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ON THE COMPUTATIONAL COMPLEXITY OF
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University of California, Berkeley

We study the computational complexity of Markov chain Monte Carlo
(MCMC) methods for high-dimensional Bayesian linear regression under
sparsity constraints. We first show that a Bayesian approach can achieve
variable-selection consistency under relatively mild conditions on the design
matrix. We then demonstrate that the statistical criterion of posterior concen-
tration need not imply the computational desideratum of rapid mixing of the
MCMC algorithm. By introducing a truncated sparsity prior for variable se-
lection, we provide a set of conditions that guarantee both variable-selection
consistency and rapid mixing of a particular Metropolis–Hastings algorithm.
The mixing time is linear in the number of covariates up to a logarithmic
factor. Our proof controls the spectral gap of the Markov chain by construct-
ing a canonical path ensemble that is inspired by the steps taken by greedy
algorithms for variable selection.

1. Introduction. In many areas of science and engineering, it is common to
collect a very large number of covariates X1, . . . ,Xp in order to predict a response
variable Y . We are thus led to instances of high-dimensional regression, in which
the number of covariates p exceed the sample size n. A large literature has emerged
to address problems in the regime p ≫ n, where the ill-posed nature of the prob-
lem is addressed by imposing sparsity conditions—namely, that the response Y

depends only on a small subset of the covariates. Much of this literature is based
on optimization methods, where penalty terms are incorporated that yield both
convex [32] and nonconvex [8, 38] optimization problems. Theoretical analysis is
based on general properties of the design matrix and the penalty function.

Alternatively, one can take a Bayesian point of view on high-dimensional re-
gression, placing a prior on the model space and performing the necessary integra-
tion so as to obtain a posterior distribution [4, 11, 15]. Obtaining such a posterior
allows one to report a subset of possible models along with their posterior prob-
abilities as opposed to a single model. One can also report the marginal posterior

Received May 2015; revised September 2015.
1Supported in part by Office of Naval Research MURI Grant N00014-11-1-0688.
2Supported in part by National Science Foundation Grants CIF-31712-23800 and DMS-11-07000.
MSC2010 subject classifications. Primary 62F15; secondary 60J10.
Key words and phrases. High-dimensional inference, Bayesian variable selection, Markov chain,

spectral gap, rapid mixing.

2497

http://www.imstat.org/aos/
http://dx.doi.org/10.1214/15-AOS1417
http://www.imstat.org
http://www.ams.org/mathscinet/msc/msc2010.html


2498 Y. YANG, M. J. WAINWRIGHT AND M. I. JORDAN

probability of including each covariate. Recent work has provided some theoret-
ical understanding of the performance of Bayesian approaches to variable selec-
tion. In the moderate-dimension scenario (in which p is allowed to grow with
n but p ≤ n), Shang and Clayton [27] establish posterior consistency for vari-
able selection in a Bayesian linear model, meaning that the posterior probability
of the true model that contains all influential covariates tends to one as n grows.
Narisetty and He [25] consider a high-dimensional scenario in which p can grow
nearly exponentially with n; in this setting, they show the Bayesian spike-and-slab
variable-selection method achieves variable-selection consistency. Since this par-
ticular Bayesian method resembles a randomized version of ℓ0-penalized methods,
it could have better performance than ℓ1-penalized methods for variable selection
under high-dimensional settings [25, 28]. Empirical evidence for this conjecture is
provided by Guan et al. [12] for SNP selection in genome-wide association studies,
but it has not been confirmed theoretically.

The most widely used tool for fitting Bayesian models are sampling techniques
based on Markov chain Monte Carlo (MCMC), in which a Markov chain is de-
signed over the parameter space so that its stationary distribution matches the pos-
terior distribution. Despite its popularity, the theoretical analysis of the computa-
tional efficiency of MCMC algorithms lags that of optimization-based methods.
The central object of interest in such analyses is the mixing time of the Markov
chain, which characterizes the number of iterations required to converge to an ε-
distance of the stationary distribution from any initial configuration. In order for
MCMC algorithms to be controlled approximations, one must provide meaning-
ful bounds on the mixing time as a function of problem parameters such as the
number of observations and the dimensionality. Of particular interest is determin-
ing whether the chain is rapidly mixing, meaning that the mixing time grows at
most polynomially in the problem parameters, or slowly mixing, meaning that the
mixing time grows exponentially in the problem parameters. In the latter case, one
cannot hope to obtain approximate samples from the posterior in any reasonable
amount of time for large models.

Unfortunately, theoretical analysis of mixing time is comparatively rare in the
Bayesian literature and is dominated by negative results. On the positive side,
Jones and Hobert [16] consider a Bayesian hierarchical version of the one-way
random effects model, and obtain upper bounds on the mixing time of Gibbs and
block Gibbs samplers as a function of the initial values, data and hyperparame-
ters. Belloni and Chernozhukov [3] show that a Metropolis random walk is rapidly
mixing in the dimension for regular parametric models in which the posterior con-
verges to a normal limit. Schreck et al. [26] introduce a new MCMC method for
Bayesian variable selection in high dimensions, and show that the Markov chain is
geometrically ergodic. However, they do not provide an explicit characterization
of the geometric rate at which the Markov chain converges, and the rate may be
arbitrary close to one. It is more common to find negative results in the literature.
Examples include Mossel and Vigoda [24], who show that the MCMC algorithm
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for Bayesian phylogenetics takes exponentially long to reach the stationary distri-
bution as data accumulates and Woodard and Rosenthal [35], who analyze a Gibbs
sampler used for genomic motif discovery and show that the mixing time increases
exponentially as a function of the length of the DNA sequence.

The goal of the current paper is to study the computational complexity of
Metropolis–Hastings procedures for high-dimensional Bayesian variable selec-
tion. For concreteness, we focus our analysis on a specific hierarchical Bayesian
model for sparse linear regression, and an associated Metropolis–Hastings random
walk, but these choices should be viewed as representative of a broader family of
methods. In particular, we study the well-known Zellner g-prior for linear regres-
sion [37]. The main advantage of this prior is the simple expression that it yields
for the marginal likelihood, which is convenient in our theoretical investigations.
As in past analyses [25], we consider the marginal probability of including each
covariate into the model as being on the order of p−O(1). Moreover, we restrict
the support of the prior to rule out unrealistically large models. As a specific com-
putational methodology, we focus on an iterative, local-move and neighborhood-
based procedure for sampling from the model space, which is motivated by shot-
gun stochastic search [13].

It has been suggested by some statisticians that the mixing time for high-
dimensional Bayesian variable selection should be exponential, because the
Markov chain must eventually visit all possible models. Interesting, our work
shows that this plausible argument is misleading. First, although the state space
contains exponentially many models, each of them can be reached from one an-
other in at most p transition steps. Second, different models may share common
covariates and are not independently structured. Therefore, it is possible for the
Markov chain to quickly identify a highest posterior region without visiting all
the models. Our main contribution in this paper is to provide conditions under
which Bayesian posterior consistency holds, and moreover, when the mixing time
grows linearly (up to a logarithmic factor) in the dimension p, implying that the
chain is rapidly mixing. As a by-product, we provide conditions on the hyperpa-
rameter g to achieve model-selection consistency. We also provide a counterex-
ample to illustrate that although ruling out unrealistically large models is not nec-
essary for achieving variable-selection consistency, it is necessary in order that
the Metropolis–Hastings random walk is rapidly mixing. To be clear, while our
analysis applies to a fully Bayesian procedure for variable selection, it is based on
a frequentist point of view in assuming that the data are generated according to a
true model.

There are a number of challenges associated with characterizing the computa-
tional complexity of Markov chain methods for Bayesian models. First, the pos-
terior distribution of a Bayesian model is usually a much more complex object
than the highly structured distributions of statistical physics for which meaningful
bounds on the Markov chain mixing times are often obtained (e.g., [5, 20, 22]).
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Second, the transition probabilities of the Markov chain are themselves stochas-
tic, since they depend on the underlying data-generating process. In order to ad-
dress these challenges, our analysis exploits asymptotic properties of the Bayesian
model to characterize the typical behavior of the Markov chain. We show that
under conditions leading to Bayesian variable-selection consistency, the Markov
chain over the model space has a global tendency of moving toward the true data-
generating model, even though the posterior distribution can be highly irregular.
In order to bound the mixing time, we make use of the canonical path technique
developed by Sinclair [29, 30] and Diaconis and Stroock [7]. More precisely, the
particular canonical path construction used in our proof is motivated by examining
the solution path of stepwise regression procedures for linear model selection (e.g.,
[1, 39]), where a greedy criterion is used to decide at each step whether a covariate
is to be included or deleted from the curent model.

Overall, our results reveal that there is a delicate interplay between the statisti-
cal and computational properties of Bayesian models for variable selection. On the
one hand, we show that concentration of the posterior is not only useful in guar-
anteeing desirable statistical properties such as model-selection consistency, but
they also have algorithmic benefits in certifying the rapid mixing of the Markov
chain methods designed to draw samples from the posterior. On the other hand,
we show that posterior consistency on its own is not sufficient for rapid mixing, so
that algorithmic efficiency requires somewhat stronger conditions.

The remainder of this paper is organized as follows. Section 2 provides back-
ground on the Bayesian approach to variable selection, as well as Markov chain
algorithms for sampling and techniques for analysis of mixing times. In Section 3,
we state our two main results (Theorems 1 and 2) for a class of Bayesian models
for variable selection, along with simulations that illustrate the predictions of our
theory. Section 4 is devoted to the proofs of our results, with many of the tech-
nical details deferred to the appendices in the Supplement ([36]). We conclude in
Section 5 with a discussion.

2. Background and problem formulation. In this section, we introduce
some background on the Bayesian approach to variable selection, as well some
background on Markov chain algorithms for sampling and techniques for analyz-
ing their mixing times.

2.1. Variable selection in the Bayesian setting. Consider a response vector
Y ∈ R

n and a design matrix X ∈ R
n×p that are linked by the standard linear model

Y = Xβ∗ + w where w ∼N
(

0, σ 2
0 In

)

,(1)

and β∗ ∈ R
p is the unknown regression vector. Based on observing the pair (Y,X),

our goal is to recover the support set of β∗—that is, to select the subset of covari-
ates with nonzero regression weights, or more generally, a subset of covariates
with absolute regression weights above some threshold.
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In generic terms, a Bayesian approach to variable selection is based on first im-
posing a prior over the set of binary indicator vectors, and then using the induced
posterior [denoted by π(γ |Y)] to perform variable selection. Here, each binary
vector γ ∈ {0,1}p should be thought of as indexing the model which involves only
the covariates indexed by γ . We make use of the shorthand |γ | = ∑p

j=1 γj corre-
sponding to the number of nonzero entries in γ , or the number of active covariates
in the associated model. It will be convenient to adopt a dualistic view of γ as both
a binary indicator vector, and as a subset of {1, . . . , p}. Under this identification,
the expression γ ⊂ γ ′ for a pair of inclusion vectors (γ, γ ′) can be understood as
that the subset of variables selected by γ is contained in the subset of variables
selected by γ ′. Similarly, it will be legitimate to use set operators on those indi-
cator vectors, such as γ ∩ γ ′, γ ∪ γ ′ and γ \ γ ′. Using this interpretation, we let
Xγ ∈ R

n×|γ | denote the submatrix formed of the columns indexed by γ , and we
define the subvector βγ ∈ R

|γ | in an analogous manner. We make use of this no-
tation in defining the specific hierarchical Bayesian model analyzed in this paper,
defined precisely in Section 3.1 to follow.

