

This item was submitted to Loughborough’s Institutional Repository by the
author and is made available under the following Creative Commons Licence

conditions.

For the full text of this licence, please go to:
http://creativecommons.org/licenses/by-nc-nd/2.5/

1

On the computation of the linear complexity and the
k-error linear complexity of binary sequences with

period a power of two

Ana S̆alăgean

Abstract— The linear Games-Chan algorithm for computing the linear
complexity c(s) of a binary sequences of period ` = 2n requires the
knowledge of the full sequence, while the quadratic Berlekamp-Massey
algorithm only requires knowledge of2c(s) terms. We show that we can
modify the Games-Chan algorithm so that it computes the complexity in
linear time knowing only 2c(s) terms. The algorithms of Stamp-Martin
and Lauder-Paterson can also be modified, without loss of efficiency,
to compute analogues of thek-error linear complexity for finite binary
sequences viewed as initial segments of infinite sequences with period a
power of two.

We also develop an algorithm which, given a constantc and an infinite
binary sequences with period ` = 2n, computes the minimum number
k of errors (and the associated error sequence) needed over a period
of s for bringing the linear complexity of s below c. The algorithm has
a time and space bit complexity ofO(`). We apply our algorithm to
decoding and encoding binary repeated-root cyclic codes of length̀ in
linear, O(`), time and space. A previous decoding algorithm proposed
by Lauder and Paterson hasO(`(log `)2) complexity.

Index Terms— k-error linear complexity, linear complexity, repeated-
root codes, stream cipher.

I. I NTRODUCTION

The linear complexity of a sequence (i.e. the length of the
shortest recurrence relation, or Linear Feedback Shift Register which
generates the sequence) is a fundamental parameter for virtually all
applications of linearly recurrent sequences.

Computing the linear complexityc(s) of a linearly recurrent
sequences over a field needs in general quadratic time (Berlekamp-
Massey algorithm, [1], [2]). For the particular case of binary se-
quences with period a power of two, Games and Chan devised an
algorithm with linear time and space bit complexity, [3].

The k-error linear complexity of a periodic sequences of period
N is the minimum linear complexity that can be obtained fors by
modifying up to k terms in one period (and modifying all other
periods in the same way). This notion was defined in [4] and is
closely related to previously defined notions of sphere complexity [5]
and weight complexity [6].

The Games-Chan method has been extended by Stamp and Martin,
[4] to computing thek-error linear complexity of a binary sequence
with period a power of two, still in linear time. Further, Lauder and
Paterson, [7], showed that the whole error linear complexity spectrum
(i.e. thek-error complexity for each value ofk) of a binary sequence
of period` = 2n can be computed inO(`(log `)2) time.

An important application of computing the linear complexity and
k-error linear complexity appears in cryptography. If a sequence is
used as a keystream in a stream cipher, an opponent intercepting
part of the sequence will want to recover the whole sequence, thus
breaking the cipher. If this is not possible, they might hope to at least
determine a sequence which coincides with the correct sequence in
all but a “small” number of positions.

The initial motivation of our work comes from a remark in [7],
pointing to the fact that all the above mentioned efficient algorithms
for binary sequences with period a power of two “suffer from the fact
that they require as input an entire period of a sequences to compute

The material in this correspondence was included in part in a paper accepted
for the International Symposium on Sequences and Their Applications,
SETA’04, Seoul, South Korea, November 2004.

The author is with the Department of Computer Science, Loughborough
University, UK (e-mailA.M.Salagean@lboro.ac.uk)

c(s), while the Berlekamp-Massey algorithm only needs2 c(s) bits.
Thus, they are not applicable in realistic cryptographic situations”.

The results presented in the current paper remedy this situation.
Namely, we prove in Section III that by suitably using the Games-
Chan algorithm it is possible to compute the linear complexity of
a binary sequences, given only a finite segment oft ≥ 2 c(s) bits
of the sequence, as long as we know that the period is a power of
two (and we do not need to know in advance which power of two it
is). Moreover, by suitably using the Stamp-Martin algorithm we can
compute the linear complexity of a finite sequence of lengtht, viewed
as an initial segment of an infinite sequence with period a power
of two, even in the case whent is less than twice the complexity.
Hence, for this particular type of sequences we obtain a linear (rather
than quadratic) complexity algorithm with the same input and output
specifications as the Berlekamp-Massey algorithm.

We cannot expect to be able to compute thek-error complexity of
an infinite periodic sequence when we know less than one period of
the sequence, as we do not know how many of the errors in an error
pattern that minimises linear complexity will fall outside our known
portion of the sequence. What we can compute instead is an analogue
notion ofk-error complexity for finite sequences, which we define in
Section II as being the minimum complexity of any infinite sequence
from a given class, whose initial segment coincides with the given
finite sequence on all but possibly up tok positions. This definition
fits well the cryptographic application mentioned above, and could be
used for example in looking for sequences of low complexity which
coincide with the correct sequence except for a certain percentage of
the positions in any initial segment.

