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Abstract—One-counter processes are pushdown systems over
a singleton stack alphabet (plus a stack-bottom symbol).
We study the complexity of two closely related verification
problems over one-counter processes: model checking with
the temporal logic EF, where formulas are given as directed
acyclic graphs, and weak bisimilarity checking against finite
systems. We show that both problems are PNP-complete. This
is achieved by establishing a close correspondence with the
membership problem for a natural fragment of Presburger
Arithmetic, which we show to be PNP-complete. This fragment
is also a suitable representation for the global versions of the
problems. We also show that there already exists a fixed EF
formula (resp. a fixed finite system) such that model checking
(resp. weak bisimulation) over one-counter processes is hard
for PNP[log]. However, the complexity drops to P if the one-
counter process is fixed.

Keywords-Complexity theory, Logic

I. INTRODUCTION

The state of the art. Pushdown automata (PDA) (or
recursive state machines; RSM) are a natural model for
sequential programs with recursive procedure calls, and
their verification problems have been studied extensively.
The reachability problem for PDA is polynomial [1, 4].
Model checking with the modal µ-calculus was shown to
be EXPTIME-complete in [29], and the global version of
the model checking problem has been considered in [2, 18].
The EXPTIME lower bound for model checking PDA also
holds for the simpler logic CTL and its fragment EG [28],
even for a fixed formula. By modifying the construction in
[28], it can easily be shown that EXPTIME-hardness even
holds for PDA with a finite control of size 1 (also known
as basic process algebras, BPA for short) and a general EG
formula. On the other hand, model checking PDA with the
logic EF (another natural fragment of CTL) is PSPACE-
complete [28], and again the lower bound still holds if either
the formula or the finite-state control of the PDA is fixed.

Another important aspect is the complexity of checking
semantic equivalences between two pushdown automata
and between pushdown automata and finite-state systems.
Strong- and weak bisimulation equivalence [16] are among
the most important semantic equivalences, since they are
the ones induced by standard temporal logics with strong
(resp. weak) modalities. When comparing two pushdown
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automata, weak bisimilarity is undecidable [22], while strong
bisimilarity is decidable [19] and EXPTIME-hard [12].
When comparing pushdown automata with finite-state sys-
tems [12, 14], weak- and strong bisimilarity are PSPACE-
complete, and for weak bisimilarity the lower bound even
holds for a fixed finite system. See the survey in [23] for
further results.

One-counter processes (OCP) are Minsky counter ma-
chines with just one counter and action labels on the transi-
tions. They can also be seen as a special case of pushdown
automata with just one stack symbol, plus a non-removable
bottom symbol which indicates an empty stack (and thus
allows to test the counter for zero). So far, unlike for PDA,
the picture on the complexity of verification problems for
OCP was incomplete. While all upper complexity bounds
carry over from PDA, it was not clear how much easier
the verification problems are for OCP. Fixed-parameter
tractability results also take a slightly different meaning for
one-counter processes, because (unlike for PDA, which vary
in the number of used stack symbols) fixing the finite control
of one-counter processes results in a fixed process.

Model checking OCP with the µ-calculus is PSPACE-
complete. The PSPACE upper bound was shown in [20], and
a matching lower bound can easily be shown by a reduction
from emptiness of alternating unary finite automata, which
was shown to be PSPACE-complete in [5, 10]. This lower
bound even holds if either the one-counter process or the
formula is fixed. However, the complexity of model checking
OCP with CTL/EF was open. While the PSPACE upper
bound carries over from µ-calculus, the best known lower
bound for CTL/EF was DP-hardness [9].

When comparing two one-counter processes, weak bisim-
ilarity is undecidable [15], while strong bisimilarity is de-
cidable [6] and PSPACE-hard [24]. When comparing a one-
counter process to a finite-state system, strong bisimilarity
is polynomial [11], but weak bisimilarity was only known
to be in PSPACE and DP-hard [9, 11].
Our contribution. We establish the complexity of two main
open problems by showing them to be PNP-complete.

• EF logic model checking one-counter processes.
• Checking weak bisimilarity of a one-counter process

and a finite-state system.

These tight bounds cannot be shown by a direct application
of automata theoretic techniques and semilinear sets as in



Logic PDA OCP
µ-calc. EXPTIME PSPACE
µ-calc., fixed formula EXPTIME PSPACE
µ-calc., fixed ctrl. EXPTIME PSPACE
EF PSPACE PNP (*)
EF, fixed formula PSPACE PNP[log] hard (*)
EF, fixed ctrl. PSPACE in P (*)

Figure 1. Model checking over PDA and OCP

the case of PDA; instead they require a careful analysis of
a special fragment of Presburger Arithmetic (see below).

By default, we represent EF formulae as a dag (i.e., as
a directed acyclic graph, not as a tree) which allows one
to re-use common subformulae efficiently. (Note that the
PSPACE upper bound for EF model checking PDA [28]
can easily be extended to formulae in this dag representa-
tion.) We establish a close correspondence between the EF
model checking problem for one-counter processes and the
membership problem for a natural fragment of Presburger
Arithmetic, which we show to be PNP-complete. We use
quantifier-free Presburger Arithmetic over one variable with
addition, subtraction, inequalities, tests of divisibility, and
min/max operations. This fragment of Presburger Arithmetic
is also shown to be a suitable global representation when one
considers the global model checking problem. A matching
PNP lower bound is shown by a reduction from DSAT for
the case of EF formulae represented as a dag, while the best
lower bound for tree-represented EF formulae is PNP[log].
In fact, there already exists a fixed EF formula such that
model checking one-counter processes is hard for PNP[log],
i.e., the data-complexity is PNP[log]-hard. However, unlike
for most other model checking problems, the expression
complexity (i.e., the complexity in the size of the formula) is
polynomial. In particular, if the one-counter process is fixed,
then the problem becomes solvable in P.

Checking weak bisimilarity of a one-counter process and
a finite-state system is shown to be in PNP by a polynomial-
time reduction to the EF model checking problem, using the
polynomial-size characteristic EF formulae (in dag represen-
tation) introduced in [8] (for a more accessible presentation
of characteristic formulae see [7]). A matching PNP lower
bound is shown by a reduction from DSAT. Analogously
to the model checking problem, there exists a fixed finite
system such that weak bisimulation checking with one-
counter processes is hard for PNP[log]. However, if the one-
counter process is fixed, checking weak bisimulation with
finite-state systems becomes solvable in P.

Figure 1 summarizes the picture on the complexity of
model checking for PDA and OCP, whereas Figure 2
summarizes the complexity of weak (≈) and strong (∼)
bisimulation with finite systems for PDA and OCP. Our
results are marked with (*).

