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On the Computation of

Modified Bessel Function Ratios*

By Walter Gautschi and Josef Slavik

Abstract.   A detailed comparison is made between a continued fraction of Gauss, and one

of Perron, for the evaluation of ratios of modified Bessel functions Iv(x)/lv_x(x), x > 0,

v > 0.   It will be shown that Perron's continued fraction has remarkable advantages over

Gauss' continued fraction, particularly when x » v.

1. Introduction.   Bessel functions are usually computed by a combination of

several methods, including Taylor's series, recurrence relations, and asymptotic expan-

sions.   D. E. Amos et al. [1], [2] present a careful discussion of these various alter-

natives and implement them in the form of CDC 6600 computer subroutines.  One

of the building blocks of these subroutines is Miller's backward recurrence algorithm,

which is used in combination with Taylor's series or asymptotic approximations to

determine starting values for generating sequences of Bessel functions by downward

recursion.   As is well known [3], Miller's algorithm is equivalent to evaluating the

continued fraction associated with the three-term recurrence relation for Bessel func-

tions—a special case of Gauss' continued fraction.  The purpose of this note is to

draw attention to an alternative continued fraction, due to Perron, which can be used

to compute ratios of modified Bessel functions, Iv(x)/Iv_x(x), x > 0, v > 0.  Detailed

comparisons with Gauss' continued fraction will show that Perron's continued frac-

tion is substantially superior when x » v, and only moderately inferior otherwise.

The advantage of Perron's continued fraction, unfortunately, is limited to modified

Bessel functions of a real argument, for reasons indicated in [4].

2. The Continued Fractions of Gauss and Perron. From Gauss' continued frac-

tion for ratios of hypergeometric functions (or, alternatively, from the recurrence re-

lation satisfied by Bessel functions), one obtains the following continued fraction for

ratios of modified Bessel functions [6, p. 349],
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where

(2.1')
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flo(*)= —

ak(x) ■■
V

(v + k-l)(v + k) '
k=l,2,3,...

We shall refer to (2.2), (2.1') briefly as the Gauss continued fraction.   A less known

continued fraction derives from Perron's continued fraction for ratios of confluent

hypergeometric functions [5, p. 278],

(2.3)
Iv(x)

2*H)  ^K)  ^K)
Iv_x(x)     2v+x- 2i^+l +2x-   2i< + 2+2x-   2i> + 3 + 2x-

or, equivalently, (2.2) with

a0(x) =
x + 2v

(2.3')

ax(x) = --x

ak(x) = --x

r + 5

(P + i)(V + x + l)'

v + k--
2

(V+X+Lr) (v+x+ï)'

k - 2, 3, 4,..

2   /   \ 2,

We refer to (2.2), (2.3') briefly as the Perron continued fraction.   The continued frac-

tion in (2.2) can be written as an infinite series [6, p. 17ff.],

(2.4)

where

(2.5)

and

(2.6)

1        ai       a2

1  +    1  +    1 + ¿2 pk,
k=0

Po = 1,

P0 = °. Pk

Pk = PlP2  ■ ■ ■ Pk'

~ak(l  +Pfc-l)

= I + ak(l + pk_x)'

1   2 3

1   2 3

the 77th partial sum of the series on the right of (2.4) being equal to the «th conver-

gent of the continued fraction on the left, for 77 = 1, 2, 3, ... .

In studying the convergence behavior of (2.4), it is convenient to introduce

(2.7) ok = 1 + pk,

and to rewrite (2.6) as

¿fc = 0, 1,2,
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(2.8) °o " *> Ou  =

1 + ak°k-i
k =1,2,3,.

Each afe can be represented by a finite continued fraction,

(2.9)
1 1 at   ak-l

1 +a, 1 +  1 +   1 + 1 +a,
* - 2, 3, 4,..

While both continued fractions (2.1) and (2.3) converge for all x > 0, v > 0,

their precise convergence behavior is difficult to analyze.  Qualitatively, however, we

can make the following observations.  Using superscripts G and P to distinguish be-

tween the Gauss and Perron continued fraction, one easily deduces from (2.7), (2.8),

(2.1) and (2.3) that

(2.10)

and

(2.11)

- 1< p£ < 0     (k>l),

0<ppk<l     (k>l),

P°k~
4k2

(as k •* °°),

p     2x
Pk~J (as k -*■ oo).

