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Abstract

Most large engineering structures are described as assemblies of plates and shells and

they are computed as such using adhoc Finite Element packages. In fact their

computation in 3D would be much too costly. In this framework, the connections

between the parts are often modeled by means of simplified tying models. In order to

improve the reliability of such simulations, we propose to apply a non-intrusive

technique so as to virtually substitute the simplified connectors by a precise 3D

nonlinear model, without modifying the global plate model. Moreover each

computation can be conducted on independent optimized software. After a

description of the method, examples are used to analyze its performance, and to draw

some conclusions on the validity and limitation of both the modeling of junction by

rigid connectors and the use of submodeling techniques for the estimation of the

carrying capacity of bolted plates.
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Background

The simulation of large structures undergoing complex local nonlinear phenomena is still

a major scientific and industrial challenge. One of themain difficulties originates from the

difference of length scale between the global response of the structure and the localized

phenomena. To address those problems a first type of computational approach is based

on homogenization, as FE2 [1] but it works well as long as the scales are sufficiently sepa-

rated. To overcome this limitation concurrent multiscale methods have been developed.

They are often based on domain decomposition techniques like FETI [2], FETI-DP [3] or

the LATIN multiscale method [4,5] and its optimization for the multiscale treatment of

nonlinear problems [6,7].

Moreover most of large industrial structures are described as an assembly of plates and

shells, whereas local phenomena often require 3Dmodels to be properly analyzed. To deal

with such problems, several methods have been applied or developed for the coupling of

2D and 3D models, like the Arlequin method [8,9], transition elements [10,11], MPCs

approaches [12,13] or Nitsche’s method [14].

Most of these methods are quite demanding in terms of software development and

therefore they are seldomused in industrial packages. To overcome these drawbacks, non-
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intrusive approaches have recently been proposed [15]. They are nowadays the subject

of extensions and developments: thermoelasticity with GFEM/FEM coupling [16], crack

propagation in XFEM/FEM coupling [17], stochastic simulations [18] and dynamics [19,

20].

In [21] a non-intrusive coupling between plate and 3Dmodels was proposed in the case

of linear behaviors. The present paper concerns the extension of this approach to the

simulation of bolted assemblies of plates where bolts are described with full 3D nonlinear

models. Such structures are good candidates for the iterative global-local non-intrusive

strategy for two main reasons. First, the detailed computation of a tightened bolt with

frictional contact on all surfaces is a very hard and time-consuming task to perform

using commercial software. Second, the construction of the referencemodel, whichwould

correspond to the assembly of a plate model and a 3D model for the bolt, would be very

complex. The non-intrusive framework provides answers to both these problems. First,

it allows the use of dedicated software for the local computations (in our case, COFAST

a parallel software based on the LATIN domain decomposition method [22]). Second,

it allows the easy coupling of a general Finite Element software (here Code_Aster from

EDF) for the plate computation, with COFAST, because the global model is unchanged

during the iterative process. These properties were exploited in [23] for the simulation of

damage in composite laminates at the meso and the micro scales using dedicated pieces

of software.

The non-intrusive framework aims at solving the reference problem iteratively, by solv-

ing at each iteration both the global problem with prescribed residual traction at the

interface and the local nonlinear problems submitted to prescribed displacement. Several

techniques have been proposed to improve the convergence rate of the method by means

of acceleration techniques [15,17,24] or improved interface conditions [25]. The method

has therefore common points with so called nonlinear domain decomposition methods

(or nonlinear relocalization techniques) [26,27] which proved their efficiency and gain in

robustness in the case of buckling [28], post-buckling [29] and damage analysis [30,31].

Other proposals have been made to take into account the fact that the phenomena of

interest are localized, aiming at a better representation of the target model [16,32,33].

The paper is organized as follows. In “The reference problem” section, a summary of

the reference problem corresponding to the coupling of 2D and 3D models according to

[21] is presented. The non-intrusive algorithm is presented in “The non-intrusive iterative

algorithm” section. In “Analysis of the iterative corrections at the global and local levels”

section, the results of the iterative coupling are analyzed in the case of a bolted joint. These

results are compared to those corresponding to the plate solution and to the submodeling

technique. In “Control of some parameters of the method and acceleration technique”

section, the influence of some parameters is assessed regarding the rate of convergence of

the iterative process and regarding the accuracy of the coupled model compared to a full

3D solution.

