
EC
13,6

4

On the computational
efficiency and implementation
of block-iterative algorithms

for nonlinear coupled
problems

M. Cervera, R. Codina and M. Galindo
Technical University of Catalonia, Barcelona, Spain

Introduction
Coupled problems arise frequently in engineering applications. As defined by
Zienkiewicz and Taylor[1]:

coupled systems and formulations are those applicable to multiple domains and dependent
variables which describe different physical phenomena and in which (a) neither domain can be
solved while separated from the other; and (b) neither set of dependent variables can be
eliminated at the differential equation level.

It is also usual[1] to classify coupled systems in two categories:
(1) Class I comprises those problems in which coupling occurs on domain

interfaces via the boundary conditions imposed there.
(2) Class II comprises those problems in which the coupling comes from

different physical phenomena which occur on (totally or partially)
overlapping domains.

The methodology to be described in the following will be applied to two well-
known coupled problems, one falling in each of these two groups: fluid-
structure interaction and thermally-driven flows of incompressible fluids.

Numerical methods applied to these coupled problems lead to the solution of
a set of nonlinear algebraic equations which necessarily involve the (nodal)
variables corresponding to the various domains (for Class I) or to the various
physical phenomena (for Class II). Thus, the alternatives to solve a coupled
problem are twofold:

(1) Strategy 1: to treat all the domains simultaneously. This leads to a single
set of algebraic equations involving all the relevant variables. In general,
these variables will not be homogeneous, as they represent discretization
of different domains and/or different physical phenomena.

(2) Strategy 2: to treat the domains one at the time, considering the coupling
terms as forcing terms on the right-hand side of the equations. This leads
to several sets of algebraic equations (one per domain), each of them to be

Engineering Computations, Vol. 13
No. 6, 1996, pp. 4-30. © MCB
University Press, 0264-4401

Received February 1994
Revised October 1994

Implementation
of block-iterative

algorithms

5

solved solely for the variables related to one domain, but with the right-
hand side depending on variables related to the other domains.

Strategy 1 necessarily requires the development of a special-purpose code,
probably involving collaboration from different expertise areas. Standard
engineering software developed for uncoupled problems may be of little help
when writing such a program, owing to its particular structure. The outcome of
this may well be a complicated code, difficult to maintain, modify or upgrade,
and even difficult to use. This program could only be paralleled at basic
instruction level. Moreover, even though for a “standard” coupled problem this
alternative could make sense, the effort that it involves is hardly affordable for
all the coupled problems one must be ready to solve in engineering practice. For
example, let us mention two other particular problems with which we have been
faced recently. One of them arises when the deformation of the roll in the rolling
process of a flat metal plate has to be taken into account in order to reproduce
more precisely the final shape of the metal piece. Another coupled problem has
been encountered in the thermal analysis of a mould-filling simulation of a
casting process. The boundary condition for the temperature inside the cavity
of the mould depends on the temperatures of the mould itself via the classical
Robin condition, and these temperatures are in turn determined by those of the
fluid filling the cavity.

Strategy 2, on the other hand, allows each domain/problem to be tackled on
its own. The codes used may be either new or existing programs, slightly
modified to account for the coupling terms. Each of these codes may be
developed by a different expert or team of experts on the particular field, using
optimal (and different) strategies for each of them. The outcome of this should
be a set of (relatively) simple programs, easy to maintain, modify or upgrade,
each independently of the others. Note that this approach is parallel by
construction, and at module level. On a multi-user, non-parallel machine, this
approach turns the coupled problem being run into several interconnected
processes. So, the kernel of the operating-system is working, automatically and
inadvertently, as a pseudo-parallel processor emulator.

Our first concern in this paper will be to study the application of Strategy 2
to the two nonlinear coupled problems mentioned earlier and, in particular to:

• cast the fully discrete finite element equations of both problems in the
general framework of block-iterative techniques;

• consider the linearized forms of these equations and to justify a unique
iterative loop to deal both with the coupling and the nonlinear terms;

• study the numerical performance of the final scheme from the standpoint
of cost-effectiveness and rate of convergence;

• justify the use of block-iterative methods versus the direct solution of the
original coupled systems.

Of course, Strategy 2 has some drawbacks, and for some specific coupled
problems these may prove this alternative impractical. In any case, if the goal

EC
13,6

6

outlined above, namely, modularity of the software used for coupled problems,
is to be achieved, a cornerstone will be required: a master code that will perform
at least three tasks, namely:

(1) the transfer of information from the different problems;
(2) the checking of convergence; and
(3) the synchronization of the overall process.

Having these general objectives in mind, the paper is organized as follows. In
the next two sections we describe in more detail Strategies 1 and 2, viewing the
latter as a block-iterative procedure which can be coupled with nonlinear
iterative loops. Next, this strategy is applied to the fluid-structure interaction
problem and to the numerical solution of thermally driven flows, showing some
numerical results that illustrate our discussion. Once the use of block-iterative
methods is justified, the final section is concerned with the description of the
basic characteristics of a computer code whose goal is to interact single field
analysers in order to solve coupled problems. The modifications to be
introduced to the original codes are also indicated. It is shown that only a few
coding lines have to be added, so that the solution to most coupled problems
turns out to be an extremely simple task once the above-mentioned master code
is available.

Algorithmic solution for Strategy 1
The discretization of the continuous problems to be considered will lead to a
nonlinear algebraic system of the form:

where x and y are the vectors of nodal unknowns at a certain time step of the
two fields under consideration, f1 and f2 are the vectors of “force” terms and
Aij, i, j = 1, 2, are matrices, the dependence of which on the unknown x has been
explicitly indicated. The discussion of problem (1) is enough for our purposes,
although it would be straightforward to extend what follows to other situations,
such as several-fields problems or other nonlinear dependences. Observe that in
problem (1) a linear coupling of the first equation with the second is assumed, as
well as a linear behaviour of y for a given x.

The algorithm for the direct solution of problem (1), Strategy 1, can be
chosen from among the variety of linearization schemes available for the
solution of nonlinear problems. Here we can mention the well-known Newton-
Raphson method (or any of its variations, known as modified Newton-
Raphson method), the Picard method, or the somehow more sophisticated,
Quasi- and Secant-Newton methods (see, for instance [2] for a discussion on
the relative merits of these schemes). We will make use of the modified
Newton-Raphson and Picard methods when dealing with the particular
problems of fluid-structure interaction and thermally driven flows. The steps

A x A

A A x

x
y

f

f
11 12

21 22

1

2

1
()

()
()

=

Implementation
of block-iterative

algorithms

7

in the solution process would follow exactly those necessary to solve an
uncoupled nonlinear problem of similar characteristics. One disadvantage of
this strategy is that the structure of the global matrices Aij is such that entries
come from the two different fields, and so, either integrals have to be
evaluated in two different domains (Class I problems), or they represent
physically different magnitudes (Class II problems). Another disadvantage is
the larger size of the global matrix as compared with the ones arising from the
different domains/fields. On the other hand, the advantage is that the final
algorithm is easily and clearly defined, and its analysis, regarding for
instance convergence, is feasible.

