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Abstract. We present a new computation scheme for the integral expressions
describing the contributions of single aberrations to the diffraction integral in the
context of an extended Nijboer–Zernike approach. Such a scheme, in the form of
a power series involving the defocus parameter with coefficients given explicitly
in terms of Bessel functions and binomial coefficients, was presented recently
by the authors with satisfactory results for small-to-medium-large defocus
values. The new scheme amounts to systemizing the procedure proposed
by Nijboer in which the appropriate linearization of products of Zernike
polynomials is achieved by using certain results of the modern theory
of orthogonal polynomials. It can be used to compute point-spread functions
of general optical systems in the presence of arbitrary lens transmission and lens
aberration functions and the scheme provides accurate data for any, small or
large, defocus value and at any spatial point in one and the same format. The
cases with high numerical aperture, requiring a vectorial approach, are equally
well handled. The resulting infinite series expressions for these point-spread
functions, involving products of Bessel functions, can be shown to be practically
immune to loss of digits. In this respect, because of its virtually unlimited defocus
range, the scheme is particularly valuable in replacing numerical Fourier trans-
form methods when the defocused pupil functions require intolerably high
sampling densities.

1. Introduction
The computation of strongly defocused amplitude distributions has been

considered by several authors. Their effort has been directed towards the stable
evaluation of the diffraction integral in the presence of a strongly oscillating
defocusing phase factor in the integrand of the basic diffraction integral. We
refer to the end of this section for a short survey of numerical and analytic
approaches to solve the defocus problem that can be found in the literature [1–5].
In this paper we treat the strong defocus problem in the framework of the recently
developed extension of the Nijboer–Zernike approach to the computation of
optical point-spread functions of general aberrated optical systems [6–10]. In the
extension to the Nijboer–Zernike approach, power series expressions involving the
defocus parameter f , with coefficients explicitly given in terms of Bessel functions
and binomial coefficients, were given for the contribution to the diffraction integral
of a single aberration term �nmRm

n ð�Þ cos m# with Rm
n ð�Þ a Zernike polynomial, see
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[11], section 9.2. We follow the developments as given in [7], sections 1–2. Thus,
given the Zernike expansion

P
n;m �nmRm

n ð�Þ cos m# of the pupil function
A exp ½iF�, with the transmission function A and the aberration phase F assumed
to be symmetric in the angular coordinate #, the point-spread function U can be
written as

Uðx; yÞ ¼ 2
X
n;m

�nmi
mVnmðr; f Þ cos m’: ð1Þ

Here we have used Cartesian coordinates x; y in the image plane that can be
transformed to polar coordinates r; ’ according to x þ iy ¼ r exp ði’Þ. The Vnm in
(1) are the basic integrals

Vnmðr; f Þ ¼

ð1
0

exp ðif�2ÞRm
n ð�ÞJmð2p�rÞ�d�; ð2Þ

which should be considered for all integer n;m � 0 with n � m � 0 and even. For
these Vnm there holds the power series expansion, see [6, 7],

Vnmðr; f Þ ¼ exp ðif Þ
X1
l¼1

ð�2if Þl�1
Xp

j¼0

vlj

Jmþlþ2jð2prÞ

lð2prÞl
; ð3Þ

with

vlj ¼ ð�1Þpðm þ l þ 2jÞ
m þ j þ l � 1

l � 1

� �
j þ l � 1

l � 1

� �
l � 1

p � j

� �
q þ l þ j

l

� �� �
;

�
ð4Þ

for l ¼ 1; 2; . . ., j ¼ 0; 1; . . . ; p in which

p ¼ 1
2
ðn � mÞ; q ¼ 1

2
ðn þ mÞ: ð5Þ

This approach of computing point-spread functions has been assessed in [7] from
an optical and numerical point of view. As a rule of thumb one should include
in the infinite series over l some 3f terms to get sufficiently accurate results. The
approach has been extended further in [8] so as to cover the cases of high
numerical aperture, which requires computation of field components, as well as
inclusion of the radiometric effect and the state of polarization. Application of
the method in a lithographic context is considered in [9, 10], where the inverse
problem of estimating the coefficients �nm from measurements of the (intensity)
point-spread function in the focal region is solved. In this kind of application the
focus variable f is often taken to be complex-valued so that illuminated objects
of small but finite size can be accommodated

