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Abstract. A directed graph is upward planar if it can be drawn in the plane such that every edge
is a monotonically increasing curve in the vertical direction and no two edges cross. An undirected
graph is rectilinear planar if it can be drawn in the plane such that every edge is a horizontal or vertical
segment and no two edges cross. Testing upward planarity and rectilinear planarity are fundamental
problems in the effective visualization of various graph and network structures. For example, upward
planarity is useful for the display of order diagrams and subroutine-call graphs, while rectilinear
planarity is useful for the display of circuit schematics and entity-relationship diagrams.

We show that upward planarity testing and rectilinear planarity testing are NP-complete prob-
lems. We also show that it is NP-hard to approximate the minimum number of bends in a planar
orthogonal drawing of an n-vertex graph with an O(n1−ε) error for any ε > 0.
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1. Introduction. Graph drawing addresses the problem of constructing geo-
metric representations of abstract graphs and networks [6, 7]. It is an emerging area
of research that combines flavors of topological graph theory and computational ge-
ometry. The automatic generation of drawings of graphs has important applications
in key computer technologies such as software engineering, database design, visual
interfaces, and computer-aided design.

Various graphic standards have been proposed for the representation of graphs
in the plane. Usually, each vertex is represented by a point and each edge (u, v) is
represented by a simple open Jordan curve joining the points associated with vertices
u and v. A straight-line drawing maps each edge into a straight-line segment. A
drawing is planar if no two edges cross. A graph (or digraph) is planar if it admits
a planar drawing. A drawing of a digraph is upward if every edge is monotonically
nondecreasing in the y-direction. A drawing of a digraph is planar upward if it is
planar and upward. A digraph is upward planar if it admits a planar upward drawing.
Figure 1.1(a) shows a planar straight-line upward drawing. An orthogonal drawing
maps each edge into a chain of horizontal and vertical segments. A rectilinear drawing
is an orthogonal straight-line drawing, i.e., a drawing where every edge is either a
horizontal or a vertical segment. A graph is rectilinear planar if it admits a planar
rectilinear drawing. Figure 1.1(b) shows a planar rectilinear drawing.
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(b)(a)
Fig. 1.1. Examples of (a) a planar straight-line upward drawing of a digraph and (b) a planar

rectilinear drawing of a graph.

Testing upward planarity and rectilinear planarity are fundamental problems in
the effective visualization of various graph and network structures. For example,
upward planarity is useful for the display of order diagrams and subroutine-call graphs,
while rectilinear planarity is useful for the display of circuit schematics and entity-
relationship diagrams. In this paper, we show that the following two problems are
NP-complete:

Upward planarity testing. Testing whether a digraph is upward planar.

Rectilinear planarity testing. Testing whether a graph is rectilinear planar.

These problems have challenged researchers in order theory, topological graph the-
ory, computational geometry, and graph drawing for many years. Our intractability
results motivate the following observations:

• Testing whether a graph admits a planar drawing or an upward drawing can
be done in linear time. Combining the two properties makes the problem
NP-hard.

• Every planar graph admits a planar straight-line drawing. Hence, we can
say that planarity is equivalent to straight-line planarity, and both properties
can be verified in linear time. We can view upward and rectilinear planarity
as derived from straight-line planarity by adding further constraints, which
apparently make the problem become much more difficult.

We also show that it is NP-hard to approximate the minimum number of bends
in a planar orthogonal drawing of an n-vertex graph with an O(n1−ε) error for any
ε > 0.

Previous results on upward and rectilinear planarity testing are summarized be-
low. In the rest of this section, we denote with n the number of vertices of the graph
being considered.

Combinatorial results on upward planarity of covering digraphs of lattices were
first given in [17, 24]. Further results on the interplay between upward planarity and
ordered sets are surveyed by Rival [25, 26, 27]. Lempel, Even, and Cederbaum [18]
relate the planarity of biconnected undirected graphs to the upward planarity of st-
digraphs. A combinatorial characterization of upward planar digraphs is provided
in [10, 16]; namely, a digraph is upward planar if and only if it is a spanning subgraph
of a planar st-digraph. This characterization implies that upward planarity testing is
in NP.

Di Battista, Liu, and Rival [9] show that every planar bipartite digraph is up-
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ward planar. Papakostas [23] gives a polynomial-time algorithm for upward planarity
testing of outerplanar digraphs. Bertolazzi and Di Battista [2] and Bertolazzi et
al. [3] give a polynomial-time algorithm for testing upward planarity of triconnected
digraphs and of digraphs with a fixed embedding. Concerning single-source digraphs,
Thomassen [33] characterizes upward planarity in terms of forbidden circuits. Hutton
and Lubiw [14] combine Thomassen’s characterization with a decomposition scheme
to test upward planarity of a single-source digraph in O(n2) time. Bertolazzi et al. [4]
show that upward planarity testing of a single-source digraph can be done optimally
in O(n) time. They also give a parallel algorithm that runs in O(log n) time on a
CRCW PRAM with n log log n/ log n processors.

Di Battista and Tamassia [10] and Di Battista, Tamassia, and Tollis [11] give
algorithms for constructing upward planar drawings of planar st-digraphs and inves-
tigate area bounds and symmetry display. Tamassia and Vitter [32] show that the
above drawing algorithms can be efficiently parallelized. Upward planar drawings of
series-parallel digraphs are studied in [1].

Regarding rectilinear planarity testing, Shiloach [28] and Valiant [34] show that
any planar graph of degree at most 4 admits a planar orthogonal drawing. Vijayan
and Wigderson [35] study structural properties of rectilinear planar drawings. From
their results, the membership of rectilinear planarity testing in NP is easy to establish.
Storer [29], Tamassia and Tollis [31], Liu et al. [20], Liu, Morgana, and Simeone [21,
22], Liu, Marchioro, and Petreschi [19], Even and Granot [12], Kant [15], and Biedl
and Kant [5] give various techniques for constructing planar orthogonal drawings
with O(n) bends. Tamassia [30] gives an O(n2 log n)-time algorithm that constructs
a planar orthogonal drawing with the minimum number of bends for an embedded
planar graph. Di Battista, Liotta, and Vargiu [8] give polynomial-time algorithms for
minimizing bends in planar orthogonal drawings of series-parallel and cubic graphs.
The latter two results show that rectilinear planarity testing can be done in polynomial
time for a fixed embedding or for special classes of graphs.

Our proof techniques are based on a two-phase reduction from the known NP-
complete problem not-all-equal-3-sat. In the first phase, we reduce not-all-
equal-3-sat to an auxiliary undirected flow problem. In the second phase, we reduce
this undirected flow problem to the upward (or rectilinear) planarity testing of a
special class of digraphs. The latter reduction is interesting on its own and provides
new insights on the characterization by flow networks of the angles formed by the
edges of upward planar drawings [2, 3] and orthogonal drawings [8, 30].

The rest of this paper is organized as follows. Preliminary definitions and results
are provided in section 2. The reduction from not-all-equal-3-sat to the auxiliary
flow problem is given in section 3. Sections 4 and 5 describe the reductions from
the auxiliary flow problem to upward and rectilinear planarity testing, respectively.
Conclusive remarks are given in section 6.

2. Preliminaries. We assume that the reader is familiar with the standard
concepts and definitions on NP-completeness [13]. Our results use reductions from
the following well-known NP-complete problem:

not-all-equal-3-sat. Given a set of clauses with three literals each, is there
a truth assignment such that each clause has at least one true literal and one false
literal?

An embedding of a planar graph is the collection of circular permutations of the
edges incident upon each vertex in a planar drawing of the graph. An embedded graph
is a planar graph equipped with an embedding. We do not distinguish between a
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graph and its embedding if the embedding is unique and the meaning is clear from
the context. A vertex has degree d if it has d edges incident upon it. A degree-d graph
is one each of whose vertices has degree at most d.

We denote by G − {v} the subgraph of graph G obtained by removing vertex v
and its incident edges from G.