2.2. MCMC algorithms for Bayesian variable selection. Past work on MCMC
algorithms for Bayesian variable selection can be divided into two main classes—
Gibbs samplers (e.g., [11, 15, 25]) and Metropolis–Hastings random walks (e.g.,
[12, 13]). In this paper, we focus on a particular form of Metropolis–Hastings
updates.

In general terms, a Metropolis–Hastings random walk is an iterative and local-
move-based procedure involving three steps:

Step 1. Use the current state γ to define a neighborhood N (γ ) of proposal
states.

Step 2. Choose a proposal state γ ′ in N (γ ) according to some probability dis-
tribution S(γ, ·) over the neighborhood; for example, the uniform distribution.

Step 3. Move to the new state γ ′ with probability R(γ, γ ′), and stay in the
original state γ with probability 1 − R(γ, γ ′), where the acceptance ratio is given
by

R
(

γ, γ ′) := min
{

1,
πn(γ

′|Y)S(γ ′, γ )

πn(γ |Y)S(γ, γ ′)

}

.(2)

In this way, for any fixed choice of the neighborhood structure N (γ ), we obtain a
Markov chain with transition probability given by

PMH
(

γ, γ ′) =

⎧

⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎩

S
(

γ, γ ′)R
(

γ, γ ′), if γ ′ ∈ N (γ ),

0, if γ ′ /∈ N (γ ) ∪ {γ } and

1 −
∑

γ̃ �=γ

PMH(γ, γ̃ ), if γ ′ = γ .
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The specific form of Metropolis–Hastings update analyzed in this paper is ob-
tained by randomly selecting one of the following two schemes to update γ , each
with probability 0.5.

Single flip update: Choose an index j ∈ [p] uniformly at random, and form the
new state γ ′ by setting γ ′

j = 1 − γj .
Double flip update: Define the subsets S(γ ) = {j ∈ [p]|γj = 1} and let

Sc(γ ) = {j ∈ [p]|γj = 0}. Choose an index pair (k, ℓ) ∈ S(γ ) × Sc(γ ) uniformly
at random, and form the new state γ ′ by flipping γk from 1 to 0 and γℓ from 0 to 1.
[If the set S(γ ) is empty, then we do nothing.]

This scheme can be understood as a particular of the general Metropolis–Hastings
scheme in terms of a neighborhood N (γ ) to be all models γ ′ that can be obtained
from γ by either changing one component to its opposite (i.e., from 0 to 1, or from
1 to 0) or switching the values of two components with different values.

Let dH (γ, γ ′) = ∑p
j=1 I(γj �= γ ′

j ) denote the Hamming distance between γ and
γ ′. With this notation, the overall neighborhood is given by the union N (γ ) :=
N1(γ ) ∪N2(γ ), where

N1(γ ) :=
{

γ ′|dH

(

γ ′, γ
)

= 1
}

, and

N2(γ ) :=
{

γ |dH

(

γ ′, γ
)

= 2, and

∃(k, ℓ) ∈ S(γ ) × Sc(γ ) s.t. γ ′
k = 1 − γk and γ ′

ℓ = 1 − γℓ

}

.

The transition matrix of the previously described Metropolis–Hastings scheme
takes the form

PMH
(

γ, γ ′)

(3)

=

⎧

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎩

1

2p
min

{

1,
πn(γ

′|Y)

πn(γ |Y)

}

, if γ ′ ∈N1(γ ),

1

2|S(γ )||Sc(γ )|
min

{

1,
πn(γ

′|Y)

πn(γ |Y)

}

, if γ ′ ∈N2(γ ),

0, if dH

(

γ ′, γ
)

> 2 and

1 −
∑

γ̃ �=γ

PMH(γ, γ̃ ), if γ ′ = γ .

2.3. Background on mixing times. Let C be an irreducible, aperiodic Markov
chain on the discrete state space M , and described by the transition probabil-
ity matrix P ∈ R

|M |×|M | with stationary distribution π . We assume through-
out that C is reversible; that is, it satisfies the detailed balance condition
π(γ )P(γ, γ ′) = π(γ ′)P(γ ′, γ ) for all γ, γ ′ ∈ M . It is easy to see that the pre-
viously described Metropolis–Hastings matrix PMH satisfies this reversibility con-
dition. It is convenient to identify a reversible chain with a weighted, undirected
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graph G on the vertex set M , where two vertices γ and γ ′ are connected if and
only if the edge weight Q(γ, γ ′) := π(γ )P(γ, γ ′) is strictly positive.

For γ ∈ M and any subset S ⊆ M , we write P(γ, S) =
∑

γ ′∈S P(γ, γ ′). If γ

is the initial state of the chain, then the total variation distance to the stationary
distribution after t iterations is

�γ (t) =
∥
∥Pt (γ, ·) − π(·)

∥
∥

TV := max
S⊂M

∣
∣Pt (γ, S) − π(S)

∣
∣.

The ε-mixing time is given by

τε := max
γ∈M

min
{

t ∈ N|�γ

(

t ′
)

≤ ε for all t ′ ≥ t
}

,(4)

which measures the number of iterations required for the chain to be within dis-
tance ε ∈ (0,1) of stationarity. The efficiency of the Markov chain can be measured
by the dependence of τε on the difficulty of the problem, for example, the dimen-
sion of the parameter space and the sample size. In our case, we are interested
in the dependence of τε on the covariate dimension p and the sample size n. Of
particular interest is whether the chain is rapidly mixing, meaning that the mixing
time grows at most polynomially in the pair (p,n), or slowly mixing, meaning that
the mixing time grows exponentially.

3. Main results and their consequences. The analysis of this paper applies
to a particular family of hierarchical Bayes models for variable selection. Accord-
ingly, we begin by giving a precise description of this family of models, before
turning to statements of our main results and a discussion of their consequences.
Our first result (Theorem 1) provides sufficient conditions for posterior concen-
tration, whereas our second result (Theorem 2) provides sufficient conditions for
rapid mixing of the Metropolis–Hastings updates.

3.1. Bayesian hierarchical model for variable selection. In addition to the
standard linear model (1), the Bayesian hierarchical model analyzed in this pa-
per involves three other ingredients: a prior over the precision parameter φ (or
inverse noise variance) in the linear observation model, a prior on the regression
coefficients and a prior over the binary indicator vectors. More precisely, it is given
by

Mγ : Linear model: Y = Xγ βγ + w, w ∼ N
(

0, φ−1In

)

,(5a)

Precision prior: π(φ) ∝
1

φ
,(5b)

Regression prior: (βγ |γ ) ∼ N
(

0, gφ−1(XT
γ Xγ

)−1)
,(5c)

Sparsity prior: π(γ ) ∝
(

1

p

)κ|γ |
I[|γ | ≤ s0].(5d)
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For each model Mγ , there are three parameters to be specified: the integer s0 < n

is a prespecified upper bound on the maximum number of important covariates,
the hyperparameter g > 0 controls the degree of dispersion in the regression prior,
and the hyperparameter κ > 0 penalizes models with large size. For a given integer
s0 ∈ {1, . . . , p}, we let M (s0) = {Mγ ||γ | ≤ s0} the class of all models involving
at most s0 covariates.

Let us make a few remarks on our choice of Bayesian model. First, the choice
of covariance matrix in the regression prior—namely, involving XT

γ Xγ —is made
for analytical convenience, in particular to simplify the posterior. A more realistic
choice would be the independence prior

βγ |γ ∼ N
(

0, gφ−1I|γ |
)

.

However, the difference between the impacts on the posterior of these choices will
be negligible when g ≫ n, which, as shown by our theoretical analysis, is the
regime under which the posterior is well-behaved. Another popular choice for the
prior of βγ is the spike-and-slab prior [15], where for each covariate Xj , one spec-
ifies the marginal prior for βj as a mixture of two normal distributions, one with
a substantially larger variance than the other, and γj can be viewed as the latent
class indicator for this mixture prior. Our primary motivation in imposing Zellner’s
g-prior is in order to streamline the theoretical analysis: it leads to an especially
simple form of the marginal likelihood function. However, we note that our conclu-
sions remain valid under essentially the same conditions when the independence
prior or the spike-and-slab prior is used, but with much longer proofs. The sparsity
prior on γ is similar to the prior considered by Narisetty and He [25] and Castillo
et al. [6]. The p−κ decay rate for the marginal probability of including each co-
variate imposes a vanishing prior probability on the models of diverging sizes. The
only difference is that we impose a constraint |γ | ≤ s0 to rule out models with too
many covariates. As will be clarified in the sequel, while this additional constraint
is not needed for Bayesian variable-selection consistency, it is necessary for rapid
mixing of the MCMC algorithm that we analyze.

Recall from our earlier set-up that the response vector Y ∈ R
n is generated from

the standard linear model Y = Xβ∗ + w, where w ∼ N (0, σ 2
0 In), β∗ ∈ R

p is the
unknown regression vector, and σ0 the unknown noise standard deviation. In rough
terms, the goal of variable selection is to determine the subset S of “influential”
covariates. In order to formalize this notion, let us fix a constant Cβ > 0 depending
on (σ0, n,p) that quantifies the minimal signal size requirement for a covariate to
be “influential.” We then define S = S(Cβ) to consist of the indices with relatively
large signal—namely

S :=
{

j ∈ [p]|
∣
∣β∗

j

∣
∣ ≥ Cβ

}

,(6)

and our goal is to recover this subset. Thus, the “noninfluential” coefficients β∗
Sc

are allowed to be nonzero, but their magnitudes are constrained.
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We let γ ∗ be the indicator vector that selects the influential covariates, and let
s∗ := |γ ∗| be the size of the corresponding “true” model Mγ ∗ . Without loss of
generality, we may assume that the first s∗ components of γ ∗ are ones, and the rest
are zeros. We assume throughout this section that we are in the high-dimensional
regime where p ≥ n, since the low-dimensional regime where n < p is easier to
analyze. For any symmetric matrix Q, let λmin(Q) and λmax(Q) denote its smallest
and largest eigenvalues. Our analysis involves the following assumptions:

ASSUMPTION A (Conditions on β∗). The true regression vector has compo-
nents β∗ = (β∗

S , β∗
Sc) that satisfy the bounds

Full β∗ condition:
∥
∥
∥
∥

1√
n
Xβ∗

∥
∥
∥
∥

2

2
≤ gσ 2

0
logp

n
,(7a)

Off-support Sc condition:
∥
∥
∥
∥

1√
n
XScβ∗

Sc

∥
∥
∥
∥

2

2
≤ L̃σ 2

0
logp

n
,(7b)

for some L̃ ≥ 0.
In the simplest case, the true regression vector β∗ is S-sparse (meaning that

β∗
Sc = 0), so that the off-support condition holds trivially. As for the full β∗ condi-

tion, it is known [27] that some form of upper bound on the norm ‖β∗‖2 in terms
of the g-hyperparameter is required in order to prove Bayesian model selection
consistency. The necessity of such a condition is a manifestation of the so-called
information paradox of g-priors [21].