As said, the series expression in (3) yields accurate results when some 3f terms
are included in the series over l. The evaluation of the required Bessel functions is
normally no problem since one can exploit recursion formulas as in [12], expres-
sion 9.1.27 on p. 361, when the efficient computation of the Bessel functions is not
already available in the software environment of the user. A much more serious
problem is posed by the fact that large values of f lead to a considerable loss of
digits in the series in (3). Typically, one has terms of the order of magnitude j f jl=l!
in (3) while the Vnm’s themselves are of the order of unity. Practically, the use of
the series in (3) is limited to a range like j f j � 5p, so that an axial range of the order
of typically ten focal depths can be handled.
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A similar problem was noted in [13] where the attention is limited to radially
symmetric aberrations. Here for the computation of the integrals

T2p;0 ¼

ð1
0

exp ðif�2Þ�2p J0ð2p�rÞ�d�; ð6Þ

the exp ðif�2Þ is expanded in powers of f so that the so-called generalized Jinc
functions,

JincnðuÞ ¼
1

u2nþ2

ðu

0

v2nþ1J0ðvÞdv; n ¼ 0; 1; . . . ; ð7Þ

appear, for which explicit finite Bessel series are given in [13]. Also in this case one
should limit f to a range like j f j � 5p.

In optical problems, axial excursions beyond the described limits are
frequently encountered, and we list here some examples:

(1) the self-imaging by periodic structures manifests itself far outside the focal
region;

(2) amplitude oscillations close to the geometrical boundary are encountered in
the Fresnel diffraction regime;

(3) certain optical problems use the fractional Fourier transform in which light
distributions occur that are intrinsically quite remote from the standard
Fraunhofer pattern;

(4) in optical recording, the extension to volumetric storage using several
recording layers in depth requires propagation of a focused beam through
several strongly defocused information layers.

In all these cases a reliable analytical method is required that allows the
calculation of strongly defocused, aberrated optical fields. In this paper it is
shown how the analysis developed in the framework of our extended Nijboer–
Zernike theory can be used to achieve this goal. Below we present the basic
features of our approach.

In [14] a method has been analysed to compute Lommel’s functions of two
variables without loss of digits (the first two Lommel functions can be expressed
in terms of T00 ¼ V00, see (2) and (6)). This method was developed by Nijboer
and Zernike [15, 16] and uses Bauer’s identity

exp ðif�2Þ ¼ exp 1
2
if

� �X1
k¼0

ð2k þ 1Þikjk
1
2

f
� �

R0
2k �ð Þ; ð8Þ

see [12], formula 10.1.47 on p. 440 (observe that R0
2kð�Þ ¼ Pkð2�

2 � 1Þ) or [11],
formula (10) on p. 534, with

jkðzÞ ¼
p
2z

� 	1=2
Jkþð1=2ÞðzÞ; k ¼ 0; 1; . . . ; ð9Þ

the spherical Bessel functions of the first kind, see [12], chap. 10. Applying (8) for
the computation of T00 in (6) we get

T00 ¼ exp ð1
2
if Þ

X1
k¼0

ð2k þ 1Þikjk
1
2

f
� � ð1

0

R0
2kð�ÞJ0ð2p�rÞ�d�: ð10Þ
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The remaining integrals are computed using the basic resultð1
0

Rm
n ð�ÞJmð2p�rÞ�d� ¼ ð�1Þðn�mÞ=2 Jnþ1ð2prÞ

2pr
ð11Þ

from the ‘classical’ Nijboer–Zernike theory, see [11], section 9.2, formula (9) on
p. 525. Due to certain bounds on the Bessel functions jkð

1
2

f Þ and Jnþ1ð2prÞ, it can be
shown, see [14], that the resulting method to compute T00 does not suffer from loss
of digits.

In this paper we extend themethod ofNijboer and Zernike to the computation of
the Vnm in (2). Thus we insert Bauer’s formula (8) into the integral at the right-hand
side of (2) and interchange integral and summation. Then one is faced with the
problem of writing products R0

2kRm
n as a linear combination of Zernike polynomials

with upper index m so as to be able to apply (11). This problem was attacked by
Nijboer in [15] for modest values of k, m, n by employing recursion formulas for the
Zernike polynomials. A systematic procedure for this does not seem to have been
devised byNijboer or thereafter (also see [11], top of p. 535, for this point). By using
results of the relatively recent modern theory of orthogonal polynomials, as can be
found in [17], sections 6.8 and 7.1, we are able to find finite series expressions, with
favourable properties from a computational point of view, for the coefficients
needed in the ‘linearization’ of the products R0

2kRm
n .

