
1

On the Computational Complexity of
Maintaining GPS Clock and Providing Tight

Delay Bounds in Packet Scheduling
Jun Xu Qi Zhao
College of Computing

Georgia Institute of Technology
�jx, qzhao�@cc.gatech.edu

Abstract—Packet scheduling is an important mech-
anism for providing QoS guarantees in data networks.
A scheduling algorithm in general consists of two
functions: one estimates how the GPS (General Pro-
cessor Sharing) clock progresses with respect to the
real time, and the other decides the order of serv-
ing the packets based on the estimation of their GPS
start/finish times. In this work, we answer important
open questions concerning the computational com-
plexity of performing both functions. The first part
of our work systematically studies the complexity of
computing the GPS virtual start/finish times of the
packets, which is long believed to be���� per packet
but has never been proved or explicitly refuted. It also
answers several other related open questions such as
“whether the complexity can be lower if we only want
to compute the relative order of the GPS finish times
of the packets rather than their exact values?” The
second part of our work studies the inherent complex-
ity for scheduling algorithms to guarantee tight delay
bounds. We extend the prior work by Xu and Lipton
to a stronger and more practical computational model
and explore related issues. We show rigorously that
existing methodologies used in prior work will not be
suitable for establishing lower bound results under the
new model.

Index Terms— Quality of Service (QoS), Packet
Scheduling, Delay Bound, Computational Complexity,
Linear Decision Tree, General Processor Sharing

I. I NTRODUCTION

Service discipline (i.e., packet scheduling) is an
important mechanism for providing QoS guaran-
tees such as end-to-end delay bounds and fair band-
width allocation, in computer networks [4], [8],

[15]. The perfect service discipline for providing
delay and fairness guarantees is General Processor
Sharing (GPS) [4], [9]. In a GPS scheduler, all
backlogged sessions are served simultaneously in a
weighted fashion as follows. In a link of rate�
served by a GPS scheduler, each session� is as-
signed a weight value��. Each backlogged session
� at every moment� is served simultaneously at rate
�� � �����

�
������ ���, where���� is the set of ses-

sions that are backlogged at time�. However, GPS is
not a realistic service discipline since in a packet net-
work, service is performed packet-by-packet, rather
than “bit by bit”. Nevertheless, GPS serves as a
reference scheduler that real-world packet-by-packet
service disciplines (e.g.,��	 [4]) can be com-
pared with in terms of delay and fairness.

A real-world packet-by-packet service disci-
plines typically consists of the following two func-
tions.

1) Tracking GPS time: This function is to track
the progress of GPS virtual time (described
later) with respect to the real time. Its main
objective is to estimate the GPS virtual start
and finish times of a packet, which is the time
that a packet should have started and finished
service if served by a GPS scheduler.

2) Scheduling according to GPS clock: This
function is to schedule the packets based on
the estimation of their GPS virtual finish/start
times. For example,��	 selects, among the
packets currently in queue, the one with the
lowest GPS virtual finish time, to serve next.

In this paper, we study two sets of open prob-

2

lems concerning the computational complexity of
performing each of the aforementioned two func-
tions. Through this endeavor, we will also exhibit
the deep structural connections between them. Our
work consists of the following two themes, which
will be introduced in greater detail in Sec. III and
IV, respectively.

1) We study the open problem concerning the
complexity lower bound for computing the
GPS virtual finish times of the packets. This
complexity is long believed to be��
� per
packet [11], [12], [3], [9], where
 is the num-
ber of sessions. For this reason, many schedul-
ing algorithms such as���	� [2], ��	
[7], ��	 [11], and���	 [6] only approxi-
mate the GPS clock (with certain error), trad-
ing accuracy for lower complexity. However,
it has never been carefully studied whether
the complexity lower bound of tracking GPS
clock perfectly is indeed��
� per packet. Our
work not only settles this question, but also
leads to other surprising discoveries.

2) We investigate the computational complexity
of providing tight delay bounds (e.g.,���) in
service disciplines. Our initial goal was to ex-
tend a prior lower bound result on this problem
[14] to a stronger computation model. This
extension is practically important since the
stronger model accurately captures the com-
putation power of a router. We instead estab-
lish an interesting “negative” result (the prior
results of [14] viewed as “positive”), showing
that the methodology used in [14] for proving
the lower bound of����	
� per packet will
not work for the stronger model.

In the sequel, we will distinguish between aser-
vice discipline and ascheduling algorithm. The for-
mer refers to the policy as to which packet should be
served next, whereas the latter refers to actual mech-
anism to carry out this policy. For example,��	
service discipline says that packets should be sched-
uled in the sorted order of their GPS virtual finish
times. A��	 algorithm specifies the data struc-
ture and algorithm that is used to track the GPS clock
and to sort the GPS timestamps. This distinction is
critical in the context of this paper, since we will
pose and answer questions such as “Is this schedul-
ing algorithm asymptotically optimal in computa-

tional complexity for carrying out the said service
discipline?”

A. Complexity of Estimating GPS clock

Tracking the GPS clock is an important task in ser-
vice disciplines. How well this task is performed di-
rectly affects the QoS guarantees provided. For ex-
ample, it is shown in [14] that, among all the service
disciplines, only��	 and���	 provides a tight
GPS-relative delay (defined in Sec. II.A) of���,
because they keep perfect track of GPS clock. All
other disciplines, such as [11], [6], [2], [7], only ap-
proximate GPS clock (with certain error), resulting
in much less tight delay bounds.

This prompts us to study the following open prob-
lem: “What is the complexity lower bound for com-
puting the GPS virtual finish times of the packets?”
This complexity has long been considered as��
�
per packet [11], [12], [3]. For this reason,��	
and�� �	 are considered expensive and imprac-
tical when the number of sessions are large, and
computationally less expensive algorithms such as
[11], [12], [3] are proposed to approximate the GPS
clock. Therefore, it is very interesting to find out
whether��
� per packet is indeed the complexity
lower bound for tracking GPS clock, which decides
whether such an unfortunate tradeoff between accu-
racy and complexity is justified.

This, in turn, leads to another interesting question.
Note that, in��	 and���	, one only needs to
establish the relative orders among GPS virtual finish
times. So we wonder whether we can establish this
order relationship without explicitly computing their
exact values, and hopefully the complexity can be
smaller this way. Unfortunately, we prove that such
a “shortcut” does not exist: establishing such order
relationship is at least as asymptotically expensive as
computing their exact values.

Then we established the complexity lower bound
of ����	
� per packet for establishing the relative
order of the GPS virtual finish times, under the lin-
ear decision tree model (described later). It seems
that this lower bound is not tight since we were sus-
pecting that it is��
� per packet. However, we dis-
covered an existing algorithm [8] that matches the
lower bound of����	
� per packet. The algorithm
is seldom mentioned later in literature partly because
it is an integrated part of a theoretical exploration of

3

a related yet different topic. Our discovery has an
immediate practical implication:��	 and���	
implementations based on this algorithm are optimal
among all implementations of��	 and ���	
service disciplines.

Unfortunately, we discovered an important sub-
tlety in this ����	
� algorithm, which has never
been discussed in [8] or any other open literature.
A computation timing constraint we refer to as
“mandatory lazy evaluation” has to be satisfied for
the algorithm to have����	
� complexity. We show
that theory and practice clash on this constraint: in
theory the complexity of this algorithm is strictly
����	
� per packet, but in practice the worst case
complexity could be as high as��
� per packet due
to this “mandatory laziness”. This discovery com-
pletely clarifies and answers the question “����	
�
or��
�?” (per packet) concerning the complexity of
tracking the GPS clock.