The reference problem

We consider the typical problem of two plates connected by a bolt. Starting from a sim-

plified model of the assembly using plates elements and a simple connector (typically a

beam), our aim is to perform the non-intrusive substitution of the connector by a full 3D

model of the bolt. A sketch of the two models is presented in Fig. 1. In what follows lower
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Fig. 1 Left, global model: two plates assembled by one 1D connector. Right, local model: full representation

of the bolt with surrounding plates

case Greek characters are used to describe the geometry of the plates whereas capital

Greek characters are used for the geometry of the 3D domains: any 3D domain �X pos-

sesses a plate counterpart ωX , so does any interface ŴY whose plate counterpart is written

γY .

The target hybrid model, which will be precisely defined in this section, corresponds to

platemodels connected by a full 3Dmodel of the bolt. At the convergence of the iterations,

the solution of the hybrid model is obtained, as illustrated in Fig. 2. Let us note that since

the problem is symmetric [in the (ex, ez) plane] only half of the bolt is computed and

shown on the figure.

The plate model

The global plate model is the assembly of two plates, ωinf and ωsup respectively the lower

plate and the top plate, and a rigid connector between them ωconn Fig. 1 (left). The plates

are 20mm thick and 280 mm long. The lower plate is 160mm wide whereas and the top

plate is 80mm wide. In order to simplify the presentation, the plates are assumed to be

made out of homogeneous isotropic linear elastic material with Young modulus E = 200

GPa and Poisson ratio ν = 0.3; the handling of orthotropic composite plates is explained

in [21].

The lower plateωinf is clamped on the part γ
inf
0 of its boundary and a prescribed tension

displacement (ex direction) is applied on the part γ
sup
L of the top plate’s boundary, Fig. 1:

{
U = 0 on γ

inf
0

U = U ex on γ
sup
L

(1)

Fig. 2 Deformed shape of the targeted coupled problem
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Note that this tension is applied after preload (tightening) was applied to the bolt (see the

description of the patch).

A classical Reissner-Mindlin plate formulation is used, and the contact is not taken into

account at this stage. The kinematic is given by:

U (m, z) = V (m) + w(m)ez − ez ∧ θ = V (m) + w(m)z − z

⎡
⎢⎣

θy(m)

−θx(m)

0

⎤
⎥⎦ (2)

where m ∈ ωinf ∪ ωsup is a point of the mid-surface of the plates and ez the normal

direction (in the thickness). The stress in the plates is described with the eight generalized

forces (N tension,M bending, Q shear):

F =
(
Nxx, Nyy, Nxy,Mxx ,Myy,Mxy, Qx, Qy

)
(3)

Since the connector will ultimately be virtually replaced by the 3D model described

in next subsection, a very crude connector is chosen: a perfectly rigid beam element

surrounded by a rigid region of the size of the bolt (20mm) in order to avoid localization

around one node, see Fig. 3.

Beside its simplicity, this connector has the advantage to be very rigid compared to its

3D counterpart, which is a sufficient condition to ensure the convergence of the coupling

algorithm [15,34].

The 3D patch

The local patch is designed to replace the connector. Thus, a full 3D representation of the

bolt is used with unilateral frictional contact interfaces between each part of the assembly.

The dimensions of the bolt are given in Fig. 4a. The problem being symmetric, only half

of the bolt is computed. The material used for the screw and the nut is linear elastic with

Young’s modulus E = 300 GPa and Poisson’s ratio ν = 0.3. Coulomb’s friction coefficient

is equal to 0.3 on all interfaces.

To solve this model, we use the dedicated contact solver COFAST, developed in the

LMT-Cachan by Champaney [22]. This software uses the LATIN method [35] where

interfaces between subdomains are the support of the contact conditions, see Fig. 4b.

Note that before coupling with the global problem, preload is applied by enforcing

relative displacements between the nut and the screw. It is adjusted to match realistic

values of tension in the screw (200 MPa).

Fig. 3 The definition of the connector
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Fig. 4 3D representation of the bolt. a Dimensions of the bolt. b COFAST modeling

Connections between the models

The plates+ connector model describes the entirety of the structure and occupies the

(2D+ 1D) domain ω. The 3D model of the bolt occupies what we call the zone of interest

�I . In the original method [15], the coarse modeling of ωI = ω ∩ �I was simply replaced

by�I through iterations; in [21], it was shown that because of the edge effects which affect

plate solutions, it is interesting to introduce a zone of transition between the two models.