This paper has been organized as follows. In section 2 we present the main
result and its derivation, and we comment on the nature and magnitude of the
linearization coefficients that yield the main result. In section 3 we show how the
main result can be used to evaluate integrals Tnm of the type that occurs in (6). In
section 4 we briefly comment on how to extend the method to the computation of
integrals that occur in the case of high numerical aperture for which a vector
formalism as well as inclusion of the radiometric effect and the state of polarization
is required. In section 5 we present some examples and results of computations to
compare the new scheme with the one based on (3) and the one as follows from
the results in [13] for T2p;0.

We conclude this section with some comments on different approaches that can
be found in the literature. Formally, the phase factor in the diffraction integral is
proportional to the projection of the defocus distance onto the direction of the
plane wave contribution in the integral. In [1, 2], the evaluation of the diffraction
integral is carried out using numerical Fourier transform (FT) techniques, and the
effect of the phase factor is mitigated by intentionally introducing a compensating
quadratic phase factor that can be incorporated in the FT scheme. An analytic
approach to obtain stable expressions for strongly defocused fields is found in
[3, 4]. The radiometric effect encountered in the vectorial treatment of the
diffraction integral is integrated in the analysis by using a Fourier–Gegenbauer
expansion in [3]; along the same lines, the inclusion of circularly symmetric
aberrations in the diffraction integral is demonstrated in [4]. In both cases, the
field as a function of the distance from the geometrical focus is described in terms
of a series containing spherical Bessel functions. A quite different approach to treat
the various possible shapes of the radiometric effect function is described in [5].
The electromagnetic field in the aperture is matched by means of an expansion
in multipole far-field radiation patterns using spherical harmonics and the field
distribution in any defocused position is obtained by applying the known
propagation effects to the multipole distributions, involving again well-converging
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spherical Bessel functions with the geometrical distance from the focus as argu-
ment. In principle, more general aperture functions could be treated by this
method although the analysis in [5] is limited to smooth amplitude variations in the
aperture due to the considered radiometric functions.

In the light of these earlier approaches, our method has the following salient
features. It is analytic in nature and it conforms to the well-established practice
of expanding optical aberrations as a series involving Zernike polynomials. As
a result, it can be easily inserted into existing computational environments and
software packages. Moreover, our Zernike expansion solution covers both ampli-
tude and phase perturbations in the exit pupil of the optical system. Finally, the
separation of variables, see (1) and the main result in section 2, equation (26),
allows convenient computation of the diffraction pattern in polar coordinates (r; �)
per defocused plane ( f).

2. Main result
In this section we present the main result, see subsection 2.2 below, and its

proof. For the basic definitions and properties of the Zernike polynomials Rm
n we

refer to [11], section 9.2.1 and Appendix VIII. In particular, we have

Rm
mþ2pð�Þ ¼ �mPð0;mÞ

p ð2�2 � 1Þ ð12Þ

with P
ð�;�Þ
k the Jacobi polynomials in the notation and normalization as occurs in

[17, 18].

2.1. Linearization of products of Zernike polynomials

We present a result on linearization of products Rm1
n1

Rm2
n2

of Zernike polynomials
for which we develop some notation. We let for m; p; l; s1; s2 ¼ 0; 1; . . .

fm
ps ¼ ð�1Þ p�s 2s þ 1

p þ s þ 1

m þ p � s � 1

m � 1

� �
m þ p þ s

s

� 	. p þ s

s

� 	� �
s ¼ 0; . . . ; p;ð13Þ

gm
ul ¼

m þ 2l þ 1

m þ u þ l þ 1

m

u � l

� 	 u þ l

l

� ��
m þ l þ u

m þ l

� �� �
; u ¼ l; . . . ; l þ m; ð14Þ

bs1s2t ¼
2s1 þ 2s2 � 4t þ 1

2s1 þ 2s2 � 2t þ 1

As1�t At As2�t

As1þs2�t

� �
; t ¼ 0; . . . ;min ðs1; s2Þ; ð15Þ

where Ak ¼
2k

k

� �
. For m ¼ 0 we should read (13) and (14) as

f0ps ¼ �ps; g0ul ¼ �ul; ð16Þ

with � being Kronecker’s delta.
Now there is the following result. Let m1;m2; p1; p2 ¼ 0; 1; . . . . Then