Since the quantities \pk\, according to (2.4) and (2.5), can be thought of as "instan-

taneous (geometric) convergence rates", we see from (2.10) that the Gauss continued

fraction, at each instant (i.e., for each k), behaves like an alternating geometric series

with ratio \pk\ < 1, and ultimately converges superlinearly.  A similar behavior is

exhibited by the Perron continued fraction, whose terms pk axe positive and mono-

tonically decreasing, at instantaneous rates pk < 1.  There is an important difference,

however, in the asymptotic rate of convergence, inasmuch as pk = 0(k~2) and pk =

0(k~l).  Asymptotically, the Gauss continued fraction thus converges twice as fast

as Perron's.  Unless high accuracies are being considered, however, it is the initial

convergence behavior (not the asymptotic one) that matters, and in this regard the

Perron continued fraction has some remarkable advantages, particularly if x » v.

This will be discussed empirically in Section 3, and analytically for large v » k in

Section 4.

3.   An Empirical Comparison Between Gauss' and Perron's Continued Fraction.

For initial orientation, we set up the lattice x, v = 1(1)100 in the (x, i)-plane, and

at each point of the lattice determine the number of terms required in (2.4) to ob-

tain a relative accuracy of e = &10-d. More specifically, for each of the two con-

tinued fractions we determine the smallest integer k such that**

(3.1) \Pk\<e

k

ZPr
r=0

where e = - 10 d.
2

** In a computer algorithm one might replace (3.1) by the simpler stopping criterion

IprJ < e(l + px), which has the advantage of allowing the right-hand bound to be computed before

the start of the iteration (2.5), (2.6), thus saving one multiplication in each iteration step.   By

(2.10) and (2.11) we have 0 < 1 + px < Zr—0pr, so that the simplified criterion is in fact more

stringent.
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868 WALTER GAUTSCHI AND JOSEF SLAVIK

If we denote the respective integers by kf and k^, we can ask for the set of lattice

points in which kf < k^.  It turns out that these points lie on or above a line that

has roughly slope 1 and is somewhat shifted to the right of the line v = x.   Examples

of such lines are shown in Figure 3.1 for d = 4(4)28.***   The gradual shift of these

lines to the right, as d increases, clearly expresses the superiority of Gauss' continued

fraction for high accuracies, which is a result of its larger asymptotic rate of conver-

gence (cf. Section 2).

Va

Figure 3.1. Lattice lines on and above of which k^ < fcf

If the better of the two continued fractions is used, the maximum number of

iterations on the grid, itmax = maxgrjd min(k^, kf), is fairly small and increasing

approximately linearly with d; see Table 3.1.

8 12 16 20 24 28

8 15 22 29 36 43 51

Table 3.1. Maximum number of iterations

An indication of the relative merits of the two continued fractions can be had

from Table 3.2, which shows k^ and k^ (under columns headed by "G" and "P",

respectively) in the case d = 8 for selected values of x and v.  The striking superiority

of the Perron continued fraction, when x » v, is particularly worth noting.  Although

*** All computations were performed in single precision on the UNIVAC 1110 computer

at the University of Wisconsin in Madison.
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the balance tips in favor of Gauss' continued fraction, when x « v, the advantage is

less significant there, since both continued fractions converge quite fast.
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Table 3.2. Number of iterations kf and Jc^ for d = 8

It should be observed, at this point, that the number of iterations in (2.5), (2.6)

is not an entirely accurate measure of comparison between the two continued frac-

tions, inasmuch as each iteration for pk requires slightly fewer arithmetic operations

than each iteration for pk.   For Gauss' continued fraction, we have indeed

V4X2(l+pG_i)

(3.2)     p£=0, pGk
(v + k-l)(v + k) + %x2(l + p^_x)

while for Perron's continued fraction we have

Vafy + V¿)

k= 1,2, 3, . . . ,

p-0,

(3.3)

Po

]PPk =

H)(*+*4H4+2-)'
Vix(v + k-^)(l +Pfc_i)

C + x + k-^)(u + x + ¡)-\x(u + k-\)(l+pU)

k = 2,3, 4,
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870 WALTER GAUTSCHI AND JOSEF SLAVIK

The quantities uk = (v + k - l)(v + k) in (3.2) can be generated without multiplica-

tions as follows.   Let vk = 2(v + k); then u0 = v(v - 1), v0 = 2v, and uk = uk_x +

vk_x, vk = vk_x + 2. (This is a refinement of a useful device employed by D. E.

Amos et al. in [1, p. 84].)  The iteration in (3.2) can thus be implemented in the

form

Po = 0>

(3.2)

u0 = v(v-l),     v0 = 2v,

Uk = «fc-l + w*-i

h-t + 2

'»"»OÍ1 +Pk-l)

Pk = - h^uk + '*)

k =1,2,3,...     (xG = %x2),

which requires four additions, one multiplication, and one division per iteration step.