Finally, we establish the most important result of
this paper: the complexity lower bound of track-
ing the GPS clock is ����	
� per packet. This re-
sult is shown by establishing an interesting trade-
off between the number of comparison operations
and the number of other computations (e.g., addi-
tions). We show that, for tracking the GPS clock, one
has to pay either����	
� comparisons or����	
�
other computations, per packet. Therefore, the over-
all complexity of the algorithm, which is the sum
of both, has to be����	
� per packet. This work,
combined with the aforementioned����	
� algo-
rithm [8], completely settles the long-standing open
problem concerning the computational complexity
of tracking the GPS clock, in theory1.

B. On the Minimum Complexity of Achieving O(1)
Delay Bounds

The original goal of the second part of our work
is to extend the the prior work by Xu and Lipton
[14] to a stronger computational model:linear de-
cision tree. Among other things, they show that the
complexity lower bound is����	
� per packet for a
scheduling algorithm to guaranteeing��� or�
��
(
 � � � �) GPS-relative delay bounds. Their result
is established under a much weaker computational

�In practice, we will always be “haunted” by the aforemen-
tioned subtlety of “mandatory lazy evaluation”.

model than linear decision tree. We show that the
linear decision tree is more practical since the GPS
virtual start/finish times in general arelinear func-
tions of the inputs, and many algorithms require the
comparisons among such values2.

Instead, we obtained an interesting negative result
(prior result in [14] viewed as positive): the method-
ology (reduce to sorting) used in [14] in proving
lower bounds will not work for the stronger model.
We show that given a packet arrival scenario used in
[14], there is an���	 ��	
� per packet algorithm
to guarantee��� GPS-relative delay bound under
the linear decision tree. This demonstrates that, un-
der such scenarios, scheduling packets to guarantee
tight delay bounds is much easier than sorting the
GPS virtual finish times. Therefore, it is impossible
to reduce the problem of scheduling to sorting. This
negative result indicates that a new methodology is
needed in order to possibly establish this complexity
lower bound, which remains an open question.

The rest of the paper is organized as follows. In
Section II, we introduce the computation models and
assumptions we will use in proving our results. The
aforementioned two major research themes are es-
tablished in Section III and IV respectively. Section
V concludes the paper.

II. RELATED WORK AND BACKGROUND

In this section, we introduce the background
knowledge and related work on packet scheduling
and computational complexity. Their relevance to
the objective of this work will be explicitly stated.

A. Background on GPS and packet-based algo-
rithms

We have introduced GPS, an idealized service dis-
cipline that other service disciplines can be com-
pared with in terms of QoS guarantees. One im-
portant property of GPS, proved in [9], is that it
can guarantee tight end-to-end delay bounds to traf-
fic that is leaky-bucket [13] constrained. It has been
shown that scheduling algorithms can provide sim-
ilar end-to-end delay bounds if their packet service
does not lag behind that of GPS too much [9]. This

�Note that [14] also contains results that is based on the linear
decision tree. However, they only succeed for results concerning
a weaker type of delay, referred to asdisadvantage delay.

4

motivates the definition of GPS-relative delay (intro-
duced in [9] and [8] but formally defined in [14]) and
the study of existing service disciplines on this prop-
erty.

For each packet�, the GPS-relative delay of a
packet� under a particular scheduler��� is defined
as����
� ����	 ���
�	 �, where����	 and��
�	

are the times when the packet� finishes service in
the ��� scheduler and in the��� scheduler, re-
spectively. It has been shown in [9] and [1] respec-
tively that��	 and���	 schedulers both have a
worst-case GPS-relative delay of����

�
, where���

is the maximum packet size and� is the total link
bandwidth. That is, for each packet�,

����	 � ��
�	 �
���
�

(1)

���
��

	 � ��
�	 �
���
�

(2)

Using the convention of [14], we say that the delay
bound is��� since��� and� can be viewed as
constants independent of the number of sessions
.
��	 and�� �	 achieve this��� GPS-relative
delay bound by (a) keeping perfect track of the GPS
clock and (b) picking among all (in��) or all
eligible (in���) head-of-session (HOS) packets,
the one with smallest GPS virtual finish time to serve
next. Here HOS packets are the first packets from
each session that are currently in queue. This paper
essentially studies whether steps (a) and (b) are nec-
essary and if yes, how to carry out both steps in an
optimal way.

B. On tracking the GPS clock

The GPS virtual time� ���, as a function of real
time � is calculated as follows.

� �
� �
 (3)

� ����� � �� � � ������ �
��

������� ��
(4)

� � �� � ����� � � �� �� � � �

Here������������� are the times at which two types
of events happen: (1) the service starts for a new
packet, and (2) the service finishes for a packet cur-
rently in queue. Let��� be the real time that the���

packet of the��� session arrives and��� be its length.

Let ��� and� �� be the virtual times when it should
have started and finished service under GPS, respec-
tively. Then one can show that� and� are calcu-
lated as follows.

��� � ����� ���� � � ���� �� (5)

� �� � ��� �
���
��

(6)

Note that the GPS virtual finish time of a packet
is calculated as soon as it arrives as above. However,
the real time corresponding to this virtual finish time
is not determined until later on (explained later). In
service disciplines, the tracking of the GPS clock is
to find the GPSvirtual andreal finish times of each
packet. Although GPS virtual finish times are all that
are needed in��	 for scheduling, the GPS real fin-
ish times are equally important since they determine
the GPS virtual finish times of the future packets, as
shown in formula (3) and (4). In this paper, we solve
the open problem concerning the complexity lower
bound for computing the GPS virtual and real finish
times.

C. On Computational Complexity

Computation complexity of a computational prob-
lem is defined under a computational model that
specifies what operations are allowed in solving the
problem and how they are “charged” in terms of
complexity. Same as in [14], we adopt a standard
and commonly-used computational model in prov-
ing lower bounds: thedecision tree. A decision
tree in general takes as input a list of real variables
���������. Each internal and external (leaf) node
of the tree is labeled with a predicate of these in-
puts. The algorithm starts execution at the root node.
In general, when control is centered at any internal
node, the predicate labeling that node is evaluated,
and the program control is passed to its left or right
child when the value is “yes” or “no” respectively.
Before the control is switched over, the program is
allowed to executeunlimited number of sequential
operations such as data movements and arithmetic
operations. In particular, the program is allowed to
store all results (i.e., no constraint on storage space)
from prior computations. When program control
reaches a leaf node the predicate there is evaluated

5

and its result is considered as the output of the pro-
gram. The complexity of such an algorithm is de-
fined as the depth of the tree, which is simply the
number of predicates that needs to be evaluated in
the worst case. Fig. 1 shows a simple decision tree
with four nodes. Each�� (� � � �) is a predicate
of the inputs.

P3(x)P2(x)

P1(x)
N

N

Y N

Y Y N

Y

Input x = <x1, x2, ..., xn>

P4(x)

Fig. 1. Decision tree computational model

Allowing different types of predicates to be used
in the decision tree results in models of different
computational powers.Throughout this paper, we
consider the decision tree that allows the compar-
isons between linear functions of inputs, known as
linear decision tree (LDT) [5]. In this model, given
inputs���������, each predicate allowed by the de-
cision tree is in the form of “����� ��� � � � � ��� �

�”, where� is a linear function (defined below) of
the inputs���������.