This paper is structured as follows. In Section II we

Bisimulation type PDA OCP
≈ finite system PSPACE PNP (*)
≈ fixed finite system PSPACE PNP[log] hard (*)
fixed ctrl. ≈ finite system P in P (*)
∼ finite system PSPACE P
∼ fixed finite system in P in P
fixed ctrl. ∼ finite system P in P

Figure 2. Bisimulation over PDA and OCP

formally define the considered problems and introduce some
basic notation. In Section III we define our special fragment
of Presburger Arithmetic and establish its fundamental prop-
erties. In Section IV we show how to efficiently transform
one-counter processes into a suitable normal form, and in
Section V we describe the construction of the Presburger
formulas which solve the EF model checking problem in
PNP. Lower bounds for model checking EF over OCP are
shown in Section VI. In Section VII we study the problem
of checking weak bisimilarity of a one-counter process and a
finite-state system. The paper concludes with a brief section
on future work.

II. PRELIMINARIES

General notation: By N = {0, 1, . . .} we denote the natural
numbers. For i, j ∈ N we define [i, j] = {i, i+1, . . . , j} and
[j] = [1, j]. Extend the usual arithmetic operations on N to
sets of numbers as follows. For each � ∈ {+,−, ·} and
A,B ⊆ N, we define A � B = {a � b | a ∈ A, b ∈ B}.
For a ∈ N, we shall also write a � B to mean {a} � B.
An arithmetic progression is any set of numbers of the form
a+bN defined as a+b ·N for some a, b ∈ N. The number a
(resp. b) is said to be the offset (resp. period) of a+ bN. By
log we denote the logarithm to base 2. A dag is a directed
acyclic graph.
Computational complexity: We assume familiarity with
the standard complexity classes P, NP, PSPACE, and with
notions of completeness for a complexity class. In this
paper, reductions are always polynomial-time many-to-one
reductions. By PNP (resp. PNP[log]) we denote the class of
languages decidable by some deterministic polynomial-time
Turing machine that can invoke some NP oracle (resp. at
most logarithmically many times). Recall that

NP ∪ coNP ⊆ PNP[log] ⊆ PNP ⊆ PSPACE.

Moreover recall that the second level of the polynomial
hierarchy lies between PNP and PSPACE. For more details,
we refer the reader to the textbook [17].
One-counter processes and transition systems: Fix some
countable set Σ of actions. A transition system is a pair
T = (S, {→a| a ∈ Σ}), where S is a set of states and
→a⊆ S×S is a set of a-labeled transitions for each a ∈ Σ.
We write s1 →a s2 to abbreviate (s1, s2) ∈→a. We write



s1 →T s2 whenever s1 →a s2 for some a ∈ Σ. We define
the size of T as |T | = |S|+

∑
a∈Σ |→a |.

A one-counter process is a tuple O = (Q, δ0, δ>0), where
Q is a finite set of control locations, δ0 ⊆ Q×Σ×Q×{0, 1}
is a finite set of zero transitions, and δ>0 ⊆ Q × Σ ×Q ×
{−1, 0, 1} is a finite set of positive transitions. The size of
a one-counter process is defined as |O| = |Q|+ |δ0|+ |δ>0|.
A one-counter net is a one-counter process that additionally
satisfies δ0 ⊆ δ>0.
A one-counter process O = (Q, δ0, δ>0) defines a transition
system T (O) = (Q × N, {→a| a ∈ Σ}), where (q, n) →a

(q′, n+ k) if and only if either n = 0 and (q, a, q′, k) ∈ δ0,
or n > 0 and (q, a, q′, k) ∈ δ>0. If (q1, n1)→a (q2, n2) for
some a ∈ Σ, we also write (q1, n1)→O (q2, n2).
EF logic and weak bisimulation: An EF dag-formula
is a finite sequence of definitions ϕ = (ϕi)i∈[l] for some
l ∈ N, where for each i ∈ [l] the definition ϕi is exactly
one of the following, either: ϕi = true, ϕi = ¬ϕj for
some j ∈ [i − 1], ϕi = ϕj ∧ ϕk for some j, k ∈ [i − 1],
ϕi = 〈a〉ϕj for some a ∈ Σ and some j ∈ [i − 1], or
ϕi = EFϕj for some j ∈ [i − 1]. For each i ∈ [l], we
define the size |ϕi| = 1 if ϕi = true and |ϕi| = dlog ie
otherwise. The size of ϕ is defined as |ϕ| =

∑l
i=1 |ϕi|.

Define the partial order ≺ϕ⊆ [l] × [l] as (j, i) ∈≺ϕ if and
only if ϕj appears in the definition of ϕi. If j ≺+

ϕ i, we say
that ϕj is a subformula of ϕi. Note that i is minimal with
respect to ≺+

ϕ whenever ϕi = true. Observe that ([l],≺ϕ)
is a dag. We call ϕ an EF tree-formula if moreover ([l],≺ϕ)
is a directed tree. Next, we define the semantics. For this,
let T = (S, {→a| a ∈ Σ}) be a transition system. Let us
define [[ϕi]]T ⊆ S for each i ∈ [l] by induction on ≺+

ϕ as
follows: [[true]]T = S, [[¬ϕj ]]T = S \ [[ϕj ]]T , [[ϕj ∧ϕk]]T =
[[ϕj ]]T ∩ [[ϕk]]T , [[〈a〉ϕj ]]T = {s ∈ T | ∃t ∈ [[ϕj ]]T : s→a t},
and [[EFϕj ]]T = {s ∈ S | ∃t ∈ [[ϕj ]]T : s →∗T t}. We
define [[ϕ]]T = [[ϕl]]T . We also write (T, s) |= ϕi whenever
s ∈ [[ϕi]]T . We deal with the model checking problem for
EF over one-counter processes defined as follows.

MODEL CHECKING

Instance: A one-counter process O, a state (q, n) of T (O)
with n given in binary, and an EF dag/tree-
formula ϕ.

Question: (T (O), (q, n)) |= ϕ?

We also consider global model checking in this paper,
which asks to compute a function mapping each control
location q of O to a representation of all n ∈ N such that
(T (O), (q, n)) |= ϕ.
We recall the definition of weak bisimulation [7]. Let T =
(S, {→a| a ∈ Σ}) be a transition system and assume some
distinguished internal symbol τ ∈ Σ. Define the extended
transition relation ⇒a ⊆ S × S for each a ∈ Σ as s ⇒a

t if and only if either a 6= τ and there exist s′, t′ ∈ S
such that s →∗τ s′ →a t′ →∗τ t, or a = τ and s →∗τ t.
Given two transition systems T = (S, {→a| a ∈ Σ}) and

T ′ = (S′, {→′a| a ∈ Σ}), a relation R ⊆ S × S′ is a w-
bisimulation if it is nonempty, and whenever (s, s′) ∈ R,
then for every a ∈ Σ the following two conditions hold
(i) if s →a t for some t ∈ S, then s′ ⇒′a t′ for some
t′ ∈ S′ such that (t, t′) ∈ R, and (ii) if s′ →′a t′ for some
t′ ∈ S′, then s ⇒a t for some t ∈ S such that (t, t′) ∈ R.
For every s ∈ S and every s′ ∈ S′, we say that s and
s′ are w-bisimilar, written s ≈ s′, whenever there exists
a w-bisimulation R ⊆ S × S′ such that (s, s′) ∈ R. We
now define w-bisimilarity checking of one-counter processes
against finite systems as follows.