This idea is sketched in Fig. 5: the 3D model is the only one taken into account in the

inner zone of interest �̃I ⊂⊂ �I , the plate model is the only one taken into account in

the outer complement zone ωC̃ ⊂⊂ ωC , there exists an overlap �I ∩ωC also called buffer

zone where the two models are equivalent in a certain sense.

Two interfaces are defined: γI = ∂�I ∩ ωC and γC = ∂ωC ∩ �I . In order to simplify

the example, regular and ruled quadrilateral meshes are used along the interfaces. Thus,

γI and γC are straight lines between two conforming meshes, see Fig. 6.

The substituted solution is expressed with the following form:

uhyb =

{
uL in �I solves the 3D equations

uG in ωC solves the plate equations
(4)

and it satisfies the following transmission conditions (in a sense which is made more

precise afterwards):
{
uL and uG are continous on ŴI

3D stress and plate generalized forces are balanced on γC
(5)

Fig. 5 The domain decomposition with overlap and the interfaces
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Fig. 6 Definition of the size of the local model and of the buffer zone

To be more specific, let us assume that a finite element discretization is used: uG is the

vector of plate unknowns defined on ω, uL is the vector of 3D unknowns defined on �I ,

fext stands for the generalized forces (they include the effect of imposed displacements),

K for the stiffness matrices, and fint for the internal forces (work of the stress field in the

finite element subspace).

The global plate model is enriched by an extra loading δ which is only non-zero on the

degrees of freedom of the interface γC (the values of δ are determined by the coupling

algorithm). The global plate model equilibrium thus can be written as:

K
G
u
G = f

G
ext + δ (6)

Note that the assumption of a linear global model simplifies the explanation and speeds

up the solving (because the factorization is done only once) but it is not a requirement of

the coupling algorithm.

The local 3D equilibrium submitted to boundary conditions inherited from the plate

computation can be written as:

{
f
L
int (u

L) = −f
L
ext in �I

u
L = Ru

G + w
G(uG) on ŴI

(7)

Matrix R represents the classical 3D rigid section movements. It enables to express the

3D Reissner-Mindlin kinematic from the plate degrees of freedom (uG). Because the rigid

section kinematic is a very coarse hypothesis, we supplement it with warping displace-

ments wG(uG), proportional to the plate stress state. To be more precise, the applied

displacement on ŴI has the following form:

uL(m, z) = u(m) + w(m)ez − ez ∧ θ︸ ︷︷ ︸
RuG

+

8∑

i=1

μI
i
(z)FC̃

i

︸ ︷︷ ︸
wG(uG)
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with (FC̃
i ) the eight generalized forces extracted along the interface γI (3). (μ

I
i
(z)) is the

basis of warping adapted to the stacking and materials which was determined before

the computation by solving preliminary problems [21]. These preliminary problems con-

ductedona3Drepresentative volumeelement of the composite plate enable us to compute

distributions of stress and displacement (warping) associated with any solution of Saint-

Venant problems. In turn, Saint-Venant problems are associatedwith specific components

of the plate generalized stresses.

From the global and local computations, it is possible to post-process the plate and 3D

nodal reactions on the γC/ŴC interface:

λ
C =

(
K
C
|ωC

u
G − f

C
ext|ωC

)
|γC

λ
L = −

(
f
L
int|�̃I

(uL) + f
L
ext|�̃I

)
|ŴC

(8)

Finally the balance of the nodal reactions is enforced on the static plate quantities, thanks

to the transpose operator RT which enables to compute the generalized forces associated

to the 3D nodal reactions λ
L:

λ
C + R

T
λ
L = 0 (9)

In spite of the care taken to recover the 3D boundary conditions on ŴI from plate

quantities, small edge effects may occur, in particular in the case of stratified plates where

suppressing edges effects require high order theories which are not always available in

finite element analysis software or which could difficultly be implement in a non-intrusive

manner. The role of the buffer zone (the overlap between �I and ωC ) is then to dampen

these edge effects and make the evaluation of the 3D stress reliable on ŴC . In the example

below, the size of the buffer zone is set to b = 5mm, which was sufficient to absorb

the local artificial effects. It corresponds to four elements between the two interfaces

ŴC and ŴI . The dimension b is represented on Fig. 6, together with dimension L which

characterizes the size of the 3D domain of interest �I . L corresponds to the size of the

part of the 3D domain which is not strictly necessary to represent the bolt correctly but

which was inserted as a way to keep the 3D/2D transition away from the zone dominated

to by 3D effects.