Rm1

m1þ2p1
Rm2

m2þ2p2
¼

X
l

clR
m1þm2

m1þm2þ2l; ð17Þ

where the coefficients cl in (17) are given by

cl ¼
X

s1;s2;t

fm1
p1s1

fm2
p2s2

gm1þm2

s1þs2�2t;l; ð18Þ
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with the summation range in (18) giving all integer tuples ðs1; s2; tÞ with

0 � s1 � p1; 0 � s2 � p2; 0 � t � minðs1; s2Þ;

l � s1 þ s2 � 2t � l þ m1 þ m2: ð19Þ

Furthermore, there holds

cl � 0;
X

l

cl ¼ 1; ð20Þ

and cl 6¼ 0 only for l between max ð0; p1 � p2 � m2; p2 � p1 � m1Þ and p1 þ p2.
To prove this result we first note that we have from (12)

Rm1

m1þ2p1
ð�ÞRm2

m2þ2p2
ð�Þ ¼ �m1þm2Pð0;m1Þ

p1
ð2�2 � 1ÞPð0;m2Þ

p2
ð2�2 � 1Þ: ð21Þ

First we apply [17], Theorem 7.1.2 on p. 358 (with � ¼ 0, � ¼ m; � ¼ 0; n ¼ p,
k ¼ s) and find after some administration

Pð0;mÞ
p ¼

Xp

s¼0

fm
psP

ð0;0Þ
s : ð22Þ

Next we get from [17], Corollary 6.8.3 on p. 320 (with m ¼ s1, n ¼ s2),

Pð0;0Þ
s1

Pð0;0Þ
s2

¼
Xmin ðs1;s2Þ

t¼0

bs1s2t P
ð0;0Þ
s1þs2�2t: ð23Þ

Finally, we again apply [17], Theorem 7.1.2 on p. 358 (now with � ¼ 0, � ¼ 0;
� ¼ m; n ¼ u, k ¼ l) and find after some administration

P ð0;0Þ
u ¼

Xu

l¼u�m

gm
ulP

ð0;mÞ

l : ð24Þ

Then by (12) with m ¼ m1 þ m2 we get (17) with the cl given in (18) and a
summation range for l given in principle by 0; 1; . . . ; p1 þ p2.

The non-negativity of all cl’s and the fact that the cl’s vanish outside the claimed
l range is an immediate consequence of [19], Corollary 5.3. Finally,

P
l cl ¼ 1

follows from the fact that Rm
n ð � ¼ 1Þ ¼ 1 for all allowed values of n and m.

2.1.1. Notes
(1) The coefficients f , g, b as given in (13), (14) and (15) occur as expansion

coefficients of certain bounded functions (Rm
n ð�Þ has modulus �1 for all

�, 0 � � � 1, and all allowed n, m) with respect to an orthogonal set of
functions (with appropriate weight functions). They are therefore quite
small, and computation of the cl’s according to (18) and (19) hardly suffers
from loss of digits.

(2) It is unlikely that the triple series in (18) can be cast into a reasonably
simple closed form. In [20] there is given an explicit expression for the
coefficients dl in the expansion

P
ð�;�Þ
k1

P
ð�;�Þ
k2

¼
X

l

dlP
ð�;�Þ
l : ð25Þ
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While this may lead somewhat more directly to explicit formulas for the cl’s in
(17), it should be said that the expressions in [20] for the dl’s take more than
one page of explanation and involve the hypergeometric function 9F8. In fact,
we had serious trouble in checking the simple case � ¼ � ¼ 0, see (15) and
(23), from the general result in [20].

2.2. Bessel–Bessel series expression for Vnm

We now present the main result of this paper. Let n, m be integers � 0 with
n � m � 0 and even, and let p ¼ 1

2
ðn � mÞ, q ¼ 1

2
ðn þ mÞ. Then

Vnmðr; f Þ ¼ exp ð1
2
if Þ

X1
k¼0

ð2k þ 1Þikjkð
1
2

f Þ
Xkþp

l¼max ð0;k�q;p�kÞ

ð�1Þlwkl

Jmþ2lþ1ð2prÞ

2pr
; ð26Þ

where

wkl ¼
Xp

s¼0

Xmin ðk;sÞ

t¼0

fm
psbkstg

m
kþs�2t;l; ð27Þ

with f , b, g given in (13)–(15). In the special case that m ¼ 0 we have that

wk;kþp�2j ¼ bkpj; j ¼ 0; 1; . . . ;min ðk; pÞ; ð28Þ

while all other wkl vanish. Finally, all wkl � 0 and
P

l wkl ¼ 1.
To prove this result we start by using Bauer’s formula (8) and we obtain