In Section III we also show that by suitably using the Stamp-Martin
algorithm, thek-error linear complexity of a finite binary sequence,
viewed as an initial segment of a sequence of period a power of
two can be computed inO(t) time, wheret is the length of the
finite sequence. The error linear complexity spectrum of such a finite
sequence can be computed inO(t(log t)2) time, by suitably using
the Lauder-Paterson algorithm.

However, the cryptographic applications of our results are more
limited than it may look at first sight. This is due to the fact that
sequences with periods a power of two are relatively weak from the
point of view of the number of terms needed to recover the whole
sequence, see the discussion in Section IV.

In Section V we develop and algorithm which computes the
minimum number of errors that need to be made in one period of a
binary sequence of period̀= 2n in order to bring the complexity
of the sequence below a given value. In other words, for a given
c it computes the minimumk such that thek-error complexity of
the sequence is no greater thanc. It will also compute one error
sequence for which this complexity is achieved. Our algorithm uses
techniques similar to the Stamp-Martin Algorithm and to the so called
L-pullup and B-pullup constructions of [7]. We include the explicit
algorithm as Algorithm 5.1 and give its detailed bit complexity
analysis, showing that the time and space complexities areO(`).
A coarser estimation in [7] gives aO(` log `) rather thanO(`) bit
complexity for the Stamp-Martin algorithm.

While our algorithm is interesting in its own right, the main
motivation comes from its applicability to coding theory. Binary
repeated-root cyclic codes of length` = 2n were introduced in [8].
They are subcodes of Reed-Muller codes and a majority logic
decoding is proposed,loc. cit. Lauder and Paterson, [7], apply their
algorithm to decoding these codes inO(`(log `)2) time. We improve
on their result, by showing in Section VI that Algorithm 5.1 can be
used for encoding and decoding binary repeated-root cyclic codes in
linear time.

2

II. N OTATION, DEFINITIONS AND KNOWN RESULTS

We first recall some basic facts on linearly recurrent sequences and
establish the notation and definitions used in the paper.

Throughout the paper we work with binary sequences, i.e. se-
quences over the finite fieldF2. Most of the facts and definitions
below work for sequences over any finite field, but we will not
consider them here.

A. Infinite sequences

We denote byS the set of all (infinite) linearly recurrent sequences
overF2. Note that for sequences over finite fields the following three
notions are equivalent: periodic, recurrent and linearly recurrent.

Let s ∈ S, s = s0, s1, s2 We will say that a polynomial
f ∈ F2[x], f = xm +am−1x

m−1 + · · ·+a1x+a0 is anannihilator
polynomial for s if s satisfies the linear recurrence given by the
coefficients off i.e. si+m +am−1si+m−1 + · · ·+a1si+1 +a0si = 0
for i = 0, 1, 2, The annihilator polynomials ofs form an ideal
in F2[x], denotedAnn(s). The monic annihilator polynomial of
minimal degree is unique and is called thecharacteristic polynomial
of s. We will denote it byσ(s). Note thatσ(s) generatesAnn(s). The
linear complexity ofs is the degree of the characteristic polynomial
and will be denoted byc(s).

Denote by PN the set of sequences inS of (not necessarily
minimal) period N . If s ∈ PN then xN − 1 ∈ Ann(s) and
σ(s)|xN − 1.

In this paper we will concentrate on sequences that admit as period
a power of two. We will denote byT the set of binary sequences
with period any power of two, i.e.T = ∪∞i=0P2i .

Using the fact that inF2[x] we havex2n − 1 = (x− 1)2
n

for any
n we immediately obtain the following result:

Proposition 2.1: Let s ∈ T . The linear complexity ofs equalsc
if and only if the characteristic polynomial ofs is (x− 1)c.

Hence for sequences with period a power of two, knowing the
linear complexity is tantamount to knowing the characteristic poly-
nomial. Note that this is not the case for sequences of arbitrary period
N ; sequences of same complexityc can have different characteristic
polynomials ifxN − 1 has several divisors of degreec.

The Games-Chan algorithm, [3], computes the linear complexity
for any binary sequence with period a power of two, i.e. for any
s ∈ P2n it computesc(s). The whole sequence needs to be known,
i.e. we need to know a (not necessarily minimal) period` = 2n of
the sequence and2n consecutive terms of the sequence. The time
(bit operations) and space complexity is linear in the period` of the
sequence.

We now define thek-error linear complexity as in [4]. Lets ∈ PN

and letk ≥ 0 an integer. Denote bywt() andd(,) the Hamming
weight and the Hamming distance, respectively. Thek-error linear
complexity of s as a sequence of periodN , denoted byck,N (s), is
defined as the minimum complexity thats can have after modifying
k bits of a period:

ck,N (s) = min{c(s + e)|e ∈ PN , wt((e0, e1, . . . , eN−1)) ≤ k}.
(1)

The Stamp-Martin algorithm, [4], computes thek-error linear com-
plexity for any binary sequence with period a power of two, i.e. for
anys ∈ P2n it computesck,2n(s). As in the Games-Chan algorithm,
the whole sequence needs to be known and the time (bit operations)
and space complexity of the algorithm is linear in the period` = 2n

of the sequence. We stress the fact that the number of bit operations in
the Stamp-Martin algorithm is indeed linear. The complexity estimate
O(` log `) in [7] is too coarse, and the actual number of bit operations
is O(`), see Theorem 5.4.