The non-intrusive iterative algorithm

The system (6, 7, 8, 9) can be interpreted as finding the traction δ to be imposed to the

global plate model on the inner interface γC in order to generate a reaction λC in balance

with the reaction of the inner zone of interest submitted to the recovery of the plate

displacement on its boundary ŴI .

Starting from δ0 = 0, this can be achieved through the following iterations:

(1) Run a global plate analysis with extra load δ:

u
G
n = K

G−1
(
f
G
ext + δ

)

(2) Post-process the reaction on γC :

λ
C
n =

(
K
C
u
G
n|ωC

− f
C
ext

)
|γC

(3) Recover the 3D displacement on ŴI :

u
L
n|ŴI = Ru

G
n|ŴI

+ w
G(uG)n
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(4) Solve the local problem with imposed displacement on ŴI :
{
f
L
int (u

L
n) + f

L
ext = 0

u
L
n|ŴI

given

(5) Post-process the local reaction of ŴC :

λ
L
n = −

(
f
L
int (u

L
n) + f

L
ext

)̃I
|ŴC

(6) Compute the residual on γC :

rn = λ
C
n + R

T
λ
L
n

(7) If residual is small enough then exit, else update the extra load:

δn+1|γC = δn|γC − rn

and go back to 1.

One important point is that the global step 1 and the local step 4 can be processed with

different software. For the test-case developed here, Code_Aster is used for the global

plate problem, and COFAST3D is used for the local 3D contact problem.

In the end the local/global method is a fixed point algorithm similar to a modified

Newton algorithm. The rate of convergence of this algorithm can be quite slow. However

acceleration techniques can be applied:

• quasi-Newton acceleration like SR1 algorithm [25] or BFGS,

• dynamic relaxation like Aitken’s algorithm (
2) [24],

• mixed boundary conditions [25],

• Krylov solvers (only in the linear case) [34].

Based on [34], it appears that, among those methods, SR1 “Quasi-Newton acceleration”

technique leads to better performance while being simple to implement in a non-intrusive

manner.

Note that running one global analysis (step 1) followed by a local reanalysis with given

Dirichlet conditions (steps 3–4) without iterations corresponds to the industrialists’ prac-

tice called submodeling (or sometimes structural zoom). Such an approach is “purely

descending” in the sense that there is no feedback from the local computation towards

the global scale.

Analysis of the iterative corrections at the global and local levels

In order to evaluate the convergence of the algorithm, the relative norm of the residual at

iteration i is defined as:

rreli =
‖λC

i + R
T
λ
L
i ‖2

‖λC
i ‖2

(10)

In this section, the corrections associated with the coupling along the iterations are

analyzed for the fixed-point algorithm (i.e., without acceleration techniques) with con-

vergence threshold set to 10−6 which is clearly enough for mechanical quantities to have

converged.

A typical convergence curve is shown Fig. 7a. This curve shows that the convergence is

more or less independent of the level of nonlinearity in the bolt (weak for the first global
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Fig. 7 Convergence of the fixed-point algorithm: a Relative norm of the residual. b Evolution of one

component of the global and local nodal reactions

time step, strong for the last one). This type of result is typical of nonlinear relocalization

methods [28–31]. Let us note that, as shown in Fig. 7b, four global time steps are used for

the plate computation, which appears to be sufficient, see “Control of some parameters

of the method and acceleration technique” section. Anyhow, sub-stepping is used for the

computation of the bolt; balance between the local and global model is only reached at

the global time steps in Fig. 7b. For more involved problems, a better control of the global

time steps and of the local sub-stepping process could be obtained using error indicators

on the time discretization like in [36].

Remark 1 With the proposed technique, for each global increment the first iteration

corresponds to a classical submodeling approach: this enables us to easily measure the

quality of a that approach,which is a question often raised by engineers. In this application,

the level of the error of the submodeling approach is about 25%.

Global effect of the correction

Effect of the preload of the bolt

The global effect of the tightening of the bolt cannot be predicted using a plate theory

because the associated forces are equal to zero. Nevertheless this tightening has a non-

negligible global effect as can be seen in Fig. 8.