Vnmðr; f Þ ¼ exp ð1
2
if Þ

X1
k¼0

ð2k þ 1Þikjkð
1
2

f Þ

ð1
0

R0
2kð�ÞR

m
n ð�ÞJmð2p�rÞ�d�: ð29Þ

Next we write

R0
2kRm

mþ2p ¼
X

l

wklR
m
mþ2l; ð30Þ

for which we use the result of subsection 2.1 with m1 ¼ 0, p1 ¼ k, m2 ¼ m, p2 ¼ p,
and then (11) and a fair amount of administration yields the result. Here it is useful
to note that for the index range in (19) we may restrict to s1 ¼ p1 ¼ k because
of (16).

We observe that, by analyticity, formula (26) remains valid when f is complex
(instead of real) so that (26) can be used in applications such as those described in
[9, 10].

We comment on the problem as to how many terms should be included in the
series over k in (26) to obtain a desired accuracy. First note that the number of
terms in the series over l is bounded by p þ q þ 1 ¼ n þ 1 and that wkl � 0,P

l wkl ¼ 1. For large k we may consider the case that m þ 2l þ 1 ¼ 2k þ 1 as
typical since 2k � n þ 1 � m þ 2l þ 1 � 2k þ n þ 1 when l is in the indicated range.
Thus we shall bound

jjkð
1
2

f Þj
2k þ 1

2pr
J2kþ1ð2prÞ










: ð31Þ
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It follows from [12], 10.1.50 on p. 440 and 9.1.62 on p. 362, and the elementary
inequality �ðk þ 3

2
Þ � ðk þ 1

2
Þ
1=2�ðk þ 1Þ that

jjkð
1
2
f Þj �

1

ð2k þ 1Þ1=2
min 1; ðp=2Þ1=2

jf=4jk

k!

� �
: ð32Þ

Furthermore, by [14], bottom of p. 234 and [12], 9.1.62 on p. 362, we have

2k þ 1

2pr
J2kþ1ð2prÞ










 � min 1;

ðprÞ2k

ð2kÞ!

� �
: ð33Þ

From the bounds (32) and (33), one can easily derive rules of thumb for the
truncation of the series over k when a specified accuracy is desired. These rules are
somewhat conservative since one can use instead of [12], 9.1.62 on p. 362, the
sharper but more complicated inequality 9.1.63 on p. 362. It is useful to note that,
due to the occurrence of the min-operand in (32) and (33), the product in (31) is
small whenever one of the factors is small. When, for instance, f ¼ 100 and k � 75
all quantities in (31) are less than 3�10�6, no matter how small or large r is. And
when f ¼ 100 and we include only 50 terms in the series over k, we still get
reasonably accurate results as long as we restrict to r’s with 2pr < 70.

3. Evaluation of Tnm

We shall show now how the integrals

Tnm ¼

ð1
0

�n exp ðif�2ÞJmð2p�rÞ�d� ð34Þ

with integer n;m � 0 such that n � m � 0 and even can be computed. In [6] the
Tnm have been studied and a series expansion of the type (3) has been derived for
them. Here we want formulas for the Tnm of the type as those presented in section
2. Write n ¼ m þ 2k with k ¼ 0; 1; . . . . Then we have

�mþ2k ¼
Xk

p¼0

hm
kpRm

mþ2pð�Þ; hm
kp ¼

m þ 2p þ 1

m þ p þ k þ 1

k

p

� ��
m þ k þ p

p

� �� �
; ð35Þ

a result that was announced in [6], formula (10), and proved in [8], Appendix A.
Accordingly, there holds

Tmþ2k;m ¼
Xk

p¼0

hm
kpVmþ2p;m; ð36Þ

so that the main result of section 2 applies directly. For the special case that m ¼ 0,
as was considered in [13], a simplification of the eventual computation scheme
occurs in accordance with (28).