Our next assumption involves an integer parameter s, which is set either to a
multiple of the true sparsity s∗ (in order to prove posterior concentration) or the
truncated sparsity s0 (in order to prove rapid mixing).

ASSUMPTION B (Conditions on the design matrix). The design matrix has
been normalized so that ‖Xj‖2

2 = n for all j = 1, . . . , p; moreover, letting Z ∼
N(0, In), there exist constants ν ∈ (0,1] and L < ∞ such that Lν ≥ 4 and

Lower restricted eigenvalue
(

RE(s)
)

:

min
|γ |≤s

λmin

(
1

n
XT

γ Xγ

)

≥ ν and

(7c)
Sparse projection condition

(

SI(s)
)

:

EZ

[

max
|γ |≤s

max
k∈[p]\γ

1√
n

∣
∣
〈

(I − �γ )Xk,Z
〉∣
∣

]

≤
1

2

√

Lν logp,

where �γ denotes projection onto the span of {Xj , j ∈ γ }.
The lower restricted eigenvalue condition is a mild requirement, one that plays

a role in the information-theoretic analysis of variable selection [33]. On the other
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hand, the sparse projection condition can always be satisfied by choosing L =
O(s0). To see this, notice that 1√

n
‖(I − �γ )Xk‖ ≤ 1 and there are at most ps0

different choice of distinct pair (γ, k). Therefore, by the Gaussianity of gG, the
sparse projection condition always holds with L = 4ν−1s0. On the other extreme,
if the design matrix X has orthogonal columns, then (I − �γ )Xk = Xk . As a
consequence, due to the same argument, the sparse projection condition holds with
L = 4ν−1, which depends neither on s∗ nor on s0.

ASSUMPTION C (Choices of prior hyperparameters). The noise hyperparam-
eter g and sparsity penalty hyperparameter κ ≥ 2 are chosen such that

g ≍ p2α for some α ≥ 1/2 and κ + α ≥ 4(L + L̃) + 2.(7d)

In the low-dimensional regime, p = o(n), the g-prior with either the unit informa-
tion prior g = n, or the choice g = max{n,p2} have been recommended [9, 17, 31].
In the intermediate regime where p = O(n), Sparks et al. [31] show that g must
grow faster than p logp/n for the Bayesian linear model without variable selec-
tion to achieve posterior consistency. These considerations motivate us to choose
the hyperparameter for the high-dimensional setting as g ≍ p2α for some α > 0,
and our theory establishes the utility of this choice.

ASSUMPTION D (Sparsity control). One of the two following conditions
holds:

Version D(s∗): We set s0 := p in the sparsity prior (5d), and the true sparsity s∗

is bounded as max{1, s∗} ≤ 1
32{ n

logp
− 8L̃}.

Version D(s0): The sparsity parameter s0 in the prior (5d) satisfies the sandwich
relation

max
{

1,
(

2ν−2ω(X) + 1
)

s∗} ≤ s0 ≤
1

32

{
n

logp
− 8L̃

}

,(7e)

where ω(X) := maxγ∈M |||(XT
γ Xγ )−1XT

γ Xγ ∗\γ |||2
op

.

Assumptions A, B, C and D are a common set of conditions assumed in the ex-
isting literature (e.g., [25, 27]) for establishing Bayesian variable-selection consis-
tency; that is, the posterior probability of the true model πn(γ

∗|Y) → 1 as n → ∞.

3.2. Sufficient conditions for posterior consistency. Our first result character-
izes the behavior of the (random) posterior πn(·|Y). As we mentioned in Sec-
tion 2.1, Bayesian variable-selection consistency does not require that the sparsity
prior (5d) be truncated at some sparsity level much less than p, so that we analyze
the hierarchical model with s0 = p, and use the milder Assumption D(s∗). The
reader should recall from equation (6) the threshold parameter Cβ that defines the
subset S = S(Cβ) of influential covariates. In the rest of the paper, we use c and
cj (j = 0,1, . . .) to denote universal constants.
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THEOREM 1 (Posterior concentration). Suppose that Assumptions A, B with

s = 2(κ +α + L̃+ 1)max{1, s∗}, Assumption C and Assumption D(s∗) hold. If the

threshold Cβ satisfies

C2
β ≥ 128ν−2(L + L̃ + α + κ)σ 2

0
logp

n
,(8)

then we have πn(γ
∗|Y) ≥ 1 − c1p

−1 with probability at least 1 − c2p
−c3 . Here,

the probability is with respect to the data-generating process.

The threshold condition (8) requires the set of influential covariates to have
reasonably large magnitudes; this type of signal-to-noise condition is needed for
establishing variable-selection consistency of any procedure [33]. We refer to it as
the βmin-condition in the rest of the paper. Due to the mildness of Assumption A
(conditions on β∗), the claim in the theorem holds even when the true model is not
exactly sparse: Assumption A allows the residual β∗

Sc to be nonzero as long as it
has small magnitude.

It is worth noting that the result of Theorem 1 covers two regimes, correspond-
ing to different levels of signal-to-noise ratio. More precisely, it is useful to isolate
the following two mutually exclusive possibilities:

High SNR: S =
{

j ∈ [p]|β∗
j �= 0

}

and
(9a)

min
j∈S

∣
∣β∗

j

∣
∣
2 ≥ 128ν−2(α + κ + L)σ 2

0
logp

n
,

Low SNR: S =∅ and
∥
∥
∥
∥

1√
n
Xβ∗

∥
∥
∥
∥

2

2
≤

(
α + κ − 2

4
− L

)

σ 2
0

logp

n
.(9b)

In terms of the parameter L̃ in Assumption A, the high SNR regime corresponds
to L̃ = 0, whereas the low SNR regime corresponds to L̃ = α+κ−2

4 − L. The intu-
ition for the low SNR setting is that the signal in every component is so weak that
the “penalty” induced by hyperparameters (g, κ) completely overwhelms it. The-
orem 1 guarantees that the posterior concentrates around the model Mγ ∗ under the
high SNR condition, and around the null model Mγ0 under the low SNR condition.
More precisely, we have the following.

COROLLARY 1. Under the conditions of Theorem 1, with probability at least

1 − c2p
−c3 :

(a) Under the high SNR condition (9a), we have πn(γ
∗|Y) ≥ 1 − c1p

−1.
(b) Conversely, under the low SNR condition (9b), the posterior probability of

the null model is lower bounded as πn(γ0|Y) ≥ 1 − c1p
−1.



2508 Y. YANG, M. J. WAINWRIGHT AND M. I. JORDAN

Corollary 1 provides a complete characterization of the high or low SNR
regimes, but it does not cover the intermediate regime in which some component
β∗

j of β∗ is sandwiched as
(

α + κ − 2

4
− L

)

σ 2
0

logp

n
≤

∣
∣β∗

j

∣
∣
2 ≤ 128ν−2(α + κ + L)σ 2

0
logp

n
.(10)

On the one hand, Theorem 1 still guarantees a form of Bayesian variable selec-
tion consistency in this regime. However, the MCMC algorithm for sampling from
the posterior can exhibit slow mixing due to multimodality in the posterior. In
Appendix A.2 of the Supplement, we provide a simple example that satisfies the
conditions of Theorem 1, so that posterior consistency holds, but the Metropolis–
Hastings updates have mixing time growing exponentially in p. Our proof shows
that multimodality mostly occurs in the region of large models, for example, those
completely overfitted models that contain n covariates. This fact motivates us to
modify the prior by assigning zero prior probabilities to large models that usually
receive exponentially small posterior probabilities. This example reveals a phe-
nomenon that might seem counter-intuitive at first sight: sharp concentration of
the posterior distribution need not lead to rapid mixing of the MCMC algorithm.

3.3. Sufficient conditions for rapid mixing. With this distinction in mind, we
now turn to developing sufficient conditions for Metropolis–Hastings scheme (3)
to be rapidly mixing. As discussed in Section 2, this rapid mixing ensures that the
number of iterations required to converge to an ε-ball of the stationary distribution
grows only polynomially in the problem parameters. The main difference in the
conditions is that we now require Assumption B—the RE and sparse projection
conditions—to hold with parameter s = s0, as opposed to with the possibly much
smaller parameter s = 2(κ + α + L̃ + 1)max{1, s∗} involved in Theorem 1.

THEOREM 2 (Rapid mixing guarantee). Suppose that Assumptions A, B with

s = s0, Assumption C, and Assumption D(s0) all hold. Then under either the high

SNR condition (9a) or the low SNR condition (9b), for any ε ∈ (0,1), the ε-mixing

time of the Metropolis–Hastings chain (3) is upper bounded as

τε ≤ 12ps2
0
(

(αn + αs0 + 2κs0) logp + log(1/ε) + log 2
)

(11)

with probability at least 1 − c3p
−c4 .

According to our previous definition (4) of the mixing time, Theorem 2 charac-
terizes the worst case mixing time, meaning the number of iterations when start-
ing from the worst possible initialization. If we start with a good initial state, for
example, the true model γ ∗ would be an appealing though impractical choice,
then we can remove the logp term in the upper bound (11). In this way, the term
12ps2

0(αn+αs0 +2κs0) logp can be understood as the worst-case number of iter-
ations required in the burn-in period of the MCMC algorithm. In practice, we may
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choose a good frequentist point estimator such as the LASSO [32] as the initial
state.

Theorems 1 and 2 lead to the following corollary, stating that after
O(αns2

0p logp) iterations, the MCMC algorithm will output γ ∗ with high proba-
bility.

COROLLARY 2. Under the conditions of Theorem 2, for any fixed iteration

number t such that

t ≥ 12ps2
0
(

(αn + αs0 + 2κs0 + 1) logp + log 2
)

,

the iterate γt from the MCMC algorithm matches γ ∗ with probability at least 1 −
c3p

−c4 .

As with Corollary 1, Theorem 2 does not characterize the intermediate regime
in which some component β∗

j of β∗ satisfies the sandwich inequality (10). Based
on our simulations, we suspect that the Markov chain might be slowly mixing in
this regime, but we do not have a proof of this statement. The following heuristic
argument provides some support for this conjecture: without the βmin condition,
it is possible that all nonzero β∗

j have equally small magnitudes but as a whole
exhibits a large signal. Then since the sparse penalty keeps dominating the in-
cremental signal from adding one of the nonzero β∗

j into the model until a large
portion of nonzero β∗

j have been added, there is an exponential posterior proba-
bility gap between the null model γ0 and the true model γ ∗ = {j : β∗

j �= 0}. As a
consequence, unless the Markov chain is allowed to add a large portion of nonzero
β∗

j at a time, it takes exponentially long to move across this gap. However, even
adding a large portion at a time is allowed, it may take exponentially many steps
to find a specific subset without any prior knowledge by random sampling.