Algorithmic solution for Strategy 2
Let us consider now the use of block-iterative algorithms to solve problem (1).
This will reduce the size of the resulting subproblems at the expense of
iterating. Assuming that the first equation in (1) is solved first, there are two
possible block-iterative schemes, namely:

Here, superscripts in parenthesis refer to iteration counters. For k = i – 1 this
is the block-Jacobi or (block-total-step) method, whereas for k = i it is the block-
Gauss-Seidel or (block-single-step) method. Observe that the matrix A22 is
evaluated using x(i–1). The use of x(i) would imply a certain treatment of the
nonlinear term A22(x)y , as will be shown below. From elementary
numerical analysis it is known that, under certain conditions, both the Jacobi
and the Gauss-Seidel methods converge linearly when applied to linear
systems, the convergence rate of the latter being twice higher than that of the
former. In their block counterparts these properties are inherited, the
convergence rate depending now on the spectral radius of the matrices
involved.

On the other hand, problem (1) (and also problem (2)) are nonlinear, so that an
iterative procedure must be used to deal with this nonlinearity. Both the Picard
(or fixed point) and the Newton-Raphson methods are defined by
approximating:

where βj = 0 or 1 determines if the jth equation in (1) (j = 1, 2) is linearized using
the Picard or the Newton-Raphson schemes, respectively. Matrices A*

11 and A*
22

arise from the derivation of A*
11 and A*

22 with respect to x.
Using (3) and (4), the linearized version of problem (1) is:

 () () () (–) ()

 () () (,) (–

() () (–) () * (–) () (–)

() () (–) () * (–) (–) () (–

A x x A x x A x x x

A x y A x y A x y x x

11 11
1

1 11
1 1

22 22
1

2 22
1 1

3i i i i i i i

i i i i i i i i

≈ +

≈ +

β

β 11 4)) ()

 () –

 () – , – . ()

() () (–)

(–) () ()

A x x f A y

A x y f A x

11 1 12
1

22
1

2 21 1 2

i i i

i i k k i i

=

= =

and

 or

EC
13,6

8
Problem (2) is nonlinear and problem (5) is linear, but coupled. For each
problem, either the nonlinearity or the coupling could be dealt with in a nested
iterative loop. However, there is the strong temptation to use a single iterative
loop to deal both with the nonlinearity and the coupling. Starting from problem
(5), this would lead to:

where k = i – 1 or k = i. Either for β2 = 0 (Picard linearization of A22(x)y) or for
k = i – 1 (block-Jacobi coupling) (7) reduces to:

From (4) it may be concluded that for β2 = 1 (Newton-Raphson’s linearization of
A22(x)y) and k = 1 (block-Gauss-Seidel coupling) (7) is simply:

This is perhaps the simplest choice to implement: once x(i) is known by solving
(6), it is used to evaluate the matrix A22 and then (9) may be solved. We stress
that this natural approach implies a higher order linearization of the second
equation in problem (1) and the use of the block-Gauss-Seidel coupling.

The algorithm for the block-iterative solution of problem (2), Strategy 2, is
outlined in Figure 1 for field number 1. Obviously, field number 2 could follow
an identical procedure, although the block-iterative approach allows for
different schemes to be used for the various fields present in the problem. Note
that the use of the Picard or Newton-Raphson schemes has been assumed. It
must be remarked that the depicted algorithm follows very closely the standard
process for an uncoupled nonlinear problem, apart from the addition of the
export/import operations and the evaluation of the interaction term.

The advantage is now that the structure of the matrices in the left-hand side
(LHS), A11 and A22 , is such that entries come only from the field currently
considered, and so, integrals have to be evaluated only in that domain, and they
represent physically homogeneous magnitudes. Moreover, for many practical
applications these matrices are symmetrical. The difficulty of evaluating the
terms appearing in the right-hand side (RHS) of (2) is problem-dependent. For
Class I problems, they only involve integrals over the “interaction boundary”,

 () – . ()() () ()A x y f A x22 2 21 9i i i=

 () – . ()(–) () ()A x y f A x22
1

2 21 8i i k=

 [() ()] () – ()

 [() (,)

 –

(–) * (–) () * (–) (–) (–)

(–) () * (–) (–) (–)

*

A x A x x f A x x A y

A x y f A x y x

A

11
1

1 11
1

1 1 11
1 1

12
1

22
1

2 2 22
1 1 1

2 22

6i i i i i i

i i i i i

+ = +

= +

β β

β

β ((,) – ()(–) (–) () ()x y x A xi i k k1 1
21 7

(()

(,) ()

()

(

(–) * (–)

* (–) (–) (–)

()

()

* (–) (–)

*

A x A x A

A A x y A x

x
y

f A x x

f A x

11
1

1 11
1

12

21 2 22
1 1

22
1

1 1 11
1 1

2 2 22

i i

i i i

i

i

i i

+

+

=
+

+

β

β

β

β ((–) (–) (–),)
. ()

i i i1 1 1
5

y x

Implementation
of block-iterative

algorithms

9

and this is “seen” from both domains. For Class II problems, the domains where
the two equations in (2) hold overlap totally or partially, so that difficulties can
only arise if different meshes or interpolations are used for both fields. Finally,
note that the two systems of equations to be solved are smaller in size and with
reduced band-width, as well as better conditioned, as compared to that yielding
from Strategy 1.

On the other hand, the disadvantage of the block-iterative solution of (2) is
that iterations will be needed even if the problem is linear (note the need to
check global or overall convergence in Figure 1). This is not especially
inconvenient if the problem is nonlinear, as equilibrium iterations
would be required anyway, or if the coupling effect is not too strong. In what

Figure 1.
Computational

algorithm for
Strategy 2

i i

r f A

f A

r r f

A A A

A r

x

i i

i

cl
i

cl

i i

i

i

:

: ()

:

: () ()

() ()

()

()

) *)

()

()

= +

= +

=

= −

= +

=

− −

−

−

− −

−

1

1 1 1 11
1 1

1

12
1

1 1

11
1

1 11
1

1
1

β

β

x x

y

y

x x

x

x

Convergence status for

Local convergence status for x

Local convergence status for y

Increment

Compute residual

Import

Compute interaction term

Modify residual

Assemble

Solve

Export

Check

Export

Import

Initialize

Repeat

i x x: , :()= =0 0 0

(*For each iteration*)

Until
Global status = converged

*

EC
13,6

10

follows, we shall apply these ideas to two particular problems, showing that
dealing with the nonlinearity and the coupling within a single iterative loop is
effective. Roughly speaking, the number of iterations due to the nonlinearity
and the coupling do not add up. Even with weak nonlinearities, the iterations
due to the linearization govern the global process, so that the coupling is
achieved automatically, and inexpensively.