An alternative method to obtain a stable computation scheme for an integral
Tmþ2p;m with p ¼ 0; 1; . . . ; is as follows. We have

Tmþ2p;m ¼
d

i df

� �p

Vmm; ð37Þ

while

Vmmðr; f Þ ¼
X1
k¼0

ð2k þ 1Þik exp 1
2
if

� �
jkð

1
2

f Þ
Xk

l¼max ð0;k�mÞ

ð�1Þlgm
kl

Jmþ2lþ1ð2prÞ

2pr
: ð38Þ
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We note here that when n ¼ m certain simplifications occur in (27). We are thus
left with the expressions

d

i df

� �p

½exp ð1
2
if Þjkð

1
2

f Þ�: ð39Þ

Using

jkðzÞ ¼
1

2
ð�iÞk

ð1
�1

exp ðiztÞPkðtÞdt; ð40Þ

with Pk ¼ P
ð0;0Þ
k the Legendre polynomial of degree k, one can write the expression

in (39) as a linear combination of exp ð1
2
if Þjkþvð

1
2

f Þ, with v ranging through all
integers between �min ðp; kÞ and p and explicitly given coefficients. The resulting
expression for Tm;mþ2p is of the same complexity as what one gets by using (36).

4. Extension to high-numerical aperture systems
In [8], the Nijboer–Zernike approach has been further extended so as to

include aberrated optical systems with high numerical aperture using a vectorial
diffraction formalism à la Ignatowsky/Richards and Wolf. The basic integrals to be
considered can then be expressed in terms of

ð1
0

�jjjRm
n ð�Þ exp ðif�

2ÞJmþjð2p�rÞ�d�; ð41Þ

see [8], formula (17) and the developments in [8], Appendix B. Here j ¼ �2, �1, 0,
1, 2. In [8] it has been indicated, through formulas (B30)–(B33), how the products
�jjj Rm

n ð�Þ can be written as a linear combination of at most jjj þ 1 Zernike poly-
nomials with upper index m þ j. Then we are in the situation of section 2 and we
can apply the main result directly.

5. Examples
In this section we compare the methods embodied by formulas (3)–(5) and by

the main result in subsection 2.2, respectively, for the computation of some Vnm’s
with respect to the ðr; f Þ range for which they produce accurate results. We do not
make a comparison of CPU times here, neither have we made any effort to
optimize the computer codes in this respect. Both formulas (3)–(5) and formulas
(26)–(27) are converted straightforwardly into computer codes, especially when
the available software environment allows accurate computation of high order
(spherical) Bessel functions. We shall also briefly compare the methods for
computation of Tnm’s.

5.1. Accuracy comparison for the Vnm-functions

The computation of the Vnm are in all cases carried out using 15 significant
decimal places. We write VPBS

nm (power Bessel series) and VBBS
nm (Bessel–Bessel

series) to indicate that Vnm has been computed by using formulas (3)–(5) and
formulas (26)–(27), respectively.

We first show that VPBS
nm and VBBS

nm produce the same results within the given
accuracy when f is small. The role of r is much less critical in this respect due to
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the bounds on the Bessel functions as in (33). Thus in figures 1, 2 and 3 we show

the real and imaginary parts of 2VPBS
nm , 2VBBS

nm as well as the intensities j2VPBS
nm j2,

j2VBBS
nm j2 and their absolute difference j2VPBS

nm j2 � j2VBBS
nm j2



 

 as a function of

v ¼ 2pr > 0 with f ¼ 0; 2; 4 for the cases that ðn;mÞ=ð0; 0Þ, ð8; 2Þ and ð23; 11Þ,
respectively. The factor 2 in front of the Vnm’s has been included to have

agreement with formula (1) which shows how the single aberrations

�nmRm
n ð�Þ cos m� contribute to the point-spread function U. We have chosen the

number Lmax of included terms in the series over l in (3) and over k in (26) to be

150. In view of the estimates (32)–(33) this is quite an overkill for the series in (26).

For the series in (3) this is an overkill as well: it follows from the analysis in [7],

Appendix B that the lth term has a maximum modulus (typically assumed for 2pr

near m) of the order 1
2
j f jl�1=l! or less.

We next consider V00 for large values of f , and in figure 4 we show the quantity

4 max
2pr�30

jVPBS
00 ðr; f Þj2 � jVBBS

00 ðr; f Þj2


 

 ð42Þ

as a function of f , 0 � f � 40. The terms in the series VPBS
00 have largest modulus

for l � f and r ¼ 0 of the order exp ðf Þ=2f ð2pf Þ1=2 while V00 itself has a modulus of
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Figure 1. The real and imaginary parts of 2VPBS
nm and 2VBBS

nm (upper figures) as well as the
intensities j2VPBS

nm j2 and j2VBBS
nm j2 (lower left-hand figure) as a function of v ¼ 2�r > 0

with f ¼ 0 (drawn lines) and f ¼ 4 (dotted lines). The PBS and BBS curves visually
coincide in these figures. In the lower right-hand figure, using a strongly different
vertical scale, the absolute intensity difference jj2VPBS

nm j2 � j2VBBS
nm j2j has been plotted.