W-BISIMILARITY CHECKING

Instance: A one-counter process O, a state (q, n) of T (O)
with n given in binary, a finite system T , and a
state t of T.

Question: (q, n) ≈ t?

III. A SUITABLE QUANTIFIER-FREE LOGIC

In this section we introduce a suitable representation of nat-
ural numbers in terms of a logic that we call MMA for Min-
Max Arithmetic. In fact, the sets definable in MMA equal the
sets definable in Presburger Arithmetic with one free variable
or equivalently the one-dimensional semilinear sets. MMA
can be seen as a syntactic variant of Presburger Arithmetic
that is tailored towards having a fairly low complexity (PNP)
of the membership problem. Moreover, MMA is a suitable
formalism for representing solutions of global EF model
checking and global w-bisimilarity checking against finite
state systems over one-counter processes.

Formally, an MMA dag-formula is a sequence of defini-
tions α = (αi)i∈[l] for some l ≥ 1, where for each i ∈ [l]
the definition αi is precisely one of the following, where
j, k ∈ [i− 1] and where ∼∈ {≤,≥}:
(1) ≡ m mod n, where n > 0 and m ∈ Z/nZ,
(2) ∼ n, where n ∈ N,
(3) ¬αj
(4) αj ∧ αk,
(5) ∼ minαj ,
(6) n ∼ minαj , where n ∈ N,
(7) ∼max(αj , n), where n ∈ N, or
(8) m ∼ max(αj , n), where m,n ∈ N.
We call αi atomic in case it is of type (1) or (2). We will
introduce usual abbreviations <, >, and = as expected. We
formally put min ∅ = ∞, max ∅ = −1. Moreover we put
k ≤ ∞ and k 6≥ ∞, k 6≤ −1, and k ≥ −1 for each k ∈ N.
Define the binary relation ≺α⊆ [l]×[l] as j ≺α i if and only
if αj occurs in the definition of αi for each i, j ∈ [l]. Note
that ([l],≺α) is a dag and hence ([l],≺+

α ) is a strict partial
order. Recall that i is minimal with respect to ≺+

α if and only
if αi is atomic. We say α is a MMA tree-formula if ([l],≺α)
is a directed tree. Let us now define the semantics of MMA
dag-formulas. For each αi we define the set [[αi]] ⊆ N by
induction on i w.r.t. ≺+

α as follows:



(1) [[≡ m mod n]] = {k ∈ N | k ≡ m mod n},
(2) [[∼n]] = {k ∈ N | k ∼ n},
(3) [[¬αj ]] = N \ [[αj ]],
(4) [[αj ∧ αk]] = [[αj ]] ∩ [[αk]],
(5) [[∼minαj ]] = {k ∈ N | k ∼ min[[αj ]]},

(6) [[n ∼ minαj ]] =

{
N if n ∼ min[[αj ]]
∅ otherwise

,

(7) [[∼ max(αj , n)]] = {k ∈ N | k ∼ max([[αj ]] ∩ [0, n])},
(8)

[[m ∼ max(αj , n)]] =
{

N if m ∼ max([[αj ]] ∩ [0, n])
∅ otherwise.

Observe that MMA can be seen as a fragment of Presburger
Arithmetic. We define [[α]] = [[αl]]. We call α valid if
[[α]] = N, for example ≥ 0 is valid. Define the size |αi|
by case distinction as follows: | ≡ m mod n| = | ∼ n| =
dlog ne, |¬αj | = dlog je, |αj ∧ αk| = dlog je + dlog ke,
| ∼ minαj | = dlog je, |n ∼ minαj | = dlog ne + dlog je,
| ∼ max(αj , n)| = dlog je + dlog ne, and finally |m ∼
max(αj , n)| = dlogme+dlog je+dlog ne. Define the size of
α as |α| =

∑
i∈[l] |αi|. For better readability, we will allow

more complex definitions such as e.g. αi = ¬αj ∧ (x ≡ 3
mod 5).
Syntactic sugar - Extended MMA : In order to ease our
reduction from model checking OCP to evaluating MMA
formulas, we introduce extended MMA formulas. Extended
MMA formulas allow definitions of the kind αi = αj − 1
and αi = αj + 1. For � ∈ {+,−}, the semantics is defined
as [[αj � 1]] = [[αj ]] � 1. Observe that, in general, the two
operators cannot be interchanged, i.e. we generally do not
have [[(α− 1) + 1]] = [[(α+ 1)− 1]]. But observe that [[α]] =
[[(α + 1) − 1]]. Define the size of |αj + 1| = |αj − 1| =
dlog je + 1. For each natural k define αj � k to be the
abbreviation for

(· · · (αj �1) · · · )� 1︸ ︷︷ ︸
k many times

for each � ∈ {−,+}.
Let α = (αi)i∈[l] be an extended MMA dag-formula.
Define νi to be maximal number n such that αj is ∼ n
or ∼ max(αj , n) for some j ∈ [i]. Define Li to be the least
common multiple of all n > 0 such that the definition of αj
is ≡m mod n for some j ∈ [i − 1] and some m ∈ Z/nZ,
and 1 if no such formula exists. Observe that i < j implies
Li|Lj and moreover Li ∈ exp(|α|), thus polynomially (in
|α|) many bits suffice to represent each Li. For extended
MMA, we now state a simple but important periodicity
lemma.

Lemma 1 (Periodicity Lemma for extended MMA) Let
i ∈ [l] and assume n1, n2 > i · Li + νi. Then the following
implication holds:

n1 ≡ n2 mod Li ⇒ (n1 ∈ [[αi]]⇔ n2 ∈ [[αi]])

Proof: We prove the lemma by induction on ≺+
α .

For the induction base, assume i is minimal with respect to
≺+
α , i.e. αi is atomic.

Case αi is ≡ m mod n for some n > 0 and some
m ∈ Z/nZ. Observe that the implication holds since Li
is a multiple of n by definition.
Case αi is ∼ n, where ∼∈ {≤,≥} and where n ∈ N. By
definition we have νi ≥ n. The implication clearly holds
since natural numbers exceeding n are either all contained
in [[αi]] or are all not contained in [[αi]].