The angles of an embedded undirected graph are the pairs of consecutive edges
incident on the same vertex. The angles of an embedded directed graph are the pairs
of consecutive incoming and outgoing edges incident upon the same vertex. Such
angles are mapped to geometric angles in a straight-line drawing of the graph.

A labeled embedding of an undirected graph G is an embedding of G in which each
angle is assigned a label from the set {1, 2, 3, 4}. A labeled embedding of a directed
graph G is an embedding of G in which each angle is assigned a label from the set
{small, large}.

A rectilinear embedding of a graph G is a labeled embedding of G such that
there exists a rectilinear drawing of G in which each angle labeled � in the embedding
measures �π/2 in the drawing. Each rectilinear embedding has a unique external face.

The following definitions are from [2, 3]. An upward embedding of a directed graph

(digraph) �G is a labeled embedding of �G such that there exists a planar straight-line

upward drawing of �G where each angle labeled small has measure < π and each angle
labeled large has measure > π. Each upward embedding has a unique external face.

A source of a digraph �G is a vertex with all outgoing edges, and a sink of �G is a
vertex with all incoming edges. A switch of �G is a source or sink of �G. A source or
sink of a face f of �G is called a local source or sink of f . Note that a local switch of
f may or may not be a switch of �G.

2.1. Upward and rectilinear embeddings. In this section, we give some
lemmas on upward and rectilinear embeddings that will be used extensively in the
proofs.

We first give some definitions. In an embedding of a digraph �G, a vertex is bimodal
if its incident edges can be partitioned into two (possibly empty) sets of consecutive
edges consisting of its incoming and outgoing edges, respectively. An embedding of
�G is bimodal if each vertex is bimodal.

Consider an assignment of labels from the set {small, large} to the angles of an

embedding of �G. For a face f of the embedding, let L(f) and S(f) be the number of
angles of f with label large and small, respectively. Face f is said to be consistently
assigned if

L(f)− S(f) =
{ −2 if f is an internal face,

+2 if f is the external face.

An assignment of labels to the angles of an embedding of digraph �G is a consistent
assignment if

• all the angles at a nonsource or nonsink vertex of �G are assigned label small,
• exactly one angle at a source or sink vertex of �G is assigned label large, and
• each face is consistently assigned.

We paraphrase a result of [2, 3] in the following lemma.

Lemma 2.1. An embedding of a digraph �G can be extended to an upward embed-
ding if and only if it is bimodal and admits a consistent assignment of labels to its
angles.
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Let G be an undirected graph of degree at most 4. Consider an assignment of
labels from the set {1, 2, 3, 4} to the angles of an embedding of G. For a face f of the
embedding, let Ni(f) be the number of angles of f with label i. Face f is said to be
consistently rectilinearly assigned if

2 ·N4(f) +N3(f)−N1(f) =

{ −4 if f is an internal face,
+4 if f is the external face.

An assignment of labels to the angles of an embedding of a graph G is a consistent
rectilinear assignment if

• the sum of the labels of the angles around each vertex is 4, and
• each face is consistently rectilinearly assigned.

The following lemma is an immediate consequence of the results in [30, 35].
Lemma 2.2. An embedding of a graph G can be extended to a rectilinear em-

bedding if and only if it admits a consistent rectilinear assignment of labels to its
angles.

2.2. Tendrils and wiggles. We now define several graphs that will be used as
gadgets in our reductions.

Tendril Tk, for k ≥ 0, is an acyclic digraph with two designated poles, a source
pole denoted by s and a sink pole denoted by t, and is defined recursively as follows:

• Tendril T0 consists of a single directed edge (s, t).
• Tendril T1 is the 10-vertex graph shown in Figure 2.1(a).
• Tendril Tk is constructed from Tk−1 by adding the graph Hk shown in Fig-
ure 2.1(b) to it by identifying edges (and their endpoints) ek−1 of Tk−1 and
fk of graph Hk (Figure 2.1(c)).

It is easy to see that Tk has exactly k + 1 sources and k + 1 sinks. Figure 2.2(a) and
Figure 2.2(b) show tendrils T2 and T3, respectively.

Lemma 2.3. Tendril Tk is upward planar and admits a unique upward embed-
ding.

Proof. We use induction on k. It is straightforward to verify that T1 has a unique
upward embedding by applying Lemma 2.1 to their O(1) planar embeddings. Now
suppose that Tk−1 has a unique upward embedding. Again, it can be easily verified
that Hk has a unique upward embedding by applying Lemma 2.1 to its O(1) planar
embeddings. Hence, for finding upward embeddings of Tk, we need only to consider
the four planar embeddings of Tk obtained by flipping the upward embeddings of
Tk−1 and Hk around their common edge fk. Applying Lemma 2.1 to the four faces
containing both endpoints of fk shows that only one of these four planar embeddings
can be extended to an upward embedding of Tk.

In the upward planar embedding of Tk, the external face consists of two paths,
namely, the outer and inner paths, between s and t. The outer path has 2k large angles
and no small angles, and the inner path has 2k small angles and no large angles. The
outer and inner paths of T2 are drawn with shaded and solid thick lines, respectively,
in Figure 2.2(a). When Tk replaces an edge of an embedded planar digraph, the outer
(inner) path becomes a subpath of a face f , and we say that the contribution of the
outer (inner) path to f is +2k (−2k).

Figure 2.2(b) shows a wiggle Wk, which consists of a chain of 2k+ 1 edges whose
orientations alternate along the chain. The two extreme vertices of Wk are called its
source and sink poles, respectively, and are denoted by s and t, respectively. Later, in
section 4, we will consider transformations where a directed edge (u, v) of an embedded
digraph is replaced with Wk such that s is identified with u and t with v, and Wk
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Fig. 2.1. (a) Tendril T1; (b) graph Hk; (c) constructing Tk from Tk−1.
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Fig. 2.2. Examples of tendrils and wiggles: (a) tendril T2; (b) tendril T3; (c) wiggle W3. The
outer and inner paths of T2 are drawn using shaded and solid thick lines, respectively.

becomes a subpath of two faces f1 and zz2 in the new digraph. Given an upward
embedding of Wk, we say that the contribution of Wk to face fi, where i = 1 or 2,
is equal to the number of large angles minus the number of small angles of Wk in fi.
Because each angle of Wk in fi is either large or small, the contribution of Wk to fi
is an even number c, where −2k ≤ c ≤ 2k. Note that if Wk gives contribution c to
face f1 (f2), it gives contribution −c to face f2 (f1).

A rectilinear tendril Tk, for k ≥ 0, is an undirected graph with two designated
poles s and t, and is defined recursively as follows:

• T0 consists of a single edge (s, t).
• T1 is the 10-vertex graph with poles s = s1 and t = t1 shown in Figure 2.3(a).
• Tk is constructed from Tk−1 by removing sk−1 and its incident edge and
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Fig. 2.3. (a) Rectilinear tendril T1; (b) graph Hk; (c) constructing Tk from Tk−1.
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Fig. 2.5. The four rectilinear embeddings of rectilinear tendril T1.
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Fig. 2.6. Rectilinear wiggle W3.
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adding the graph Hk shown in Figure 2.3(b) to it by identifying its edge ek−1

with the edge fk of Hk (Figure 2.3(c)). The poles of Tk are s = sk and t = t1.
Figure 2.4 shows rectilinear tendril T3.

Lemma 2.4. Rectilinear tendril Tk is rectilinear planar and admits exactly four
rectilinear embeddings.

Proof. The proof has the same flavor as that of the proof of Lemma 2.3. We use
induction on k and apply Lemma 2.2.

Figure 2.5 shows the four rectilinear embeddings of T1. An external path of Tk
is a subpath from s to t of its external face in a rectilinear planar embedding of Tk.
Notice that Tk has exactly two external paths.

A rectilinear wiggleWk consists of a chain of 4k+1 edges, and its two end vertices
are called the poles. Figure 2.6 shows rectilinear wiggle W3.