It needs to be said that coupled problems are usually time-dependent, and
their governing equations include time derivatives. Therefore, equation system
(2) (or, indeed, system (1)) arises from the discretization in space and time of the
corresponding partial differential equations. In this case, an appropriate step-
by-step procedure has to be introduced to obtain the solution of the problem in
time, and the casting of our model problem, (1) or (2), corresponds to the
solution of a given time step of this procedure.

If the time dimension is involved, the analysis of any proposed solution
strategy must consider the time integration stability of the approach. If direct
solution of the coupled problem is considered (Strategy 1), the stability analysis
is analogous to that of a standard uncoupled transient problem[1,3]. In this case,
conditions for unconditional stability (for implicit-implicit schemes) or
conditional stability (for implicit-explicit or explicit-explicit schemes) are
generally well known for linear solutions. Regarding the stability analysis of
the block-iterative solution (Strategy 2), it is certainly complicated and very
problem- (and scheme-) dependent. It may happen that, even if an
unconditionally stable algorithm has been used for every one of the
fields, the overall block-iterative algorithm may still be conditionally stable[1,4].
Stabilization methods have been proposed to ensure unconditional stability of
the block-iterative solution for specific problems under certain circum-
stances[1,5,6], but they require matrix operations that destroy the modularity
(and so, the main motivation) of this approach. In practice, a conditionally stable
approach is feasible and competitive if:

• the limitation of stable time step size is compensated by a significant
reduction of computational effort per time step; or

• the size of the time step is mostly limited by accuracy considerations
rather than stability.

The first condition is the motivation of most of the explicit schemes used in
computational mechanics. The model problems described in the next sections
will show that feasibility of block-iterative methods can be also justified by the
second condition.

An important point regarding the stability of the block-iterative techniques
is that time integration stability will also depend on the tolerance demanded to
achieve overall convergence. As a limit case, if no check on the overall
convergence is made, the approach becomes block-explicit (also known as
“staggered” methods), and it will be obviously conditionally stable, or, in some
unfortunate cases, unconditionally unstable[4,7,8]. As an opposite limit case,
if the solution of problem (2) is iterated until full overall convergence is

Implementation
of block-iterative

algorithms

11

achieved, then the stability characteristics of the approach are identical to those
of the direct solution (problem (1)). However, there are two points to consider.
First, the convergence characteristics of the block-iterative procedure will
depend on the time step size, since the spectral radius of the matrices involved
depends on it. It may be that the time step limitation for convergence
of the iterative solution is more restrictive than that for stability of a block-
explicit approach. In any case, both time step limitations must not be confused.
Second, it must be realized that achieving full overall convergence is impossible
in real computations; therefore, a new source of instability will arise from the
convergence tolerance used for a specific analysis. Sensibility to this factor is
again very problem-dependent.

Unfortunately, a general theory does not exist to establish convergence and
time stability conditions for block-iterative schemes applied to linear coupled
problems, and only partial results relative to particular problems are available.
The situation is even more speculative when nonlinear effects are present, and
numerical experiments have to be performed. The next two sections present
results referred to two well-known coupled problems. It will be shown that the
scheme has great potential for practical engineering use. No practical
restrictions on the time step size were found in the numerical examples run for
fluid-structure interaction even if slack convergence tolerances were used. On
the other hand, some dependence of the stability on the convergence tolerance
used was evident in some thermally-coupled flows for specific situations.

A Class I problem: fluid-structure interaction
Doubtless, this is one of the best-known coupled problems in engineering. In
this case, the coupling occurs at the interface between two different domains,
one occupied by the solid and the other by the fluid. Neither the structure nor
the fluid can be solved independently of the other, since the motion of the
structure depends on the pressures of the fluid at the interface, and the fluid
pressures depend in turn on the normal acceleration of the wet wall of the solid.

To fix ideas, a particular problem will be considered, namely, the transient
analysis of a dam subjected to a dynamic excitation. The mathematical model
considered here is the Helmholz equation for the fluid and the conservation of
momentum for the solid, both equations being coupled through the (moving)
interface boundary terms. The constitutive relationship adopted for the
structure is a nonlinear isotropic damage model suitable for concrete, whereas
a linear elastic model is assumed for the foundation[7,9].

Without going into details (see e.g.[1]), the semidiscrete problem arising from
the standard Galerkin spatial discretization reads:

where subscripts s and f refer to the solid and the fluid, respectively. The
notation involved in (10) is as follows. The mass and damping matrices are M

 ˙̇ ˙ () –

 ˙̇ ˙ ˙̇ ()

M a C a S a f Q p

M p C p K p f Qa
s s s

T

f f f f f

+ + =
+ + = + ρ 10

EC
13,6

12

and C; Kf is the matrix arising from the discretization of the Laplace operator; f
is the vector of force terms; a = a(t) is the vector of nodal displacement
unknowns in the solid; p = p(t) the vector of nodal pressures in the fluid, whose
density is ρf; S(a) is the vector of internal forces in the solid (S(a) = Ksa if a
linear constitutive model is adopted); Q is the coupling matrix and the dot
denotes differentiation with respect to time t. The damping matrices account for
both the natural damping (assumed to be of Rayleigh type) and radiation
boundaries (see [7] for details). The rectangular matrix Q comes from the
integral over the fluid-solid interface of the product of pressure and
displacement shape functions and the unit normal to this interface.

What is interesting for us is the structure of (10). Observe that the coupling
is linear and the only nonlinearity of the problem comes from the constitutive
model for the solid (the dam). Therefore, after using a suitable time
discretization (the Newmark scheme, for example) one will be led to a nonlinear
algebraic system of the form (1), but now matrix A22 being independent of x,
provided this is identified with the displacements and y with the fluid nodal
pressures at a certain time step. Moreover, in this case the system can be easily
symmetrized by scaling properly the equation for the fluid pressure.

We are now in a position to apply the iterative techniques described in the
previous section. As the equation to be solved is second order in time an
appropriate step-by-step procedure must be used. Popular options would be the
Newmark method (if an implicit scheme is preferred) or central differences in
time (to obtain an explicit scheme), although many alternatives exist[1,3].
Figure 2 presents the computational algorithm for Strategy 2 applied to the
solid phase of the fluid-structure interaction problem. Note that here an implicit
predictor-multicorrector scheme[8,10,11] has been assumed for the solution of
the nonlinear transient problem, without loss of generality. Obviously, the
computational algorithm for the fluid phase could follow an identical or similar
procedure. The squares labelled “SHUTTLE” refer to the intercommunication
program used to interchange data between the solid and the fluid phases in the
problem. Note also the modify/unmodify steps introduced for the evaluation of
the residual force vector, which save unnecessary re-evaluations of the internal
forces S(a).