For the induction step, assume that i is not minimal with
respect to ≺+

α . For this, we make a case distinction according
to αi.
Case αi = ¬αj for some j ∈ [i − 1]. The required
implication holds trivially due to induction hypothesis and
the fact that j · Lj + νj ≤ i · Li + νi and Li = Lj .
Case αi = αj ∧ αk for some j, k ∈ [i − 1]. First, we have
that both Lk and Lj divide Li. Second, both j · Lj + νj
and k · Lk + νk are at most i · Li + νi. Now let n1, n2 >
i · Li + νi and assume n1 ≡ n2 mod Li. Then we have
n1 ∈ [[αi]] if and only if n1 ∈ [[αj ]] and n1 ∈ [[αk]]. By
induction hypothesis, the latter is equivalent to n2 ∈ [[αj ]]
and n2 ∈ [[αk]] which is in turn equivalent to n2 ∈ [[αi]].
Case αi is ∼ minαj for some ∼∈ {≤,≥} and for some
j ∈ [i − 1]. We claim that the implication holds for i by
distinguishing if [[αj ]] is empty or not. In case [[αj ]] = ∅,
(recall min ∅ = ∞), then [[αi]] either equals N or ∅,
depending on ∼. The implication obviously holds in this
case. In case [[αj ]] 6= ∅, then there exists some n ∈ [[αj ]] with
n ≤ j ·Lj+νj+Lj by induction hypothesis. Observe that the
latter is less than or equal to (i−1)·Li+νi+Li = i·Li+νi.
Again, depending on ∼, all naturals exceeding n (in partic-
ular naturals exceeding i · Li + νi) are either all in [[αi]] or
are all not in [[αi]]. Thus, the implication holds.
Case αi = n ∼ minαj for some n ∈ N, some ∼∈ {≤,≥},
and some j ∈ [i − 1]. Since [[αi]] either equals N or ∅, the
implication trivially holds.
Case αi is ∼ max(αj , n) for some ∼∈ {≤,≥}, some
j ∈ [i − 1], and some n ∈ N. First observe that n ≤ νi
by definition. Second, all naturals exceeding n (in particular
those exceeding νi) either all satisfy αi or all do not,
depending on ∼. Thus, the implication holds.
Case αi is m ∼ max(αj , n) for some ∼∈ {≤,≥}, some
j ∈ [i− 1], and some m,n ∈ N. Since [[αi]] either equals N
or ∅, the implication holds trivially.
Case αi = αj � 1 for some j ∈ [i − 1] and some � ∈
{+,−}. The implication follows directly from j ·Lj + νj +
1 ≤ (i − 1) · Li + νi + Li = i · Li + νi and induction
hypothesis.
It turns out that extended MMA formulas are neither more
expressive nor more succinct than MMA formulas.



Lemma 2 The following problem is computable in polyno-
mial time:
INPUT: An extended MMA dag-formula α.
OUTPUT: A MMA dag-formula β such that [[α]] = [[β]].

By a bottom-up computation and combining Lemma 1 and
Lemma 2, we can deduce a PNP upper bound for the
membership problem for extended MMA.

Proposition 3 The following problem is in PNP:
INPUT: n0 ∈ N in binary and an extended MMA dag-

formula α.
QUESTION: n0 ∈ [[α]]?

Proof: First, it is easy to see that if α is an MMA dag-
formula with no occurrence of min and max then checking
whether n0 ∈ [[α]] can be done is polynomial time. We shall
make use of this basic fact in the proof. In a first step,
we apply Lemma 2 and compute in polynomial time an
MMA dag-formula formula β such that [[β]] = [[α]]. Assume
β = (βi)i∈[l]. In a second step, we eliminate min and max
operators that occur in β inductively on ≺+

β .
For this, let i ∈ [l] be minimal with respect to ≺+

β such
that the definition βi contains either min or max. In case
βi is ∼ minβj , we know that for each n1, n2 > j ·Lj + νj
with n1 ≡ n2 mod Lj we have n1 ∈ [[βj ]] if and only
if n2 ∈ [[βj ]] by Lemma 1. This implies that min[[βj ]] ∈
[0, (j + 1) · Lj + νj ] ∪ {∞}. Moreover, observe that (j +
1) ·Lj +νj can represented using polynomially many bits in
|β|. Furthermore, note that we can decide deterministically
in polynomial time whether, for a given m given in binary,
we have m ∈ [[βj ]], since neither the definition of βj nor the
definition of βk contains min or max, for each k ≺+

β j. Via
a binary search method, we can compute

µ = min{m ∈ [0, (j + 1) · Lj + νj ] | m ∈ [[βj ]]}

by some deterministic polynomially time bounded Turing
machine that has access to an NP oracle. After that, we
“symbolically” modify β by replacing βi’s previous defini-
tion ∼ minβj by ∼ µ.
The cases when βi = n ∼ minβj , βi =∼ max(βj , n), or
βi = m ∼ max(βj , n) can be dealt with analogously.
We repeat this replacement process until β does not contain
any min or max operator. Finally, we check if n0 ∈ [[β]] in
polynomial time.
Observe that we can think of extended MMA to be MMA
enhanced with the usage of “offsets” of the kind αj ± k,
where k is a natural that is given in unary. The question
arises, why one does not extend MMA more generally, by
allowing offsets to be given in binary. However, this yields
a logic with a PSPACE-complete membership problem.

Proposition 4 The following problem is PSPACE-complete:
INPUT: An extended MMA dag-formula α, where offsets
are given in binary.
QUESTION: 0 ∈ [[α]]?

IV. SATURATING ONE-COUNTER PROCESSES AND
COMPUTING SMALL ARITHMETIC PROGRESSIONS

For the rest of this section, let us fix some one-counter
process O = (Q, δ0, δ>0). For technical reasons, we add
a new transition label λ ∈ Σ that does not previously occur
in δ0∪δ>0 and which we fix for the rest of this section. Our
goal is to “saturate” O with λ-labeled transitions so that we
only have to consider normalized paths, i.e. paths, where
the sequence of counter values of the involved states are
first non-increasing and then non-decreasing. Let O′ denote
the resulting OCP after saturation. Our saturation construc-
tion has the following motivation: (1) We can compute in
polynomial time all information needed for representing
normalized paths in T (O′) in terms of few small arithmetic
progressions. (2) For every EF dag-formula ϕ in which λ
does not occur we have (T (O), s) |= ϕ if and only if
(T (O′), s) |= ϕ for every state s ∈ Q× N.