Additional global effects of the bolt on the plate solution

After the preload of the bolt, the plate is loaded in tension, in four global time steps. The

analysis of the number of global increments is presented in “Control of some parameters

of the method and acceleration technique” section. The global solution is modified along

the iterations to match with the 3D model of the bolt, as can be seen on Fig. 9 which

shows the values of the transverse displacement in the mid-section of the plate for the

initial plate solution and the corrected one.

One can notice that the correction increases with the time steps, and it becomes signif-

icant for the third step and very large for the last one. This is of course due to the fact that

for the first two time steps the bolt acts more or less as a 3D rigid connector. Whereas
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Fig. 8 Effect of the tightening (preload): value of theNxx component of the plate stress tensor

Fig. 9 Deformation of the plates, before and after iterations

the sliding of the bolt becomes significant for the third time step. During the last stage of

the loading loosening of the bolt happens, as can be checked from the local analysis of the

solution presented in the next sub-section. Let us recall that the initial plate solution also

corresponds to what would be obtained by a submodeling approach since submodeling

only improves the local reanalyzed area.

Local effect of the correction

In this section the solution within the bolt is compared for three different approaches: a

reference full 3D simulation, a submodeling approach and the mixed 2D–3D model with

L = 0 (minimal size of the local 3D model) obtained at the convergence of the iterations

(convergence threshold is 10−6).

For example Fig. 10 shows the comparison of the σxz stress field between the submod-

eling solution, the hybrid solution and the reference one. It can be seen that the solution

associated with the non-intrusive approach matches very well the 3D reference solution
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Fig. 10 Transverse shear stress disbribution: reference (top), converged 2D–3D solution (middle),

submodeling (bottom)

while the submodeling gives inaccurate results inside the screw where the shear stress is

greatly underestimated.

We now compare global quantities associated to the bolt (like the amount of dissipation

due to sliding or the global axial component of the force acting on the joint) as well as

local quantities (like the pointwise values of the sliding) for the three models. On Fig. 11a,

b, local stress quantities are extracted on a point defined on Fig. 11d. It appears that the

relative residual provides an efficient indicator for the errors on global quantities. Typically

the submodeling leads to 20% of error on the dissipation (see Fig. 11c). Note that the error

committed by submodeling on local quantities can be much larger. In comparison, the

converged 2D–3D solution and the full 3D solution are quite close.

Figure 12 presents the sliding obtained by the converged 2D–3D model; it matches

the 3D reference (few percents of deviation on the maximal sliding). On the contrary,

the submodeling approach underestimates the sliding especially for the third and fourth

global time steps, as can be seen on Fig. 13 where the error on the maximal sliding is more

than 30%.

To conclude, the coupling approach seems reliable contrarily to the submodeling

approach for which the level of error is 20–25% on global quantities and can be much

more for local quantities of interest. The lack of conservatism of the submodeling

extends similar results obtained in previous studies on localized plasticity or buckling for

example.

Control of some parameters of themethod and acceleration technique

As already discussed several parameters can be tuned for the non-intrusive 2D–3D cou-

pling strategy:

• the number of global time steps,

• the choice of the position of the interface in the global model (dimension L in Fig. 6),

• the width of the buffer zone (dimension b in Fig. 6).

The size of the buffer zone has been chosen fromour experience on the 2D–3D coupling

involving composite plates and orthotropic plies [21], in order to minimize the problem
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Fig. 11 Comparison between full 3D, submodeling and 2D–3D approaches. a Response of the bolt on Ŵ
sup
C .

b Nxx vs sliding near the hole. c Dissipation between the plate. d Extraction points

of artificial edge effects between the two models. Besides the parameters of the nonlinear

solver used for the bolt computation have been tuned in order to ensure a high precision

according to dedicated papers like [22].

Influence of the number of global time steps

The number of time steps has been simply chosen on the basis of the comparison of

solutions, starting from one global time step and increasing this number. On Fig. 14, a

comparison between 1, 2 and 4 time steps is shown. The solutions with 2 and 4 time

steps are considered here as quite close, whereas the one using only one time step deviates

largely in themiddle of the load sequence. Let us note that the use of large time steps at the

global level is made possible thanks to the chosen algorithm with nonlinear localization.

Indeed the possibility to use sub-stepping at the local scale greatly reduces the potential

difficulties of convergence.