3.4. Illustrative simulations. In order to illustrate the predictions of Theo-
rem 2, we conducted some simulations. We also provide an example for which
a frequentist method such as the Lasso fails to perform correct variable selection
while our Bayesian method succeeds.

3.4.1. Comparison of mixing times. In order to study mixing times and their
dependence on the model structure, we performed simulations for linear models
with random design matrices, formed by choosing row xi ∈ R

p i.i.d. from a mul-
tivariate Gaussian distribution. In detail, setting the noise variance σ 2

0 = 1, we
considered two classes of linear models with random design matrices X ∈ R

n×p ,
in each case formed with i.i.d. rows xi ∈R

p:

Independent design: Y ∼ N
(

Xβ∗, σ 2
0 In

)

with xi ∼ N (0, Ip) i.i.d.;

Correlated design: Y ∼ N
(

Xβ∗, σ 2
0 In

)

with xi ∼ N (0,�) i.i.d.

and �jk = e−|j−k|.
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In all cases, we choose a design vector β∗ ∈ R
p with true sparsity s∗ = 10, taking

the form

β∗ = SNR

√

σ 2
0 logp

n
(2,−3,2,2,−3,3,−2,3,−2,3,0, . . . ,0)T ∈ R

p,

where SNR > 0 is a signal-to-noise parameter. Varying the parameter SNR al-
lows us to explore the behavior of the chains when the model lies on the bound-
ary of the βmin-condition. We performed simulations for the SNR parameter
SNR ∈ {0.5,1,2,3}, sample sizes n ∈ {300,900}, and number of covariates p ∈
{500,5000}. In all cases, we specify our prior model by setting the dispersion hy-
perparameter g = p3 and the expected maximum model size s0 = 100.

Figure 1 plots the typical trajectories of log-posterior probability versus the
number of iterations of the Markov chain under the independent design. In the
strong signal regime (SNR = 3), the true model receives the highest posterior
probability, and moreover the Metropolis–Hastings chain converges rapidly to sta-
tionarity, typically within 3p iterations. This observation is confirmation of our
theoretical prediction of the behavior when all nonzero components in β∗ have
relative high signal-to-noise ratio (S = {j : βj �= 0}). In the intermediate signal
regime (SNR = 1), Bayesian variable-selection consistency typically fails to hold,
and here, we find that the chain converges even more quickly to stationarity, typi-
cally within 1.5p iterations. This observation cannot be fully explained by our the-
ory. A simulation to follow using a correlated design shows that it is not a robust

FIG. 1. Log-posterior probability versus the number of iterations (divided by the number of co-

variates p) of 100 randomly initialized Markov chains with n = 500, p = 1000 and SNR ∈ {1,3} in

the independent design. In all cases, each grey curve corresponds to one trajectory of the chain (100
chains in total). Half of the chains are initialized at perturbations of the null model and half the true

model. (a) Weak signal case: SNR = 1. (b) Strong signal case: SNR = 3 (the posterior probability of

the true model coincides with that of the highest probability model).
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phenomenon: the chain can have poor mixing performance in this intermediate
signal regime when the design is sufficiently correlated.

In order to gain further insight into the algorithm’s performance, for each pair
{X,Y } we ran the Metropolis–Hastings random walk based on six initializations:
the first three of them are random perturbations of the null model, whereas the
remaining three are the true model. We made these choices of initialization because
our empirical observations suggest that the null model and the true model tend to
be near local modes of the posterior distribution. We run the Markov chain for 20p

iterations and use the Gelman–Rubin (GR) scale factor [10] to detect whether the
chains have reached stationarity. More precisely, we calculate the GR scale factor
for the coefficient of determination summary statistics

R2
γ =

Y T �γ Y

‖Y‖2
2

for γ ∈ {0,1}p,

where �γ denotes the projection matrix onto the span of {Xj , j ∈ γ }. Since the
typical failing of convergence to stationarity is due to the multimodality of the
posterior distribution, the GR scale factor can effectively detect the problem. If
the chains fail to converge, then the GR scale factor will be much larger than 2;
otherwise, the scale factor should be close to 1. Convergence of the chain within at
most 20p iterations provides empirical confirmation of our theoretical prediction
that the mixing time grows at most linearly in the covariate dimension p. (As will
be seen in our empirical studies, the sample size n and s0 have little impact on the
mixing time, as long as s0 remains small compared to n.)

We report the percentage of simulated datasets for which the GR scale factor
from six Markov chains is less than 1.5 (success). Moreover, to see whether the
variable-selection procedure based on the posterior is consistent, we also compute
the difference between the highest posterior probability found during the Markov
chain iterations and the posterior probability of the true model (H-T) and the dif-
ference in posterior probabilities between the null model and the true model (N-T).
If the true model receives the highest posterior probability, then H-T would be 0;
if the null model receives the highest posterior probability, then N-T would be the
same as H-T.

Table 1 shows the results for design matrices drawn from the independent en-
semble. In this case, the Markov chain method has fast convergence in all settings
(it converges within 20p iterations). From the table, the setting SNR = 0.5 (resp.,
SNR ≥ 2) corresponds to the weak (resp., strong) signal regime, while SNR = 1 is
in the intermediate regime where neither the null model nor the true model receives
the highest posterior probability. Table 2 shows the results for design matrices
drawn from the correlated ensemble. Now the Markov chain method exhibits poor
convergence behavior in the intermediate regime SNR = 1 with n = 500, but still
has fast convergence in the weak and strong signal regimes. However, with larger
sample size n = 1000, the Markov chain has fast convergence for all settings of p
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TABLE 1
Convergence behavior of the Markov chain methods with sample sizes n ∈ {500,1000}, ambient

dimensions p ∈ {1000,5000}, and SNR ∈ {0.5,1,2,3} in the independent design. SP: proportion of

successful trials (in which GR ≤ 1.5); H-T: log posterior probability difference between the highest

probability model and the true model; N-T: log posterior probability difference between the null

model and the true model. Each quantity is computed based on 20 simulated datasets

(n,p) SNR = 0.5 SNR = 1 SNR = 2 SNR = 3

(500,1000) SP 100 100 100 100

H-T 113.4 24.6 0 0
N-T 113.4 11.4 −210.9 −383.6

(500,5000) SP 100 100 100 100

H-T 148.7 33.2 0 0
N-T 148.7 17.4 −216.6 −395.9

(1000,1000) SP 100 100 100 100

H-T 117.1 34.8 0 0
N-T 117.1 −6.9 −342.4 −649.5

(1000,5000) SP 100 100 100 100

H-T 160.4 32.8 0 0
N-T 160.4 −4.2 −377.6 −743.4

TABLE 2
Convergence behavior of the Markov chain methods with sample size n ∈ {500,1000}, ambient

dimension p ∈ {1000,5000}, and parameter SNR ∈ {0.5,1,2,3} for the case of correlated design.
SP: proportion of successful trials (in which GR ≤ 1.5); H-T: log posterior probability difference

between the highest probability model and the true model; N-T: log posterior probability difference

between the null model and the true model. Each quantity is computed based on 20
simulated datasets

(n,p) SNR = 0.5 SNR = 1 SNR = 2 SNR = 3

(500,1000) SP 100 95 80 100

H-T 123.4 75.2 0 0
N-T 123.4 71.2 −107.3 −275.8

(500,5000) SP 100 15 100 100

H-T 170.0 81.0 0 0
N-T 170.0 78.7 −102.1 −288.9

(1000,1000) SP 100 100 100 100

H-T 138.7 75.1 0 0
N-T 138.7 −67.0 −180.8 −431.7

(1000,5000) SP 100 100 100 100

H-T 161.8 61.9 0 0
N-T 161.8 −58.8 −204.2 −445.4
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and SNR. Comparing the results under the two different designs, we find that cor-
relations among the covariates increases the difficulty of variable-selection tasks
when Markov chain methods are used. Moreover, the results under the correlated
design suggest that there exists a regime, characterized by n, p and SNR, in which
the Markov chain is slowly mixing. It would be interesting to see whether or not
this regime characterizes some type of fundamental limit on computationally effi-
cient procedures for variable selection. We leave this question open as a possible
future direction.

3.4.2. Bayesian methods versus the Lasso. Our analysis reveals one possible
benefit of a Bayesian approach as opposed to ℓ1-based approaches such as the
Lasso. It is well known that the performance of the Lasso and related ℓ1-relaxations
depends critically on fairly restrictive incoherence conditions on the design matrix.
Here, we provide an example of an ensemble of linear regression problems for
which the Lasso fails to perform correct variable selection whereas the Bayesian
approach succeeds with high probability.

For Lasso-based methods, the irrepresentable condition

max
|γ |=s∗

max
k /∈γ

∥
∥XT

k Xγ

(

XT
γ Xγ

)−1∥
∥

1 < 1(12)

is both sufficient and necessary for variable-selection consistency [23, 34, 40].
In our theory for the Bayesian approach, the analogous conditions are the upper
bound in Assumption D(s0) on the maximum model size, namely

s0 ≥ max
{

1,
(

2ν−2ω(X) + 1
)

s∗},(13)

as well as the sparse projection condition in Assumption B. Roughly speaking,
the first condition is needed to ensure that saturated models, that is, models with
size s0, receive negligible posterior probability, such that if too many unimpor-
tant covariates are included the removal of some of them does not hurt the good-
ness of fit (see Lemma 8 in the Supplement). This condition is weaker than the
irrepresentable condition since we can always choose s0 large enough so that
s0 ≥ max{1, (2ν−2ω(X) + 1)s∗} holds, as long as Assumption B is not violated.

As an example, consider a design matrix X ∈ R
n×p that satisfies

1

n
XT X = �bad :=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 μ μ · · · · · · μ

μ 1 0 · · · · · · 0

μ 0 1 · · · · · · 0
...

...
...

...
...

...

μ 0 0 · · · · · · 1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

∈R
p×p,

with μ = (2
√

p)−1. [When p > n, we may consider instead a random design X

where the rows of X are generated i.i.d. from the p-variate normal distribution
N (0,�bad).] This example was previously analyzed by Wainwright [33], who
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shows that it is an interesting case in which there is a gap between the perfor-
mance of ℓ1-based variable-selection recovery and that of an optimal (but com-
putationally intractable) method based on searching over all subsets. For a design
matrix of this form, we have max|γ |=s∗,k /∈γ ‖XT

k Xγ (XT
γ Xγ )−1‖1 ≥ s∗μ, so that

the irrepresentable condition fails if s∗ > 2
√

p. Consequently, by known results
on the necessity of the irrepresentable condition for Lasso [34, 40], it will fail in
performing variable selection for this ensemble.

On the other hand, for this example, it can be verified that Assumption D(s0)

is satisfied with s0 ≥ 13s∗, and moreover, that the RE(s) condition in Assump-
tion B holds with ν = 1/2, whereas the sparse projection condition is satisfied with

L = 16(1 + s2
0μ2) = 16 + 4s2

0
p

. The only consequence for taking larger values of
L is in the βmin-condition: in particular, the threshold Cβ is always lower bounded

by (128ν−2Lσ 2
0

logp
n

)1/2. Consequently, our theory shows that the Bayesian proce-
dure will perform correct variable selection with high probability for this ensem-
ble.