Definition 1—Linear Function: A linear function
� of the variables��������� is defined as����� ���
� � � � ��� �

��
��� ���� � ��, where��������� are

real constants.
In the context of this work, the inputs will be the

lengths and the arrival times of the packets. Note
that the linear decision tree model is quite generous:
functions like� in the above definition may take up
to �
� steps to compute, but the model charges
only “1” for each of them. Due to this generosity,
for certain computation problems, we may not be
able to obtain a tight lower bound using this model.
We stick to this model, however, since it provides
mathematical tools (convexity arguments) for solv-
ing lower bounds. In addition we will show that this
model captures all computation powers of a router,
both for tracking the GPS clock and for scheduling
packets.

D. Related work on the complexity lower bound of
packet scheduling

The first work in studying the tradeoff between de-
lay bound and computational complexity is due to
Xu and Lipton [14]. In [14], they have established
that the complexity lower bound for a service disci-
pline to provide��� or �
�� (
 � � � �) GPS-
relative delay bound is����	
� per packet. This
bound is established under a weaker decision tree
model that only allows direct comparisons between
its inputs. In other words, its comparisons are all in
the forms of “�� � �� �
�”. This model is strictly
weaker than LDT since�� � �� is clearly a linear
function. However, for the particular class of in-
stances that are used in establishing the lower bounds
in [14], the weaker computational model is reason-
able in the sense that existing scheduling algorithms
are able to provide��� GPS-delay bounds using
only such predicates.

We study whether the result can be extended to
a much stronger and more practical computational
model: linear decision tree. We show that this exten-
sion is practically important since GPS virtual finish
times are all linear functions of the inputs. While
trying to establish the lower bound of����	
�, we
instead find a “negative result”. We show that there
is no way to use the method of “reducing to sort-
ing” suggested in [14], since under the scenarios
used in [14], the scheduling complexity becomes
����	 ��	
� while sorting remains����	
�, per
packet.

Whether the complexity lower bound of tracking
the GPS clock is��
� per packet was posed as an
open problem in Sigcomm 2002 by Xu (one of the
authors in [14]). Since their focus is on the compu-
tational complexity of scheduling packets, they el-
egantly avoid answering this question by introduc-
ing the concept of CBFS (Continuously Backlogged
Fair Sharing) condition3. They showed that under
the CBFS condition, the GPS finish times can be
computed easily in��� and becomes a nonissue in
studying the complexity of scheduling.

�A less elegant way to avoid dealing with this question is to
use the relativization arguments in theoretical computer science
[10].

6

E. Related theorems in prior work

In the proofs of this paper, we will use a
lemma from [14], which says the complexity lower
bound for determining whether a given input vec-
tor ���� ��� ���� ��� belongs to the following set� is

 ��	�
���
 ��	�
�, under the linear decision tree.
Here� = �� �� �� ���� �� � !� � there exists a per-
mutation" of 1, ...,
 such that�����

��� � Æ � ���� �
�����

��� � Æ, � � �� �� � � � �
�. Here��� #
 is the

maximum packet size andÆ (
 � Æ � ����

������) is a
“small” real constant. Here is the lemma from [14].

Lemma 1: Under the linear decision tree model,
given the inputs���������, determining whether
���� ��� � � � � ��� � � requires at least
 ��	�
 -
��
 ��	�
� linear comparisons.

III. O N THE COMPLEXITY OF TRACKING GPS
CLOCK

The focus of this section is to clarify and es-
tablish the fundamental algorithmic complexity of
tracking the GPS clock perfectly in packet schedul-
ing. Recall that both��	 and ���	 service
disciplines track GPS clock perfectly, and both are
able to achieve a tight GPS-relative delay bound of
���. All other service disciplines, on the other
hand, only estimate GPS clock (with certain error),
and it was shown in [14] that none of them can pro-
vide the same tight GPS-relative delay bound. Intu-
itively there is a causal relationship between the per-
fect tracking of GPS clock and the tightness of the
delay bound.

A. GPS clock tracking and its complexity question

The computational complexity lower bound of
tracking the GPS clock has long been considered
��
� per packet [11], [12], [3]. For this reason,
both��	 and���	 are considered impractical,
and several algorithms that approximate GPS clock
at much lower complexity, such as [11], [6], [2], [7],
are proposed. However, as mentioned above, none
of these algorithms can achieve a tight GPS-relative
delay bound of���.

We ask the following fundamental question: is
��
� per packet the complexity lower bound for
tracking the GPS clock perfectly? Settling this ques-
tion is important in two aspects.

� First, if this complexity is indeed��
� per
packet, then the complexity lower bound of
����	
� per packet established in [14] for
scheduling the GPS timestamps to achieve
tight GPS-relative delay bounds becomes less
relevant, since the combined complexity of
scheduling is��
� per packet anyway. Note
that [14] elegantly avoids answering this ques-
tion, as their results are established under a
CBFS condition (shown later) in which GPS
tracking cost becomes��� per packet. This
complexity question leads to two other interest-
ing questions. Is GPS clock tracking a neces-
sary step for implementing��	 and���	
(i.e., Is there a “shortcut”?)? Or is this step nec-
essary for providing��� GPS-relative delay?
We will answer the first question in full. The
second question remains an open problem.

� Second, if there is an efficient algorithm of
complexity ���	
� per packet, for tracking
GPS time, then��	 and �� �	 may be-
come practical since their overall cost will be
���	
� per packet!

Our findings turn out to be a mixed blessing:
in theory (i.e., the strict computational complexity
sense) the complexity lower bound is����	
�per
packet and there is an algorithm that matches the
bound. However, in practice it can be as expensive as
��
� per packet in the worst-case due to a “manda-
tory lazy evaluation” subtlety associated with the al-
gorithm. Our contribution is to discover and clarify
this subtlety.

The official reason for tracking the GPS clock to
be considered��
� in ��	 and ���	 is that
there can be
 near-simultaneous arrivals and depar-
tures in a tiny interval. However, we found out that
this is not the real issue since the algorithms in [11],
[6], [2], [7] suffer from at least the problem of near-
simultaneous arrivals as well. The real issue is the
aforementioned subtlety.

B. Is there a “shortcut”?

Note that in��	 and ���	, we only care
about the relative order of GPS finish virtual/real
times rather than their exact values. This leads us
to ask the following question: can the complexity of
establishing such order relationships be smaller than

7

1. class Packet �
2. double rt arrival, rt finish, vt start, vt finish;
3. /* rt arrival and rt finish are the real times of the packet’s arrival and departure
4. (under GPS) respectively. vt start and vt finish are its GPS virtual start and
5. finish times respectively. Initially, only rt arrival field is filled by the value of
6. arrival time of the packet and the other fields are initialized to 0. */
7. int id, len; /* the session id of the packet and the packet length */
8. �;

9. class Packet Queue �
10. Packet peek(); /* return the first packet in queue without deleting it */
11. Packet pop(); /* return the first packet in queue and delete it */
12. int empty(); /* return 1 if queue is empty, otherwise return 0 */
13. �;

14. external Packet Queue P, Q; /* explained in the text and Fig. 3 */

15. total weight = 0; /* the total weight of all the backlogged sessions between two events,
16. i.e.,

�
�������

�� */

17. for (i=0; i � n; i++) backlog[i] = 0;
18. /* backlog[i] indicates the amount of backlog at session i queue (in GPS virtual time). */

19. while (!Q.empty()) �
20. q = Q.peek(); p = P.peek();
21. if (total weight == 0) �
22. /* the start of a new busy period */
23. total weight = weight[p.id]; /* weight[i] is �� */
24. vt last = 0; /* the virtual time when the last event happens. */
25. rt last = p.rt arrival; /* the real time of the last event */
26. continue;
27. �
28. vt temp = vt last + (p.rt arrival - rt last) / total weight;
29. if (q.vt finish � vt temp) �
30. /* p starts earlier than q finishes */
31. p.vt finish = max(vt temp, backlog[p.id]) + p.len / weight[p.id];
32. vt last = vt temp; rt last = p.rt arrival;
33. if (backlog[p.id] � vt temp)
34. total weight = total weight + weight[p.id];
35. backlog[p.id] = p.vt finish;
36. P.pop();
37. �
38. else �
39. /* q finishes first before p starts */
40. q.rt finish = rt last + (q.vt finish - vt last) * total weight;
41. rt last = q.rt finish; vt last = q.vt finish;
42. if (backlog[q.id] � vt last)
43. total weight = total weight - weight[q.id];
44. Q.pop();
45. �
46. �

Fig. 2. Algorithm� for GPS time tracking.

that of computing the GPS virtual/real finish times?
In other words, is there a “shortcut” that allows us
to establish such orders without explicitly comput-
ing their values? Such shortcuts may be possible in
some computations. For a trivial example, to know
whether� � $ � � $ holds, we may just com-
pare� with without adding up� � $ and � $.
Real-world examples can be much more sophisti-

cated since comparisons can be nested deeply in a
expression.