Later, in section 5, we will consider transformations where an edge (u, v) of an
embedded graph is replaced with a rectilinear tendril Tk or wiggle Wk such that u
and v are identified with the poles of Tk or Wk. Let f1 and f2 be the two faces of
the new graph such that Wk or the external paths of Tk are subpaths of f1 and f2.
The contribution of Wk or Tk to f1 (f2) is equal to the number of its angles labeled 3
minus the number of its angles labeled 1 that are in f1 (f2). Hence, the contribution
of Tk to f1 (f2) is an integer c, where c is equal to one of −(4k+ 2), −(4k+ 1), −4k,
4k, 4k + 1, and 4k + 2, and the contribution to f2 (f1) is −c. The contribution of
Wk to f1 (f2) is an integer c, where −4k ≤ c ≤ 4k, and the contribution to f2 (f1) is
−c.

3. An auxiliary flow problem. In this section, we define two auxiliary flow
problems and show that they are equivalent to not-all-equal-3-sat under polynomial-
time reductions.

A switch-flow network is an undirected flow network N , where each edge is labeled
with a range [c′ · · · c′′] of nonnegative integer values, called the capacity range of the
edge. For simplicity, we denote the capacity range [c · · · c] with [c]. A flow for a
switch-flow network is an orientation of and an assignment of integer “flow” values
to the edges of the network. A feasible flow is a flow that satisfies the following two
properties:

Range property. The flow assigned to an edge is an integer within the capacity
range of the edge.

Conservation property. The total flow entering a vertex from the incoming edges
is equal to the total flow exiting the vertex from the outgoing edges.

Starting from an instance S of not-all-equal-3-sat, we construct a switch-
flow network N as follows (see Figures 3.1–3.2). Let the literals of S be denoted with
x1, y1, . . . , xn, yn, where yi = xi, and let the clauses of S be denoted with c1, . . . , cm.
Let θ be a positive integer parameter. We denote with αi and βi (where i = 1, . . . , n)
the number of occurrences of literals xi and yi, respectively, in the clauses of S. Note
that

∑n
i=1(αi + βi) = 3m. Also, we define γi = (2i− 1)θ and δi = 2iθ (i = 1, . . . , n).

Network N has a literal vertex for each literal of S and a clause vertex for each
clause of S, plus a special dummy vertex z. There are three types of edges in N (see
Figure 3.2):

Literal edges. Joining pairs of literals associated with the same boolean variable;
the capacity range of literal edge (xi, yi) is [αiγi + βiδi].

Clause edges. Joining each literal to each clause; the capacity range of clause edge
(xi, cj) is [γi] if xi ∈ cj and [0] otherwise. The capacity range of clause edge (yi, cj)
is [δi] if yi ∈ cj and [0] otherwise.
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Fig. 3.1. (a) Switch-flow network N with parameter θ = 4 associated with the not-all-equal-
3-sat instance S with clauses c1 = y1x2y3, c2 = y1y2x3, and c3 = x1x2x3. The clause edges
with nonzero capacity range are shown with thick lines. (b) Feasible flow for N corresponding to
the satisfying truth assignment (y1, x2, x3) for S. Only the edges with nonzero flow are shown.
(c) Planar switch-flow network P associated with S. (d) Feasible flow for P corresponding to the
satisfying truth assignment (y1, x2, x3) for S. Only the edges with nonzero flow are shown.

Dummy edges. Joining each literal and each clause to the dummy vertex; the
capacity ranges of dummy edges (z, xi) and (z, yi) are [βiδi] and [αiγi], respectively.
The capacity range of dummy edge (z, cj) is [0 · · · ηj − 2θ], where ηj is the sum of the
capacities of the clause edges incident on cj .

The construction of network N from S is straightforward, and we have the fol-
lowing lemma.

Lemma 3.1. Given an instance S of not-all-equal-3-sat with n variables and
m clauses, the associated switch-flow network N has O(n +m) vertices and O(nm)
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Fig. 3.2. Schematic illustration of the edges incident on the literal and clause vertices of
network N : (a) literal vertices xi and yi; (b) clause vertex cj .

edges and can be constructed in O(nm) time.
A feasible flow in network N corresponds to a satisfying truth assignment for S.

Namely, we have that a literal is true whenever its incident literal edge is incoming in
the feasible flow (see Figure 3.1(b)) and its incident clause edges with nonzero capacity
range are outgoing. We formalize this correspondence in the following lemma.

Lemma 3.2. An instance S of not-all-equal-3-sat is satisfiable if and only
if the associated switch-flow network N admits a feasible flow. Also, given a feasible
flow for N , a satisfying truth assignment for S can be computed in time O(nm), where
n and m are the number of variables and clauses of S, respectively.

Proof. If. Given a feasible flow in N , we construct a truth assignment A by
setting a literal true if its incident literal edge is incoming in the flow. We now show
that this is a satisfying assignment. Clearly, the two literals xi and yi associated with
the same boolean variable consistently receive opposite truth assignments.

Because of the conservation property, all the incident clause edges with nonzero
capacity range of a true literal are outgoing, and the amount of flow in each of them is
equal to the capacity. Conversely, if a literal is false, then because of the conservation
property, all its incident clause edges with nonzero capacity range are incoming, and
the amount of flow in each of them is equal to the capacity. The three clause edges
with nonzero capacity range incident on a clause vertex cj cannot be all incoming or
all outgoing because of the conservation property at vertex cj and the choice of the
capacity range for the dummy edge incident on cj . Therefore, three literals in cj can
not be all true or all false. Hence, A is a satisfying truth assignment for S. Also, A
can be constructed in time linear in the number of edges of N , which is O(nm).

Only if. Let A be a satisfying truth assignment of S. We construct a feasible flow
f in N from A. In this flow, we have the following:

• The amount of flow through the literal, clause, and the dummy edges incident
on literal vertices is equal to their capacities. The flow, therefore, satisfies
the range property in these edges.

• If a literal is true, then its incident literal edge is incoming and its incident
clause edges with nonzero capacity range and its dummy edge are outgoing.
If a literal is false then its incident literal edge is outgoing and its incident
clause edges with nonzero capacity and its dummy edge are incoming. In
either case, the amount of flow coming into a literal li is αiγi + βiδi, and
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the amount of flow leaving it is αiγi + βiδi. Therefore, the flow satisfies the
conservation property at these vertices.

• If the net flow entering a clause vertex through the clause edges is νj , then
the flow leaving it through its dummy edge is νj . Conversely, if the net
flow leaving a clause through the clause edges is νj , then the flow entering it
through its dummy edge is νj . Since A is a satisfying assignment, the three
clause edges with nonzero capacity range incident on a clause vertex cannot
be all incoming or all outgoing. The magnitude of flow in a clause edge is
at least θ. Therefore, the net flow coming into or leaving a clause vertex cj
through its clause edges is at most ηj − 2θ. Hence, the conservation property
at cj and the range property in its dummy edge are both satisfied by the flow.

• We show now that the conservation property holds at the dummy vertex
by using the following argument. By successive mergers of two nondummy
vertices of N and elimination of the resultant self loops and the flow through
them, we can reduce N into a graph with multiple edges between two vertices:
the dummy vertex and another vertex u for which the conservation property
holds. The net flow between these two vertices is same as in f . Since the
conservation property holds for u and the dummy vertex is neither a source
nor a sink, the conservation property holds for the dummy vertex also.

Now, starting from S, we construct a planar switch-flow network P (see Fig-
ure 3.1). We first construct a layered drawing ψN of N as follows (see Figure 3.1(a)):

• Each literal and clause edge is drawn as a straight line. The dummy edges
are drawn as continuous curves.

• The clause vertices are horizontally aligned and ordered c1, c2, . . . , cm from
left to right.

• The literal vertices are horizontally aligned above the clause vertices and
ordered x1, x2, y1, y2, . . . , xm, ym from left to right.