To compare the performance of the Bayesian approach and the Lasso exper-
imentally under this setup, we generate our design matrix from a Gaussian ver-
sion of this ensemble; that is, the rows of X are generated i.i.d. from the p-
variate normal distribution N (0,�bad). We choose (n,p, s∗) = (300,80,20) so
that s∗μ = 10/

√
80 ≈ 1.1 > 1; that is, the irrepresentable condition fails. Fig-

ure 2 shows the variable-selection performance for the Bayesian approach and the
Lasso over 100 replicates. We report the logarithm of the ratio between the poste-
rior probability [see equation (A.2) in the Supplement] of the selected model and
the true model, where we use the median probability model [2] as the selected
model of the Bayesian approach. If a variable-selection approach has good perfor-
mance, then we will expect this logarithm to be close to zero. Figure 2 shows that

FIG. 2. Boxplots indicating variable-selection performance of the Bayesian approach (BVS) and

the Lasso. The boxplots are based on the logarithms of the ratio between the posterior probability

of the selected model and the true model over 100 replicates. The model selected by the Bayesian

approach is the median probability model [2] and the regularization parameter of the Lasso is chosen

by cross-validation.
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the Bayesian approach almost always selects the true model while the Lasso fails
most of the time, which is consistent with the theory.

4. Proofs. We now turn to the proofs of our main results, beginning with the
rapid mixing guarantee in Theorem 2, which is the most involved technically. We
then use some of the machinery developed in Theorem 2 to prove the posterior
consistency guarantee in Theorem 1. Finally, by combining these two theorems we
prove Corollary 2. In order to promote readability, we defer the proofs of certain
more technical results to the appendices in the Supplement. In the proofs, we use
c and cj (j = 0,1,2, . . .) to denote universal constants whose magnitude may
change from line to line.

4.1. Proof of Theorem 2. For the purposes of this proof, let P̃ denote the tran-
sition matrix of the original Metropolis–Hastings sampler (3). Now consider in-
stead the transition matrix P := P̃/2 + I/2, corresponding to a lazy random walk
that has a probability of at least 1/2 in staying in its current state. The difference
Gap(P) := 1 − max{|λ2|, |λmin(P)|} is known as the spectral gap. For any lazy
Markov chain, the smallest eigenvalue of P will always be nonnegative, and as a
consequence, the spectral gap of the Markov chain C is completely determined by
the second largest eigenvalue λ2 of P. Then we have the sandwich relation

1

2

(1 − Gap(P))

Gap(P)
log

[

1/(2ε)
]

≤ τε ≤
(log[1/minγ∈M π(γ )] + log(1/ε))

Gap(P)
.(14)

See the papers [30, 35] for bounds of this form.
Using this sandwich relation, we claim that it suffices to show that there are uni-

versal constants (c3, c4) such that with probability at least 1 − c3p
−c4 , the spectral

gap of the lazy transition matrix P is lower bounded as

Gap(P) ≥
1

24ps2
0

.(15)

To establish the sufficiency of this intermediate claim, we apply Theorem 1 and
make use of the expression for the posterior distribution [equation (A.2) in the Sup-
plement], thereby obtaining that for γ ∈ M , the posterior probability is lower
bounded as

πn(γ |Y) = πn

(

γ ∗|Y
)

·
πn(γ |Y)

πn(γ ∗|Y)

≥
(

1 − c1p
−1) ·

(

pκ
√

1 + g
)−(|γ |−|γ ∗|) ·

(1 + g(1 − R2
γ ∗))n/2

(1 + g(1 − R2
γ ))n/2

≥
1

2
· p−(κ+α/2)s0 · p−αn/2
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with probability at least 1−c3p
−c4 for p ≥ 2c1. Combining the above two displays

with the sandwich relation (14), we obtain that for ε ∈ (0,1),

τε ≤ 12ps2
0
(

(αn + αs0 + 2κs0) logp + log(1/ε) + log 2
)

with probability at least 1 − c3p
−c4 .

Accordingly, the remainder of our proof is devoted to establishing the spectral
gap bound (15), and we do so via a version of the canonical path argument [30].
Let us begin by describing the idea of a canonical path ensemble associated with a
Markov chain. Given a Markov chain C with state space M , consider the weighted
directed graph G(C) = (V ,E) with vertex set V = M and edge set E in which an
ordered pair e = (γ, γ ′) is included as an edge with weight Q(e) = Q(γ, γ ′) =
π(γ )P(γ, γ ′) if and only if P(γ, γ ′) > 0. A canonical path ensemble T for C is a
collection of paths that contains, for each ordered pair (γ, γ ′) of distinct vertices,
a unique simple path Tγ,γ ′ in the graph that connects γ and γ ′. We refer to any
path in the ensemble T as a canonical path.

In terms of this notation, Sinclair [30] shows that for any reversible Markov
chain and any choice of canonical path ensemble T , the spectral gap of P is lower
bounded as

Gap(P)
︸ ︷︷ ︸

1−λ2

≥
1

ρ(T )ℓ(T )
,(16)

where ℓ(T ) corresponds to the length of a longest path in the ensemble T , and the
quantity ρ(T ) := maxe∈E

1
Q(e)

∑

Tγ,γ ′∋e π(γ )π(γ ′) is known as the path conges-

tion parameter.
In order to apply this approach to our problem, we need to construct a suit-

able canonical path ensemble T . To begin with, let us introduce some notation for
operations on simple paths. For two given simple paths T1 and T2:

• When the subset of overlapping edges of T1 and T2 is a connected subset of
E, define the intersection path T1 ∩ T2 as this subset. [For instance, if T1 =
(1,1,1) → (0,1,1) → (0,0,1) → (0,0,0) and T2 = (0,0,1) → (0,0,0), then
T1 ∩ T2 = (0,0,1) → (0,0,0).]

• If T2 ⊂ T1, then T1 \ T2 denotes the path obtained by removing all edges in T2
from T1. [With the same specific choices of (T1, T2) as above, we have T1 \T2 =
(1,1,1) → (0,1,1) → (0,0,1).]

• We use T̄1 to denote the reverse of T1. [With the choice of T1 as above, we have
T̄1 = (0,0,0) → (0,0,1) → (0,1,1) → (1,1,1).]

• If the endpoint of T1 and the starting point of T2 are the same, then we define the
union T1 ∪ T2 as the path that connects T1 and T2 together. [If T1 = (0,0,0) →
(0,0,1) and T2 = (0,0,1) → (0,1,1), then their union is given by T1 ∪ T2 =
(0,0,0) → (0,0,1) → (0,1,1).]

We now turn to the construction of our canonical path ensemble. At a high level,
our construction is inspired by the variable-selection paths carved out by greedy
stepwise variable-selection procedures (e.g., [1, 39]).
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Canonical path ensemble construction for M . First, we construct the canoni-
cal path Tγ,γ ∗ from any γ ∈ M to the true model γ ∗. The following construction
will prove helpful. We call a set R of canonical paths memoryless with respect to
the central state γ ∗ if: (1) for any state γ ∈ M satisfying γ �= γ ∗, there exists a
unique simple path Tγ,γ ∗ in R that connects γ and γ ∗; (2) for any intermediate
state γ̃ ∈ M on any path Tγ,γ ∗ in R, the unique path Tγ̃ ,γ ∗ in R that connects γ̃

and γ ∗ is the sub-path of Tγ,γ ∗ starting from γ̃ and ending at γ ∗. Intuitively, this
memoryless property means that for any intermediate state on any canonical path
toward the central state, the next move from this intermediate state toward the cen-
tral state does not depend on the history. A memoryless canonical path ensemble
has the property that in order to specify the canonical path connecting any state
γ ∈ M and the central state γ ∗, we only need to specify which state to move to
from any γ �= γ ∗ in M ; that is, we need a transition function G : M \ {γ ∗} → M

that maps the current state γ ∈ M to a next state G(γ ) ∈ M . For simplicity, we
define G(γ ∗) = γ ∗ to make M as the domain of G. Clearly, each memoryless
canonical path ensemble with respect to a central state γ ∗ corresponds to a tran-
sition function G with G(γ ∗) = γ ∗, but the converse is not true. For example, if
there exist two states γ and γ ′ so that G(γ ) = γ ′ and G(γ ′) = γ , then G is not
the transition function corresponding to any memoryless canonical path ensem-
ble. However, every valid transition function G gives rise to a unique memoryless
canonical path set consisting of paths connecting any γ ∈ M to γ ∗, with γ ∗ cor-
responding to the fixed point of G. We call function G a valid transition function
if there exists a memoryless canonical path set for which G is the corresponding
transition function. The next lemma provides a sufficient condition for a function
G : M \ {γ ∗} → M to be valid, which motivates our construction to follow. Recall
that dH denotes the Hamming metric between a pair of binary strings.

LEMMA 1. If a function G : M \ {γ ∗} → M satisfies that for any state γ ∈
M \ γ ∗, the Hamming distance between G(γ ) and γ ∗ is strictly less than the

Hamming distance between γ and γ ∗, then G is a valid transition function.

PROOF. Based on this function G, we can construct the canonical path Tγ,γ ∗

from any state γ ∈ M to γ ∗ by defining Tγ,γ ∗ as γ → G(γ ) → G2(γ ) →
·· · → Gkγ (γ ), where Gk := G ◦ · · · ◦ G denotes the k-fold self-composition of
G for any k ∈ N and kγ := mink{Gk(γ ) = γ ∗}. In order to show that the set
{Tγ,γ ∗ : γ ∈ M , γ �= γ ∗} is a memoryless canonical path set, we only need to
verify two things:

(a) for any γ �= γ ∗, Tγ,γ ∗ is a well-defined path; that is, it has finite length and
ends at γ ∗, and

(b) for any γ �= γ ∗, Tγ,γ ∗ is a simple path.

By our assumption, the function F : M → R defined by F(γ ) = dH (γ, γ ∗) is
strictly decreasing along the path Tγ,γ ∗ for γ �= γ ∗. Because F only attains a finite
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number of values, there exists a smallest kγ such that Gk+1(γ ) = Gk(γ ) for each
k ≥ kγ , implying that Gkγ (γ ) is a fixed point of G. Since γ ∗ is the unique fixed
point of G, we must have Gkγ (γ ) = γ ∗, which proves the first claim. The second
claim is obvious since the function F defined above is strictly decreasing along the
path Tγ,γ ∗ , which means that the states on the path Tγ,γ ∗ are all distinct. �

Equipped with this lemma, we start constructing a memoryless set of canonical
paths from any state γ ∈ M to γ ∗ by specifying a valid G function. First, we
introduce some definitions on the states. A state γ �= γ ∗ is called saturated if
|γ | = s0 and unsaturated if |γ | < s0. We call a state γ �= γ ∗ overfitted if it contains
all influential covariates, that is, γ ∗ ⊂ γ , and underfitted if it does not contain at
least one influential covariate. Recall the two updating schemes in our Metropolis–
Hastings (MH) sampler: single flip and double flips. We accordingly construct the
transition function G as follows:

(i) If γ �= γ ∗ is overfitted, then we define G(γ ) to be γ ′, which is formed by
deleting the least influential covariate from γ , that is, γ ′

j = γj for any j �= ℓγ and
γ ′
ℓγ

= 0, where ℓγ is the index from the set γ \ γ ∗ of uninfluential covariates that
minimizes the difference

∥
∥�γ Xγ ∗β∗

γ ∗
∥
∥

2
2 −

∥
∥�γ \{ℓ}Xγ ∗β∗

γ ∗
∥
∥

2
2,

where �γ denotes the projection onto the span of {Xj , j ∈ γ }. This transition
resembles the backward deletion step in the stepwise variable-selection procedure
and involves the single flip updating scheme of the MH algorithm. By construction,
if γ �= γ ∗ is overfitted, then dH (G(γ ), γ ∗) = dH (γ, γ ∗) − 1.