In all figures the case ðn;mÞ ¼ ð0; 0Þ has been considered.
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Figure 3. Same legend as in figure 1, case ðn;mÞ ¼ ð23; 11Þ.
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Figure 2. Same legend as in figure 1, case ðn;mÞ ¼ ð8; 2Þ.
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the order 1=f . Accordingly, loss of digits in the computation of V00 as VPBS
00 occurs

according to a f= ln 10 law. Figure 4 seems to confirm this statement.

5.2. Strongly defocused fields

We have carried out a numerical experiment in a lithographic projection system
that leads to a large focal shift in the image plane. To this goal, we have introduced
a Fresnel zone plate pattern on the mask, comprising 5 zones, and corresponding
to an effective focal length of 5 mm at the image side. In the image plane, the
intensity distribution is strongly defocused and the sharp focus is only found at a
distance 5 mm beyond the paraxial image plane. In figure 5, left, a cross-section of
the radially symmetric intensity pattern has been given that contains the z axis. It
is clearly seen that the highest intensity is found at a shifted distance z � �5 mm.
In figure 5, right, the axial intensity has been plotted as a function of the axial z

coordinate, showing the same focal shift phenomenon due to the presence of the
zone plate structure.

We next show in figure 6 the quantity j2V00ðr; f Þj2 for the (very large) value of
f ¼ 100, in which we have used VBBS

00 , as a function of r. The estimates in (32)–(33)
show that it is sufficient to include some 100 terms in the series over k to guarantee
accuracy of the order 10�15. For large f there is the approximation

V00ðr; f Þ �
J0ð2prÞ exp ðif Þ � 1

2if
; ð43Þ
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Figure 4. The quantity (42) on a 10log-scale for 0 � f � 35.
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valid for relatively small r and shown to hold by partial integration, while

V00ðr; f Þ �
1

2pr1=2
exp ðpi=4Þ

ð1
0

exp ðif�2Þ exp ð�2pi�rÞ�1=2 d�

�

þ exp ð�pi=4Þ
ð1
0

exp ðif�2Þ exp ð2pi�rÞ�1=2 d�

�
; ð44Þ

valid for larger values of r and obtained by using the asymptotics
J0ðxÞ � ð2=pxÞ1=2 cos ðx � p=4Þ, x ! 1, in the integral representation of V00.
From (43)–(44) some of the observations that can be done in figure 6 can be
explained. In particular, the low-amplitude wrinkles on the decaying side of
j2V00ðr; f Þj2 around v ¼ 2pr ¼ 200 can be identified as an interference of the
(small) term on the second line of (44) and the (large) term on the first line.

5.3. Accuracy comparison for the Tnm functions

We conclude by presenting some comparisons of the methods to compute Tnm.
There is the power-Bessel series TPBS

nm of [6],

TPBS
nm ¼ exp ðif Þ

X1
l¼1

ð�2if Þl�1
Xp

j¼0

tlj

Jmþlþ2jð2prÞ

ð2prÞl
; ð45Þ

where p ¼ 1
2
ðn � mÞ, q ¼ 1

2
ðn þ mÞ and

tlj ¼ ð�1Þ j m þ l þ 2j

q þ 1

p

j

� �
m þ j þ l � 1

l � 1

� ��
q þ l þ j

q þ 1

� �� �
; l; j ¼ 0; 1; . . . : ð46Þ
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Figure 5. The simulation of a large defocusing by means of a Fresnel zone plate structure
in the object plane of a lithographic imaging system. Left-hand panel: an intensity
contour plot belonging to a cross-section that contains the z axis. The concentration
of intensity in the defocused position due to the action of the zone plate (z ¼ �5 mm) is
clearly visible. Right-hand panel: a plot of the axial intensity showing again the shifted
focal maximum at z ¼ �5 mm.
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Furthermore, there is the Bessel–Bessel series representation TBBS
nm of section 3

via the VBBS
nm . Finally, for the special case that m ¼ 0, n ¼ 2p, there is the

representation TCao
2p;0 as given by Cao in [13] via the Jinc functions in (7)

TCao
2p;0 ¼

X1
l¼0

ðif Þl

l!
Jincpþl ð2prÞ ¼

X1
l¼0

ðif Þl

l!