• There are crossings only between the clause edges. However, no more than
two clause edges cross at the same point.

We next replace the crossings of ψN with vertices called the crossing vertices, thus
splitting the clause edges at the crossing vertices. We call fragment edges, or simply
fragments, the edges originated by the splitting of the clause edges. Each fragment
edge inherits the capacity range of the originating clause edge. We define the facial
degree of a vertex as the total number of edges in its incident faces.

Lemma 3.3. Given network N representing an instance S of not-all-equal-
3-sat with n ≥ 3 variables and m ≥ 3 clauses, the associated planar switch-flow
network P is triconnected, has O(n2m2) vertices and edges, and can be constructed in
O(n2m2) time. Also, in the unique embedding of P, the facial degree of each vertex
is at most 7nm.

Proof. Let ψN be the layered drawing of N that is used to construct P (see
Figure 3.1(a)). There are O(n2m2) crossings in ψN . Therefore, P has O(n2m2)
crossing vertices and fragment edges. Consequently, P has O(n2m2) vertices and
edges.

Now we show that P is triconnected. We denote by uk the crossing vertex that
corresponds to the crossing between the line joining ck and yn and the line joining
ck+1 and x1. We denote by vk the crossing vertex that corresponds to the crossing
between the line joining yk and cm and the line joining xk+1 and c1. We call the
vertices of type uk and vk the bounding crossing vertices of P. No two bounding
vertices are identical because they correspond to crossings between different pairs of
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lines. Hence there are two vertex disjoint paths, p = x1y1v1 . . . xkykvkxk+1 . . . yn and
q = c1u1c2 . . . ckukck+1 . . . cm, in P. Let a and b be two nondummy vertices of P.
From a and b, there are four vertex-disjoint paths pa, qa, pb, and qb such that pa and
qa consist of the fragment edges of a clause edge incident upon a and connect a with
a vertex of the paths p and q, respectively, and pb and qb consist of the fragment
edges of a clause edge incident upon b and connect b with a vertex of the paths p
and q, respectively. Notice that if a (b) is a literal vertex, then pa (pb) is empty; and
if a (b) is a clause vertex, then qa (qb) is empty. Hence, between a and b there are
two vertex-disjoint paths: one consisting of pa, a subpath of p, and pb, and the other
consisting of qa, a subpath of q, and qb. Hence, graph P − {z} is biconnected. Now
suppose, for contradiction, that P is not triconnected. Since the graph P − {z} is
biconnected, z is not a member of a separating pair of P. Let C1 and C2 be two
connected components of P obtained after removing a separating pair. Suppose z is
in C1. Hence there are at most two vertex disjoint paths between z and the vertices
in C2. However, between z and a vertex w of P − {z}, there are at least four vertex
disjoint paths as follows:

• if w is a crossing vertex, then the four paths go through the endpoints of the
two clause edges of N whose crossing is associated with v;

• if w is a clause vertex, then one path consists of the dummy edge incident
upon w, and the other three paths go through three literal vertices; and

• if w is a literal vertex, then one path consists of the dummy edge incident
upon w, and the other three paths go through three clause vertices.

Thus, we get a contradiction. Therefore P is triconnected.

Now we show that the facial degree of any vertex is at most 7nm. All the faces
incident on the dummy vertex z have at most four vertices: one is z, two of them
are clause and/or literal vertices, and the fourth (if present) is a bounding crossing
vertex. There are n− 1 +m− 1 bounding crossing vertices in P. A simple counting
argument, therefore, shows that the facial degree of z is equal to 3n+m+ 2(n− 1 +
m− 1) + 2 = 5n+ 3m− 2. Let f be a face that does not contain z. Face f contains
at most two fragments of clause edges incident on the same clause or literal vertex.
Hence, the number of edges in face f is at most min{2 · 2n, 2m} = min{4n, 2m}.
The degree of a nondummy vertex u is at most max{2n + 1,m + 2, 4}, which is
at most max{2n + 1,m + 2} for n,m ≥ 3. Hence, the facial degree of u is at most
max{2n+1,m+2}·min{4n, 2m} ≤ (max{2n,m}+2) ·min{4n, 2m} = (max{2n,m}+
2) · 2min{2n,m} = 2(max{2n,m} + 2)min{2n,m} = 2max{2n,m}min{2n,m} +
4min{2n,m} = 2(2nm)+4min{2n,m} = 4nm+min{8n, 4m}. Since min{8n, 4m} is
at most 3nm for n,m ≥ 3, we have that the facial degree of u is at most 4nm+3nm =
7nm. Since the facial degree of the dummy vertex is equal to 5n + 3m − 2, we have
that the facial degree of a vertex of P is at most max{7nm, 5n + 3m − 2}, which is
equal to 7nm for n,m ≥ 3.

Finally, we show how to construct P from N in O(n2m2) time. Suppose the
literals are numbered from 1 to 2n so that literal l2k−1 = xk and l2k = yk. We
inductively construct a layered drawing ψ(k,m) of the subgraph of N induced by
literals l1, . . . , lk and clauses c1, . . . , cm (see Figure 3.3). Drawing ψ(2,m) is shown
in Figure 3.3(a). Suppose we have already constructed drawing ψ(k − 1,m) (see
Figure 3.3(b)). We place literal lk at the same height as lk−1 and sufficiently far to its
right so that edge (lk, c1) intersects each clause edge of ψ(k − 1,m) below its lowest
crossing. Replacing the crossings of ψ(2n,m) by crossing vertices gives us the planar
network P.
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x1 y1

c1 c2 cj cm

x1 lk-1

c1 c2 cm-1 cm

lk

(a) (b)

z z

Fig. 3.3. Proof of Lemma 3.3: (a) drawing ψ(2,m); (b) drawing ψ(k,m). The small circles
show the lowest crossings of the clause edges in the drawing of ψ(k − 1,m).

The construction of the network P does not require computing the exact coordi-
nates of the vertices and crossings of ψ(2n,m). In an actual implementation, P can
be constructed directly by maintaining and updating at each inductive step a list of
the lowest crossing vertices of the clause edges. The manipulation of this list takes
constant time per crossing vertex and hence can be done in total O(n2m2) time. The
rest of the construction can also be carried out in O(n2m2) time.

Lemma 3.4. Network N admits a feasible flow if and only if network P admits
a feasible flow, and a feasible flow for N can be computed from a feasible flow for P
in O(n2m2) time.

Proof. Only if. Given a feasible flow in N , we can get a feasible flow in P in which
the flow through each fragment edge is the same as in the corresponding clause edge in
N , and the flow through the dummy and literal edges is same as in the corresponding
edges in N .

If. Suppose that P admits a feasible flow f . In f , at any crossing vertex, of the
two fragment edges of a clause edge incident upon it, one is incoming and the other is
outgoing. This is so because the fragment edges of different clause edges have different
capacities and the conservation property is satisfied at the vertex. Consequently, all
the fragment edges of a clause edge have the same flow. We can get a feasible flow
in N in which the flow through a clause edge is same the as the flow in its fragment
edges in f , and the flow through the dummy edges and the literal edges is the same
as the flow in the corresponding edges in P.

By combining Lemmas 3.2, 3.3, and 3.4, we obtain the main result of this section.
Theorem 3.5. Given an instance S of not-all-equal-3-sat with n ≥ 3 vari-

ables and m ≥ 3 clauses, the associated planar switch-flow network P is triconnected,
has O(n2m2) vertices and edges, has facial degree at most 7nm, and can be constructed
in O(n2m2) time. Instance S is satisfiable if and only if network P admits a feasible
flow. Also, given a feasible flow for P, a satisfying truth assignment for S can be
computed in time O(n2m2).

4. Upward planarity testing. In this section, we show how to reduce the
problem of computing a feasible flow in the planar switch-flow network associated
with a not-all-equal-3-sat instance to the problem of testing the upward planarity
of a suitable digraph.