(ii) If γ �= γ ∗ is underfitted and unsaturated, then we define G(γ ) to be γ ′,
which is formed by adding the influential covariate from γ ∗ \ γ that explains the
most signal variation, that is, γ ′

j = γj for any j �= jγ and γ ′
jγ

= 1, where jγ is

defined as the j ∈ γ ∗ \ γ that maximizes the quantity ‖�γ∪{j}Xγ ∗β∗
γ ∗‖2

2. This
transition remsembles the forward selection step in the stepwise variable selec-
tion procedure and involves the single flip updating scheme of the MH algorithm.
By construction, if γ �= γ ∗ is underfitted and unsaturated, then dH (G(γ ), γ ∗) =
dH (γ, γ ∗) − 1.

(iii) If γ �= γ ∗ is underfitted and saturated, then we define G(γ ) to be γ ′, which
is formed by replacing the least influential unimportant covariate in γ with the
most influential covariate from γ ∗ \ γ , that is, γ ′

j = γj for any j /∈ {jγ , kγ },
γ ′
jγ

= 1 and γ ′
kγ

= 0, where jγ is defined in case 2 and kγ ∈ γ \ γ ∗ mini-

mizes ‖�γ∪{j}Xγ ∗β∗
γ ∗‖2

2 −‖�γ∪{j}\{k}Xγ ∗β∗
γ ∗‖2

2. This transition step involves the
double-flip updating scheme of the MH algorithm. By construction, if γ �= γ ∗ is
underfitted and saturated, then dH (G(γ ), γ ∗) = dH (γ, γ ∗) − 2.

By Lemma 1, this transition function G is valid and gives rise to a unique mem-
oryless set of canonical paths from any state γ ∈ M to γ ∗. For example, Figure 3
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FIG. 3. Illustration of the construction of the canonical path ensemble. In the plot, γ ∗ is the central

state, G is the transition function and solid blue arrows indicate canonical paths Tγ2,γ
∗ and Tγ3,γ4 .

shows such a memoryless set of canonical paths for M consisting of 14 states,
where Tγ2,γ

∗ corresponds to the canonical path from state γ2 to the central state γ ∗.
Based on this memoryless canonical path set, we can finish constructing the

canonical path ensemble T by specifying the path Tγ,γ ′ connecting any distinct
pair (γ, γ ′) ∈ M × M . More specifically, by the memoryless property, the two
simple paths Tγ,γ ∗ and Tγ ′,γ ∗ share an identical subpath toward γ ∗ from their
first common intermediate state and, therefore, have a valid intersection path ac-
cording to our definition. Let Tγ∩γ ′ denote this common subpath Tγ,γ ∗ ∩ Tγ ′,γ ∗ ,
and let Tγ \γ ′ := Tγ,γ ∗ \ Tγ∩γ ′ denote the remaining path of Tγ,γ ∗ after removing
the segment Tγ∩γ ′ . We define Tγ ′\γ in a similar way as Tγ ′,γ ∗ \ Tγ∩γ ′ . Then it
is easy to see that the two remaining paths Tγ \γ ′ and Tγ ′\γ share the same end-
point. Therefore, it is valid to define the path Tγ,γ ′ as Tγ \γ ′ ∪ T̄γ ′\γ . To under-
stand this construction, let us consider an example where Tγ,γ ∗ = (0,1,1,1) →
(1,1,0,1) → (1,1,0,0) and Tγ ′,γ ∗ = (1,0,0,1) → (1,1,0,1) → (1,1,0,0).
Their intersection is Tγ∩γ ′ = (1,1,0,1) → (1,1,0,0) and the two remaining paths
are Tγ \γ ′ = (0,1,1,1) → (1,1,0,1) and Tγ ′\γ = (1,0,0,1) → (1,1,0,1). Con-
sequently, the path Tγ,γ ′ from γ to γ ′ is (0,1,1,1) → (1,1,0,1) → (1,0,0,1) by
our construction. For example, path Tγ3,γ4 in Figure 3 illustrates the construction
of the path connecting (γ3, γ4) when M is composed of 14 states.

We call γ a precedent of γ ′ if γ ′ is on the canonical path Tγ,γ ∗ ∈ T , and a pair of
states γ, γ ′ adjacent if the canonical path Tγ,γ ′ is eγ,γ ′ , the edge in E connecting
γ and γ ′. For γ ∈ M , let

�(γ ) := {γ̄ |γ ∈ Tγ̄ ,γ ∗}(17)

denote the set of all its precedents. Use the notation |T | to denote the length of
a path T . The following lemma provides some important properties of the con-
structed canonical path ensemble that will be used later.
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LEMMA 2. For any distinct pair (γ, γ ′) ∈ M × M :

(a) We have

|Tγ,γ ∗ | ≤ dH

(

γ, γ ∗) ≤ s0 and(18a)

|Tγ,γ ′ | ≤ dH

(

γ, γ ∗) + dH

(

γ ′, γ ∗) ≤ 2s0.(18b)

(b) If γ and γ ′ are adjacent (joined by edge eγ,γ ′ ) and γ is a precedent of γ ′,
then

{(

γ̄ , γ̄ ′)|Tγ̄ ,γ̄ ′ ∋ eγ,γ ′
}

⊂ �(γ ) × M .

PROOF. The first claim follows since the function F : M → R defined by
F(γ ) = dH (γ, γ ∗) is strictly decreasing along the path Tγ,γ ∗ for γ �= γ ∗. Now
we prove the second claim. For any pair (γ̄ , γ̄ ′) such that Tγ̄ ,γ̄ ′ ∋ eγ,γ ′ , either
eγ,γ ′ ∈ Tγ̄ \γ̄ ′ or eγ ′,γ ∈ Tγ̄ ′\γ̄ should be satisfied since Tγ̄ ,γ̄ ′ = Tγ̄ \γ̄ ′ ∪ T̄γ̄ ′,γ̄ by
our construction. Because γ is a precedent of γ ′, we can only have eγ,γ ′ ∈ Tγ̄ \γ̄ ′ .
This shows that γ is on the path Tγ̄ ,γ ∗ and γ̄ ∈ �(γ ). �

According to Lemma 2(b), the path congestion parameter ρ(T ) of the canonical
path ensemble T satisfies

ρ(T ) ≤ max
(γ,γ ′)∈Ŵ∗

1

Q(γ, γ ′)

∑

γ̄∈�(γ ),γ̄ ′∈M

π(γ̄ )π
(

γ̄ ′) = max
(γ,γ ′)∈Ŵ∗

π [�(γ )]
Q(γ, γ ′)

,(19)

where the maximum is taken over the set

Ŵ∗ :=
{(

γ, γ ′) ∈ M × M |Tγ,γ ′ = eγ,γ ′ and γ ∈ �
(

γ ′)}.

Here, we used the fact that the weight function Q of a reversible chain satisfies
Q(γ, γ ′) = Q(γ ′, γ ) so as to be able to restrict the range of the maximum to pairs
(γ, γ ′) where γ ∈ �(γ ′).

For the lazy form of the Metropolis–Hastings walk (3), given any pair (γ, γ ′)
such that P(γ, γ ′) > 0, we have

Q
(

γ, γ ′) =
1

2
πn(γ |Y)P

(

γ, γ ′)

≥
1

2ps0
πn(γ |Y)min

{

1,
πn(γ

′|Y)

πn(γ |Y)

}

=
1

2ps0
min

{

πn

(

γ ′|Y
)

, πn(γ |Y)
}

.

Substituting this lower bound into our upper bound (19) on the path congestion
parameter yields

ρ(T ) ≤ 2ps0 max
(γ,γ ′)∈Ŵ∗

πn[�(γ )|Y ]
min{πn(γ |Y ),πn(γ ′|Y)}

(20)

= 2ps0 max
(γ,γ ′)∈Ŵ∗

{

max
{

1,
πn(γ |Y)

πn(γ ′|Y)

}

·
πn[�(γ )|Y ]

πn(γ |Y)

}

.
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In order to prove that ρ(T ) = O(ps0) with high probability, it suffices to show that
the two terms inside the maximum are O(1) with high probability. In order to do
so, we make use of two auxiliary lemmas.

Given the noise vector w ∼ N (0, σ 2
0 In), consider the following events:

An :=
{

max
(γ1,γ2)∈M×M

γ2⊂γ1

wT (�γ1 − �γ2)w

|γ1| − |γ2|
≤ Lσ 2

0 logp

}

,(21a)

Bn :=
{

max
γ∈M

wT �γ w

|γ |
≤ 8σ 2

0 logp

}

and(21b)

Cn :=
{∣
∣
∣
∣

‖w‖2
2

nσ 2
0

− 1
∣
∣
∣
∣
≤

1

2

}

and Dn :=
{‖Y‖2

2

g
≤ (2 logp + 3)σ 2

0

}

.(21c)

Our first auxiliary lemma guarantees that, under the stated assumptions of our
theorem, the intersection of these events holds with high probability.

LEMMA 3. Under the conditions of Theorem 2, we have

P(An ∩Bn ∩ Cn ∩Dn) ≥ 1 − c1p
−c2 .(22)

We prove this lemma in Section 4.2 to follow.
Our second auxiliary lemma ensures that when these four events hold, then the

two terms on the right-hand side of the upper bound (20) are controlled.

LEMMA 4. Suppose that, in addition to the conditions of Theorem 2, the com-

pound event An ∩Bn ∩ Cn ∩Dn holds. Then for all γ �= γ ∗, we have

πn(γ |Y)

πn(G(γ )|Y)
≤

{

p−2, if γ is overfitted,

p−3, if γ is underfitted,
(23a)

and moreover, for all γ ,

πn[�(γ )|Y ]
πn(γ |Y)

≤ 6.(23b)

We prove this lemma in Section 4.3 to follow.
Combining Lemmas 3 and 4 with our earlier bound (20), we conclude that

ρ(T ) ≤ 12ps0. By Lemma 2(a), our path ensemble T has maximal length ℓ(T ) ≤
2s0, and hence the canonical path lower bound (16) implies that Gap(P) ≥ 1

24ps2
0

,

as claimed in inequality (15). This completes the proof of the theorem.
The only remaining detail is to prove Lemmas 3 and 4, and we do so in the

following two subsections.