Influence of the position of the interface between the 2D and the 3Dmodels

The question of the position of the interface raises in fact the question of the validity

of the plate theory with respect to the 3D theory and has been largely discussed in [21].
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Fig. 12 Sliding at each global time step of the converged solution (mm). a Step 1; b Step 2; c Step 3; d Step 4

Fig. 13 Maps of the difference of sliding between converged and submodeling solutions at each global

time step (mm). a Step 1; b Step 2; c Step 3; d Step 4

From what is known on the validity of the plate and shell theories, in the case of isotropic

materials, one expects the 2D–3Dmodel to be a good approximation of the 3D reference,

for an interface situated from the bolt at a distance superior to the thickness of the plate.
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Fig. 14 Comparison of solutions for different number of global time steps. a Observation of the bolt

response on Ŵ
sup
C . b Nxx vs sliding near the screw

It is therefore interesting to analyze the influence of the position of the interface and to

compare the cases of L = 0mm and L = 15mm (see Fig. 6).

From a global point of view, the final deformed shapes of the corrected solutions in

Fig. 15c are very close in the common plate domain. They only slightly differ in the local

area of interest which are different for the two models.

From a local point of view, on Fig. 15b, both cases give close results. This is confirmed

when analyzing the difference of the shear stress within the bolt 
σxz = σ conv
xz − σ 0

xz , as

shown in the Fig. 16. As already analyzed, if for the first two steps, most of the differences

are localized around the nut, during the sliding phase the correction mostly concerns the

nut itself. Figure 17 shows the evolution of the local tangential jump with respect to the

prescribed displacement. This is an interesting quantity in order to observe the initiation

of the sliding. The 2D–3D models give close predictions for both values of L. They are

much more closer to the reference than what is predicted by the simple submodeling.

On the Fig. 15a, it appears, as expected, that a larger number of iterations has to be

carried out when the interface is located on the bolt boundaries (L = 0). This effect of

the interface location on the convergence rate is corrected when using a SR1 acceleration

technique as can be seen in the next subsection.

Quasi-Newton acceleration

Afinal component of the non-intrusive substitution is the implementation of acceleration

techniques. In that context, the SR1 quasi-Newton acceleration was tested in [25], and

the Aitken Delta-2 dynamic relaxation method in [17]. For this study, we only implement

SR1 acceleration.

Figure 18 presents convergence plots. The convergence is roughly three times faster

with SR1. Moreover the rate of convergence is almost independent from the load step

and the position of the interface. This property can be explained by the fact that the

corrections induced by the SR1 acceleration technique are adapted to take into account

the main differences between the 2D and 3D models.
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Fig. 15 Comparison of the results for L = 0mm and L = 15mm. a Residual during the iteration, b Nxx vs

sliding near the hole, c axial displacement

Fig. 16 Error in the local domain for two positions of the interface and at each time step
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Fig. 17 Sliding between the two plates near the nut for different configurations

Fig. 18 Effect of the SR1 acceleration on the global–local rate of convergence

Conclusions

In this paper, a non-intrusive coupling between plate models and 3D models [21] has

been extended to deal with the precise computations of bolted plates: the plate model

with simplified connector was coupled with a full 3D nonlinear model of the bolt. The

flexibility of themethodwas exploited to easily define the coupledmodel and to use of two

dedicated pieces of software: Code_Aster for the plate computations, and COFAST3D for

the nonlinear computation of the bolt (including many surfaces of friction).

The proposed technique enabled us to analyze the possibilities and limits of the use of

plate connectors and submodeling approach in that case. It appears that, even when the

bolt response is globally linear, the 3D effects induced by the bolt largely modify the plate

solution itself. This shows that a rigid connector is a poormodel to describe the connection

between two plates. As expected, when important sliding occurs, such modeling becomes

irrelevant. Moreover, the submodeling technique may lead to significant local errors and

non-conservative results.
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Another important feature for future applications concerning the treatment of multi-

ple bolts in interaction, is that using an interface located at the limit of the bolt leads

to acceptable results when compared to the reference solution. Works on that type of

problem is in progress.

Another issue concerns the modeling of the bolt itself. In practice, some of the parame-

ters of the bolted assembly are not precisely determined, as the preload of the nut or the

friction coefficient. Such types of problems have been analyzed by dedicated techniques

for the bolt computation [37,38], including multiresolution [39]. The use of the proposed

non-intrusive techniques allows to extend these studies to the case of 2D–3D structural

analyses in a straightforward manner. In addition, the use of model reduction techniques

for the global model itself, as proposed in [40] should lead to a very significant reduction

of the computational time.
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