Our discovery is surprising: establishing the rel-
ative orders among the GPS finish times is at least
asymptotically as expensive as computing them,
proved in the following theorem.

Theorem 1: The complexity lower bound of sort-
ing the GPS virtual/real finish times is asymptoti-
cally at least as large as that of computing their exact

8

real packets dummy packet

QP

Fig. 3. Queue structure of Algorithm�

values.
Proof: Our proof proceeds as follows. Assume

that we know the relative order in which the pack-
ets finish service under GPS, which is computed us-
ing amagic algorithm � with complexity��
� per
packet. We show there is an algorithm� that uses
such order to produce the correct GPS virtual/real
finish times of the packets, with complexity��� per
packet. We denoted as%�
� the complexity lower
bound of computing the GPS finish times per packet.
Clearly%�
� � ��
�����. However, since%�
�
is at least��� (just to read the input), this shows
that��
� is at leastasymptotically as large as%�
�.

The reduction algorithm� is shown in Fig. 2. The
queue	 contains pointers to these packets sorted in
the increasing order of their GPS finish times. This
captures our assumption that we know their relative
orders. The incoming packet FIFO queue� contains
pointers to these packets in the sorted order of their
arrival times. Note that pointers in both� and	 re-
fer to the same pool of actual packets, as shown in
Fig. 3. For each packet, initially only the real ar-
rival time field (rt arrival) is set. After the execution
of the program, we show that its GPS virtual finish
time (vt finish) and its real finish time (rtfinish) will
also be set. This way the mission of computing the
GPS real/virtual finish times of the packets is accom-
plished.

We used a standard technique in programming
language to make the algorithm� succinct. We as-
sume that at the end of queue� , there is a pointer
to a “dummy” packet with arrival time�	. 	, on
the other hand, does not contain such a pointer. This
“dummy” pointer will “flush” (line 41) all packets in
	 before itself gets popped. This “flushing” consid-
erably simplifies the inspections of boundary condi-
tions.

We need to prove two things: (a) the complexity of

the algorithm is��� per packet, and (b) it correctly
computes the GPS virtual and real finish times of the
packets.

Proof of (a): Note that during each “while” itera-
tion except for the first, which goes through line 19
to 46, there are at least one element popped from ei-
ther� (line 36) or	 (line 44). Eventually both will
become empty and the program terminates. Each it-
eration clearly takes��� time.

Proof of (b): We need to show that the algorithm
computes the GPS real/virtual finish times as defined
in formula (3) and (4). We prove this by induction
on the number of events. The GPS virtual time when
the first event (the first packet arrival) happens is 0
(line 24). Suppose the values of the GPS virtual/real
times and other state variables corresponding to the
��� event is computed correctly. We need to show
that the values corresponding to the�� � ���� event
are correctly computed. The�� � ���� event can be
one of the following two cases: (i) the finish of a
packet from a session�, (ii) the start of a new packet
from a previously unbacklogged session.

� In case (i),� arrives after& gets popped, since
otherwise its arrival would have been the�� �
���� event. So line 38 through 45 will be exe-
cuted. Depending on whether the session&��'
queue becomes unbacklogged (line 42) or not
after the departure of&, the total weight (to-
tal weight) is either decreased or unchanged
(line 43). The real finish time of& can now be fi-
nalized (line 40) since there are no new arrivals
before its departure.

� In case (ii),� arrives earlier than&�(departure,
and therefore line 30 through 37 will be exe-
cuted to update the the total weight and com-
pute��(GPS virtual start and finish times.

In both cases, the advance of the GPS clock
� ���from from the time of the��� event to that of the
������� event conforms to the formulas (3) and (4).
Therefore, the algorithm should compute the GPS
virtual/real times and other state variables correctly
for the �� � ���� event and by induction all events.

This result is important since it shows that there is
no shortcut to computing the GPS virtual finish times
for implementing��	 and���	.

9

C. A tight lower bound

Next, we prove the lower bound of����	
� per
packet for sorting GPS virtual finish times (Theorem
2) under the linear decision tree model. To prove
this, we need a lemma showing that the complexity
of sorting
 numbers is��
 ��	
� under the linear
decision tree (Lemma 2). Note that the traditional
sorting complexity we know only allows compar-
isons among inputs.

Lemma 2: The complexity lower bound for sort-
ing
 distinct positive numbers��, � � �� �� � � � �
,
is ��
 ��	
� under the linear decision tree model.

Proof: Suppose sorting these numbers is not
��
 ��	
�. Then we construct an algorithm� for
deciding the membership for the aforementioned set
�, with a complexity that is not��
 ��	
�. This
would contradict Lemma 1. Algorithm� first sorts
these numbers using linear comparisons. Then it ver-
ifies if the sorted list is in�, and this step clearly only
needs�
� time (check if�����

��� �Æ � � �
�����

��� �
Æ, � � �� �� � � � �
). Since�
� � ��
 ��	
�, the
complexity of algorithm� is not ��
 ��	
� if the
sorting part is not��
 ��	
�.

Theorem 2: The complexity lower bound for
computing the relative order of the GPS finish times
among
 packets is��
 ��	
� under the linear deci-
sion tree model.

Proof: We reduce the problem to sorting.
Given a sorting instance�� #
, � � �� �� � � � �
 and
��
� �� when�
� �, we convert it to a packet arrival
instance as follows. Let there be
 sessions sharing
a link of rate 1 with equal weight. A packet of length
�� arrives at time 0 to session�, � � �� �� � � � �
. Note
that the relative order of the GPS finish times is ex-
actly the order of��. Then from Lemma 2 we know
that to sort the lengths of n packets requires the cost
of ��
 ��	
�. So it is����	
� per packet.

Note that the lower bound is not tight unless we
can find an algorithm that matches it. Fortunately
and surprisingly, we found an existing algorithm that
tracks GPS clock using only����	
� per packet
complexity[8]. However, it was seldom mentioned
or referenced in later literature, including the al-
gorithms that try to reduce the complexity of GPS
tracking by using approximation. Part of the reason
is that [8] is a theoretical endeavor on a related but
different topic.

The algorithm in [8] is involved and is omitted
here due to lack of space. Its key idea, however,
can be explained relatively easily based on our al-
gorithm in Fig. 2. Note that in Fig. 2, once we have
	, we can figure out the GPS virtual finish times of
the packets with complexity��� per packet. The
algorithm in [8] essentially keeps a priority queue
of the HOS packets to obtain	, which is����	
�
per packet. Each session also maintains a per-session
FIFO queue. When a packet in an HOS queue should
have finished service in GPS, its next packet (if it
exists) is moved from its corresponding per session
FIFO queue to the HOS priority queue.