4.2. Proof of Lemma 3. We split the proof up into separate parts, one for each
of the events An,Bn,Cn and Dn.
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Bound on P[Cn]. Since ‖w‖2
2/σ

2
0 ∼ χ2

n , a standard tail bound for the χ2
n distri-

bution (e.g., [18], Lemma 1) yields

P[Cn] ≥ 1 − 2e−n/25 ≥ 1 − 2p−1,(24)

where in the last step we used Assumption D which implies n ≥ 32 logp.

Bound on P[Bn]. For each state γ ∈ M , the random variable wT �γ w/σ 2
0

follows a chi-squared distribution with |γ | degrees of freedom. For each integer
ℓ ∈ {1, . . . , s0}, the model space M contains

(p
ℓ

)

models of size ℓ. Therefore, by a
union bound, we find that for p > 1,

P[Bn] ≥ 1 −
s0∑

ℓ=1

(
p

ℓ

)

P
(

χ2
ℓ ≥ 8ℓ logp

)

≥ 1 −
s0∑

l=1

e−ℓ logp

≥ 1 − 2e− logp(25)

= 1 − 2p−1.

Bound on P[Dn]. Given the linear observation model, we have

‖Y‖2
2 =

∥
∥Xβ∗ + w

∥
∥

2
2 ≤ 2

∥
∥Xβ∗∥∥2 + 2‖w‖2

2.

Combining this with inequality (24), we obtain

P
[

‖Y‖2
2 ≥ 2

∥
∥Xβ∗∥∥2

2 + 3nσ 2
0
]

≤ 2e−n/25 ≤ 2p−1,

where we have used Assumption D that implies n ≥ 32 logp. By Assumption A,
we have ‖Xβ∗‖2

2 ≤ gσ 2
0 logp, implying that for g ≥ n (which is the case under

Assumption C),

P
[

Dc
n

]

≤ P
[

‖Y‖2
2 ≥ 2

∥
∥Xβ∗∥∥2

2 + 3nσ 2
0
]

≤ 2p−1.(26)

Bound on P[An]. To control this probability, we require two auxiliary lemmas.

LEMMA 5. Under Assumption B, for any distinct pair (γ, γ̄ ) ∈ M × M sat-

isfying γ ⊂ γ̄ , we have

λmin

(
1

n
XT

γ̄ \γ (In − �γ )Xγ̄ \γ

)

≥ ν.

PROOF. By partitioning the matrix Xγ̄ into a block form (Xγ ,Xγ̄ \γ ) and us-
ing the formula for the inverse of block matrices, one can show that the lower
right corner of (n−1XT

γ̄ Xγ̄ )−1 is (n−1XT
γ̄ \γ (In − �γ )Xγ̄ \γ )−1, which implies the

claimed bound. �



COMPUTATIONAL COMPLEXITY OF BAYESIAN VARIABLE SELECTION 2523

LEMMA 6. For γ ∈ M and k /∈ γ , we have

�γ∪{k} − �γ =
(I − �γ )XkX

T
k (I − �γ )

XT
k (I − �γ )Xk

.

PROOF. By the block matrix inversion formula [14], we have
[

XT
γ Xγ XT

γ Xk

XT
k Xγ XT

k Xk

]−1

=
[

B + aBXT
γ XkX

T
k XB −aBXT

γ Xk

−aXT
k Xγ B a

]

,

where B = (XT
γ Xγ )−1 ∈ R

|γ |×|γ | and a = (XT
k (I − �γ )Xk)

−1 ∈ R. Then simple
linear algebra yields

�γ∪{k} − �γ = [Xγ Xk ]

[

XT
γ Xγ XT

γ Xk

XT
k Xγ XT

k Xk

]−1 [

XT
γ

XT
k

]

− �γ

= a(I − �γ )XkX
T
k (I − �γ ),

which is the claimed decomposition. �

Returning to our main task, let us define the event

A′
n :=

{

max
γ∈M ,k∈{1,...,p}

s.t. k /∈γ

wT (�γ∪{k} − �γ )w ≤ Lσ 2
0 logp

}

.

By construction, we have A′
n ⊆ An so that it suffices to lower bound P(A′

n).
Lemma 6 implies that

wT (�γ∪{k} − �γ )w =
|〈(I − �γ )Xk,w〉|2/n

XT
k (I − �γ )Xk/n

.(27)

Now we show that with probability at least 1 − p−c, the above quantity is uni-
formly bounded by Lσ 2

0 logp over all (γ, k) ∈ M × {1, . . . , p} satisfying |γ | ≤ s0
and k /∈ γ , which yields the intermediate result

P(An) ≥ P
(

A′
n

)

≥ 1 − p−c4 .(28)

Now Lemma 5 implies that 1
n
XT

k (I − �γ )Xk ≥ ν and, therefore, if we define the
random variable

V (Z) := max
γ∈M ,k∈{1,...,p}

s.t. k /∈γ

1√
n

∣
∣
〈

(I − �γ )Xk,Z
〉∣
∣ where Z ∼ N(0, In),

then it suffices to show that V (Z) ≤
√

Lν logp with probability at least 1 − p−c.
For any two vectors Z,Z′ ∈ R

n, we have
∣
∣V (Z) − V

(

Z′)∣∣ ≤ max
γ∈M ,k∈{1,...,p}

s.t. k /∈γ

1√
n

∣
∣
〈

(I − �γ )Xk,Z − Z′〉∣∣

≤
1√
n

∥
∥(I − �γ )Xk

∥
∥

2

∥
∥Z − Z′∥∥

2 ≤
∥
∥Z − Z′∥∥

2,
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where we have used the normalization condition of Assumption B in the last in-
equality. Consequently, by concentration of measure for Lipschitz functions of
Gaussian random variables [19], we have

P
[

V (Z) ≥ E
[

V (Z)
]

+ t
]

≤ e−t2/2.(29)

By the sparse projection condition in Assumption B, the expectation satis-
fies E[V (Z)] ≤

√
Lν logp/2, which combined with (29) yields the claimed

bound (28) with c4 = 1/2 ≤ Lν/8.

4.3. Proof of Lemma 4. We defer the proof of the claim (23a) to Appendix B
in the Supplement as it is somewhat involved technically. It is worth mentioning
that its proof uses some auxiliary results in Lemma 8 in Appendix B.4 in the Sup-
plement, which characterizes some key properties of the state G(γ ) selected by the
transition function G via the greedy criterion.

It remains to prove the second bound (23b) in Lemma 4, and we split our anal-
ysis into two cases, depending on whether γ is underfitted or overfitted.

4.3.1. Case γ is underfitted. In this case, the bound (23a) implies that
πn(γ |Y )

πn(G(γ )|Y )
≤ p−3. For each γ̄ ∈ �(γ ), where �(γ ) is defined in (17), we know

γ ∈ Tγ̄ ,γ ⊂ Tγ̄ ,γ ∗ . Let the path Tγ̄ ,γ be γ0 → γ1 → ·· · → γs , where s = |Tγ̄ ,γ |
is the length of Tγ̄ ,γ , and γ0 = γ̄ and γs = γ are the two endpoints. Since any
intermediate state γ̃ on path Tγ̄ ,γ is also underfitted, inequality (23a) ensures that

πn(γ̄ |Y)

πn(γ |Y)
=

s
∏

ℓ=1

πn(γℓ−1|Y)

πn(γl|Y)
≤ p−3s = p−3|Tγ̄ ,γ |.

Now for each s ∈ {0, . . . , s∗}, we count the total number of states γ̄ in �(γ ) that
satisfies |Tγ̄ ,γ | = s. By construction, at each intermediate state in a canonical path,
we either add a new influential covariate by the single flip updating scheme of the
MH algorithm, or add a new influential covariate and delete an unimportant covari-
ate by the double-flip updating scheme. As a consequence, any state in M has at
most (s∗ + 1)p adjacent precedents, implying that the total number of states γ̄ in
�(γ ) with path length |Tγ̄ ,γ | = s is upper bounded by (s∗ + 1)sps . Consequently,
we have by the preceding display that under the event An ∩Bn ∩ Cn ∩Dn

πn[�(γ )|Y ]
πn(γ |Y)

=
∑

γ̄∈∫ (γ )

πn(γ̄ |Y)

πn(γ |Y)
≤

s∗
∑

s=0

ps(s∗ + 1
)s

p−3s

(30)

≤
∞
∑

s=0

p−s ≤
1

1 − 1/p
.

The above argument is also valid for γ = γ ∗.
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4.3.2. Case γ is overfitted. In this case, we bound the ratio πn[�(γ )|Y ]
πn(γ |Y )

by di-
viding the set �(γ ) into two subsets:

(a) Overfitted models: M1 = {γ ′ ∈ �(γ ) : γ ′ ⊃ γ ∗}, all models in �(γ ) that
include all influential covariates.

(b) Underfitted models: M2 = {γ ′ ∈ �(γ ) : γ ′ �⊃ γ ∗}, all models in �(γ ) that
miss at least one influential covariate.

First, we consider the ratio πn(M1|Y )/πn(γ |Y). For each model γ̄ ∈ M1, ac-
cording to our construction of the canonical path, all intermediate states on path
Tγ̄ ,γ = γ0 → γ1 → ·· · → γk correspond to overfitted models (only involve the
first flipping updating scheme of the MH algorithm), where endpoints γ0 = γ̄ and
γk = γ , and k denotes the length of path Tγ̄ ,γ . As a consequence, inequality (23a)
implies that

πn(γ̄ |Y)

πn(γ |Y)
=

k
∏

s=1

πn(γs−1|Y)

πn(γs |Y)
≤ p−2k.

Since there are at most pk states γ̄ in M1 satisfying |γ̄ | − |γ | = k, we obtain that
under the event An ∩Bn ∩ Cn ∩Dn

πn(M1|Y)

πn(γ |Y)
≤

p−|γ |
∑

k=0

pkp−2k ≤
∞
∑

k=0

p−k ≤
1

1 − 1/p
≤ 2.(31)

Second, we consider the ratio πn(M2|Y )/πn(γ |Y). For fixed γ̄ ∈ M2, let f (γ̄ )

be the first state along the path Tγ̄ ,γ that contains all influential covariates. Since
the overfitted state γ contains all influential covariates, f (γ̄ ) exists and is well-
defined. Moreover, this construction ensures that f (γ̄ ) ∈ M1 and γ̄ ⊂ �(f (γ̄ )) \
{f (γ̄ )}. Applying inequality (23a) then yields

πn(M2|Y)

πn(γ |Y)
=

∑

γ̄∈M2

πn(γ̄ |Y)

πn(γ |Y)

=
∑

γ̄∈M2

πn(f (γ̄ )|Y)

πn(γ |Y)
·

πn(γ̄ |Y)

πn(f (γ̄ )|Y)

≤
∑

∃γ̄∈M2

such that γ̃=f (γ̄ )

πn(γ̃ |Y)

πn(γ |Y)

∑

γ̄∈�(γ̃ )\{γ̃ }

πn(γ̄ |Y)

πn(γ̃ |Y)

=
∑

∃γ̄∈M2

such that γ̃=f (γ̄ )

πn(γ̃ |Y)

πn(γ |Y)
·
(

πn[�(γ̃ )|Y ]
πn(γ̃ |Y)

− 1
)

.
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Then, by treating γ̃ = f (γ̄ ) ∈ M1 as the γ in inequality (30) and inequality (31),
we obtain that under the event An ∩ Bn ∩ Cn ∩Dn

πn(M2|Y)

πn(γ |Y)
≤

∑

∃γ̄∈M2

s.t. γ̃=f (γ̄ )

πn(γ̃ |Y)

πn(γ |Y)
·
{

1

1 − 1/p
− 1

}

≤
2

p

∑

γ̃∈M1

πn(γ̃ |Y)

πn(γ |Y)

(32)

=
2

p

πn(M1|Y)

πn(γ |Y)

≤
4

p
.