Let P be the planar switch-flow network with parameter θ = 4 associated with
a not-all-equal-3-sat instance S. Now we construct an orientation �P of P as
follows (see Figure 4.1):

• Every literal edge (xi, yi) is oriented from xi to yi.
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c1 c2 c3

y1x1 y2x2 y3x3

z

Fig. 4.1. Orientation �P of the network P shown in Figure 3.1(c).

• Every fragment edge is oriented “away from” the clause vertex and “towards”
the literal vertex.

• Every dummy edge incident upon a literal vertex is oriented towards the
dummy vertex, and every dummy edge incident upon a clause vertex is ori-
ented towards the clause vertex.

Lemma 4.1. In digraph �P, every vertex has at least one incoming and one out-
going edge, every directed cycle contains the dummy vertex, and there are exactly two
faces that are directed cycles. Also, �P is bimodal and each face of �P consists of at
most two directed paths.

Proof. Let m be the number of clauses and n be the number of variables in S.
Let z be the dummy vertex of �P.

Each crossing vertex has two incoming and two outgoing fragment edges. Each
literal vertex yi has m+ 1 incoming edges and one outgoing edge (to z). Each literal
vertex xi has m incoming edges and two outgoing edges (to z and yi). Each clause
vertex has 2n outgoing edges and one incoming edge (from z). The dummy vertex
has 2n incoming edges and m outgoing edges. Therefore, each vertex has at least one
incoming and one outgoing edge. It can easily be verified that each vertex of �P is
bimodal, and hence �P is bimodal.

The digraph �P−{z} is upward planar with m sources, each being a clause vertex,

and n sinks, each being a literal vertex yi. Therefore, every directed cycle in �P contains
z. There are exactly two faces in �P that that are directed cycles: one consisting of
vertices x1, z, and c1, and the other consisting of vertices yn, z, and cm. It can
be easily verified that the other faces of �P each consist of exactly two directed
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s

t
x1 y1 y2x2 y3x3

c1 c2 c3

z

Fig. 4.2. Dual digraph �D of the network �P shown in Figure 4.1.

paths.

Since P is triconnected (see Theorem 3.5), the planar embedding of P and the

dual graph of P are unique. We construct the dual digraph �D of �P by taking the dual
graph D of P and orienting every dual edge from the face on the left to the face on
the right of the primal edge (see Figure 4.2).

Lemma 4.2. The dual digraph �D of �P is upward planar, triconnected, acyclic,
and has exactly one source and one sink, denoted with s and t, both of which are on
the same face. Also, each face of �D has exactly one source and one sink.

Proof. Because �P is planar and triconnected (Theorem 3.5), so is its dual �D. By

Lemma 4.1, exactly two faces of �P are directed cycles. Hence, �D has exactly two
switches, denoted by s and t (see Figure 4.2), respectively, corresponding to these two

cycles. Switch s is a source vertex and corresponds to the face of �P that consists of
the literal vertex x1, dummy vertex z, and the clause vertex c1. Switch t is a sink
vertex and corresponds to the face of �P that consists of the vertices yn, z, and cm.
Also notice that both s and t are on the face that is the dual of z. From Lemma 4.1,
each face of �P consists of at most two directed paths, and hence each vertex of �D is
bimodal. Therefore, �D is also bimodal. Again from Lemma 4.1, each vertex of �P is
bimodal and none of them is a source or a sink. Hence, each face of �D has exactly
one source and one sink. Since s and t are the only switches of �D and both of them
are on the same face, it follows that there is a consistent assignment of labels to the
angles of �D in which exactly two angles are labeled large, namely, the angles at s and
t in their common face. Therefore, by Lemma 2.1, �D has an upward embedding and
hence is upward planar.
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Fig. 4.3. (a) Schematic illustration of digraph �G obtained from �D by replacing edges with

tendrils and wiggles. (b) The two faces of �G associated with literal vertices xi and yi of P. (c) The
face of �G associated with a clause vertex of P. (d) The face of �G associated with a crossing vertex
of P.

Starting from digraph �D, we construct a new digraph �G by replacing the edges of
�D with subgraphs (tendrils or wiggles) as follows (see Figure 4.3):

• Every edge of �D that is the dual of a literal edge, fragment edge, or dummy
edge incident on a literal vertex is replaced with tendril Tc, where [c] is the
capacity range of the dual edge. Notice that c is a multiple of parameter θ.

• Every edge of �D that is the dual of a dummy edge incident on a clause vertex
is replaced with wiggle Wc, where [0 · · · c] is the capacity range of the dual
edge.
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A vertex of �G is a primary vertex if it is also a vertex of �D, and is a secondary
vertex otherwise. A face of an embedding of �G is a secondary face if it is bounded by
the edges of the same tendril, and is a primary face otherwise. Figure 4.3(a) shows

the primary faces of an embedding ψ of �G and the primary vertices of �G; in this
figure, the secondary faces of ψ and the secondary vertices of �G are hidden inside
the shaded regions denoting the tendrils and the wiggles. We establish the following
correspondence between the primary faces of an embedding ψ of �G, the faces of �D,
and the vertices of �P. Let f be a primary face of ψ; f corresponds to a face f ′ of �D,
namely, the one whose boundary edges were replaced by tendrils and wiggles to give
f . Recall that �D is the dual digraph of �P, and its faces correspond to the vertices of
�P. Therefore, f also corresponds to a vertex v of �P, namely, the one that corresponds
to f ′. f is the dummy face of �G if v is the dummy vertex of �P, and is a nondummy face
otherwise. A primary angle a of f is its angle at a primary vertex u; a corresponds
to an angle of f ′, namely, the one at u. A primary vertex of f is a primary source of
f if it is also a source of f , and is a primary sink of f if it is also a sink of f .

There is no directed path from the sink pole to the source pole of a tendril or a
wiggle. Therefore, �G is also acyclic. From Lemma 4.2 and the construction of digraph
�G, the following lemma is immediate.

Lemma 4.3. Digraph �G is planar and acyclic. All its embeddings can be obtained
by choosing one of the two possible flips for each tendril and have the same set of
secondary faces. Also, for every face f in an embedding of �G, the following holds:

• if f is a secondary face, then it has exactly one source and exactly one sink;
• or else (f is a primary face), it has exactly one primary source and exactly
one primary sink.

We need the following technical lemma to prove Lemma 4.5.
Lemma 4.4. Let f be a primary face of an upward embedding ψ of �G. Let τ(f)

and ω(f) be the total contribution to f of its tendrils and wiggles, respectively. Then,

|τ(f) + ω(f)| ≤ θ.

Proof. From Lemma 4.3, f has exactly one primary source s and exactly one
primary sink t. In other words, f has exactly two primary angles. Let ν(f) be equal
to the number of large primary angles minus the number of small primary angles of
f . Clearly, |ν(f)| ≤ 2. Let us denote with L(f) and S(f), respectively, the number
of large and small angles of f . Because ψ is an upward embedding, from Lemma 2.1
it follows that |L(f) − S(f)| = 2. An angle of f is either a primary angle of f or an
angle of one of its tendrils and wiggles. Therefore, L(f)−S(f) = ν(f)+ τ(f)+ω(f).
Therefore, τ(f) + ω(f) = L(f)− S(f)− ν(f). Hence, |τ(f) + ω(f)| = |L(f)− S(f)−
ν(f)| ≤ |L(f) − S(f)| + |ν(f)|. Since |ν(f)| ≤ 2 and |L(f) − S(f)| = 2, we have
that |τ(f) + ω(f)| ≤ 4. Recall from the beginning of this section that θ = 4. Hence,
|τ(f) + ω(f)| ≤ θ.

We are now ready to present Lemma 4.5.
Lemma 4.5. Digraph �G is upward planar if and only if its tendrils can be flipped

and labels can be assigned to the angles of its wiggles such that for every primary face
the total contribution to it of its tendrils and wiggles is zero.