A path in T (O) is a non-empty finite sequence of states
π = (q1, n1) →O (q2, n2) · · · →O (qk, nk). We call π
mountain, if n1 = nk and ni ≥ n1 for each i ∈ [k]. We
call π zero, if ni = 0 for some i ∈ [k], otherwise we call
π positive. Let (q1, n1), (q2, n2) ∈ Q × N be states. Then,
we write (q1, n1) ↓O (q2, n2) (resp. (q1, n1) ↑O (q2, n2))
whenever (q1, n1) →O (q2, n2) and n2 ≤ n1 (resp. and
n2 ≥ n1). We now present a saturation construction that
allows us to shortcut mountain paths by adding λ-transitions.

Choosing control locations q, q′ ∈ Q and δ ∈ {δ0, δ>0},
we now present rules (R1) to (R4) that can be applied only
if (q, λ, q′, 0) 6∈ δ. In this case, we can add the transition
(q, λ, q′, 0) to δ if at least one of the following conditions
holds:

(R1) (q, a, q′, 0) ∈ δ for some a ∈ Σ.
(R2) (q, a1, q1,+1) ∈ δ and (q1, a2, q

′,−1) ∈ δ>0 for some
q1 ∈ Q and some a1, a2 ∈ Σ.

(R3) (q, a1, q1,+1) ∈ δ, (q1, λ, q2, 0) ∈ δ>0, and
(q2, a2, q

′,−1) ∈ δ>0 for some q1, q2 ∈ Q and some
a1, a2 ∈ Σ.

(R4) (q, λ, q1, 0) ∈ δ and (q1, λ, q
′, 0) ∈ δ for some q1 ∈ Q.

Formally, let O′ = (Q, δ′0, δ
′
>0) denote the unique one-

counter process that we obtain from O by applying rules
(R1)–(R4) until it is no longer possible.

Lemma 5 Let s, t ∈ Q × N be states. Then, the following
three statements are equivalent:
(1) s→∗O t.
(2) s→∗O′ t.
(3) There exists some state u ∈ Q × N such that s ↓∗O′ u

and u ↑∗O′ t.



Observe that if (q1, n1) ↑∗O′ (q2, n2) and n1 > 0, then also
(q1, n1 + i) ↑∗O′ (q2, n2 + i) for each i ∈ N. Similarly, if
(q1, n1) ↓∗O′ (q2, n2) and n2 > 0, then also (q1, n1 + i) ↓∗O′
(q2, n2 + i) for each i ∈ N. This motivates us to define, for
each q1, q2 ∈ Q, the following set of differences of counter
values of monotone positive paths:

∆>0
↑ (q1, q2) = {d ∈ N | (q1, 1) ↑∗O′ (q2, d+ 1)}

∆>0
↓ (q1, q2) = {d ∈ N | (q1, d+ 1) ↓∗O′ (q2, 1)}

Analogously, we collect the set of differences of counter
values of monotone zero paths:

∆=0
↑ (q1, q2) = {d ∈ N | (q1, 0) ↑∗O′ (q2, d)}

∆=0
↓ (q1, q2) = {d ∈ N | (q1, d) ↓∗O′ (q2, 0)}

A theorem due to Chrobak [3] and Martinez [13] states
that from a nondeterministic finite automaton over a unary
alphabet one can compute in polynomial time an at most
quadratically larger equivalent one that is in a certain normal
form (Chrobak normal form). However, both papers contain
a subtle flaw that was recently fixed in [25]. The following
lemma will use this result.

Lemma 6 Each of the sets ∆>0
↑ (q1, q2), ∆>0

↓ (q1, q2),
∆=0
↑ (q1, q2), ∆=0

↓ (q1, q2) is equivalent to a union of
O(|Q|2) arithmetic progressions with offsets bounded by
O(|Q|2) and periods bounded by O(|Q|) that are moreover
computable in polynomial time.

Let q1, q2 ∈ Q be control locations. Note that if (q1, n) ↓∗O′
(q3, 1) ↑∗O′ (q2, n) for some q3 ∈ Q, then also (q1, n+i) ↓∗O′
(q3, 1 + i) ↑∗O′ (q2, n+ i). Therefore, we define ∇(q1, q2) ∈
N ∪ {∞} to be

min{n > 0 | ∃q3 ∈ Q : (q1, n) ↓∗O′ (q3, 1) ↑∗O′ (q2, n)}.

Observe that ∇(q, q) = 1 for every q ∈ Q.

Lemma 7 Either ∇(q1, q2) = ∞ or ∇ ∈ O(|Q|2). More-
over ∇(q1, q2) can be computed in polynomial time.

The next lemma characterizes zero paths.

Lemma 8 There is a zero path from (q, n) to (q′, n′) in
T (O′) if and only if n ∈ ∆=0

↓ (q, q′′) and n′ ∈ ∆=0
↑ (q′′, q′)

for some q′′ ∈ Q.

The next lemma characterizes positive paths.

Lemma 9 Assume n ≤ n′. Then there exists a positive path
in T (O′) from (q, n) to (q′, n′) if and only if n ≥ ∇(q, q′′)
and n′ − n ∈ ∆>0

↑ (q′′, q′) for some q′′ ∈ Q.
Assume n ≥ n′. Then there exists a positive path from (q, n)
to (q′, n′) in T (O′) if and only if n′ ≥ ∇(q′′, q′) and n−n′ ∈
∆>0
↓ (q, q′′) for some q′′ ∈ Q.

V. A TRANSLATION TO MMA
For the rest of this section, let us fix a one-counter process
O = (Q, δ0, δ>0) and an EF dag-formula ϕ = (ϕi)i∈[l].
Assume that Q = {q1, . . . , qk}. Due to technical simplicity,
we will confuse each element (qi, j) ∈ Q × [l] with the
corresponding natural number i + (j − 1) · k ∈ [k · l]. The
goal is to present a polynomial time algorithm to compute
an extended MMA formula α = (α(q,j))(q,j)∈Q×[l] such
that [[α(q,j)]] = {n ∈ N | (T (O), (q, n)) |= ϕj} for each
(q, j) ∈ Q× [l].
First, we saturate O in the sense of Section IV in polynomial
time. Then, we apply Lemma 6 and compute in polyno-
mial time the sets ∆>0

↓ (q, q′), ∆>0
↑ (q, q′), ∆=0

↓ (q, q′), and
∆=0
↑ (q, q′), which are each unions of O(|Q|2) arithmetic

progressions with offsets bounded by O(|Q|2) and periods
bounded by O(|Q|) for each q, q′ ∈ Q. By applying Lemma
9 we compute in polynomial time ∇(q, q′) ∈ [n∇] ∪ {∞}
for each q, q′ ∈ Q, where n∇ ∈ O(|Q|2).