The results to be presented here correspond to the transient analysis of the
dam in Figure 3, where also the finite element meshes for the dam, the
foundation and the reservoir are shown. Note that the “solid” and “fluid” phases
are discretized in separate domains (meshes). The dam selected resembles very
closely Koyna Dam in India (107m high) that has been studied by many
researchers interested in seismic analysis. The water level in the reservoir is
100m. The material properties for the dam are: E = 31.64GPa (elastic modulus);
v = 0.2 (Poisson ratio); and ρs = 2690kg/m3, with a tensile strength ft =
O.85MPa. The soil is considered elastic with E = 18GPa and v = 0.2. The fluid
properties are ρf = 1019kg/m3 and c = 1439m/s (speed of acoustic waves). The
left and right boundaries of the foundations are forced to have equal
displacements (“repeatability condition”), while the bottom boundary is

Implementation
of block-iterative

algorithms

13

Figure 2.
Computational

algorithm for Strategy 2
applied to the solid

phase of the
fluid-structure

interaction problem

t t t t

t t t

f

a a

a a a

a a

a

r f M a C a S a

r r f

p

f Q p

r

cs

p

t t

t t t t

s s s s

s s cs

t t

cs
T

s

t t

: , :

:

:

:

:

: , ˙̇ :

˙̇

: ˙̇ ˙ ()

:

:

= =

= +

=

=

= +

= ⋅ ⋅ ⋅ = ⋅ ⋅ ⋅

= − − −

= +

=

+

+ +

+

+

0 0

0

∆

∆

∆ ∆

∆∆

∆ ∆

∆

∆

::

: []

:

:

˙ : , ˙̇ :

˙̇

: ˙̇ ˙ ()

= −

=

= +

= +

= ⋅ ⋅ ⋅ + ⋅ ⋅ ⋅

= − − − −

−

+

+ +

+

r f

K

a K r

a a a

a a a

a a

a

r f M a C a S a f

s cs

s

t t t

t t t t

t y

s s s s cs

 (according with linearization)

δ

δ

1

∆ ∆

∆∆

∆ ∆

∆

t t end=

Repeat

Increment

Initialize

Predict

Extrapolate

Export

Compute residual

Repeat

Unmodify

Import

Compute interaction term

Modify

Assemble

Solve

Correct

Interpolate

Export

Initialize

(*For each time step*)

Compute residual

Export local convergence status

Import global convergence status

Until

Until global status = converged

Shuttle

Shuttle

Shuttle

Shuttle

P
R
E
D
I
C
T
I
O
N

C
O
R
R
E
C
T
I
O
N

Shuttle

EC
13,6

14

modelled as a radiating one with a prescribed incoming seismic wave[7,9]. The
left boundary of the reservoir is also modelled as a radiating boundary, and
water pressures are prescribed to zero in the free surface. No damping was
considered apart from that provided by the radiating boundaries and the
nonlinear material behaviour of the dam. The bottom boundary of the soil is
excited by a prescribed incoming velocity wave in the horizontal direction. This
is a senoidal wave of varying amplitude, also senoidal (U· (x, t) = 0.05
sin(2πt/6.144) sin(2πt/0.384) m/s for t ≤ 3.072 and U· (x, t) = 0 for t > 3.072). Owing
to the damage model we have employed, the displacements in the dam do not
depend linearly on the amplitude of the input wave.

Given the dimensions of the smallest elements in the mesh and the material
properties, we can use Irons’ theorem to estimate the critical time step size for
an explicit scheme as ∆tcr –∼ 10–4s in the solid phase, and ∆tcr –∼ 10–3s in the fluid
phase (bigger elements and lower speed for the acoustic waves). On the other
hand, the first fundamental period of the dam-soil system is T1 = 0.4355s.
Therefore, a reasonable time step size for an implicit scheme would be ∆t –∼
10–2s, around T1/40, if accurate results are to be obtained. We have performed
implicit-implicit (Newmark method) analyses using block-iterative algorithms
with time step sizes ranging from ∆t = 10–2s to ∆t = 10–1s. No problems have
arisen in convergence or in stability, although accuracy is greatly reduced for ∆t
> 2 × 10–2s, and the nonlinear nature of the response is completely overlooked
for ∆t > 4 × 10–2s. This shows that stability is dramatically improved by the
iterative schemes, with regard to purely block-explicit (staggered) schemes. It is
possible to use time step sizes of the order that would be reasonable to use with
unconditionally stable schemes, mostly limited by accuracy.

The results depicted below correspond to the analysis with ∆t = 10–2s. The
convergence tolerance in displacements has been set to 0.01 per cent, although
it is worthwhile to mention that almost the same accuracy is obtained with a
tolerance of 0.1 per cent, which reduces the number of iterations almost by 50
per cent, making this approach much more cost-effective. The horizontal
displacement computed at the top left of the dam is plotted in Figure 4, and the
evolution of the global damage index (mean square value) in Figure 5.

Figure 3.
Computational model
showing the dam with
the foundation and the
reservoir (the “solid”
and “fluid” phases are in
separate meshes)

Y

X

Implementation
of block-iterative

algorithms

15

Figure 5.
Time evolution of the
global damage index

Figure 4.
Horizontal displacement
of the left top of the dam

0.04

0.03

0.02

0.01

0

–0.01

–0.02

–0.03

0 0.5 1 1.5 2 2.5 3 3.5 4
Time

Key
Gauss-Seidel
Jacobi

X displacement

Note: Top horizontal displacement (tolerance = 0.01 per cent)

0.26

0.24

0.22

0.2

0.18

0.16

0.14

0.12

0.1

0.08

0.06

0.04

0.02

0 0.5 1 1.5 2 2.5 3 3.5 4

Damage level

Time

Note: Damage level (tolerance = 0.01 per cent)

Key
Gauss-Seidel
Jacobi

EC
13,6

16

Let us discuss now the convergence of the numerical method using the block-
Jacobi and the block-Gauss-Seidel schemes. The nonlinearity of the problem
will be included in the same iterative loop. However, from the evolution of the
global damage index it is observed that a nonlinear behaviour will be
encountered only in some time intervals when this parameter increases.
Therefore, this example will serve to compare the performance of the iterative
processes both for linear and nonlinear situations.

The number of iterations required to converge versus time is plotted in
Figure 6. In this case, the Picard scheme has been used to linearize the
equations. The peaks correspond to times when the damage index increases,
that is, to nonlinear situations. It is observed that both the Jacobi and the Gauss-
Seidel methods need the same number of iterations, and hence it may be
concluded that convergence is driven by the nonlinearity. When the dam
behaves linearly, the Jacobi scheme needs roughly double number of iterations
than the Gauss-Seidel scheme, as expected.