The following result shows that if the��	 is
performed by a priority queue and the computation
of GPS clock is performed using the algorithm in [8],
then it is the asymptotically optimal implementation
of the��	 service discipline.

Corollary 1: Algorithm in [8] for tracking GPS
clock combined with a priority queue to sort GPS
virtual finish times is the asymptotically optimal al-
gorithm for implementing��	 scheduling disci-
pline, under the linear decision tree model.

Proof: Combine the algorithm in Fig. 2, and
Theorem 2 on the lower bound of comparing GPS
virtual finish times.

D. Mixed blessing

Now that we have an���	
� per packet algo-
rithm for��	, do we still need to approximate the
GPS clock as in [11], [6], [2], [7]? The answer is yes.
We found that the new����	
� algorithm is a mixed
blessing in the following sense. It requires a subtlety
we refer to as “mandatory lazy evaluation” for its
theoretical complexity to be����	
� per packet. In
practice, this mandatory laziness may lead to��
�
worst-case complexity. To avoid this worst case, cer-
tain “approximation measures” need to be taken any-
way. Our contribution here is to discover and clarify
this subtlety.

We discover that the algorithm in [8] implicitly re-
quires a computation timing we refer to as “manda-
tory lazy evaluation”. Suppose a packet�’s real fin-
ish time is�, provided that there are no other packet
arrivals before its departure. Then for an algorithm
to be efficient, the computation of this time cannot
be finalized until� has passed. The reason is that if
this computation is performed at time�� � �, and

10

session 1

session 2

session 3

session 4

session 5 p7

p4p2

p1

p3 p6

p5

Time

s1=0 s2 s3 f2 s4 f1=s5

ghost

Fig. 4. Why lazy evaluation is necessary?

if there is a packet arrival between�� and�, the GPS
real finish time of� would have to be recomputed. In
practice, this “lazy evaluation” can be implemented
as a hardware timer that triggers at time� the com-
putation of its GPS real finish time. However, in the
worst case, up to��
� GPS virtual finish times may
be “clustered together” in a small time interval, and
a new arrival immediately after the “cluster” can not
be processed until all�
� departures in that cluster
get processed. The GPS real finish times of all these
departure events need to be computed during this in-
terval due to lazy evaluation. Therefore, the process-
ing and service of the new arrival triggers the com-
putation of��
� GPS real finish times. This leads to
the��
� worst-case complexity.

We illustrate this “lazy evaluation problem” by a
concrete example, shown in Fig. 4. The horizontal
axis is the GPS timeline. We denote these packets as
�� and their GPS virtual finish and start times as��
and(� respectively. In addtion, we define the func-
tion !��� that returns the real time corresponding to
virtual time�. In Fig. 4, we show that!����, !����
and!��	� are very close to each other and form a
“cluster”, followed immediately by the arrival of�
.
To be able to compute(
, we need to finish comput-
ing the GPS real finish times corresponding to��,
��, and�	. However, these computations need to be
finished “within” the tiny interval of�!����� !�(���
due to “mandatory lazy evaluation”, which may not
be possible in real-world finite-speed CPU’s. On the
other hand, if we compute these real times well in
advance, then if the “ghost” packet in the figure does
arrive, all these values have to be recomputed.

This is the classical irony between theory and
practice. From the theoretical point of view it is

����	
� per packet, since we only count the num-
ber of operations. However, in practice, CPU has fi-
nite speed and a “cluster” of�
� packets may need
to be processed during a short time interval. We are
currently investigating how to alleviate this problem
by using approximation, e.g., assuming that all the
real finish times are the same as that of the last packet
in the “interval”. It is not clear whether such approx-
imations will be better than existing approximation
schemes such as used in [11], [6], [2], [7]. This can
be an interesting topic for further study.

E. Tracking GPS is ����	
� per packet

In this section, we answer the most important and
challenging question of this paper: “What is the
complexity lower bound for computing the GPS vir-
tual finish times of the packets?” We show that this
lower bound is����	
� per packet.

Our lower bound is established based on the fol-
lowing set of instances that we will refer to later
as)�
�. Suppose
 sessions share a link of rate 1.
There are
 arrivals��, ��, ...,�� at time 0 from ses-
sions 1, 2, ...,
 respectively. The weights of these
sessions are*�, *�, ...,*� respectively. Also we as-
sume that+��*� are all distinct. We refer to the set
of all such instances of size
 mentioned above as
)�
�. Note also that these weights*��(are viewed as
constants rather than as inputs.

We would like to compute their GPS real finish
times. We let" be the unique permutation such that
+�����*���� � +�����*���� � ��� � +�����*����. We
can compute the GPS real finish times as the follows:

�������� � +���� �

��
���*����

*����

�������� �
+����

*����
�
��
���

*���� �
��

��

�
�
+���

*���

�
+�����
*�����

�
��
��

*����
�
� � � �� �� ����

Let �� � +���� �

��

���
�	���

�	���
, �� � �

�	���
�	���

�
�	�����
�	�����

�
��
���*���� for � � �� �� ���
, and �� �

��������. We need to show that to compute
������������� requires��
 ��	
� computation.

Obviously, if we know the right permutation",
we can compute��������� in �
�, since���� �

11

2 41 30

1

2 2 2

Fig. 5. Example GPS computation tree

�� � ���� and �� can be computed in���. But
computing this" requires��
 ��	
� comparisons,
as shown in Lemma 2. However, this is not a proof
for the lower bound since it may be possible to com-
pute �� without computing" completely (perhaps
only computing some partial orders captured in").
To be able to establish the lower bound of���(, we
need a computation model that capturesall possible
ways to compute �� and their costs.

Our model is the following. We assume that each
term �� can be computed with��� computation
cost and each addition costs 1. Note we does not
gain (rather lose) from this assumption since we are
trying to establish the lower bound. If�� is com-
puted from�� (� # �), i.e., �� is computed as
�� � ���� � ���� � ��� � �� , the amount of com-
putation is counted as�� �. This models the savings
we get by using prior computation results. Also, for
the computation�� to use the result of computation
��, we “must have” learned about the partial order
�� � ��. This model is very natural since it cap-
tures all conceivable ways of computing��. It also
captures the tradeoff between comparison and com-
putation: either one pays for “learning” about the
partial orders between���(and���(in the form of
comparisons or pays for the additions in the forms
of �� � ���� � ���� � ���� �� .

In the following, we show that no matter how the
computation is carried out, either we have to pay
��
 ��	
� cost in comparison or��
 ��	
� in com-
putation, for the worst-case instance in)�
�. In
other words, the total complexity (computation +
comparison) has to be at least��
 ��	
�. Since
there are
 packets, the complexity per packet is
����	
�.

For the simplicity of stating and proving our re-
sult, we use a directed graph to represent the above
computation model. Any instance (of computing

1. FIFO PacketQueue �� 	;
2. Sorted Array
 � ���;
3. while (!
.empty()) �
4. 	�
�����;
5. delete 	 from
;
6. if 	 has children
7. Sort 	�� children and merge into
;
8. Append 	 to �;
9. �

Fig. 6. Algorithm� for getting the sorted sequence from the
GPS computation tree

GPS virtual/real finish times) in)�
� above corre-
sponds to a graph containing
�� points,
� �� ����
.
Here points�� �� ����
 correspond to the computation
job of ��, ��, ..., �� respectively and the point

corresponds to a “null” computation job. There is a
directed edge from� to � if and only if �� is com-
puted from��. The cost of this edge is� � �, which
captures the number of additions for computing��
from the intermediate result��, as explained above.
A directed edge from 0 to� means that�� is com-
puted “from scratch” as�� � �� � � � � � ��, and its
cost is�. Note that, ignoring the direction, this di-
rected graph is a tree because each computation job
has a unique computation path from the point 0. In
each such tree, there must be a directed path from 0
to any other point, since every�� needs to be com-
puted. We refer to this tree as theGPS computation
tree corresponding to the instance. An example tree
is shown in Fig. 5. In Fig. 5,�� and�	 are computed
from�� and�� respectively, and�� and�� are com-
puted “from scratch”. The numbers associated with
the links are the computation costs.