Let us now present the computation of α =
(α(q,j))(q,j)∈Q×[l]. We will do this by induction on j with
respect to ≺+

ϕ and simultaneously for each q ∈ Q.
Base. Assume j is minimal with respect to ≺+

ϕ . Then
ϕj = true and we put α(q,j) = (≥ 0) for each q ∈ Q.

Step.
Assume ϕj = ¬ϕj′ for some j′ ∈ [j − 1]. Then we put
α(q,j) = ¬α(q,j′) for each q ∈ Q.

Assume ϕj = ϕj1 ∧ ϕj2 for some j1, j2 ∈ [j − 1]. Then we
put α(q,j) = α(q,j1) ∧ α(q,j2) for each q ∈ Q.

Assume ϕj = 〈a〉ϕj′ for some a ∈ Σ and some j′ ∈ [j−1].
By induction hypothesis, we have

α(q′,j′) = {n ∈ N | (q′, n) |= ϕj′}

for each q′ ∈ Q. By putting +̂ = − and −̂ = +, we define
α(q,j) as the conjunction of

(= 0)→

 ∨
q′∈Q:

(q,a,q′,+1)∈δ0

α(q′,j′) − 1 ∨
∨
q′∈Q:

(q,a,q′,0)∈δ0

α(q′,j′)


and

(> 0)→

 ∨
q′∈Q,�∈{−,+}:
(q,a,q′,�1)∈δ>0

α(q′,j′)�̂1 ∨
∨
q′∈Q:

(q,a,q′,0)∈δ>0

α(q′,j′)

 .

Finally, assume ϕj = EFϕj′ for some j′ ∈ [j − 1]. Let us

first fix control locations q, q′ ∈ Q. By induction hypothesis

[[α(q′,j′)]] = {n ∈ N | (q′, n) |= ϕj′}.

By Lemma 1 we know that for each n1, n2 ∈ N which
exceed a threshold t(q′,j′) such that n1 ≡ n2 mod L(q′,j′) we



have n1 ∈ [[α(q′,j′)]] if and only if n2 ∈ [[α(q′,j′)]]. Note that
this implies that [[α(q′,j′)]] is infinite if and only if there exists
some n ∈ [[α(q′,j′)]] such that t(q′,j′) < n ≤ t(q′,j′)+L(q′,j′).

Let us now fix an arithmetic progression a+bN with b > 0
that is a subset of some of the sets ∆>0

↓ (q, q′),∆>0
↑ (q, q′),

∆=0
↓ (q, q′), or ∆=0

↑ (q, q′). Moreover, let c ∈ Z/bZ be
some residue class. We aim at defining an MMA formula
inf(q′, j′, c, b) that is valid if and only if there are infinitely
many naturals that satisfy α(q′,j′) and that are congruent
c modulo b. Now observe that the latter is the case ex-
actly whenever there exists some n ∈ [[α(q′,j′)]] such that
t(q′,j′) < n ≤ t(q′,j′) + L(q′,j′) and moreover n ≡ c
mod gcd(b, L(q′,j′)). Let us define the auxiliary MMA
formula

ψ(q′, j′, c, b) = α(q′,j′) ∧ (≡ c mod gcd(b, L(q′,j′)))

and finally inf(q′, j′, c, b) as

t(q′,j′) < max(ψ(q′, j′, b, c), t(q′,j′) + L(q′,j′)).

Next, we aim at defining the set

{n ∈ N | ∃n′ ∈ N : (q, n)→∗O (q′, n′), (q′, n′) |= ϕj′}

in terms of an extended MMA formula. For this, assume
that there is a path π from (q, n) to (q′, n′) in T (O) such
that (q′, n′) |= ϕj′ , where n′ ∈ N. We distinguish three
(not necessarily distinct) cases. Either (1) π is positive and
n ≤ n′, (2) π is positive and n ≥ n′, or (3) π is zero. We will
realize each of these cases by corresponding extended MMA
dag-formulas β1(q, q′), β2(q, q′), and β3(q, q′) respectively.
Let us consider case (1), i.e. π is positive and n ≤ n′. Then
n ≥ ∇(q, q′′) and n′ − n ∈ ∆>0

↑ (q′′, q′) for some q′′ ∈ Q
by Lemma 9. Thus, (n′ − n) ∈ a+ bN for some arithmetic
progression a + bN ⊆ ∆>0

↑ (q′′, q′). Furthermore, let c ∈
Z/bZ be the residue class of n′ modulo b. So altogether, we
will fix the witnesses q′′, a+ bN, and c in the following.

Let us first assume that b > 0. We now distinguish the
cases when there are either (i) infinitely or (ii) finitely many
n′′ ∈ N such that n′′ ≡ c mod b and (q′, n′′) |= ϕj′ .
Case (i) is expressed by the formula γ(q′′, a, b, c)∞ which
is defined as

inf(q′, j′, c, b) ∧ ≥ ∇(q, q′′) ∧ ≡ (c− a) mod b.

Case (ii) can be realized by saying that the maximal such n′′

is reachable from n via the arithmetic progression a + bN.
For this, let the formula γ(q′′, a, b, c)<∞ be defined as the
conjunction of

¬ inf(q′, j′, c, b) ∧ ≥ ∇(q, q′′)

and

≡ (c− a) mod b ∧ ≤ max(α(q′,j′) − a, t(q′,j′)).

The last conjunct guarantees that n + a ≤ n′′, which is
necessary since we have to have that n′′ ∈ n+ a+ bN.

The case when b = 0 can easily be realized by putting

γ(q′′, a) = ≥ ∇(q, q′′) ∧ (α(q′,j′) − a).

Altogether, we put

β1(q, q′) =
∨
q′′∈Q

∨
a+0N⊆∆>0

↑ (q,q′′)

γ(q′′, a)

∨
∨

a+bN⊆∆>0
↑ (q,q′′)

b>0,c∈Z/bZ

γ(q′′, a, b, c)∞ ∨ γ(q′′, a, b, c)<∞.

Let us now consider case (2), i.e. when π is positive and
n ≥ n′. Then n′ ≥ ∇(q′′, q′) and n − n′ ∈ ∆>0

↓ (q, q′′) for
some q′′ ∈ Q by Lemma 9. Hence, n − n′ ∈ a + bN for
some a+ bN ⊆ ∆>0

↓ (q, q′′).
Firstly, let us assume that b > 0. Recall that c ∈ Z/bZ is the
residue class of n′. Now the simple observation is that the
witness n′ can be replaced by the minimal n′′ ∈ N such that
n′′ ≡ n′ ≡ c mod b, n′′ ≥ ∇(q′′, q′), and (q′, n′′) |= ϕj′ .
We realize this by the formula θ(q′′, a, b, c) defined as the
conjunction of ≡ c+ a mod b and

≥ min
(

(≥ ∇(q′′, q′) ∧ α(q′,j′) ∧ ≡ c mod b) + a

)
.