The Picard method necessitates the formation of the stiffness matrix for the
solid at each iteration of each time step. One can also try to use always the
initial stiffness as an iteration matrix. We have also considered this possibility,
also including the new iterations within the coupling/nonlinearity loop. The
number of iterations versus time in this case is shown in Figure 7. It is clearly
observed that roughly up to t = 1 the coupling drives the process. Then the
nonlinearity dominates and, if we compare Figure 7 with Figure 6, from t

Figure 6.
Number of iterations
versus time using the
Picard scheme

30

25

20

15

10

5

0
0 0.5 1 1.5 2 2.5 3 3.5 4
Time

Key
Gauss-Siedel
Jacobi

Number of iterations

Note: Picard (tolerance = 0.01 per cent)

Implementation
of block-iterative

algorithms

17

approximately 1.5 onwards the reason to iterate is the use of the initial stiffness.
The fact that both the Jacobi and the Gauss-Seidel methods yield the same
numerical response indicates that the coupling will be achieved automatically.
The convergence history for t = 1 is shown in Figures 8 and 9, from where it is
observed that the nonlinearity governs the iterative process after the sixth
iteration in displacements (Figure 8) and the ninth in pressures (Figure 9).

A Class II problem: thermally driven flows
Several coupled problems are encountered in computational fluid dynamics.
Here, we shall consider the coupling of the incompressible Navier-Stokes
equations with the energy balance equation using the classical Boussinesq
model. In this case, body forces in the Navier-Stokes equations are proportional
to the temperature, which depends on the velocity through the convective term
of the heat equation.

After discretizing the continuous equations in space, one is led to a system of
first-order ordinary differential equations of the form:

where subscripts u and T refer to the velocity and the temperature, respectively.
In (11), u is the vector of velocity nodal unknowns, T the vector of temperature

M u K u u Gp CT

G u

M T K u T

u u
T

T T

˙ () –

()
˙ () .

+ + =

=
+ =

0

0 11

0

Figure 7.
The initial stiffness

method

30

25

20

15

10

5

0
0 0.5 1 1.5 2 2.5 3 3.5 4
Time

Key
Gauss-Siedel
Jacobi

Number of iterations

Note: Picard (tolerance = 0.01 per cent)

EC
13,6

18

Figure 8.
Convergence history for
t = 1. Displacements

Figure 9.
Convergence history for
t = 1. Pressures

102

101

100

10–1

10–2

10–3

1 2 3 4 5 6 7 8 11
Iteration

Key
Gauss-Seidel
Jacobi

Residual (displacement)

9 10

Note: Initial stiffness, t = 1.0

103

102

101

100

10–1

1 2 3 4 5 6 7 8 11
Iteration

Key
Gauss-Seidel
Jacobi

Residual (displacement)

9 10

Note: Initial stiffness, t = 1.0

Implementation
of block-iterative

algorithms

19

nodal unknowns, p the vector of pressure nodal unknowns, M are the mass
matrices, K matrices account for both the convective and viscous (or diffusive)
terms, –G is the discrete gradient matrix and C is the coupling matrix. Observe
that no source terms have been included in (11). Motion will be induced by the
boundary conditions to be prescribed for the velocity and the temperature.

Only a brief outline of the numerical model will be given here. (For further
details the reader is referred to [12].) To arrive at (11), we employ a mixed
interpolation for the velocity and the pressure satisfying the so-called inf-sup or
Babuska-Brezzi stability condition. In particular, for the numerical example of
this section we have used the element, constructed using a continuous
biquadratic interpolation for the velocity and a discontinuous piecewise linear
pressure (see [13]).

It is well known that the standard Galerkin formulation yields oscillatory
results when applied to problems where convection is dominant. In order to
overcome this problem, we have used the streamline-upwind/Petrov-Galerkin
(SUPG) method[14], based on a modification of the Galerkin test function for the
velocity, say v, to v + τ(u·∇)v, where the perturbation only affects the element
interiors. The parameter τ is the so-called intrinsic time, which depends on the
element size and the local Reynolds number, and ∇ is the gradient operator. A
similar procedure is applied for the heat equation, now computing τ based on
the cell Péclet number. Observe that the presence of the velocity in the
perturbation of the Galerkin test function will introduce another nonlinearity in
the problem.

To discretize (11) in time one can use the generalized trapezoidal rule, also
called θ-method. Once this is done, the nonlinear algebraic system to be solved
at each time step will have the form:

This system of equations has the form (1) if we identify x with (u, p) and y with
T. Observe that in this case A12 = 0 and A22 depends on x.

The presence of a zero matrix in the diagonal is an important drawback of
(12). It makes the matrix in this system not definite and, if a direct solver is used,
pivoting is needed. The penalty method allows us to circumvent this problem.
Moreover, if the pressure is interpolated using discontinuous polynomials, one
can eliminate the element pressure unknowns in terms of the velocity nodal
unknowns, thus reducing the size of the system. The only inconvenience of the
penalty method is the ill-conditioning found when the penalty parameter is very
small. This can be alleviated by using an iterative penalty method as described
in [12]. Equation (12) is replaced by:

() –

()

. ().

A u G C

G 0 0
0 0 B u

u
p
T

f

0
f

T
u

T

=

12

EC
13,6

20 where ε is a small number (penalty parameter) and Mp is any symmetrical and
positive-definite matrix. We take it as the Gramm matrix arising from the
pressure interpolation. It is proved in [12] that the iterative penalization
converges towards the incompressible solution for the uncoupled Navier-Stokes
equations provided that ε is sufficiently small.

The use of the iterative penalty method to satisfy the incompressibility
constraint introduces another iterative procedure in the problem, which is to be
included also in the coupling/nonlinearity loop. It is possible to consider several
combinations as in the previous sections. For brevity, we shall only present the
final algorithm obtained using the block-Gauss-Seidel method. Taking into
account that it is possible to eliminate the pressure at the element level if
discontinuous pressures are used, the final algorithm is as follows:

where β1 = 0 or 1 determines if the nonlinear convective term of the Navier-
Stokes is linearized up to first or second order. As explained earlier, the use of
u(i) in the heat equation implies a high order linearization of the convective
term in this equation.

Let us make several remarks concerning this iterative scheme. The
linearization of the SUPG term, the iterative penalization and the block-Jacobi
or block-Gauss-Seidel methods can yield only a linear convergence rate, with a
more or less steep slope in a plot iterations versus logarithm of the residual.
Sooner or later, convergence will be driven by the slowest of these rates as the
iterative procedure goes on, even though β1 = 1 be selected to linearize the
Navier-Stokes equations. We have found from numerical experiments that the
Newton-Raphson method is useful only when the coupling with the heat
equation is weak. Otherwise, it only contributes to increase the computational
cost, without reducing the number of iterations needed to reach a prescribed
convergence tolerance.