Similarly, we may implement (3.3) in the form

Po = 0>

v0 = v + xp,

vx=v + x + ¥i,     ux = (v + x)vx,     wx = xp(v + VA),

P. = wx/(v0vx -wx),

(3.3) uk = "fc-i + vk-i

vk = vk-i + %

wk = wk_x + Xp    \ ,       k = 2,3,4, .. .     (xp = Vix),

h =wfc(! +Pfc-i)l

Pk - VK " h)

which requires five additions, one multiplication, and one division per iteration step.

Thus, (3.3) involves one more addition than (3.2').

To complete a cycle in (2.4)—(2.6), one needs to compute

(3-4) Pk = PkPk-i -        sk = sk-i + Pk>

where sk = 2jL0pr, having initially set p0 = sQ = 1.  A complete cycle for the

Gauss continued fraction thus costs five additions, two multiplications, and one

division.   For Perron's continued fraction, the count is the same, except for one

more addition.

We take note of this slight disparity in work by replacing the lines in Figure 3.1

by straight lines of slope 1 passing through the points of intersection with the x-axis.

In this way, Gauss' continued fraction is given a slightly more favorable treatment
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MODIFIED BESSEL FUNCTION RATIOS 871

near the line of separation.   From the data in Figure 3.1 one finds for the equation

of these straight lines, empirically,

(3.5) v = v*(x),       v*(x) = x-l-l.2Sd.

We propose, therefore, to use Gauss' continued fraction whenever v > v*(x), and

Perron's continued fraction otherwise.

Our confidence in this criterion is strengthened by testing the separation line

(3.5) for other (in particular, larger) values of x, and for v not necessarily integer-

valued.  Given e = &10-d, we indeed compare kf with kP for selected values of x

and for v in a small interval about v = v*(x).  A typical result is shown in Table 3.3

for d = 12, where Vj = (1 + //30)i>*(x), / = - 3, - 2, . . . , 2, 3, and x = 50, 100,

200, . . . , 6400.   Similar, equally satisfying, results are obtained for other values of

d.

x=50 x=100 x=200 x=400 x=800 x=1600 x=3200 x=6400

G   P G  P G   P

-3

-2

20 18

20 18

19 18

19 18

19 18

18 18

18 18

19 17

19 17

18 17

18 17

17 17

17 17

17 17

19 17

18 17

18 17

17 17

17 17

16 17

16 17

18 17

18 17

17 17

17 17

17 17

16 17

16 17

18 17

18 17

17 17

17 17

16 17

16 17

16 17

18 17

18 17

17 17

17 17

16 17

16 17

16 17

18 17

18 17

17 17

17 17

16 17

16 17

16 17

18 17

18 17

17 17

17 17

16 17

16 17

16 17

Table 3.3.  Comparison ofkf and k^ for d = 12 near line of separation

With regard to computational work, it might seem more advantageous to use

the simpler continued fractions in (2.1) and (2.3), and evaluate successive conver-

gents "from tail to head". Thus, e.g., in case of the Gauss continued fraction,

(3.6)

An) o, Á») = k = 71 - 1, 77 - 2, . . . , 0,

¿-iv + k) + rkn¡x

where r^n) is the 77th convergent of (2.1).  Substituting again an addition for the

multiplication in the denominator of (3.6), each iteration step (except for the first)

requires two additions and one division.  We must bear in mind, however, that the

recursion (3.6) will have to be repeated at least once, possibly several times, with n

increased, in order to verify the accuracy attained.  The amount of work then in-

creases by a factor of two or more, making (3.6) about as expensive, if not more so,

than (3.2), (3.4).  The only situation in which (3.6) might be preferable is when

sharp and reliable estimates of n are available for any given accuracy requirement,

allowing one to take a single pass through the recursion (3.6).  Similar remarks apply

to Perron's continued fraction.
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The convergence character of both continued fractions is further revealed by ex-

amining the graphs of lp^ I and \pp I as functions of k, for various values of x and v.

Increasing v does not seem to alter much the character of these graphs, except for

scaling them down in size.  We therefore limit ourselves in displaying as typical the

graphs for v = 1.  Those in Figure 3.2 are for the Gauss continued fraction, those in

Figure 3.3 for Perron's continued fraction.   It is seen, characteristically, that

convergence of the Gauss continued fraction is hesitant, initially, and relatively slow,

but eventually picks up speed and turns into rapid convergence.  Perron's continued

fraction, in contrast, starts out converging relatively fast, then slows down temporarily,

before gradually regaining speed.