The error linear complexity spectrum of a sequences ∈ PN is de-
fined as the set of pairs{(k, ck,N (s))|0 ≤ k ≤ wt((s0, . . . , sN−1)}.
The Lauder-Paterson algorithm, [7], computes the error linear com-
plexity spectrum of any binary sequence with period` = 2n. The
bit complexity of the algorithm isO(`(log `)2). Again, one needs to
know the full sequence in order to apply the algorithm.

One can also definek-linear complexity for costed sequences,
following [4], [7]. For a sequences ∈ PN , a cost vectorcost ∈ RN

and a real numberk, the k-error linear complexity of the costed
sequence is defined as:

ck,N (s, cost) = min{c(s + e)|e ∈ PN ,
X

0≤i<N,ei 6=0

cost[i] ≤ k}.
(2)

The usualk-error complexity of a (non-costed) sequence corresponds
to the k-error complexity of the same sequence with an associated
cost vector in which all entries equal 1.

As noted in [7], the Stamp-Martin algorithm can be adapted to
compute thek-error linear complexity of costed sequences with
period ` = 2n i.e. to computeck,2n(s, cost). If the entries of the
cost vector are bounded by a constantM , then the complexity of the
algorithm will beO(` log M) (see Theorem 5.4 below).

B. Finite sequences

We will define now the notions of linear complexity andk-linear
complexity for finite sequences. The finite sequences will be viewed
as initial segments of infinite sequences from a certain set of infinite
sequences. More precisely, letz = (z0, z1, . . . , zt−1) ∈ Ft

2 be a finite
sequence of lengtht ≥ 1 and A ⊆ S a set of infinite sequences.
The linear complexity ofz in A, denotedc(z, A), is defined as the
minimum linear complexity of all sequences inA which havez as
an initial segment i.e.:

c(z, A) = min{c(s)|s ∈ A, si = zi for i = 0, . . . , t− 1}. (3)

For any sequence of periodN , s ∈ PN we have
c((s0, s1, . . . , sN−1), PN) = c(s) as s is uniquely determined
by its first N elements.

It is well known that one can determine the characteristic polyno-
mial of a sequences ∈ S once at least2c(s) successive terms ofs
are known. We have therefore:

Proposition 2.2: If s ∈ A and t ≥ 2c(s) then
c((s0, . . . , st−1), A) = c(s).

The Berlekamp-Massey algorithm, [1], [2], computes the linear
complexity of finite sequences, i.e. it computesc(z,S) for any finite
sequencez ∈ Ft

2. Equivalently, one can think of this algorithm
as computing the linear complexityc(s) of an infinite sequence
s knowing only the first2 c(s) terms of the sequence. Note the
algorithm is not restricted to sequences of a particular given period.
The complexity of the Berlekamp-Massey algorithm is quadratic in
the lengtht of the finite sequence.

Next we will extend the definition ofk-error linear complexity to
finite sequences. As before, letz = (z0, z1, . . . , zt−1) ∈ Ft

2 be a
finite sequence of lengtht ≥ 1, A ⊆ S a set of infinite sequences
and k ≥ 0. Intuitively, there are two ways of defining thek-error
linear complexity ofz in A. One is to define it as the minimum
linear complexity of all infinite sequences inA which coincide with
z on all except up tok of the firstt positions. The other is to define
it as the minimum linear complexity inA of any finite sequence of
the same length asz and which differs fromz in at mostk positions.
It is easy to check that these two notions are equivalent, so we can
define thek-error linear complexity ofz in A, denotedck(z, A), as:

ck(z, A) = min{c(z + e, A)|e ∈ Ft
2, wt(e) ≤ k} (4)

= min{c(s)|s ∈ A, d((s0, s1, . . . , st−1), z) ≤ k}.

3

Again, for any sequence of periodN , s ∈ PN we have
ck((s0, s1, . . . , sN−1), PN) = ck,N (s), ass is uniquely determined
by its first N elements.

Similarly one could define thek-error linear complexity of costed
finite sequences, but we will not need it here.

III. C OMPUTING THE LINEAR COMPLEXITY AND k-ERROR

LINEAR COMPLEXITY FOR FINITE SEQUENCES

In this section our goal is to develop algorithms which compute
the linear complexity and thek-error linear complexity of a finite
sequence viewed as an initial segment of a binary sequence with
period a power of two (we do not need to know which power though).

Note that any infinite sequences ∈ T will have period2v where
v is minimal such thatc(s) ≤ 2v. Hence if we know at least2 c(s)
terms ofs, we know in fact a whole period of the sequence, i.e. we
know the whole sequence.