If instead of using T(i–1) in (14) and u(i) in (16) they are replaced by the
temperature and velocity nodal values of the previous time step, one is led to the
so-called “staggered algorithms”, in which the coupling between the

 () * ()

 – * () ()

 – ()

 (

(–) (–) – ()

(–) (–) (–) (–)

() (–) – ()

(

A u A u GM G u

f Gp CT A u u

p p M G u

B u

i i
p

T i

u
i i i i

i i
p

T i

1
1

1 1

1 1
1

1 1

1 1

1

14

1
15

+ +

=

+ +

=

β
ε

β

ε
ii i

T
) ()) ()T f= 16

() –

()

()

()

()

()

()

()

(–)

A u G C

G M 0

0 0 B u

u
p

T

f

M p

f

i

T
p

i

i

i

i

u

p
i

T

ε ε

=

=

1 13

Implementation
of block-iterative

algorithms

21

Navier-Stokes and the energy equations is accomplished by means of the time
stepping. The algorithm in time in this case is block explicit, regardless of the
value of the parameter θ of the generalized trapezoidal rule used to advance in
time. Therefore, a critical time step exists above which the algorithm becomes
unstable.

Referring again to the stability in time, if a fully converged solution is
obtained for the algorithm (14)-(16) then stability should be ensured provided
that θ = 1/2. Obviously, the block iterative method will not give exactly the
same solution as the full nonlinear system. An error will remain that may affect
the stability of the algorithm in time. Numerical experiments indicate that this
in fact happens. We have found that θ = 1/2 (Crank-Nicolson) is very sensitive
to the convergence tolerance adopted for each time step. The higher it is, the
sooner instabilities begin to appear, leading to the numerical blow-up after a
few time steps. In this sense, the backward Euler scheme (θ = 1) has been found
to be much more robust. We have never found instability problems using this
method.

Let us apply this numerical method to the finite element simulation of the
problem sketched in Figure 10. It consists of a 2D laminar flow suddenly heated
from below (in Figure 10, ∂ denotes the temperature). The dimensionless
parameters of the problem have been taken as Re = 10 (Reynolds number), Fr =
1/150 (Froude number) and Pe = 40/9 (Péclet number). The average inlet
velocity, the height of the channel and the temperature difference between the
top and bottom walls have been chosen as reference values for velocity, length
and temperature, respectively. These values result in a thermoconvective
instability of the basic Poiseuille flow. The stable solution turns out to be
periodic in time. The domain [0, 10] × [0, 1] has been discretized using a uniform
mesh of 30 × 15 = 450 Q2/P1 elements.

The evolution of the temperature at the central point is plotted in Figure 11.
Figure 12 shows the streamline pattern for one-half of the domain at t = 1.3. As
it has already been mentioned, we have found that the Crank-Nicolson method
is very sensitive to the convergence tolerance. The time step size has been taken

Figure 10.
Geometry, initial and
boundary conditions

y

u

n
y

y

=
=

=

=

0

0

0

0

∂θ
∂

θ = = =0 0,u ux y

θ = = =1 0,u ux y
x = 10x = 0

(x, y) = (5, 0.5)

ux

θ0()y

n

n

⋅ =

=

σ
∂θ
∂

0

0

Y

X

EC
13,6

22

as ∆t = 10–3. For a tolerance of 1 per cent, instability problems have been found
at time step number 37, whereas for a tolerance of 0.1 per cent they do not
appear until time step 121. Using the backward Euler method (θ = 1) the time
stepping algorithm has been found to be stable in all the cases. The results
presented here have been obtained using this method.

In Figures 13 and 14 we have plotted the convergence history in velocities
and the evolution of the norm of the incompressibility constraint for the first
and second time steps (in Figure 14), B ≡ GT). The convergence history for the
temperature shows a similar behaviour (not shown). Thus, with a single
iterative loop the nonlinearity, the coupling and the approximation to the
incompressibility constraint are achieved at once.

Modular implementation of block-iterative techniques
From the point of view of software development for coupled problems, maybe
the most important advantage of the block-iterative strategy is the possibility

Figure 11.
Temperature versus
time at the central point 0 0.5 1 1.5 2 2.5 3 3.5 4

0.75

0.7

0.65

0.6

0.55

0.5

0.45

0.4

0.35

0.3

Temperature

Time

Figure 12.
Streamlines for t = 1.3

Y

X

Implementation
of block-iterative

algorithms

23

Figure 13.
Convergence history

Figure 14.
Evolution of the

incompressibility

102

101

100

10–1

10–2

1 2 3 4 5 6 7
Number of iterations

|| Residual ||

Note: Convergence history

Key
Step 1
Step 2

10–3

10–4

10–5

10–6

10–7

1 2 3 4 5 6 7
Number of iterations

|| BU ||

Note: Evolution of || BU ||

Key
Step 1
Step 2

EC
13,6

24

of using different codes for the analysis of each domain. On the other hand, from
the point of view of software execution, the most important advantage is the
possibility of parallel processing of the different codes, running even in different
connected machines, which helps to optimize the use of the existing hardware in
the solution of coupled problems.

A first alternative for the implementation of the block-iterative techniques is
to develop a single program which calls the different domain solvers (now
transformed in modules of a more general program) sequentially. This may look
the most practical approach, but it has several drawbacks. Such a program
would be quite long and problems could arise, for instance, if the same names
have been used for variables or subroutines of the different uncoupled problems.
However, the most important disadvantage is that this alternative precludes all
possibility of parallel processing of the different domains.

A second alternative is to execute the processes in parallel and handle the
interchanging of data using files that can be accessed by the different codes. This
alternative poses difficulties in process synchronization, as it is necessary for a
given process to wait for other processes to finish writing the necessary interface
data. This may overload the computer system with a number of processes
permanently accessing the disk to see if the desired data is already there.

A third alternative, presented and recommended here, is to allow the
interconnexion of several slave codes via a master code which is responsible for
the communication and synchronization of the different processes, controlling
the overall convergence of the coupled system for each time step. The
implementation of this is based on the facilities for inter-process
communication that the Unix operative system has available to the user. Under
this system, any process can create a socket that immediately is made
accessible to other processes. When a process creates a socket, the operating
system stops this process until another one connects itself to the same socket.
At this moment, both processes are re-started and the system establishes a
communication pipe between them so that any information written by a process
into the pipe can be accessed by the other. Details on the use of this Unix facility
are not given here, but they can be found in any standard user manual.

For the process interconnexion methodology to be established it is necessary
to develop:

• a single master code (here called SHUTTLE) to which all the slave codes
are connected. The functions to be performed by this code are explained
in the next section;

• a library of routines to allow the slave codes to perform the necessary
import/export operations of nodal variables. No additional effort is
needed here apart from including the desired CALL statements to this
routines in the single field solvers;

• the necessary routines (which are problem dependent) so that the slave
codes can evaluate the corresponding RHS interaction terms from the
imported nodal values.