We denote as����
� the worst case complex-
ity for computing���(, among all instances in)�
�.
Note that for each instance in)�
�, its computa-
tional complexity includes both additions and com-
parisons. With this graph model, our result can be
formulated as the following theorem.

Theorem 3: ����
� � ��
 ��	
�
Proof: We prove by contradiction. Suppose

����
� is not��
 ��	
�. In other words, for any
, #
 and- #
, there exists
� # , such that,
the worst case complexity (comparisons plus com-
putations) for GPS computation trees of size
� is no
more than-
� ��	
�. We denote this as assumption
(I).

We denote as�!. �
� the worst-case complex-

12

ity of sorting the GPS virtual finish times for the
aforementioned instance set)�
�. We know from
Theorem 2 that�!. �
� is
 ��	�
� ��
 ��	�
�,
under the linear decision tree model. So there ex-
ists ,� such that for all
 # ,�, �!. �
� #
�
�
 ��	�
. We also choose,� such that when
 #
,�, the value of the function�
 is no more than
�
�
 ��	�
. We let,� � ����,�� ,��. We know
from assumption (I) that there exists
� # ,� such
that ����
�� � �

�

� ��	�

�, denoted as fact (II).
Note that since
� # ,� # ,�, �!. �
�� #
�
�

� ��	�

�. This is denoted as fact (III).

We show that we can construct an algorithm�
that, given any instance of size
� as above, sorts
the GPS virtual finish times of these packets using
no more than��

� ��	
� comparisons. This clearly
contradicts the fact (III) above. The algorithm�
runs as follows. For each packet arrival instance
of size
�, � first tries to compute the virtual fin-
ish times of the packets. This results in a GPS com-
putation tree corresponding to this instance. Since
����
�� � �

�

� ��	�

� (fact (II) above), neither the
number of comparisons nor the number of compu-
tations in this computation tree can be more than
�
�

� ��	�

�. Then � calls another algorithm�,

which takes as its input a GPS computation tree,
and outputs the GPS finish times in the sorted or-
der. We will show that the complexity of algorithm
� is no more than	�

� ��	�

� in the worst case. So

the complexity of the algorithm� is no more than
�
�

� ��	�

�� 	

�

� ��	�

� � �
�

� ��	�

�, which is ex-

actly what we would like to prove above.
The algorithm� is shown in Fig. 6. It sorts the

GPS finish times of these
� packets when it takes
as its input a GPS computation tree corresponding to
an instance in)�
��. In Fig. 6,	 is a FIFO queue
of packets and� is an arrary sorted by�� and min()
returns the element with the minimum�� value (the
head element actually). If a set of packets���, ���,
... are computed from��, then they are all���(chil-
dren.

It remains to prove two things: (a) the output from
the algorithm is indeed sorted, and (b) the complex-
ity of the algorithm is no more than	�

� ��	�

�.

Proof of (a): Clearly the “while” iterations in Fig.
6 result in a traversal of all the nodes in GPS com-
putation tree since every point is reachable from
.
Therefore,	 will contain a permutation of all the

points�� after the execution. To prove that they are
sorted, we only need to show the following invariant
� at each iteration of the “while” loop: the number
�� is deleted from� in the �� � ���� iteration for
� �
� �� � � � �
. We prove it by induction on�. In the
first iteration, clearly number 0 (ie.,��) is deleted
from � . Suppose� holds for the number� � �. In
the�� � ���� iteration, suppose��� (��
� �) will be
deleted from� instead of��. We know that�� # �
due to induction hypothesis. Clearly�� cannot be in
the queue� at the moment since otherwise “min()”
will choose�� instead of��� . Suppose the parent of
�� is ���� . Clearly��� � � and���� is deleted during
the��������� iteration due to the induction hypothe-
sis. So at the��������� iteration,�� must have been
inserted. Therefore, the only possibility is that��
has been deleted earlier than the�� � ���� iteration.
This contradicts the induction hypothesis.

Proof of (b): Let/ be the set of edges in the GPS
computation tree and let0�� be an edge from�� to
�� (� # �). By the fact (II) above,

�
������� �

�� � �
�

� ��	�

�. Note that, in terms of the num-

ber of comparisons, the complexity of inserting an
element into a sorted array of size, is no more
than ��	�, , and the cost of deletion is 1. We as-
sume that right before number�� is deleted (line 5),
there are�� elements in� . We also assume that
�� has%� children. The complexity of inserting all
these childen is�� �%� �%� ��	�%�, since sorting
all the children up takes%� ��	�%� time and merg-
ing two sorted lists of size�� and%� each, takes
time �� � %�. The total complexity is therefore�����
��� �� � �� � %� � %� ��	�%��. Note that the

complexity of the last iteration is zero in terms of
comparisons since at that time there is only one ele-
ment left in the priority queue� . So in the following
summations, we will not count the last iteration, and
will only add up the index
� � � (instead of
�).

Clearly,
�����
��� %� �
� since each of the
�

nodes
� �, � � �,
 � � appeared in%� exactly once
by the aforementioned invariant�. We claim that
�
�����
��� ��� is no more than/ �

�
������� �

��. This can be shown by the technique ofdou-
ble counting in combinatorics as follows. Note that
an edge0�� is counted for most� � � � � times in
the above summation since0�� is inserted in round
� � � and deleted in round� � � (i.e., counted in
��� ����� ���� ��) by the aforementioned invariant�.

13

So�
�����
��� ��� �

�
�������� ���� = �

�
��������

��� � /. So�
�����
��� ��� �

�
�

� ��	�

� �
� since

/ �
� (property of tree).
Now we claim that

�����
��� %� ��	�%� ������

���
�
�%��%� � �� �

�
������� � ��. The first

inequality is due to the fact��	� � � ������� when
� #
. The second equality is because these%� edge
from node�� are at least of lengths 1, 2,� � � �%�
respectively, and therefore the total length of edges
coming out from�� is at least��%��%� � ��. So the
total complexity of the algorithm is no more than
�

+ (
�����
��� ��) + (

�����
��� %�) + (

�����
��� %� ��	�%�)

�
� � ���

� ��	�

� �
�� �
� � ���

� ��	�

��
� 	

�

� ��	�

�.

IV. T HE COMPLEXITY OF SCHEDULING UNDER

LINEAR DECISION TREE

In this section, we study the minimum complexity
needed for a service discipline to provide tight de-
lay bounds. It was shown in [14] that the complexity
needed for scheduling algorithms to guarantee���
or�
�� GPS-relative delay bounds is����	
�, un-
der the aforementioned weaker model. Our initial
goal was to extend this result to the stronger compu-
tation model of linear decision tree. This extension
would be important as we will show in Sec. IV. A
that the GPS virtual finish times are all linear func-
tions of the inputs. We instead discover an interest-
ing negative result. We show in Sec. IV. B. 1 and
IV. B. 2 that methodologies in [14] will not work
for the new model. The complexity lower bound for
scheduling packets to achieve tight delay bounds un-
der the linear decision tree model remains an open
problem.