Proof. If. From Lemma 4.2, �D has an upward embedding ψ 
D. Let g′ be the

external face of ψ 
D. Let ψ be a labeled embedding of �G such that, for every face f
of ψ,

• if f is a secondary face, then the angles of f are labeled small;
• or else (f is a primary face)
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– the total contribution to it of its tendrils and wiggles is zero, and
– its primary angles have the same label as the corresponding angles of
ψ 
D.

Notice that such a ψ exists because the tendrils of �G can be flipped and labels can be
assigned to the angles of the wiggles of �G such that for every primary face the total
contribution to it of its tendrils and wiggles is zero.

Let g be the primary face of ψ that corresponds to g′. We now show that ψ is an
upward embedding with g as its external face. From Lemma 2.1, this is equivalent to
showing that each face of ψ is consistently assigned with g as the external face (see
the definition of consistently assigned faces in section 2.1).

Let f be a face of ψ. If f is a secondary face, then, from Lemma 4.3, f has exactly
one source and exactly one sink. Because both of them are labeled small and f is an
internal face, f is consistently assigned.

If f is a primary face, then it corresponds to a face f ′ of ψ 
D. Let d be an integer
equal to the number of large angles minus the number of small angles of f . Define d′

likewise for f ′. Because the total contribution to f of its tendril and wiggles is zero,
and the angles at its primary vertices have the same label as the corresponding angles
of f ′, it follows that d = d′. Thus, since f ′ is consistently assigned, f is consistently
assigned too.

Only if. Suppose �G has an upward embedding ψ. Let f be a face of ψ. Since ψ
is an upward embedding, f is consistently assigned, and therefore, from Lemma 2.1,
the difference of its large and small angles is 2. However, because f , in general, also
has primary vertices, each one of which contributes a large or small angle to it, it may
be possible that the total contribution to it of its tendrils and wiggles is not zero.
However, using Lemma 4.5, we show now that �G admits a labeled embedding ψ′ such
that1

• ψ′ has the same faces as ψ,
• the primary angles of ψ′ are the same as those of ψ,
• the contribution of a tendril to a primary face f of ψ′ is the same as its
contribution to f in ψ,

• the contribution of a wiggle to a primary face f of ψ′ may be different from
its contribution to f in ψ, and

• for every primary face f of ψ′, the total contribution to f of its tendrils and
wiggles is zero.

(Thus, ψ′ and ψ are the same except for a possible difference in the assignment
of labels to the angles of their wiggles.)

Let f be a primary face of ψ (and therefore also of ψ′). Let τ(f) and ω(f) be the
total contributions to f of its tendrils and wiggles, respectively, in ψ. Let τ ′(f) and
ω′(f) be the total contributions to f of its tendrils and wiggles, respectively, in ψ′.
Our goal is to show that τ ′(f) + ω′(f) = 0.

First of all, we notice that because ψ and ψ′ have the same faces, τ(f) = τ ′(f).
We now describe the assignment of labels to the angles of the wiggles of ψ′ and

show that τ ′(f) +ω′(f) = 0 with this assignment. We have the following three cases:
Case 1. f is a nondummy face and it corresponds to a literal vertex or a crossing

vertex of �P. Clearly, f has no wiggles. Therefore, ω′(f) = ω(f) = 0. Since ω(f) = 0,

1By appropriately reassigning labels to the angles of those primary vertices that are endpoints
of the wiggles, from ψ we can obtain an upward embedding in which for every primary face f the
total contribution to f of its tendrils and wiggles is zero. However, for our purposes, it is sufficient
to show the existence of a labeled embedding ψ′, as described here.
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from Lemma 4.4 it follows that |τ(f)| ≤ θ. From the construction of graph �G and the
fact that a tendril Tk gives a contribution equal to either 2k or −2k to a face (see
section 2.2), it follows that |τ(f)| is a multiple of 2θ. Therefore, |τ(f)| ≤ θ implies
that τ(f) is equal to 0. Since τ ′(f) = τ(f), we have that τ ′(f) is also equal to 0.
Because ω′(f) = 0, it follows that τ ′(f) + ω′(f) = 0.

Case 2. f is a nondummy face and it corresponds to a clause vertex cj of �P.
Clearly, f has exactly one wiggle w. In ψ′, we assign labels to the angles of w such that
ω′(f) = −τ(f). As noted earlier, τ ′(f) = τ(f). Hence, τ ′(f)+ω′(f) = τ(f)−τ(f) = 0
with this assignment of labels to w. Therefore, if we can show that it is possible to
assign labels to the angles of w such that ω′(f) = −τ(f), we are done.

Recall from the construction of network N from section 3 that the capacity range
of the dummy edge incident on cj is [0 · · · ηj−2θ], where ηj is the sum of the capacities

of the clause edges incident on cj . Also it follows from the construction of �G that w is
a copy of the wiggle wηj−2θ. Because the magnitude of the contribution of a wiggle wk

to a face is at most 2k (see section 2.2), we have that |ω(f)| ≤ 2(ηj − 2θ). Therefore,
if we are able to show that |τ(f)| is at most 2(ηj − 2θ), then because τ(f) is an even
number, and w can give any even valued contribution in the range −2(ηj − 2θ) to
2(ηj − 2θ), we will be able to show that it is possible to assign labels to the angles of
w such that the contribution of w to f is equal to −τ(f).

We now prove that |τ(f)| is at most 2(ηj − 2θ). From the construction of �G
and the fact that a tendril Tk gives a contribution equal to either 2k or −2k to
a face (see section 2.2), it follows that the maximum value of |τ(f)| is 2ηj , and
|τ(f)| is a multiple of 2θ. Therefore, either |τ(f)| = 2ηj , or |τ(f)| = 2ηj − 2θ, or
|τ(f)| ≤ 2ηj − 4θ. However, because |ω(f)| ≤ 2(ηj − 2θ), from Lemma 4.4 it follows
that |τ(f)| ≤ 2(ηj − 2θ) + θ = 2ηj − 3θ. Hence, |τ(f)| cannot be equal to 2ηj or
2ηj − 2θ. Consequently, |τ(f)| ≤ 2ηj − 4θ = 2(ηj − 2θ).

Case 3. f is the dummy face of ψ′. Let T be a tendril of �G. If T contributes k to
a primary face of ψ′, it also contributes −k to another primary face of ψ′. Therefore,
the total contribution of the tendrils of ψ′, when summed over all its primary faces,
is 0. Similarly, the total contribution of the wiggles of ψ′, when summed over all
its primary faces, is 0. We have already shown by considering Cases 1 and 2 that if
h is a nondummy face, then τ ′(h) + ω′(h) = 0. Therefore, it follows that τ ′(f) +
ω′(f) = 0.

Theorem 4.6. Given an instance S of not-all-equal-3-sat with n variables
and m clauses and the associated planar switch-flow network P, digraph �G associated
with S and P has O(n3m2) vertices and edges and can be constructed in O(n3m2)
time. Instance S is satisfiable and network P admits a feasible flow if and only if
digraph �G is upward planar. Also, given an upward planar embedding for �G, a feasible
flow for P and a satisfying truth assignment for S can be computed in time O(n3m2).

Proof. Since θ = 4 = O(1), from the construction of �G we have that the number of
vertices and edges in a tendril or a wiggle is O(n). Since P has O(n2m2) vertices and

edges (see Theorem 3.5), �G has O(n3m2) vertices and edges. P can be constructed

from S in O(n2m2) time (see Theorem 3.5), and �G can be constructed from P in

O(n3m2) time. Thus, we can construct �G from S in O(n3m2) time.

We now show that instance S is satisfiable and network P admits a feasible flow
if and only if digraph �G is upward planar.

We establish the following correspondences between digraph �G and network P
(see Figure 4.3):
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• The faces of �G correspond to the vertices of P.
• The tendrils and wiggles of �G correspond to the the edges of P.
• Flipping a tendril Tk of �G corresponds to orienting an edge e of P, where
e is the dual of the edge replaced by Tk in constructing �G from �D. Edge e
is oriented towards an endpoint v (which is a vertex of P) if and only if v
corresponds to f and Tk contributes 2k to f .