Secondly, let us assume that b = 0. This case is realized by
the formula

θ(q′′, a) = ≥ (∇(q′′, q′) + a) ∧ (α(q′,j′) + a).

Altogether, we define β2(q, q′) to be∨
q′′∈Q

∨
a+bN⊆∆>0

↓ (q,q′′)
b>0,c∈Z/bZ

θ(q′′, a, b, c) ∨
∨

a+0N⊆∆>0
↓ (q,q′′)

θ(q′′, a).

Finally, let us consider case (3), i.e. when π is zero. For
each q′′ ∈ Q, define the predicate

∃m ∈ N : m ∈ ∆=0
↑ (q′′, q′) ∧ (q′,m) |= ϕj′ .

In other words, case (3) can be rephrased as n ∈ ∆=0
↓ (q, q′′)

and π(q′′) for some q′′ ∈ Q by Lemma 8. Now check that
the predicate π(q′′) can be expressed as∨
a+bN⊆∆=0

↑ (q′′,q′)
b>0

0 ≤ max(≡ a mod b∧α(q′,j′), t(q′,j′)+L(q′,j′))

∨
∨

a+0N⊆∆=0
↑ (q′′,q′)

a = min((α(q′,j′) − a) + a).

Define β3(q, q′) =
∨
q′′∈Q π(q′′) ∧ ρ(q′′), where ρ(q′′) is∨

a+bN⊆∆=0
↓ (q,q′′)

(≡ a mod b) ∨
∨

a+0N⊆∆=0
↓ (q,q′′)

(= a).

We finally put α(q,j) =
∨
q′∈Q β1(q, q′)∨β2(q, q′)∨β3(q, q′).

This concludes the definition of α. It is straightforward to
see that α can be computed in time polynomially in |O|+|ϕ|.



By additionally applying Lemma 2, we obtain the following
theorem.

Theorem 10 From a given one-counter process O and a
given EF dag-formula ϕ, we can compute in polynomial
time for each control location q of O an MMA dag-formula
α(q) such that [[α(q)]] = {n ∈ N | (T (O), (q, n)) |= ϕ}.

By combining Theorem 10 with Proposition 3 we obtain the
following corollary.

Corollary 11 The following problem is in PNP:
INPUT: A one-counter process O = (Q, δ0, δ>0), a state

(q, n) ∈ Q × N with n given in binary, and an EF dag-
formula ϕ.

QUESTION: (T (O), (q, n)) |= ϕ?

A more precise analysis our translation allows us to derive
the following polynomial time upper bound, when the one-
counter process is fixed.

Theorem 12 For every fixed one-counter process O =
(Q, δ0, δ>0) the following problem is in P:

INPUT: A state (q, n) ∈ Q×N, where n is given in binary
and an EF dag-formula ϕ.

QUESTION: (T (O), (q, n)) |= ϕ?

VI. LOWER BOUNDS ON MODEL CHECKING

In this section we give two results concerning lower bounds
for EF model checking. We first prove a matching PNP lower
bound for model checking EF logic dag-formulas. Then we
prove a PNP[log] lower bound for model checking with a
fixed EF formula (in this case, tree or dag representations
make no difference). Both results hold even over one-counter
nets. First, we prove a PNP lower bound for the problem of
model checking EF logic dag-formulas. The problem we
will reduce from is the well-known PNP-complete problem
DSAT [17], which takes the following input: a sequence
of boolean formulas F1, . . . , Fn with variables x1, . . . , xn
and sets of variables Z1, . . . , Zn such that the formula
Fi can take only variables from {x1, . . . , xi−1} and Zi.
The goal is to decide whether there exists an assignment
σ : {x1, . . . , xn} → {0, 1} that sets xn to 1 such that the
following are satisfied for all i ∈ [n]:

σ(xi) = 1 ⇔ ∃ZiFi(x1, . . . , xi−1, Zi). (1)

Notice that imposing the constraint in (1) ensures that there
exists a unique assignment σ. The only question is whether
this assignment satisfies σ(xn) = 1.

Theorem 13 The problem of model checking EF logic dag-
formulas over one-counter nets is PNP-hard.

Proof Sketch.: The reduction is from DSAT. Given
a sequence of boolean formulas F1, . . . , Fn with variables
x1, . . . , xn and sets Z1, . . . , Zn of variables, we construct
a one-counter net O and an EF dag-formula ϕ that mimic
the structure of the given sequence of formulas. By using
a well-known Gödel encoding technique that was also used
in [9, 11], we can view each natural m ∈ N as the truth
assigment αm : {x1, . . . , xn} → {0, 1}, where αm(xi) is
assigned to 1 if the i-th prime number pi divides m and
0 otherwise. Checking divisibility by pi can be easily done
by looping through a cycle of length pi. Now, both O and
ϕ consist of n “levels”, where each level can refer only
to lower levels. Testing satisfiability of Fi is replaced by
divisibility tests and satisfiability of appropriate Fjs, where
j < i. Since a variable xi might be referred to several times
in the sequence F1, . . . , Fn, we need to use EF dag-formulas
to avoid an exponential blowup.

We proceed to the model checking problem with the
formula fixed. First, define the problem INDEX-ODD from
which our reduction is performed: given a list F1, . . . , Fn of
boolean formulas in 3-CNF, does there exist an odd index
i ∈ [n] s.t. F1, . . . , Fi are all satisfiable and Fi+1, . . . , Fn
are all unsatisfiable? This problem is PNP[log]-complete. A
PNP[log] upper bound is immediate by a simple binary search
in the list F1, . . . , Fn by invoking an NP oracle at each
step to determine the rightmost satisfiable formula Fi. The
lower bound is also immediate from Wagner’s sufficient
conditions for PNP[log]-hardness [27, Theorem 5.2] (see also
[21, Lemma 7]). The reduction for the following theorem can
be achieved via Gödel encoding as in the proof of Theorem
13.

Theorem 14 There exists a fixed EF formula ϕ such that
model checking ϕ over one-counter nets is PNP[log]-hard.

It is worth observing that the above lower bounds imply
that the membership problem of MMA dag-formulas of fixed
nesting depth of both min and max operators is hard for
PNP[log]. The reason for this is that the min and max nesting
depth of the resulting MMA formula in the translation of
the previous section depends only on the size of the given
EF formula not on the size of the one-counter process.

On the other hand, our best upper bound of determining
only the parity of the minimal (resp. maximal up to some
given threshold) natural number satisfying a given MMA
formula that is both min-free and max-free is PNP. This
is basically the reason why we cannot improve the upper
bound of EF over OCP when the formula is fixed.