A. Why extension to the linear decision tree model
is important?

In this section, we prove in the following theorem
that the GPS virtual finish times are all linear func-
tions of the inputs. Extending the results of [14] to
the linear decision tree is therefore important since
comparing between these timestamps is an impor-
tant step in most of the existing scheduling algo-
rithms. In the following proof, packet arrivals dur-
ing a busy period are denoted as��� ��� � � � � � in
the sorted order of their GPS virtual start times. Let

���� and� ��� denote the GPS virtual start and finish
time of the packet� respectively. Let���� and����
denote its length and real arrival time. As before,
� ��� denotes the GPS virtual time time correspond-
ing to the real time�. The inputs here are the real
arrival times����� and lengths of the packets�����,
� � �� �� � � � ��.

Theorem 4: The GPS virtual finish times of the
packets are all linear functions of the inputs.

Proof: Without loss of generality, we prove
the result only for a busy period and assume that its
start time is 0. We only need to show that the vir-
tual start times (�����������) are linear functions,
since� ���� � ����� � �������� and�������� is a
linear function. We prove this by induction on the
index �. When � � �, ����� �
 since it is the
start of a busy period. Suppose����� are all lin-
ear functions for� � � (� # �). When � � �,
����� � ����� �&�� � �������� where& is the pre-
decessor of�� in the same session (� �&� is defined
as �	 if such & does not exist). We have two
cases:

� Suppose� �&� � � �������. Then since& � ��
for some� � �, ����� � � ���� is a linear
function by the induction hypothesis.

� Suppose� �&� � � �������. Then����� �
� �������. We need to show that� ������� is
a linear function. Let0 be the the last event
that happens before the arrival of�� and� is the
real time when it happens. We know that0 is
either the start event of�� for some� � � or
the finish event of��� for some�� � �. In ei-
ther case,� ��� is a linear function by the induc-
tion hypothesis. Then we know that����� �

� ��� � ��	
����
������

��
, where

�
������ �� is a con-

stant between time� and �����. Therefore,
����� is a linear function.

B. A surprising “negative” result

In this section, we prove the “negative” result that
the methodology used in [14] for establishing the
minimum complexity for service disciplines to pro-
vide tight delay bounds will not work for the linear
decision tree model. We first introduce in Sec. IV.
B. 1 the methodologies used in [14]. Then we show

14

...
...

X2

Sessions

X1

2PPS−CBFSScenario 1:

Xn

GPS timeline

Scenario 2:

X2

X3

Sessions

X1

1PPS−FS

Xn

GPS timeline

X3

Lmax−X1

Lmax−X3

Lmax−Xn

Lmax−X2

Fig. 7. Scenarios used in prior work

in Sec. IV. B. 2 why it does not work for the new
model.

1) Methodology used in prior work: We first in-
troduce a packet arrival scenario that is used through-
out the proof of [14], shown in the left side of Fig. 7.
In this scenario, each session has the equal weight,
i.e.,�� � �� for �
� �, and the link rate is�. Each
session has two packet arrivals, both at time 0 but
their relative order is distinguished. The length of the
first packet is�� and the length of the second packet
is ��� � ��. It has shown in [14] that during the
(real) time interval�
� �����

�
�, the CBFS condition

is satisfied. In the sequel, we refer to this scenario
2PPS-CBFS (2PPS := 2 Packets Per Second). The
left side of Fig. 7 shows an example 2PPS-CBFS
scenario.

The following methodology of “reducing to sort-
ing” is used in [14] for proving the lower bounds
of ����	
� per packet, under the aforementioned
weaker model. The main idea is to show that to
sort
 numbers satisfying certain property is “al-
most equivalent” to scheduling
 packets for pro-
viding tight delay bound. They first show that to
sort
 numbers+�, � � �� �� � � � �
 needs��
 ��	
�
under the weaker model, even when a permutation
of these numbers are around the neighborhoods of
����

��� , �����

��� , ..., �����

��� , respectively. The latter con-
dition is equivalent to saying that�+�� +�� ���� +�� � �
and the set� is as defined in Sec. II. E. Then
they show that given a 2PPS-CBFS packet arrival
instance, in which the lengths of the first packets
are �+������� and �+�� +�� ���� +�� � �, a schedul-
ing algorithm that guarantees��� GPS-relative de-
lay will make them almost sorted. Here “almost
sorted” means only��
 ��	
� additional effort is

needed to get the output of the scheduling algorithm
sorted. Therefore, the complexity of the schedul-
ing algorithm to sort these�
 packets is��
 ��	
�,
or ����	
� per packet. Lower bounds concerning
�
�� GPS-relative delay are proved in a similar
way.

Each 2PPS-CBFS scenario also has a correspond-
ing 1PPS-FS scenario, in which the second packet
of each session is taken away. Fig. 7 shows at the
right side the 1PPS-FS scenario corresponding to the
2PPS-CBFS scenario shown at left side. We call
it 1PPS-FS, since the condition “continuously back-
logged” is no longer satisfied and each session only
has one packet arrival. We will also prove a stronger
result based on this scenario.

2) Our result: We show that the aforementioned
method of “reducing to sorting” will not work un-
der the linear decision tree. We show that under
linear decision tree, the complexity of sorting the
above numbers�+������� remain the same (Theo-
rem 5 below). However, the complexity of schedul-
ing these packets to provide��� delay bound be-
comes����	 ��	
� per packet, shown in Theorem
6! Therefore, providing tight delay bounds using
scheduling is no longer “almost equivalent” to sort-
ing.

We first show that even if�+�� +�� ���� +�� � � as
explained above, to sort the set of numbers�+�������
still needs��
 ��	
� complexity.

Theorem 5: The sorting is��
 ��	
� even if we
know that the numbers are in the set� under the lin-
ear decision tree model.

Proof: [Sketch] Suppose there is a sorting algo-
rithm � for these numbers that is not of complex-
ity ��
 ��	
�. In other words, for any, #
,
there exists
� # , such that the worst-case com-
plexity to sort these numbers for all instances of size

� is no more than�	

� ��	�

� comparisons. We as-

sume that, is large enough so that the complexity
lower bound of�-membership for instances of size

� is larger than��

� ��	�

� (recall from Lemma 1

that this lower bound is
 ��	�
 � ��
 ��	�
�) and
�
� is no larger than�	

� ��	�

�, when
� # , .

We construct an�-membership algorithm� that has
the worst-case complexity no more than�

�

� ��	�

�

comparisons for all instances of size
� as follows.
Algorithm � first runs algorithm�. Then we check
the�-membership using�
� comparisons. The to-

15

tal complexity of the algorithm� is no more than
�
	

� ��	�

� � �
� � �

�

� ��	�

�, a contradiction.
Now we are ready to present our���	 ��	
� (per

packet) algorithm for scheduling packets to provide
��� GPS-relative delay bound. Like in [14], we as-
sume that the packet arrival instance is a 2PPS-CBFS
scenario. We refer to the first packet of session� as
�� and its size+�, � � �� �� � � � �
.

Theorem 6: For a 2PPS-CBFS packet arrival in-
stance where the lengths of the first packets
�+������� satisfy the condition�+�� +�� ���� +�� � �,
there is an���	 ��	
� per packet scheduling algo-
rithm that provides��� GPS-relative delay, under
the linear decision tree model.

Proof: We assume that
 � � � �� for the
simplicity of discussion. We prove that the schedul-
ing algorithm shown in Fig. 8 provides��� GPS-
relative delay under the linear decision tree model.
Note that the complexity of line 3 is����	 ��	
�
since the algorithm can perform binary search
among��	�
 intervals

�
��������
��� � �

�����
���

�
� � � � �

� to find the right one and each iteration pro-
cesses one packet. Therefore, the total complexity
is ��
 ��	 ��	
�, or����	 ��	
� per packet.