• The contribution of a tendril or wiggle U of �G corresponds to the flow in
an edge e of P. Here e is the dual of the edge which is replaced by U
in constructing �G from �D. The contribution of U to a face f is equal to the
amount of the flow coming through e into the endpoint (of e) that corresponds
to f .

• The balance of the contributions of the tendrils and wiggles to the faces of
�G corresponds to the conservation of flow at the corresponding vertices of P;
i.e., the total contribution of the tendrils and wiggles to a face is zero if and
only if there is a conservation of flow at its corresponding vertex in P.

From Theorem 3.5, Lemma 4.5, and the correspondence established above be-
tween a feasible flow in P and the upward planarity of �G, it follows that S is satisfiable
and P admits a feasible flow if and only if �G is upward planar. It also follows that
given an upward planar embedding for �G, a feasible flow for P and a satisfying truth
assignment for S can be computed in O(n3m2) time.

From Theorem 4.6, we conclude the following corollary.
Corollary 4.7. Upward planarity testing is NP-complete.

5. Rectilinear planarity testing. In this section, we show that rectilinear
planarity testing is NP-complete by reducing the problem of computing a feasible flow
in the planar switch-flow network associated with an instance of not-all-equal-3-
sat to the problem of testing the rectilinear planarity of a suitable graph G. The
construction of G is similar to the construction of �G in section 4 and is carried out in
several stages, where at each stage an intermediate graph is produced.

Let S be an instance of not-all-equal-3-sat with n variables and m clauses;
let P be the associated planar switch-flow network of S with parameter θ = 4+37nm
(see section 3).

Let D be the dual graph of P. Starting from D, we construct a degree-3 planar
graph F using the following two-step process:

1. First, replace each vertex of D by a binary tree with d leaves. Let E be the
resultant graph.

2. Next, replace each edge e of E with a chain ce consisting of five edges. The
middle edge of ce is called the representative of e in F .

Since P has O(n2m2) vertices and edges, it follows that D and F also have O(n2m2)
vertices and edges each.

Lemma 5.1. Graph F has a unique planar embedding and admits a rectilinear
embedding, which can be constructed in linear time.

Proof. Since D has a unique planar embedding, it follows that F also has a unique
planar embedding.

It is known that every degree-4 planar graph admits an orthogonal drawing with
at most four bends per edge, which can be constructed in linear time (see, e.g., [31]).
Hence, E also admits a planar orthogonal drawing R with at most four bends per edge.
Because each edge e of E is replaced by a chain ce in F , from R we can construct a
rectilinear embedding of F by replacing each bend of e by an intermediate vertex of
ce.



UPWARD AND RECTILINEAR PLANARITY TESTING 621

tendrils tendrils

(a)

clause
 edges

clause
 edges

dummy edges

literal edgexi yi

 wiggle

tendrils

 clause edges

 dummy
 edge

(b)

tendrils

(c)

crossing
 vertex

Fig. 5.1. Schematic illustration of graph G obtained from F by replacing edges with rectilinear
tendrils and wiggles: (a) the two faces of G associated with literal vertices xi and yi of P; (b) the
face of G associated with a clause vertex of P; (c) the face of G associated with a crossing vertex of
P.

We construct G from F by replacing the edges of F with subgraphs (rectilinear
tendrils or wiggles) as follows (see Figure 5.1). Let e be an edge of D and rep(e) be
the representative of e in G.

• If e is the dual of a literal edge, fragment edge, or dummy edge incident on
a literal vertex, then rep(e) is replaced with a rectilinear tendril Tc, where
[c] is the capacity range of the dual edge of e. Note that c is a multiple of
parameter θ.

• If e is the dual of a dummy edge e′ incident on a clause vertex, then rep(e) is
replaced with a rectilinear wiggle Wc, where [0 · · · c] is the capacity range of
the dual edge of e.

The vertices of G that are also vertices of F are called its primary vertices. We
define the primary, secondary, dummy, and nondummy faces of G similar to their
definition for �G in section 4 and also establish similar correspondences between the
primary faces of an embedding ψ of G, the faces of F , and the vertices of P.

By Lemma 5.1 and the construction of graph G, all the embeddings of G are
obtained by choosing one of the two possible flips for each rectilinear tendril.

Let ψ be a rectilinear embedding of G. Recall that a rectilinear tendril Tk con-
tributes one of 4k, 4k+1, 4k+2, −4k, −(4k+1), and −(4k+2) to a face of G. In ψ,
the significant contribution of a rectilinear tendril Tk to a face is 4k if its contribution
is one of 4k, 4k+1, and 4k+2, and is −4k otherwise. In ψ, the significant contribution
of a rectilinear wiggle to a face is equal to its contribution to the face. Hence, the
difference in the contribution and significant contribution of a tendril (wiggle) to a
face of ψ is at most 2 (0). Also, the total significant contribution of the tendrils to a
face of ψ is a multiple of 4θ. The contribution of a primary vertex to a face f of ψ is
1 if its angle in f is labeled 3, is -1 if its angle in f is labeled 1, and is 0 otherwise.

Lemma 5.2. If n ≥ 3 and m ≥ 3, then in a rectilinear embedding of G the
magnitude of the total contribution of primary vertices to a nondummy face is at
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most 35nm.
Proof. We show that, in a rectilinear embedding of G, a nondummy face has at

most 35nm primary vertices, and hence the magnitude of the total contribution of
primary vertices to it is at most 35nm.

Let f be a face of D with k vertices. Let f be the dual of vertex u of P. Expanding
a vertex of f with degree d by a binary tree adds at most d− 1 vertices to f . Hence,
expanding each vertex of f by a binary tree adds at most r− k vertices to f , where r
is the facial degree of u. Therefore, after step 1, f has at most k+ r− k = r vertices.
Hence, after replacing each edge of f by a chain of five edges in step 2, f has at most
5r vertices. From Theorem 3.5, r is at most 7nm for n,m ≥ 3. Hence, f has at most
35nm vertices in G.

Lemma 5.3. Let f be a primary face of a rectilinear embedding ψ of G. Let
τ(f) and ω(f) be the total significant contributions to f of its tendrils and wiggles,
respectively. Then

|τ(f) + ω(f)| ≤ θ.

Proof. Let ν(f) be equal to the number of primary angles labeled 3 minus the
number of primary angles labeled 1 of f . Let τ ′(f) and ω′(f) be the total contribution
to f of its tendrils and wiggles, respectively. Let us denote with N3(f) and N1(f) the
number of angles of f labeled 3 and 1, respectively. An angle of f is either a primary
angle of f or an angle of one of its tendrils and wiggles. Therefore, N3(f)−N1(f) =
ν(f)+τ ′(f)+ω′(f). Hence, τ ′(f)+ω′(f) = N3(f)−N1(f)−ν(f). Therefore, |τ ′(f)+
ω′(f)| = |N3(f)−N1(f)−ν(f)| ≤ |N3(f)−N1(f)|+ |ν(f)|. Because ψ is a rectilinear
embedding, the sum of the labels of the angles around each vertex of ψ is equal to 4.
Hence, because each angle of G has label at least 1, and each vertex of G has degree
at least 2, no angle of G has label 4. Therefore, N4(f) = 0. Hence, from Lemma 2.2,
it follows that |N3(f)−N1(f)| = 4. Therefore, |τ ′(f) +ω′(f)| ≤ 4+ |ν(f)|. Since the
difference in the contribution and significant contribution of a tendril to a face of ψ is
at most 2, and f has at most nm tendrils, we have that |τ(f)| ≤ |τ ′(f)|+2nm. Since
ω(f) = ω′(f), it follows that |τ(f)+ω(f)| ≤ |τ ′(f)+ω′(f)|+2nm ≤ 4+ |ν(f)|+2nm.
Since, from Lemma 5.2, |ν(f)| ≤ 35nm, we have that |τ(f)+ω(f)| ≤ 4+37nm. Recall
from the beginning of this section that θ = 4+37nm. Hence, |τ(f)+ω(f)| ≤ θ.