Implementation
of block-iterative

algorithms

25

Master code SHUTTLE
The interconnection program described in this section is designed to assist in
the solution of nonlinear transient coupled problems using the block-iterative
techniques presented previously. A step-by-step procedure is used to advance in
time, cast in a predictor-multicorrector form, together with a convenient
linearization of the nonlinear problem for each time step.

In our work, SHUTTLE is the master code that controls the overall block-
iterative algorithm described earlier. To achieve this, the program must perform
several tasks, regarding the execution of the slave codes which are responsible
for the solution of each of the single field equations in system (2). The tasks in
question are to:

• communicate the different slave codes/processes, transferring
information from one program/domain to another, if (and only if)
required;

• control the overall coupled algorithm, checking convergence, forcing the
slave codes/processes to iterate if (and only if) required; and

• synchronize the execution of the different slave codes/processes,
ensuring that each process runs as efficiently as possible, and that all of
them iterate and/or advance in time simultaneously.

The task diagram for the master code is shown in Figure 15. Here we have
labelled as Ω1 and Ω2 each of the slave codes used to solve the equations
corresponding to the fields/domains involved in the problem. Referring, for
instance, to system (2), Ω1 would solve the first equation for variable x, and Ω2
would solve the second equation for variable y. Note that Figure 15 follows, as
closely as possible, the task diagram of each slave code (see Figure 2). Note also
that the task labelled “Prediction” consists of importing the individual
predictions from the slave codes. The task labelled “Communicat” consists of
exporting to all the processes the variables from the previous iteration, and
importing from all of them the iterative corrections and the local convergence
status. The task labelled “Control” consists of checking that all the tolerances
specified for each of the processes are satisfied, both at local (individual) level as
globally. Finally, the task labelled “Synchronize” consists in exporting to each
process the overall convergence status for the current iteration.

The code is programmed following a hierarchy of objectives. Each objective
is fulfilled by achievement of sub-objectives. The main objective is obviously to
integrate the governing equation from the initial time of the analysis to the final
time; this is done in a step-by-step fashion. For each time step, the objective is to
achieve global and local convergence; this is attained by forcing all the codes to
perform the necessary iterative corrections. During each iteration, the objective
is to furnish the slave codes with the required data to evaluate the coupling
terms; this is done by transferring the necessary information through the
sockets. Finally, for each communication the objective is to preserve the pre-
established turn and the natural dependencies of the coupled problem. So, the

EC
13,6

26

keyword for the whole procedure is synchronized communication. This
framework of objectives can be sketched as follows:

• To arrive at the final time of the analysis, advancing in a step-by-step
fashion.

• For each step: to achieve local and global convergence, iterating if
necessary.

• For each iteration: to furnish the required data to each one of the slave
codes through the sockets.

• For each communication: to ensure the pre-established turn and the
natural dependencies of the coupled problem.

Slave codes. Import/export operations
As an example, the computing algorithm for the solid phase of a fluid-structure
interaction problem has been shown in Figure 2. It is indicated there which
variables must be exported and imported, and the exact place to do so. In order
to show the modifications that must be performed in a standard program,

Figure 15.
Task diagram for
program SHUTTLE

Ω1 Ω2

x˚ y˚

Initialize

Repeat (* for each time step)
Increment

Prediction

Initialize
Repeat (* for each time step)

Increment
Communicate

Ω1 Ω2

y i –1

x i

Status Ω1

x i –1

y i

Status Ω2

Yes
Global status = converged

No
Global status = not converged

Synchronize

Ω1 Ω2Global status Global status

Control

Until global status = converged

Until

t := t 0, ∆t := ∆t 0

t := t + ∆t 0

i := 0

i := i + 1

t = t end

Status Ω1 = converged & Status Ω2 = converged &
|| x i – x i –1|| < tolerance & || y i – y i –1|| < tolerance?

Implementation
of block-iterative

algorithms

27

Figure 16(a) presents a standard generic algorithm for an uncoupled problem,
while Figure 16(b) presents the algorithm for the same process as part of a
coupled problem solved by the block-iterative technique (using SHUTTLE).
Comparing both of them, the necessary modifications can be seen as reduced to
the addition of the import/export operations that are indicated in Figure 16(b).
Also, it must be remarked that the box labelled “Verification” consists of
exporting to SHUTTLE the local convergence status of the process and
importing from SHUTTLE the global convergence status of the coupled
problem as a whole (see also Figure 2).

Efficiency of the proposed scheme
The system constructed along the lines described in the previous sections
achieves a fringe, but not minor, benefit: to exploit the computer resources
optimally, forcing the execution of the slave codes to proceed in parallel, or as
much in parallel as possible. Let us direct some attention to this matter. As
discussed previously, for a two field problem two alternatives are possible for
the iterative multi-correction procedure: block-Gauss-Seidel, in which one
process, say Ω1, iterates in first turn, while the other, Ω2, follows; and block-
Jacobi, in which both processes, Ω1 and Ω2 iterate simultaneously. Figure 17
depicts graphically both schemes.

The first alternative, block-Gauss-Seidel, does not seem to allow for parallel
processing. However, and referring to Figure 2, each process exports its
variables as soon as possible, that is, before getting entangled with the
cumbersome residual forces evaluation. Therefore, just after Ω1 has exported
its variables to SHUTTLE, they can be imported by Ω2, who can start
correcting long before Ω1 has finished doing so. For nonlinear problems, where
residual forces evaluation can take quite a percentage of the total CPU time, this
is as close as one can get to parallel processing (see Figure 18). Recall as well

Figure 16.
Task diagrams for:

(a) a process in an
uncoupled problem;

(b) a process in a
coupled problem

Initialize

Repeat

Predict

Repeat

Correct

Until convergence

Until t = t end

Initialize

Repeat

Predict

Export

Repeat

Import

Correct

Export

Verify

Until convergence

Until t = t end

Shuttle

Shuttle

Shuttle

Shuttle

(a)

(b)

EC
13,6

28

that it has been shown in the previous sections that dealing with the coupling
and the nonlinearity within the same iterative loop is highly effective.

We can quantify this by referring to the fluid-structure interaction example
described previously. For the particular case using the initial stiffness as
iteration matrix (see Figure 7)) the percentage of CPU time invested in the
solution of the fluid phase is only 11.20 per cent of that needed for the solid,
whereas the communication process needs the 0.41 per cent of that time.
Considering that the evaluation of residual forces has taken 90.96 per cent of the
total time spent by the solid, it is clear that the fluid can be solved fully in
parallel. Thus, improvement of the overall efficiency can only be achieved by
improving the solid solver (for instance, by using the Picard iterative method,
see Figure 7)). For a 3D fluid-structure interaction problem, the relative cost of
the fluid phase would be even smaller.