VII. EQUIVALENCE CHECKING

In this section, we study the complexity of the w-bisimilarity
checking problem. We show that the general problem is PNP-
complete. We then proceed by showing that the problem is



solvable in P for each fixed one-counter process. Finally, we
show that that there exists a fixed finite system for which the
w-bisimilarity checking problem is already PNP[log]-hard.

We extend our EF logic with the following operator
EF〈τ∗〉, which we will also abbreviate as EF′. The meaning
is that for a transition system T = (S, {→a| a ∈ Σ}) and a
state s ∈ S we have T, s |= EF′ϕ if and only if there exists
s′ ∈ S such that s⇒τ s

′ and T, s′ |= ϕ. Note that our PNP

upper bound easily carries over to this extended EF logic by
simply restricting ourselves to τ -transitions when we have
EF′ operators. The following is a well-known result from
[8] (and a more recent presentation can be found in [7]).

Lemma 15 ([8]) Let T1 = (S1, {
1→a| a ∈ Σ}) be a

transition system and T2 = (S2, {
2→a| a ∈ Σ}) be a

finite transition system with k states. Then, given any state
s2 ∈ S2, we can construct a dag-formula ϕs2,T2 in the
extended EF logic in polynomial time (in k) such that, for
every state s1 ∈ S1, it is the case that s1 ≈ s2 if and only
if (T1, s1) |= ϕs2,T2 .

In other words, Lemma 15 implies that the w-bisimulation
checking problem is polynomial-time reducible to the prob-
lem of model checking extended EF dag-formulas. Combin-
ing this lemma with our results in the previous sections, the
following theorem can easily be derived.

Theorem 16 The w-bisimilarity checking problem is solv-
able in PNP. The problem becomes solvable in P when the
one-counter process is fixed.

We now consider the problem of computing a symbolic
representation of the w-bisimulation relation for the w-
bisimilarity checking problem, i.e., a function mapping each
state t in the given finite system and each control location
q of the one-counter process to a representation of all
n ∈ N such that (q, n) ≈ t. If we are allowed to represent
subsets of N as MMA formulas, it also follows that such
representations can be computed in polynomial time.

We now proceed to lower bounds. We can show that
w-bisimilarity checking is PNP-hard, even for one-counter
nets. Our result can be seen as a substantial improvement of
Kučera’s DP lower bound proof [11] for the w-bisimilarity
checking problem. (The complexity class DP is located in
the second level of the boolean hierarchy, which in turn
is subsumed in PNP[log]; see [17].) In the following, we
use a standard way of describing w-bisimulations using
simple pebble games between Attacker and Defender (e.g.
see [7, 15]). Such games are nothing but Ehrenfeucht-Fraı̈ssé
games for the extended EF logic in which Defender attempts
to show that two transition systems are w-bisimilar, while
Attacker tries to show otherwise.

Theorem 17 The problem of checking weak-bisimulation

between a given one-counter net and a given finite system
is hard for PNP.

Proof Sketch.: The proof of Theorem 17 uses similar
techniques as the proof of Theorem 13, but is substantially
more involved. We reduce DSAT to the w-bisimulation
checking problem by constructing a suitable one-counter net
and a finite system. The finite system contains (among many
others) states P1 and P2, and the one-counter net contains
control locations qi for i ∈ [n] such that the following
statements are equivalent:
• 〈F1, . . . , Fi〉 ∈ DSAT.
• P1 ≈ (qi, l) for all l ∈ N.
• P2 is not w-bisimilar to (qi, l) for some l in N.

In the particular case of i = n, this is the reduction we
are looking for. The idea is that checking the truth of every
subformula ∃ZiFi(x1, . . . , xi−1, Zi) of the DSAT problem
is encoded into a complex w-bisimulation game for P1 ≈
(qi, l). In this game, the defender player gets to choose (by
a long τ⇒ move) a natural number l′ which is stored in the
one-counter net. This number encodes (by Gödel encoding)
the assignment of values to the boolean variables in the block
Zi. Later in the game, these values can be tested by special
counter-decreasing loops, which implement divisibility tests
on l′. The variables xk are treated differently, because they
depend on other subformulae Fk with smaller index numbers
k < i. If the value of some xk (for k < i) needs to be tested,
then the w-bisimulation game jumps to some subgame which
tests either P1 ≈ (qk, l′) or P2 ≈ (qk, l′), depending on
whether the value of xk is claimed as true or false. This
efficient way of re-using subgames for smaller indices k < i
as building blocks corresponds to an efficient way of re-
using sub-formulae in the dag-representation of EF-formulae
in the proof of Theorem 13.

The main technical difficulty of the proof is to restrict
the freedom of the players in the w-bisimulation game, so
that they exactly make the choices needed in the verification
game for the formula ∃ZiFi(x1, . . . , xi−1, Zi) in the right
step, and do not make a move that is reserved for the other
player. This is tricky, because of the asymmetry of the two
compared systems, one infinite-state one-counter process
and a finite system. In particular, isomorphic copies of the
finite system are replicated in the control locations of the
one-counter net.

In contrast to Kučera’s DP lower bound [11] which holds
for a fixed one-counter net, our proof of Theorem 17 requires
that the finite system is not fixed. Nevertheless, we can show
that the w-bisimilarity checking problem for fixed finite
systems is harder than DP.

Theorem 18 There exists a fixed finite system for which the
w-bisimilarity checking problem is hard for PNP[log] even for
one-counter nets.



Proof Sketch.: The proof is done by a reduction from
INDEX-ODD, which uses a construction from [11] as a
subroutine.

VIII. FUTURE WORK

As mentioned in the introduction, model checking the modal
µ-calculus over one-counter processes is in PSPACE by
[20]. PSPACE-hardness can both be shown when fixing the
one-counter process and when fixing the µ-calculus formula.
The latter follows quite immediately from PSPACE-hardness
of the emptiness problem for alternating finite automata over
a unary alphabet [5, 10]. However, the precise complexity
for the temporal logic CTL, extending EF logic and being a
fragment of the modal µ-calculus, seems to be worth inves-
tigating, lying somewhere between PNP[log] and PSPACE.
Another interesting extension of EF-logic could be the first-
order logic FO(R) with reachability operator and its two
variable fragment. It was recently shown [26] that these
extensions are both PSPACE-complete. We would also like
to investigate the precise complexity of model checking
EF-logic over one-counter processes when formulas are
represented as trees (or additionally when they are fixed).
Our results imply that it is between PNP[log] and PNP. The
same complexity gap remains for weak bisimilarity of one-
counter processes against fixed finite systems.
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[9] P. Jančar, A. Kučera, F. Moller and Z. Sawa. DP Lower
bounds for equivalence-checking and model-checking of one-
counter automata. Inf. Comput. 188(1): 1–19 (2004).
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