Xpþl

j¼0

ð�2Þj
ð p þ lÞ!

ð p þ l � jÞ!

Jjþ1ð2prÞ

ð2prÞ jþ1
: ð47Þ

The convergence properties of the two series in (45) and (47) are similar to those of
VPBS

nm ; in particular, the maximum modulus of the lth term in either series is of the
order j f jl�1=l! or less. As to TPBS

nm we refer for this matter to [7], Appendix B. For
TCao

2p;0 this is a consequence of the inequality jJincp ðuÞj � 1=2ðp þ 1Þ (equality if and
only if u ¼ 0) that was conjectured in [13] and that easily follows from the fact that
jJ0ðvÞj � 1 (equality if and only if v ¼ 0).

As an example we consider the case T8;0, for which we have the explicit result,
see (36),

T8;0 ¼
1

5
V0;0 þ

2

5
V2;0 þ

2

7
V4;0 þ

1

10
V6;0 þ

1

70
V8;0: ð48Þ

By producing the analogues of figure 1 with TPBS
8;0 and TCao

8;0 instead of VPBS
0;0 ,

respectively, and with TBBS
8;0 instead of VBBS

0;0 as reference, one can conclude
that TPBS

8;0 and TCao
8;0 are comparably accurate for relatively small values of f .
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Figure 6. The quantity j2V00ðr; f ¼ 100Þj2 as a function of r, 0 � r � 250.
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The behaviour of the various calculated T functions for larger values of f is shown

in figure 7. We have plotted the quantity

4 max
2pr�30

jTa
8;0ðr; f Þj2 � jTb

8;0ðr; f Þj2


 

 ð49Þ

as a function of f � 25. Three curves A, B and C have been produced with the

following settings:

(i) curve A: a=PBS; b=Cao;

(ii) curve B: a=BBS; b=Cao;

(iii) curve C: a=BBS; b=PBS.

Recalling the results from the preceding sections, we are allowed to take the values

calculated according to the Bessel–Bessel method (BBS) as the absolute reference

because of the guaranteed convergence of this method. The fact that curves A and

B virtually coincide shows that the PBS and BBS methods produce an equal

disparity with respect to the Cao method. The third curve, C, shows that the PBS

method is inaccurate at a level of 10�12 with respect to the absolutely accurate BBS

method. This permits us to conclude that the highly inaccurate results for large f

values of curves A and B can be imputted to the lack of convergence for larger f

values of the Cao method.
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Figure 7. The quantities (49) on a 10 log scale for 0 � f � 25. The curve with the circles
and the one with the squares (A and B in the text, respectively) virtually coincide. The
lower curve that has been labelled with the rhombs corresponds to case C in the text.
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Although all three methods TCao, TPBS, TBBS are easy to implement, it should
be said that TCao is the simplest in this respect, followed by TPBS. Thus, when a
10�10 accuracy level for intensity values of T8;0 is required, one can safely use TCao

up to f ¼ 10 and TPBS until f ¼ 25 while for values of f in excess of 25, it is
imperative to use TBBS.

6. Conclusion
A new analytic calculation method has been devised that solves the convergence

problem when computing strongly defocused aberrated diffraction patterns in the
extended Nijboer–Zernike theory. The resulting analytic expression contains an
expansion in terms of well-converging spherical Bessel functions for the axial
defocusing parameter and an expansion in Bessel functions of the first kind for
the lateral coordinate in the defocused plane. By this separation of the coordinates
in our solution, we directly obtain the diffraction pattern in a defocused plane in
terms of a set of polar coordinates in that plane. The accuracy of the so-called
Bessel–Bessel method is guaranteed to relative intensity values down to machine
precision due to the fact that the coefficients of the analytic series expansion are all
positive and bounded to the interval ½0; 1�. The desired accuracy is obtained by
using a simple truncation rule for the series expansion.

We have compared the new method with some of the existing ones and
concluded that the convergence of former methods (see [6, 7, 13], respectively)
is appropriate for a total axial defocusing range of typically ten focal depths. It is
shown that the new method is valid for all, including very large, defocusing values
so that calculations deep in the Fresnel regime yield reliable and accurate results.
The range is only limited by the practical calculation time, not by the convergence
of the calculation method. Because of its basic accuracy, the new method can also
be used to check numerical methods (e.g. Fourier transform methods) with respect
to the required sampling density for achieving a desired precision.
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