Theorem 3.1: Let z = (z0, z1, . . . , zt−1) ∈ Ft
2 be a finite

sequence of lengtht ≥ 1. Defineu = dlog2 te and define the infinite
sequences′ of period2u as follows:s′i = zi for i = 0, 1, . . . , t− 1
ands′i = zi−2u−1 for i = t, t + 1, . . . , 2u − 1. Then
(i) If c(z, T) ≤ t

2
thenc(z, T) = c(s′).

(ii) If c(z, T) > t
2

thenc(s′) > t
2
.

Proof: By the definition (3) ofc(z, T), there is a sequence
s ∈ T such thatsi = zi for i = 0, 1, . . . , t− 1 andc(s) = c(z, T).
By construction2u−1 < t ≤ 2u.
(i) Since c(s) = c(z, T) ≤ t

2
≤ 2u−1, (x − 1)2

u−1
= x2u−1 − 1

is an annihilator polynomial fors. Hences has period2u−1 i.e.
si = si−2u−1 for all i ≥ 2u−1 and in particular fori ≥ t. It is now
easy to check thats = s′ so c(z, T) = c(s′).
(ii) From (3) we havec(s′) ≥ c(z, T), so c(s′) > t

2
.

The theorem above can be used for computing the linear complex-
ity of a finite sequence as follows. For a finite sequencez of length
t, viewed as an initial segment of a sequence of period a power
of two, we set up (in linear time) an infinite sequences′ of period
2dlog2 te as in Theorem 3.1. We then computec(s′) using the Games-
Chan algorithm. If the result is at mostt

2
we output it asc(z, T).

Otherwise we output a message “complexity ofz greater than half
the number of terms”. This scenario may be useful when we actually
want to compute the complexity of an infinite sequences for which
we know only the firstt terms. We know by Proposition 2.2 that the
complexity of the finite sequence is only guaranteed to give us the
correct result for the infinite one if it is below half the number of
terms.

We may however want to compute the exact value ofc(z, T) even
if it turns out to be higher thant

2
. This, as well as thek-error

complexity can be computed using the theorem below. The main
idea is that if we expand the finite sequence to an infinite periodic
costed sequence such that the new terms of the sequence are arbitrary
but have zero cost, then any changes to the new terms will not count
towards thek errors, only the changes in our original finite sequence
will count.

Theorem 3.2: Let z = (z0, z1, . . . , zt−1) ∈ Ft
2 be a finite

sequence of lengtht ≥ 1. Define u = dlog2 te and define the
infinite costed sequences′ of period 2u as follows: s′i = zi

and cost[i] = 1 for i = 0, 1, . . . , t − 1 and s′i have arbitrary
binary values andcost[i] = 0 for i = t, t + 1, . . . , 2u − 1. Then
ck(z, T) = ck,2u(s′, cost) for all k = 0, 1, . . . , wt(z). In particular,
c(z, T) = c0,2u(s′, cost).
The proof is straightforward.

Hence by setting up (in linear time) an infinite costed sequences′

of period2dlog2 te as in Theorem 3.2 and then applying the Stamp-
Martin algorithm to computeck,2dlog2 te(s′, cost) we obtain in fact

ck(z, T), thek-error linear complexity ofz. In particular, fork = 0
we obtain the linear complexity ofz, c(z, T), regardless of whether
this complexity is below half the number of terms ofz or not.
The resulting algorithm obviously runs inO(t) time and is thus a
more efficient alternative to the Berlekamp-Massey algorithm for the
particular class of binary sequences with period a power of two.

By applying the Lauder-Paterson algorithm to the same costed
sequences′ described above we obtain anO(t(log t)2) algo-
rithm for computing the full error linear complexity spectrum
{(k, ck(z, T))|k = 0, 1, . . . , wt(z)}.

IV. CRYPTOGRAPHIC CONSEQUENCES

Let us briefly look at the cryptographic significance of our results.
The scenario we will consider here is that we have a linearly
recurrent binary sequence (used in a stream cipher, for example) and
a cryptanalyst is attempting to recover the whole sequence given only
a “short” finite segment of the sequence.

Berlekamp-Massey algorithm allows them to do so, in quadratic
time, once a segment of length equal to twice the complexity is
known. For binary sequences with period a power of two, the method
described in the previous section allows the cryptanalyst to achieve
the same goal in linear rather than quadratic time, knowing again
only a segment of length equal to twice the complexity.

However, note that if it is known that the sequence has as period a
power of two, knowing a segment of length equal to the complexity
(rather than twice the complexity) allows a cryptanalyst to recover the
whole sequence. This is due to the fact that in this case knowing the
complexity is equivalent to knowing the characteristic polynomial,
see Proposition 2.1. All a cryptanalyst would do is, given a segment
of t terms of the sequences, assume that(x− 1)t is an annihilator
polynomial for s and compute the rest of the sequence using the
linear recurrence given by(x−1)t. If the complexity of the sequence
was indeed no greater thant, they would get the correct sequence.
Hence, the class of sequences with period a power of two does not
seem suitable for cryptographic applications from this point of view.