Combining inequality (31) and inequality (32), we obtain that under the event An∩
Bn ∩ Cn ∩Dn, the posterior ratio is upper bounded as

πn[�(γ )|Y ]
πn(γ |Y)

=
πn(M1|Y)

πn(γ |Y)
+

πn(M2|Y)

πn(γ |Y)
≤ 6.(33)

The above argument is also valid for γ = γ ∗, and this completes the proof of
inequality (23b).

4.4. Proof of Theorem 1. We divide the analysis into two steps. In the first
step, we show that the total posterior probability assigned to models with size
O(max{1, s∗}) other than γ ∗ is small. In the second step, we use the fact that all
large models receive small prior probabilities to show that the remaining models
should also receive small posterior probability.

Step 1. Let MS := {γ ∈ {0,1}p : |γ | ≤ K max{1, s∗}, γ �= γ ∗} denote the set of
all models with moderate sizes, where K ≥ 1 is some constant to be determined in
step 2. Consider the quantity

πn(MS |Y)

πn(γ ∗|Y)
=

∑

γ∈MS

πn(γ |Y)

πn(γ ∗|Y)
.(34)

Similar to Lemma 3, we modify the definition of the four events An,Bn,Cn and
Dn by replacing M with MS . Following the proof of Lemma 3, it is straightfor-
ward to show that these four events satisfy

P[An ∩Bn ∩ Cn ∩Dn] ≥ 1 − c1p
−c2 .(35)

The following auxiliary lemma ensures that when these four events hold, then the
posterior ratios on the right-hand side of equation (34) are well controlled.



COMPUTATIONAL COMPLEXITY OF BAYESIAN VARIABLE SELECTION 2527

LEMMA 7. Under Assumptions A–D and under the event An ∩Bn ∩ Cn ∩Dn,
the posterior ratio of any γ ( �= γ ∗) in MS is bounded as

πn(γ |Y)

πn(γ ∗|Y)
≤

{

p−2|γ \γ ∗|, if γ is overfitted,

p−2|γ \γ ∗|−2|γ ∗\γ |−2, if γ is underfitted.

We prove this lemma in Appendix C in the Supplement.
Equipped with this lemma, a simple counting argument yields that under the

event An ∩Bn ∩ Cn ∩Dn,

πn(MS |Y)

πn(γ ∗|Y)

(i)
≤

∞
∑

k=1

pkp−2k +
∞
∑

ℓ=0

∞
∑

r=1

pl+rp−2l−2r−2 ≤ 3p−1

for p ≥ 2, where in step (i), we used the fact that there are at most pk overfitted
models γ with |γ \γ ∗| = k and at most pℓ(s∗)r ≤ pℓ+r underfitted models γ with
|γ \ γ ∗| = ℓ and |γ ∗ \ γ | = r . Combining this with inequality (35), we obtain that
with probability at least 1 − c1p

−c2 ,

πn(MS |Y) ≤ 3p−1πn

(

γ ∗|Y
)

≤ 3p−1.(36)

Step 2. Let ML := {γ ∈ {0,1}p : |γ | ≥ K max{s∗,1}+1} denote the set of large
models. By Bayes’ theorem, we can express the posterior probability of ML as

πn(ML|Y) =
∑

γ∈ML

∫

θ,φ dPβ,φ,γ /dP0(Y )πn(dθ, dφ, γ )
∑

γ∈{0,1}p
∫

θ,φ dPβ,φ,γ /dP0(Y )πn(dθ, dφ, γ )
,(37)

where Pβ,φ,γ and P0 stand for the probability distribution of Y under parameters
(β,φ, γ ) and the true data generating model, respectively. We bound the numerator
and denominator separately.

First consider the numerator. According to our specification of the sparsity
prior (5d) for the binary indicator vector γ and Assumption C that κ ≥ 2, the
prior probability of ML satisfies

πn(ML) =
∑

γ :|γ |≥K max{1,s∗}+1

πn(γ ) ≤ 2p−K max{1,s∗}−1.

By Fubini’s theorem, we have the following bound for the expectation of the nu-
merator:

E0

[
∑

γ∈ML

∫

θ,φ

dPβ,φ,γ

dP0
(Y )πn(dθ, dφ, γ )

]

=
∑

γ∈ML

∫

θ,φ
E0

[
dPβ,φ,γ

dP0
(Y )

]

πn(dθ, dφ, γ )

=
∑

γ∈ML

∫

θ,φ
πn(dθ, dφ, γ ) = πn(ML) ≤ 2p−K max{1,s∗}−1,
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where we have used the fact that E0[
dPβ,φ,γ

dP0
(Y )] = 1. Therefore, by applying

Markov’s inequality we have

P0

[
∑

γ∈ML

∫

θ,φ

dPβ,φ,γ

dP0
(Y )πn(dθ, dφ, γ ) ≤ 2p−K max{1,s∗}/2−1

]

(38)
≥ 1 − p−K max{1,s∗}/2.

Using the expression for the marginal likelihood function [see equation (A.2) in
the Supplement], we can bound the denominator from below by

∫

θ,φ

dPβ,φ,γ ∗

dP0
(Y )πn

(

dθ, dφ, γ ∗)

=
Ln(Y |γ ∗)πn(γ

∗)

dP0(Y )

=
Ŵ(n/2)(1 + g)n/2

πn/2

(1 + g)−s∗/2

(‖Y‖2
2 + g‖(I − �γ ∗)w̃‖2

2)
n/2

·
cp−κs∗

dP0(Y )
,

where w̃ = w + XScβ∗
Sc ∼ N (XScβ∗

Sc , σ
2
0 ). Under the true data-generating

model P0, the density for Y is σ−n
0 (2π)−n/2 exp{−(2σ 2

0 )−1‖w‖2
2}. By applying

the lower bound Ŵ(n/2) ≥ (2π)1/2(n/2 − 1)n/2−1/2e−n/2+1 and using the fact
that the projection operator I − �γ ∗ is nonexpansive, we obtain

∫

θ,φ

dPβ,φ,γ ∗

dP0
(Y )πn

(

dθ, dφ, γ ∗)

≥ cp−κs∗
(1 + g)−s∗/2(1 + g−1)n/2

× exp
{(

2σ 2
0
)−1(‖w‖2

2 − ‖w̃‖2
2 − ‖Y‖2

2/g
)} (

u−n/2eu/2)

︸ ︷︷ ︸

f (u)

(

nn/2e−n/2)

︸ ︷︷ ︸

1/f (n)

,

where u = σ−2
0 (‖w̃‖2

2 + ‖Y‖2
2/g). Since g−1 � n−1 and the function f (u) =

u−n/2eu/2 attains its minimum at u = n, we further obtain
∫

θ,φ

dPβ,φ,γ ∗

dP0
(Y )πn

(

dθ, dφ, γ ∗)

≥ cp−κs∗
(1 + g)−s∗/2 exp

{(

2σ 2
0
)−1(‖w‖2

2 − ‖w̃‖2
2 − ‖Y‖2

2/g
)}

,

with a different universal constant c.
The off-support Sc condition in Assumption A and the high probability bound

for the event Cn ∩Dn in Lemma 3 imply that the last exponential term is at least of
order p−(L̃+1) with probability at least 1 − c1p

−c2 . Therefore, for K ≥ 2κ + α +
2(L̃ + 1), we have

∫

θ,φ

dPβ,φ,γ ∗

dP0
(Y )πn

(

dθ, dφ, γ ∗) ≥ cp−K max{1,s∗}/2.(39)
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Combining equations (37), (38) and (39), we obtain that

πn(ML|Y) ≤ cp−1,(40)

holds with probability at least 1 − c1p
−c2 .

Finally, inequalities (36) and (40) in steps 1 and 2 together yield that

πn

(

γ ∗|Y
)

= 1 − πn(MS |Y) − πn(ML|Y) ≥ 1 − c3p
−1,

holds with probability at least 1 − c1p
−c2 , which completes the proof.

4.5. Proof of Corollary 2. Let Pt denote the probability distribution of iter-
ate γt in the MCMC algorithm. According to the definition of ε-mixing time, for
any t ≥ τ1/p , we are guaranteed that |Pt (γ

∗) − πn(γ
∗)| ≤ 1

p
. By Theorem 1, the

posterior probability of γ ∗ satisfies πn(γ
∗) ≥ 1 − c1p

−1 with probability at least
1 − c2p

−c3 . By Theorem 2, the p−1-mixing time τ1/p satisfies

τ1/p ≤ 12ps2
0
(

(αn + αs0 + 2κs0) logp + logp + log 2
)

with probability at least 1 − c3p
−c4 . Combining the three preceding displays, we

find that Pt (γ
∗) ≥ 1 − (c1 + 1)p−1, as claimed.

5. Discussion. In this paper, we studied the computational complexity of
MCMC methods for high-dimensional Bayesian linear regression under a spar-
sity constraint. We show that under a set of conditions that guarantees Bayesian
variable-selection consistency, the corresponding MCMC algorithm achieves rapid
mixing. Our result on the computational complexity of Bayesian variable-selection
example provides insight into the dynamics of the Markov chain methods applied
to statistical models with good asymptotic properties. It suggests that contraction
properties of the posterior distribution are useful not only in guaranteeing desirable
statistical properties such as parameter estimation or model selection consistency,
but they also have algorithmic benefits in certifying the rapid mixing of the Markov
chain methods designed to draw samples from the posterior.

As a future direction, it is interesting to investigate the mixing behavior of the
MCMC algorithm when Bayesian variable selection fails. For example, both slow
and fast mixing behavior are observed empirically in the intermediate SNR regime
in our simulated examples and it would be interesting to understand this result
theoretically. Another interesting direction is to consider the computational com-
plexity of MCMC methods for models more complex than linear regression, for
example, high-dimensional nonparametric additive regression. A third direction is
to investigate whether the upper bound on mixing time provided in Theorem 2 is
sharp up to constants.
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SUPPLEMENTARY MATERIAL

Supplement to “On the computational complexity of high-dimensional

Bayesian variable selection” (DOI: 10.1214/15-AOS1417SUPP; .pdf). Owing to
space constraints, we have moved some materials and technical proofs to the Ap-
pendix, which is contained in the supplementary document.
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