On the other hand, alternative (b) in Figure 17, block-Jacobi, seems the obvious
choice for parallel processing, but this may be misleading. Consider, for
instance, the case when both problems are linear, and iterating is only required
due to the block-iterative scheme adopted. The situation is depicted in Figure
19. However, alternative (b) spends almost double CPU time. This expresses
graphically the well-known fact that, for linear problems, the Gauss-Seidel

Figure 17.
Alternative schemes for
iterative multi-
correction: (a) block-
Gauss-Seidel method:
Ω1 goes first and Ω2
follows; (b) block-Jacobi
method: Ω1 and Ω2 run
simultaneously

Prediction

Iteration 1

Iteration 2

Iteration 3

(b)

Ω1 Ω2

Ω1

Ω2

Ω1

Ω2

Ω1

Ω2

(a)

Ω1 Ω2

Ω1 Ω2

Ω1 Ω2

Ω1 Ω2

Figure 18.
Parallel and sequential
processing for block-
Gauss-Seidel scheme

Ω1 Ω2

Lost

Key
Parallel processing
Sequential processing

Ω1

Ω1

Ω1

Ω2

Ω2

Ω2

Implementation
of block-iterative

algorithms

29

method exhibits double the asymptotic convergence rate of the Jacobi method
(cf. Figure 6)). Nevertheless, alternative (b) can be satisfactory when the
problems to be solved are strongly nonlinear on their own, and the interaction
terms play a minor role in the iterative process. In this case, both processes
would be running in parallel and fully exploiting the computational resources,
and the global check on convergence will be automatically satisfied as soon as
both processes converge locally. This situation is depicted in Figure 20.

Conclusions
An algorithmic approach to nonlinear coupled problems based on the partition
of the discrete equations of the system in its single field components has been
discussed. The alternative can be seen as a block-iterative solution of the
original system. If this technique is used together with a procedure for
synchronized communication of the processes involved, two benefits are
obtained: modularity of the necessary software and optimal use of the computer
resources. Theoretical analysis of the resulting algorithm regarding
convergence (and stability for transient problems) is very problem dependent.

Figure 19.
Block-Gauss-Seidel (a)

and block-Jacobi (b)
schemes applied to a
linear-linear coupled

problem

Ω1 Ω2

Ω1 Ω2

Ω1 Ω2

Ω1 Ω2

Ω1 Ω2

Prediction

Iteration 1

Iteration 2

Iteration 3

Iteration 4

Ω1 Ω2

Ω1

Ω2

Ω1

Ω2

Lost

B A

A

A

A

A

B A

A B

B A

A B

B A

(b)(a)

Figure 20.
Block-Gauss-Seidel (a)

and block-Jacobi (b)
schemes applied to a

strongly nonlinear
coupled problem

Prediction

Iteration 1

Iteration 2

Iteration 3

(b)

Ω1 Ω2

Ω1

Ω2

Ω1

Ω2

Ω1

Ω2

(a)

Ω1 Ω2

Ω1 Ω2

Ω1 Ω2

Ω1 Ω2

EC
13,6

30

Moreover, the values adopted for the tolerance of the overall convergence with a
time step do affect stability in time if a step-by-step scheme is used.

However, the procedure has been successfully applied to two very different in
nature coupled problems such as fluid structure interaction and thermally
coupled incompressible flows. It has been shown that even if unconditional
stability cannot be ensured in general, stability is dramatically improved by the
iterative schemes, with regard to purely block-explicit (staggered) schemes.
Thus, the approach is considered to be not only feasible, but highly competitive
with respect to other alternatives. Additionally, and considering that our main
interest is dealing with nonlinear problems, numerical experiments suggest
that in most of the cases the rate of convergence will be driven by the
linearization of the nonlinear terms, so that the coupling of the equations is
achieved with very little (or not at all) additional cost.

References
1. Zienkiewicz, O.C. and Taylor, R.L., The Infinite Element Method, McGraw-Hill, London,

1991.
2. Crisfield, M.A., Non-linear Finite Element Analysis of Solids and Structures. Volume 1:

Essentials, John Wiley, Chichester, 1991.
3. Hughes, T.J.R., The Finite Element Method: Linear Static and Dynamic Finite Element

Analysis, Prentice-Hall International, Hemel Hempstead, 1987.
4. Felippa, C.A. and Park, K.C., “Staggered transient analysis procedures for coupled

mechanical systems: formulation”, Computer Methods in Appl ied Mechanics and
Engineering, Vol. 24 No. 2, 1980, pp. 61-111.

5. Zienkiewicz, O.C., Paul, D.K. and Chan, A.H.C., “Unconditionally stable staggered solution
procedures for soil-pore fluid interaction analysis”, International Journal of Numerical
Methods in Engineering, Vol. 26 No. 5, 1986, pp. 1669-73.

6. Chan, A.H.C., “A unified finite element solution to static and dynamic problems of
geomechanics”, PhD thesis, University of Wales, 1988.

7. Galindo, M., “Una metodologı́a para el análisis numérico del comportamiento resistente no
lineal de presas de hormigón con cargas estáticas y dinámicas”, PhD thesis, Technical
University of Catalonia, Barcelona, 1993.

8. Wisniewski, K., Turska, E., Simoni, L. and Schrefler, B.A., “Error analysis of staggered
predictor-corrector scheme for consolidation porous media”, The Finite Element Method in
the 1990s, Springer-Verlag/CIMNE, Barcelona, 1991.

9. Galindo, M., Cervera, M. and Oliver, J., “Efficient solution schemes for fluid-structure-soil
interaction problems”, Proceedings of the 10th World Congress on Earthquake
Engineering, 1991.

10. Paul, D.K., “Efficient dynamic solutions for single and coupled multiple field problems”,
PhD thesis, University of Wales, 1982.

11. Hughes, T.J.R. and Liu, W.K., “Implicit-explicit finite elements in transient analysis”,
Journal of Applied Mechanical Engineering, Vol. 45 No. 2, 1978, pp. 371-4, 375-8.

12. Codina, R., “A finite element model for incompressible flow problems”, PhD thesis,
Technical University of Catalonia, Barcelona, 1992.

13. Cuvelier, C., Segal, A. and van Steenhoven, A., Finite Element Methods and Navier-Stokes
Equations, Reidel, Dordrecht, 1986.

14. Books, A.N. and Hughes, T.J.R., “Streamline upwind/Petrov-Galerkin formulations for
convected dominated flows with particular emphasis on the incompressible Navier-Stokes
equation”, Computer Methods in Applied Mechanics and Engineering, Vol. 32 No. 2, 1982,
pp. 199-259.