We now show that no packet will be delayed for
more than��� (assume the service rate is 1) af-
ter scheduling, for all inputs�+�� +�� ���� +�� � �.
Since �+�� +�� ���� +�� � �, by the definition of�,
we know that there exists a permutation" such
that �����

��� � Æ � +���� �
�����

��� � Æ. Also clearly
+���� � +���� � ��� � +����. Given ��, suppose
��������������

��� � +� � ������������

��� � � � � � �.
Then�� is in 	� and will be scheduled earlier than
all “first” packets ���� such that� � �� and
all “second” packets. So the service time of the
packet is no more than+���� � +���� � ��� � +�������

�
�����
��

�����

��� � Æ� � ��������������

��� � ��� � ��Æ

� ���������

��� �
Æ. However, its GPS virtual finish

time is exactly
+� �
���������������

��� . So its GPS-

relative delay is at most
Æ � �����

������ � ���.
We can actually prove a stronger result. We show

that even if the second packet does not exist, i.e.,
for 1PPS-FS scenarios, we still have an����	 ��	
�
algorithm. This result is stronger since the GPS-
relative delay of the same packet under a 2PPS-
CBFS scenario is strictly smaller than that under a

corresponding 1PPS-FS scenario. Such an algorithm
is shown in Fig. 9. It is more complicated than the
algorithm in Fig. 8. We omit the proof of its correct-
ness since it is similar to the proof of Theorem 6. Its
complexity is clearly����	 ��	
� per packet for the
reason explained in the proof of Theorem 6.

V. CONCLUSIONS

In this work, we answered the following two sets
of important open questions concerning the compu-
tational complexity of packet scheduling:

1) On the complexity of tracking the GPS
clock: We first answer the interesting open
question as to whether the complexity lower
bound of “sorting” the GPS virtual finish
times, which is all that are needed in��	,
can be smaller than computing their exact val-
ues. We showed, surprisingly, that the former
is at least asymptotically as large as the lat-
ter. Then we showed that this lower bound
complexity for “sorting” the GPS virtual fin-
ish times is����	
� per packet, and discov-
ered that an existing algorithm [8] matches
this bound. This had an important implica-
tion: the��	 implementation that uses the
GPS tracking algorithm in [8] is the optimal
algorithm for implementing the��	 ser-
vice discipline. We discovered, however, that
this GPS tracking algorithm requires “manda-
tory lazy evaluation”, so that although its the-
oretical complexity is����	
� per packet, its
worst-case complexity in practice can be as
large as��
�. Finally, we proved the most
important result of this paper: the complexity
lower bound for tracking the GPS clock per-
fectly is����	
� per packet.

2) On the complexity of providing delay
bounds: Our original goal was to extend
the prior work by Xu and Lipton [14] to the
stronger model of the linear decision tree. We
showed that this extension is important since
GPS virtual finish times are all linear functions
of the inputs, and therefore the linear deci-
sion tree accurately captures the computation
power of a router. We obtained an interesting
negative result: the methodology (reduce to
sorting) used in [14] in proving lower bounds

16

1. FIFO PacketQueue ��� ���

 � �
 � 	; /* Here �� � � �
 */
2. for (� � �; � � �; �++) �

3. Find �� � � � � �� such that ���� �
��������

�	�
� �� � ���� �

������
�	�

;
4. Append 	� to ��;
5. �
6. for (� � �; � � �; �++) serve packets in �� in the FIFO order;
7. Schedule the remaining ones in the sequential order;

Fig. 8. An����� ��� �� algorithm for providing���� GPS-relative delay bound under 2PPS-CBFS scenarios

1. FIFO PacketQueue ��� ���

 � �
 � 	; /* Here �� � � �
 */
2. FIFO PacketQueue �� ��

 �
�� � 	;
3. for (� � �; � � �; �++)

4. if (�� � ���� �
����	���

�	�
) �

5. Find �� � � � � �� such that ���� �
��������

�	�
� �� � ���� �

������
�	�

;
6. Append 	� to ��;
7. �
8. else �

9. Find �� � � � � � � �� such that �������
������
�	�

� � �� � �������
��������

�	�
�;

10. Append 	� to �;
11. �
12. for (i=1; i � k; i++) serve packets in �� in the FIFO order
13. for (i=1; i � k-1; i++) serve packets in
�� in the FIFO order

Fig. 9. An����� ��� �� algorithm for providing���� GPS-relative delay bound under 1PPS-FS scenarios

will not work for the stronger model. In par-
ticular, we show that given a packet arrival
scenario used in [14], there is an���	 ��	
�
per packet algorithm to guarantee��� GPS-
relative delay bound under the stronger model.
This demonstrates that, under such scenarios,
scheduling packets to guarantee tight delay
bounds is much easier than sorting the GPS
virtual finish times, making the reduction to
sorting impossible. This negative result indi-
cates that a new methodology is needed in or-
der to possibly establish this complexity lower
bound, which remains an open problem so far.

REFERENCES

[1] J. Bennett and H. Zhang.����: worst-case fair weighted
fair queuing. InIEEE INFOCOM’96, March 1996.

[2] J. Bennett and H. Zhang. Hierarchical packet fair queu-
ing algorithms. IEEE/ACM Transactions on Networking,
5:675–689, 1997.

[3] H. Chan and X. Guo.Quality of Service Control in High-
Speed Networks. Wiley, 2001.

[4] A. Demers, S. Keshav, and S. Shenker. Analysis and sim-
ulation of a fair queueing algorithm.Internetworking: Re-
search and Experience, pages 3–26, 1990.

[5] D. Dobkin and R. Lipton. A lower bound of�
�
�� on linear

search programs for the knapsack problem.J. Comput.
Syst. Sci., 16:413–417, 1978.

[6] S. Golestani. A self-clocked fair queueing scheme for
broadband applications. InProc. of Infocom’94, June
1994.

[7] P. Goyal, H. Vin, and H. Cheng. Start-time fair queuing: A
scheduling algorithm for integrated servicespacket switch-
ing networks. InCS-TR-96-02, Dpet. of Computer Sci-
ence, Univ. of Texas, Austin, 1996.

[8] A. Greenberg and N. Madras. How fair is fair queuing?
Journal of the ACM, 39(3):568–598, 1992.

[9] A. Parekh and R. Gallager. A generalized processor shar-
ing approach to flow control in integrated services net-
works: the single node case.IEEE/ACM Transaction on
Networking, 1(3):344–357, June 1993.

[10] M. Sipser. Introduction to the Theory of Computation.
PWS, 1997.

[11] D. Stiliadis and A. Varma. Design and analysis of frame-
based fair queuing: A new traffic scheduling algorithm for
packet switched networks. InProc. of ACM Sigmetrics’96,
pages 104–115, May 1996.

[12] D. Stiliadis and A. Varma. Latency-rate servers: a gen-
eral model for analysis of traffic scheduling algorithms. In
Proc. of Infocom’96, March 1996.

[13] J. Turner. New directions in communications (or which
way to the information age?). IEEE Communications
Magazine, 24:8–15, October 1986.

[14] J. Xu and R. Lipton. On fundamental tradeoffs between
delay bounds and computational complexity in packet
scheduling algorithms. InProc. of ACM SIGCOMM 2002,
August 2002.

[15] H. Zhang. Service disciplines for guaranteed performance
service in packet switching networks.Proceedings of the

17

IEEE, 83(10), October 1995.