V. COMPUTING THE MINIMUM k TO ACHIEVE A GIVEN k-ERROR

COMPLEXITY

In this section we modify the Stamp-Martin algorithm so that for
a given infinite periodic sequence of period` = 2n and a given
complexityc the algorithm outputs the minimum number of errorsk
needed so that the linear complexity of the sequence equals or falls
below c. The corresponding error sequence is also computed.

The general idea is that while the Stamp-Martin algorithm starts
with a numberk of allowable errors and “forces” as many errors and
as early in the algorithm as possible in order to obtain the lowest
complexity possible, our algorithm will “force” as few errors and as
late in the algorithm as possible, and only when absolutely needed
in order to ensure the complexity stays no greater than the target
complexityc.

Since we also want to compute the error pattern (rather than just
the number of errors) which brings the complexity ofs below our
target c, we have to also keep track of the positions of the errors.
Algorithms for computing the error pattern are described in [7], [9].
For our algorithm we will use a method similar to the so-calledL-
pullup andB-pullup of [7], but in a more compact and efficient form.
Namely, we avoid the need of examining the cost vectors again (hence
we can safely overwrite them) and we use bitwise XOR and AND for
a further increase in efficiency and compactness of the formulation.

As in the Games-Chan and Stamp-Martin algorithms, at each step
j = 0, . . . , n−1 we work with a sequencea of period2n−j . We split
the sequence up into the left and the right half,L andR, and construct

4

a new sequencea of period2n−j−1 which will be processed at the
subsequent step. We will use a two-dimensional arrayerror to keep
track of the errors that need to be made to the current sequence. A
vectorflag will contain flags such thatflag[j], for j = 0, . . . , n−1
will signal if we decided to introduce or not errors in the sequence
at stepj. The rowerror[j], containing binary values, will give the
positions of the errors for stepj in the case we do need to introduce
errors, or in the case we do not, the positions where errors should
be introduced, should it become necessary later. Only the entries
error[j][0], . . . , error[j][2n−j − 1] will be used for eachj, so the
two-dimensional arrayerror can in fact be stored efficiently as a
one-dimensional array of

Pn−1
j=0 2n−j = 2n+1 − 2 bits. We use the

two-dimensional array representation for expository purposes only.

An explicit algorithm is given below. We tried to keep as close as
possible to the original formulation of the Stamp-Martin algorithm.
To avoid confusion with the notation of the Stamp-Martin algorithm,
here we usek′ for the current number of errors andc′ for the current
value of the linear complexity of the sequence. To allow for extra
flexibility, we work with costed sequences. If the input sequence is
not a costed sequence, the cost vector is initialised by setting all
entries to the value 1.

Algorithm 5.1: (Computing a sequencee of minimum cost such
that c(s + e) ≤ c)

Input: n, c, s, cost
wheren, c are positive integers,
s = (s0, s1, . . . , s2n−1) is a sequence of period2n given by
its first 2n terms andcost ∈ R2n

is a cost vector
Output:e, a sequence of period2n given by its first2n terms,

wheree is of minimal cost
P2n−1

i=0 eicost[i] such that
c(s + e) ≤ c.

begin
a ← s; ` ← 2n; c′ ← 0; k′ ← 0,
for j = 0 to n− 1 do

flag[j] ← 0
for i = 0 to 2n−j − 1 do error[j][i] ← 0 endfor

endfor
for j = 0 to n− 1 do

` ← `/2 % now ` = 2n−j−1

L = a0a1 . . . a`−1; R = a`a`+1 . . . a2`−1;
b ← L + R

T ←P`−1
i=0 bi min(cost[i], cost[i + `])

if T = 0 or c′ + ` ≥ c then
k′ ← k′ + T
flag[j] ← 1
for i = 0 to `− 1 do

if bi = 1 then
if cost[i] ≤ cost[i + `] then

ai ← Ri; cost[i] ← cost[i + `]− cost[i];
error[j][i] ← 1

else
ai ← Li; cost[i] ← cost[i]− cost[i + `];
error[j][i + `] ← 1

endif
else

ai ← Li; cost[i] ← cost[i] + cost[i + `]
endif

endfor
else

c′ ← c′ + `
for i = 0 to `− 1 do

ai ← bi;
if cost[i] ≤ cost[i + `] then

error[j][i] ← 1
else

cost[i] ← cost[i + `]; error[j][i + `] ← 1
endif

endfor
endif

endfor
e ← 0
if a0 = 1 then

if c′ + 1 > c or cost[0] = 0 then
k′ ← k′ + cost[0]
e ← 1

elsec′ ← c′ + 1
endif

endif
for j = n− 1 downto 0 do

e ← duplicate(e)
if flag[j] = 1 then e ← e XOR error[j]
elsee ← e AND error[j]
endif

endfor
return(e)
end

The function duplicate simply duplicates a binary string, i.e.
concatenates it with a copy of itself. The XOR and AND operators
are bitwise operators between binary strings of equal lengths.

Theorem 5.2: Algorithm 5.1 is correct.
Proof: As in [4], [7] it can be seen that the cost vector is

updated at any step so thatcost[i] reflects the cost of changes in the
original sequences in order to change the current elementai without
disturbing the results of the previous steps.

