number of iterations.) The accuracy 1s defined
by maxj.1,\,x§f+(m,{(x*) — v/(x*)), where x* is the approximate fixed point.

In comparison with the algorithm of Garcia, Lemke and Liithi [3], the algorithm
proposed here takes significantly fewer iterations: to achieve a higher accuracy the
algorithm proposed in [3] must be restarted in a corner of the M — 1 dimensional unit
simplex with a larger grid size, whereas our algorithm can restart in the last found
approximation. Moreover in [3] two different points of S™ can represent the same

strategy vector. In the product space S, however, a strategy corresponds to just one
point in § and reversely.
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By applying other restart algorithms ([16], [6], [10], [15]) or homotopy algorithms
([11,[2]) the number of labels is equal to the number of variables, which implies that
they must always operate in S*.

Concerning the labelling rule it seemed to us that labelling on y(x), the function
defined in §7, does not work very well. More research to find better labelling rules
needs to be done.
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