200    K

Figure 3.2.   \p?\for k = 1(1)200 and v = 1, x = 1, 25, 50, 100

0      20     40      60      80      100     120     140     160     180    200  K

Figure 3.3.   \ppk I for k = 1 (1)200 and v = 1, x = 1, 25, 50, 100

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



MODIFIED BESSEL FUNCTION RATIOS 873

4.  Initial Convergence Behavior of Gauss' and Perron's Continued Fraction for

Large v.  The case of large v is of some interest in connection with the computation of

starting values for subsequent generation of sequences of Bessel functions by down-

ward recursion (cf. [1]).  In this case, the initial convergence behavior of our contin-

ued fractions can be studied analytically, if certain simplifying approximations are

made.

4.1. The Gauss Continued Fraction.   If v is large, and k « v, the numerators

ak in (2.2) are approximately constant,

(4.1) "k^a'        a = %t2,       *-1,2,3,...,

where, throughout this section,

(4.2) t = x/v.

With this approximation, it then follows from (2.9) that

2      l-pk+1
ok= —-=-,       k>0,

1   + S    j _    fc + 2

where

(4.3) s = VI +4a ,       p = (1 - s)/(l + s).

Clearly, - 1 < p < 0, and therefore 0 < ak < 1.  Moreover,

1 ~Pk

(4.4) |p |=i-CT   = |p|-y—,       k = 0,1,2,....
l-pfc+2

An elementary computation will show lpk+11 < lpfcl and \pk+2 I < \pk\, if k is odd,

and the reverse inequalities, if k is even.  The graph of lpfcl on k = 1, 2, 3, . . . there-

fore zig-zags towards a stationary level at Ip I, whereby

(4.5) lp,l>lpfcl     forallÄ;>2.

(It should be noted that (4.4) does not represent correctly the behavior of lp^ I as

k •* °°; cf. (2.10).  This is because we assume here k « v, where v is large, but

fixed.)

4.2. 77ir? Perron Continued Fraction.   The approximations analogous to (4.1)

are now

A_V*
°l ~   (l+HOO+O'

(4.6)

ak= a,        a =-,        k = 2,3,4, ... ,
(1 + t)2

where t again is given by (4.2).  The continued fraction (2.9) then evaluates to

a, =-  - ,       k> 1,
k      1 + s 2a,

l~pk+l+—~(1-Pk)
1 + s
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where s and p axe as before in (4.3).  Since -1/8 < a < 0, we now have 0 < p <

(V2- 1)/(V2 + 1) = .17157_Noting that 1 - pk+l + (2a,/(l + s)) (1 - pk) >

(1 - p*)(l + 2a,/(l +s))>0 for k > 0, we conclude ak > 0 for all k > 1, and,

after a little computation, that ak is strictly decreasing.  Therefore,

1 <
1 +s

<ov<
1 +a,

1 + v/2
<—-*— = 1.2071.

and it follows that

(4.7)   pk = ok-l

1-p*-1 +
1 +s

(1-Pfc-2)

1-P k+l
2^i

1 +s

* = 1,2, 3,.

(1-Pk)

Since ok decreases, we have

0<Pk+i <Pk    {ork = !> 2, 3,

from which again follows the validity of (4.5).

0 \.o     ^/f 2Û 30 4Û 5p

Figure 4.1.   Ip^ I and \pp I as functions of t = x/v

4.3.  Choosing Between Gauss' and Perron's Continued Fraction.   Inequality (4.5)

suggests to give preference to Gauss' continued fraction whenever

(4.8)

In view of

lpfl =

IpfKlpfl.

\pp\ x
t = -,

V4 + t2 2 + 2t + t2

we have (4.8) if and only if t3 + t2 + 2t - 4 = (t - l)(t2 + 2t + 4) < 0, i.e., if

and only if

(4.9) f<l,     i.e. v>x.
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With this choice we find that (cf. Figure 4.1)

(4.10) lpfcl< lp,l<%(\/2- 1) = .2071. . . ,     all it > 2,

for both Gauss' and Perron's continued fraction (when selected according as (4.9) does

or does not hold).   Our choice, therefore, guarantees an initial rate of convergence of

at least about .2.

The criterion (4.9), having been derived by minimizing the "initial rate of conver-

gence", naturally cannot be expected to optimize with regard to overall computational

effort.  Nevertheless, it is seen that (4.9) is in essential agreement with the empirical

criterion v > v*(x) of (3.5), which indeed takes into account the overall computational

work involved.
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