We prove by induction onn that the quantityk′ computed in
Algorithm 5.1 is indeed minimal such thatck′,2n(s, cost) ≤ c. For
n = 0 this can be readily verified. We assume the algorithm works
correctly for n − 1 and prove that it works forn. We consider the
first run of the mainfor loop, whenj = 0. We denote bya(0) and
cost(0) the values of the variablesa and cost at the beginning of
the first run of thefor loop, and bya(1) and cost(1) their values
at the end of the first run. The quantityT represents the minimal
cost of making changes in the current sequencea(0) such as to make
its left half, L be equal to its right halfR. The “if T = 0 or
c′ + ` ≥ c” will decide whether we make these changes or not. If
T = 0, we obviously should make these changes, as they decrease the
complexity of the sequence at no cost. Ifc′+` ≥ c, i.e.2n−1 ≥ c (as
c′ = 0 and` = 2n−1 at this point), it meansa(0) has to be changed
so that it has period2n−1 or less. Hence we do have to forceL to
be equal toR. We are left with the case whenT > 0 but 2n−1 < c.
Not doing changes in this case will mean that we add2n−1 to the
current valuec′ of the complexity and then process the sequence
a(1) = b, effectively computingk′ as the minimal quantity such that
ck′,2n−1(a(1), cost(1)) ≤ c − 2n−1. By the induction hypothesis,
the algorithm computes thisk′ correctly. Note thatT is exactly the
minimum cost of changing all entries ofa(1) = b to 0, i.e. the
minimum cost of reducing the complexity ofa(1) to 0. Hencek′ ≤ T .
This means that not doing changes at this step is guaranteed to lead
to a final cost no grater than the cost of doing changes at this step,
while still keeping the complexity below the targetc.

The correctness of the computation of the error pattern follows
from the correctness proofs of the so called L-pullup and B-pullup
constructions in [7]. One can show thatduplicate(e) XOR error[j]
andduplicate(e) AND error[j], with error[j] computed as in the
algorithm above, are in fact equivalent, more compact expressions
for the L-pullup and the B-pullup of an error patterne.

5

Example 5.3: We consider the sequences of period 16 given by
one period1011 0111 1011 0110. We will compute the error pattern
which makes the complexity of this sequence be at most 5. We apply
Algorithm 5.1 tos, with n = 4, c = 5 and the cost vector having all
entries intialised to 1. The values of the stringa during the algorithm
will be: a = 1011 0110, a = 1101, a = 01 anda = 1. The values
of error[j] will be error[0] = 0000 0001 0000 0000, error[1] =
1110 0001, error[2] = 1000, error[3] = 10 and the flags will
be flag[0] = 1, flag[1] = 0, flag[2] = 1, flag[3] = 1 . The
values ofe before each run of the finalfor loop will be 0, 10, 0010,
0010 0000, and finally e = 0010 0001 0010 0000. We also have
k′ = 3 and c′ = 5 at the end of the algorithm. It can be verified
that the sequences + e = 1001 0110 1001 0110 has characteristic
polynomial (x− 1)5, i.e. it has indeed complexity 5.

We now examine the complexity of the algorithm:
Theorem 5.4: Let s be an infinite binary sequence of period

` = 2n. The time bit complexity and the space bit complexity of
Algorithm 5.1 and of the Stamp-Martin algorithm are linear,O(`).
If the sequence is costed and the initial cost vector entries are all
integers of absolute value at mostM , the time bit complexity and
the space bit complexity of Algorithm 5.1 and of the Stamp-Martin
algorithm areO(` log M).

Proof: We prove the Theorem for Algorithm 5.1; the proof for
the Stamp-Martin algorithm is similar.

We first assume the sequence is not costed, so the cost vector
is initialised with all entries equal to 1. The initialisation offlag
anderror have complexity equal to the size of these arrays, which
is linear in 2n (see the space complexity analysis below). At each
execution of the mainfor loop the values of the vectorcost are at
most doubled, so their bit length is increased by 1. This means that at
the j-th execution of thefor loop the bit length of the entries of the
vectorcost are changed from at mostj + 1 to at mostj + 2. Inside
the mainfor loop, the innerfor loops run fori = 0, 1, . . . , `−1. For
eachi there is one manipulation (addition, subtraction or comparison)
of entries in the vectorcost, so there are at mostj+2 bit operations.
Hence in total, there are(j + 2)` = (j + 2)2n−j−1 bit operations
during thej-th execution of the mainfor loop. In total the mainfor
loop performs

n−1X
j=0

(j + 2)2n−j−1 = 3 · 2n − n− 3 (5)

bit operations, which is linear in2n.
If the sequence is costed, then the entries of the cost vector have

initially a bit length of log2 M and at thej-th execution of thefor
loop their bit length is changed from at mostlog2 M + j + 1 to at
most log2 M + j + 2. The sum (5) becomes

Pn−1
j=0 (log2 M + j +

2)2n−j−1 = (2n−1) log2 M +3 ·2n−n−3, which isO(` log M).
As a side remark, we note that, while full details are not given

in [7] regarding theO(` log `) claim for the bit complexity of the
Stamp-Martin algorithm, we suspect this stems from a too coarse
estimation for (5) along the lines

Pn−1
j=0 (j+2)2n−j−1 ≤Pn−1

j=0 (n+

1)2n−j−1 = (n+1)(2n−1), which would then suggest aO(` log `)
complexity.