We are now ready to present Lemma 5.4.
Lemma 5.4. Graph G is rectilinear planar if and only if its tendrils can be flipped

and labels can be assigned to the angles of its wiggles such that for every primary face
the total significant contribution to it of its tendrils and wiggles is zero.

Proof. If. From Lemma 5.1, F has a rectilinear embedding ψF . Let g′ be the
external face of ψF . Let ψ be a labeled embedding of F such that, for every face f of
ψ,

• if f is a secondary face, then the angles of f are labeled 1,
• or else (f is a primary face)

– the contribution of a tendril or a wiggle to f is equal to its significant
contribution, and the total contribution to f of its tendrils and wiggles
is zero, and

– its primary angles have the same label as the corresponding angles of
ψF .

The rest of the proof uses the same arguments as those in the if part of the proof
for Lemma 4.5 with the contribution of a tendril or wiggle replaced by the significant
contribution of a rectilinear tendril or wiggle.
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Only if. The proof uses Lemma 5.3 and the same arguments as those by the only
if part of the proof for Lemma 4.5 with the contribution of a tendril or wiggle replaced
by the significant contribution of a rectilinear tendril or wiggle.

Theorem 5.5. Given an instance S of not-all-equal-3-sat with n variables
and m clauses, graph G associated with S has O(n4m3) vertices and edges and can
be constructed in O(n4m3) time. Instance S is satisfiable if and only if graph G is
rectilinear planar. Also, given a rectilinear planar embedding for G, a satisfying truth
assignment for S can be computed in time O(n4m3).

Proof. Since θ = 4+37nm = O(nm), from the construction of G we have that the
number of vertices and edges in a tendril or a wiggle is O(n2m). Since P has O(n2m2)
vertices and edges (see Theorem 3.5), G has O(n4m3) vertices and edges. P can be
constructed from S in O(n2m2) time (see Theorem 3.5), and G can be constructed
from P in O(n4m3) time. Hence, we can construct G from S in O(n4m3) time.

We now show that instance S is satisfiable and network P admits a feasible flow
if and only if graph G is rectilinear planar.

We establish the following correspondences between graph G and network P (see
Figure 5.1):

• The faces of G correspond to the vertices of P.
• The rectilinear tendrils and wiggles of G correspond to the the edges of P.
• Flipping a rectilinear tendril Tk of G corresponds to orienting an edge e of P.
Edge e is oriented towards an endpoint v (which is a vertex of P) if and only
if v corresponds to f and the significant contribution of Tk to f is 4k.

• The significant contribution of a tendril or wiggle U of G corresponds to the
flow in an edge e of P. Edge e is the dual of the edge whose representative
is replaced by U in constructing G from F . The significant contribution of U
to a face f is equal to the amount of the flow coming through e into the end
point (of e) that corresponds to f .

• The balance of the significant contributions of the tendrils and wiggles to the
faces of G corresponds to the conservation of flow at the corresponding vertices
of P, i.e., the total significant contribution of the tendrils and wiggles to a
face f is zero if and only if there is a conservation of flow at its corresponding
vertex in P.

From Theorem 3.5, Lemma 5.4, and the correspondence established above be-
tween a feasible flow in P and the rectilinear planarity of G, it follows that instance
S is satisfiable and P admits a feasible flow if and only if graph G is rectilinear pla-
nar. It also follows that given a rectilinear planar embedding for G, a satisfying truth
assignment for S can be computed in time O(n4m3).

From Theorem 5.5 we conclude the following corollaries.

Corollary 5.6. Rectilinear planarity testing is NP-complete.

Corollary 5.7. Computing a planar orthogonal drawing with the minimum
number of bends is NP-hard.

We can strengthen Corollary 5.7 as follows.

Corollary 5.8. Let G be an n-vertex planar graph whose minimum number of
bends in any planar orthogonal drawing is b∗. Computing a planar orthogonal drawing
of G with O(b∗ + n1−ε) bends is NP-hard for ε > 0.

Proof. Suppose there is a polynomial-time algorithm A that computes a planar
orthogonal drawing of G with at most c(b∗ + n1−ε) bends, where c is some constant.
We can then use algorithm A to test in polynomial time whether graph G is rectilinear
planar as follows. Construct a graph G′ consisting of K =

⌈
(cn1−ε)1/ε

⌉
+ 1 copies of
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G and give G′ as an input to algorithm A. Clearly, G is rectilinear planar if and only
if G′ has a planar orthogonal drawing with fewer than K bends. Since G′ has Kn
vertices and K > c(Kn)1−ε, algorithm A computes a drawing of G′ with fewer than
K bends if and only if G is rectilinear planar.

6. Conclusions. Finding efficient algorithms for upward and rectilinear pla-
narity testing had been an open problem for many years. In this paper we have
shown that a polynomial-time algorithm for either of these problems is unlikely to
exist by proving that both problems are NP-complete. NP-completeness of recti-
linear planarity testing also implies that the bend-minimization problem for planar
orthogonal drawings is NP-hard.
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Roma “La Sapienza,” Rome, Italy, 1990.

[21] Y. Liu, A. Morgana, and B. Simeone, General theoretical results on rectilinear embeddability
of graphs, Acta Math. Appl. Sinica, 7 (1991), pp. 187–192.



UPWARD AND RECTILINEAR PLANARITY TESTING 625

[22] Y. Liu, A. Morgana, and B. Simeone, A Linear Algorithm for 3-Bend Embeddings of Planar
Graphs in the Grid, manuscript, 1993.

[23] A. Papakostas, Upward planarity testing of outerplanar dags, in Graph Drawing, R. Tamassia
and I. G. Tollis, eds., Lecture Notes in Comput. Sci. 894, Springer-Verlag, Berlin, 1995,
pp. 298–306.

[24] C. Platt, Planar lattices and planar graphs, J. Combin. Theory Ser. B, 21 (1976), pp. 30–39.
[25] I. Rival, The diagram, in Graphs and Order, I. Rival, ed., Reidel, Dordrecht, the Netherlands,

1985, pp. 103–133.
[26] I. Rival, Graphical data structures for ordered sets, in Algorithms and Order, I. Rival, ed.,

Kluwer Academic Publishers, Dordrecht, the Netherlands, 1989, pp. 3–31.
[27] I. Rival, Reading, drawing, and order, in Algebras and Orders, I. G. Rosenberg and

G. Sabidussi, eds., Kluwer Academic Publishers, Dordrecht, the Netherlands, 1993, pp.
359–404.

[28] Y. Shiloach, Arrangements of Planar Graphs on the Planar Lattice, Ph.D. thesis, Weizmann
Institute of Science, Rehovot, Israel, 1976.

[29] J. A. Storer, On minimal node-cost planar embeddings, Networks, 14 (1984), pp. 181–212.
[30] R. Tamassia, On embedding a graph in the grid with the minimum number of bends, SIAM J.

Comput., 16 (1987), pp. 421–444.
[31] R. Tamassia and I. G. Tollis, Planar grid embedding in linear time, IEEE Trans. Circuits

Systems, 36 (1989), pp. 1230–1234.
[32] R. Tamassia and J. S. Vitter, Parallel transitive closure and point location in planar struc-

tures, SIAM J. Comput., 20 (1991), pp. 708–725.
[33] C. Thomassen, Planar acyclic oriented graphs, Order, 5 (1989), pp. 349–361.
[34] L. Valiant, Universality considerations in VLSI circuits, IEEE Trans. Comput., 30 (1981),

pp. 135–140.
[35] G. Vijayan and A. Wigderson, Rectilinear graphs and their embeddings, SIAM J. Comput.,

14 (1985), pp. 355–372.