The lastfor loop, which computes the value of the errore, runs
for j = n − 1 downto0 and for eachj it performs a bitwise XOR
or a bitwise AND between two bitstrings of length2n−j . Hence in
total this for loop performs

Pn−1
j=0 2n−j = 2n+1 − 2 bit operations,

which again is linear in2n.
We now look at the space complexity. The bit arraysa, L, R, b

have length at most2n at all times. The entries of the arraycost
increase in size, but fewer and fewer are used. Namely, during thej-
th execution of the mainfor loop, we use only2` = 2·2n−j−1 entries,

each entry having a bit length of at mostj + 2 (or log2 M + j + 2
for costed sequences). The total space taken by the vectorcost is
(j + 2)2n−j ≤ 2j+12n−j = 2n+1, hence linear in2n (respectively
(log2 M+j+2)2n−j ≤ 2n(log2 M+2) henceO(` log M) for costed
sequences). As mentioned earlier, the matrixerror hasn rows but
in row j only 2n−j entries are used, withj = 0, . . . , n − 1. So we
only need

Pn−1
j=0 2n−j = 2n+1 − 2 bits.

VI. D ECODING REPEATED-ROOT CYCLIC CODES

Repeated-root binary codes with length a power of two have been
introduced in [8]. It is shown,loc. cit., that these codes are subcodes
of Reed-Muller codes, and it is proposed that they be decoded
by majority logic, just like the Reed-Muller codes. An alternative
decoding algorithm with bit complexityO(`(log `)2), where` = 2n

is the length of the code, is proposed in [7]. In this section we develop
a linear,O(`), decoding algorithm for these codes. We show that
encoding can also be achieved in linear time.

As usual, a binary cyclic code of length̀can be viewed as an
ideal inF2[x]/〈x`−1〉 and is generated by a divisor ofx`−1. When
` = 2n we havex` − 1 = x2n − 1 = (x − 1)2

n

, so the generator
polynomial is of the form(x − 1)g for some g. Alternatively, a
codeword of length̀ can be viewed as a an infinite sequence of period
`, with the codeword being equal to one period of the sequence. If
C is a code with generator polynomialf , a sequences of period `
represents a codeword inC iff the reciprocal of(x` − 1)/f is an
annihilator polynomial fors. For ` = 2n this means that a sequence
s of period` represents a codeword inC = 〈(x−1)g〉 iff (x−1)`−g

is an annihilator polynomial fors, which in turn happens iffs has
complexity at mostc, wherec = `− g.

Hence to decode a received vectorr, viewed as a sequence of
period `, we have to find the error patterne of minimum weight
such thatr + e ∈ C, i.e. r + e has complexity at mostc. This means
we have to find the minimumk such that thek-error complexity ofr
is at mostc i.e. ck,`(r) ≤ c. In [7] this is achieved by computing the
full error linear complexity spectrum ofr and picking up the smallest
valuek for which ck,`(r) ≤ c.

We show that we could instead use Algorithm 5.1 for decoding,
and also for encoding these codes.

Theorem 6.1: Binary repeated-root cyclic codes of length` = 2n

can be encoded and decoded in linear time and space.
Proof: Let C be the code consisting of sequences with period`

and complexity at mostc. For decoding a received vectorr obtained
by transmitting the codewords with errore, we apply Algorithm 5.1
for the inputsn, c, r and a cost vector with all entries initialised to
1. The outpute gives the error, i.e.r + e is the corrected codeword.

For encoding, note that the code has dimension2c. A message
m ∈ Fc

2 can be systematically encoded as the unique sequence
of period ` whose firstc symbols coincide withm and which has
annihilator polynomial(x−1)c. To compute this sequence we could
simply apply the recurrence relation given by(x − 1)c with the
initial terms given bym. However, this would yield anO(c(`− c))
algorithm i.e. a quadratic algorithm in general. Instead, we will again
use Algorithm 5.1, thus encoding in linear time. Namely we initialise
a sequences′ by puttings′i = mi andcost[i] = 1 for i = 0, . . . , c−1
ands′i having arbitrary values andcost[i] = 0 for i = c, . . . , `− 1.
We run Algorithm 5.1 on the inputsn, c, s′, cost and obtain an error
vectore. Note that in this case the error vector will always have zero
cost. The encoding sequence for the messagem will be s′ + e.

Example 6.2: We consider the codeC = 〈(x − 1)11〉 ∈
F2[x]/〈x16 − 1〉. This code can also be viewed as consisting of all
periodic sequences of period 16 which have complexity at most16−
11 = 5. Let us first encode a message of length 5, saym = 10010.
We apply Algorithm 5.1 to the sequences′ = 1001 0000 0000 0000,

6

n = 4, c = 5 and a cost vector with the first 5 entries set to 1 and
the remaining 11 entries set to 0. The values of the stringa during
the algorithm will be:a = 1001 0000, a = 1001, a = 11 anda = 1.
The values oferror[j] will be error[0] = 0000 0000 1001 0000,
error[1] = 1000 0111, error[2] = 0110, error[3] = 00 and the
flags will beflag[0] = 1, flag[1] = 0, flag[2] = 1, flag[3] = 1 .
The values ofe before each run of the finalfor loop will be 0, 00,
0110, 0000 0110, and finallye = 0000 0110 1001 0110. We also
havek′ = 0 andc′ = 5 at the end of the algorithm. It can be verified
that the sequences = s′ + e = 1001 0110 1001 0110 has indeed
linear complexity 5 so it is a codeword.

Next assume the codewords above is received asr =
1011 0111 1011 0110, i.e. with three errors. To decode we apply
Algorithm 5.1 to r, with n = 4, c = 5 and the cost vector
consisting of all 1’s. As in Example 5.3, we obtain the errore =
0010 0001 0010 0000, and one can verify that this gives the correct
decoding, i.e.r + e = s.

Lauder and Paterson note that their decoding algorithm will also
be suitable for soft decoding, by settings to be a hard decision binary
version of the received word and setting each entry in the cost vector
to a real value corresponding to the “reliability” of the corresponding
0/1 value in the received word. Our Algorithm 5.1 can be used for
soft decoding in a similar way.

VII. E XTENSION TO p-ARY SEQUENCES

The Games-Chan and Stamp-Martin algorithms have been ex-
tended to sequences overFpm with period ` = pn, wherep is a
prime in [10], [5].

It is natural to ask if the results of this paper can be extended
to such sequences whenp > 2. Theorem 3.1 does not hold in this
setting. This can be seen from the fact that a sequences over Fp

with period a power ofp will have as minimal periodpv wherev is
minimal such thatc(s) ≤ pv. Having 2 c(s) terms of the sequence
does not necessarily mean we have a full period, as we may still have
2 c(s) < pv if p > 2.

Theorem 3.2 on the other hand, does hold for arbitraryp. Hence we
can use it in conjunction with the algorithms of [10], [5] to compute
the complexity andk-linear complexity of finite sequences overFpm ,
viewed as initial segments of infinite sequences with period` = pn.

We expect that the algorithms of [10], [5] forp > 2 could
be modified along the lines of Algorithm 5.1 and then applied to
encoding and decoding repeated-root cyclic codes overFpm with
lengthpn.

REFERENCES

[1] E. Berlekamp,Algebraic Coding Theory. McGraw Hill, 1968.
[2] J. Massey, “Shift register synthesis and BCH decoding,”IEEE Trans on

Information Theory, vol. 15, pp. 122–127, 1969.
[3] R. Games and A. Chan, “A fast algorithm for determining the complexity

of a binary sequence with period2n,” IEEE Trans. Information Theory,
vol. 29, pp. 144–146, 1983.

[4] M. Stamp and C. Martin, “An algorithm for thek-error linear complexity
of binary sequences of period2n,” IEEE Trans. Information Theory,
vol. 39, pp. 1398–1401, 1993.

[5] C. Ding, G. Xiao, and W. Shan,The stability Theory of Stream Ciphers,
ser. LNCS. Springer Verlag, 1991, vol. 561.

[6] C. Ding, “Lower bounds on the weight complexities of cascaded binary
sequences,” inAdvances in Cryptology – AUSCRYPT’90, ser. Lecture
Notes in Computer Science, J. Seberry and J. Pieprzyk, Eds., vol. 453.
Springer Verlag, 1991, pp. 39–43.

[7] A. Lauder and K. Paterson, “Computing the error linear complexity
spectrum of a binary sequence of period2n,” IEEE Trans. Information
Theory, vol. 49, pp. 273–280, 2003.

[8] J. Massey, D. Costello, and J. Justesen, “Polynomial weights and code
constructions,”IEEE Trans on Information Theory, vol. 19, pp. 101–110,
1973.

[9] T. Kaida, S. Uehara, and K. Imamura, “Computation of thek-error linear
complexity of binary sequences with period2n,” in Concurrency and
Parallelism, Programming, Networking, ser. Lecture Notes in Computer
Science, R. Yap, Ed., vol. 1179. Springer Verlag, 1996, pp. 182–191.

[10] ——, “An algorithm for thek-error linear complexity of sequences over
GF (pm) with period pn, p a prime,” Inform. Comput., vol. 151, pp.
134–147, 1999.

Ana Sălăgean Ana S̆alăgean is currently a Lecturer in the Department of
Computer Science of Loughborough University, UK. She has previously
held positions at Nottingham Trent University and University of Britol, UK
and at University of Bucharest, Romania. She graduated from Univeristy
of Bucharest, Romania and holds a PhD from J. Kepler University, Linz,
Austria. Her research interests are in coding theory, symbolic computation
and cryptography.

