
Journal of the Opera tions Research 

Society of Japan 

Vol. 20, No. I, March, 1977 

ON THE COMPUTATIONAL EFFICIENCY 

OF BRANCH-AND-BOUND ALGORITHMS 

TOSHIHIDE IBARAKI, Kyoto University 

(Received June 4, 1976; Revised September 16, 1976) 

Abstract. The behavior of the number of partial problems T(A) which are decomposed in a branch

and-bound algorithm A (T(A) may be taken as a measure for the computational efficiency of A) is 

investigated in a fairly general setting. The first result is that the mean number f(n) of T(A) when A 

is applied to problems of size n grows at least as fast as exponentially with n, under relatively mild 

conditions, if A uses only the lower bound test as most of the conventional branch-and-bound 

algorithms do. Then it is pointed out that a possible way to avoid this exponential growth is to use 

the dominance test together with the lower bound test. The dominance test is also interesting from 

the view point of unifying a wide variety of algorithms as branch-and-bound. 

These points are exemplified by the well known Dijkstra algorithm for the shortest path problem 

and the Johnson algorithm for the two-machine flow-shop scheduling problem, for which f(n) :s: n-1 

holds by virtue of the dominance test. 

1. Introduction 

Branch-and-bound is a computational principle used to solve various com

binatorial optimization problems, in particular those which are not so nicely 

structured as to permit very efficient algorithms. For many "difficult" 

problems, such as the integer programming problem, the traveling salesman 

problem and various scheduling problems, branch-and-bound is reportedly the 

only practical approach. 

As is well known, e.g. [1, 10, 11, 21, 23, 25, 27}, the underlying idea 

of branch-and-bound is to decompose a given minimization problem Po into more 

than one partial problem of smaller size. The decomposition is repeatedly 

applied to the generated partial problems until each undecomposed one is 

either solved or proved not to yield an optimal solution of PO' For theo-

16 

© 1977 The Operations Research Society of Japan



Branch-and-Bound Algorithms 17 

retical simplicity, the computational efficiency of a branch-and-bound algo

rithm A is commonly measured by the numbe-r T(A) of partial problems which are 

decomposed in the entire computation (e.g., [14,21,27,28]). This measure 

is also adopted in this paper. The actual time required to carry out the 

entire computation of A is roughly given by T(A)·t, where t is the average 

time required to solve a partial problem. Thus, though smaller T(A) does not 

always imply shorter computation time (since t may increase when we make TeA) 

small), T(A) conveys essential information on the total computation time. For 

example, if T(A) grows exponentially with the size n of given problems, the 

total computation time also increases at J_east exponentially as a function of 

n (under a quite reasonable assumption that t is a nondecreasing function of 

n) . 

In order to make T(A) small, it is crucial how to test given partial 

problems and, if possible, to conclude the impossibility of yielding an opti

mal solution of PO' Two types of tests, the lower bound test (e.g., [1, 23, 

25, 27]) and the dominance test (e.g., [21,15]), are known. The first one is 

most common and is done by calculating a lower bound g(P
i

) of the optimal 

value f(P
i

) of a partial problem Pi; if q (P.) > 2, where 2 is the value of the 
'0 1--

best feasible solution of Po obtained so far, we conclude that Pi does not 

provide an optimal solution of Po and Pi is terminated (excluded from con

sideration). The second one is based on a binary relation D, called a domi

nance relation, such that P.DP. implies f(P.) <f(P.); thus P
J
' is terminated 

1-- J 1-- J 

if some p. satisfying P.DP. has already been generated. Most of the current 
1-- 1-- J 

branch-and-bound algorithms are using only the lower bound test, but there is 

a tendency of the increasing use of the dominance test (e.g.,[IS, 16, 22, 29]). 

[15] contains additional references discussing practical uses of dominance 

relations. 

In spite of the considerable success of branch-and-bound algorithms, it 

is empirically known that T(A) usually increases exponentially with the size 

of the given problem. In some cases, this is mathematically proved (e.g.,[l7l, 

Section 3.11 of [27]). The first purpose of this paper is to show the expo

nential growth of T(A), when only the lower bound test is used, in a rather 

general mathematical setting if certain assumptions are satisfied. It says 

that T(n), the expected value of T(A) when A is applied to a set of problems 

with size n, grows at least as fast as exponentially with n. To obtain this 

result, only a mild assumption is made on branch-and-bound algorithm A and 

problems to be solved. The assumption states, loosely speaking, that a 

branch-and-bound algorithm with the lower bound test only cannot avoid its 

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.



18 T. Ibaraki 

, 
exponential growth of T(A) unless either given problems are so simple as to 

generate the number of partial problems less than exponential even if all 

possible decompositions are performed, or an exceptionally accurate lower 

bounding function g is available such that g(P
i

) is very close to f(P i ) for 

all partial problems Pi but for a small number of exceptions. In some cases, 

the exponential growth of T(n) can actually be proved from the above result. 

Section 4 contains such examples. 

Note here that the branch-and-bound principle is general enough to accept 

the problems which are known to be NP-complete or more difficult. (According 

to Cook [4] and Karp [19], the NP-completeness is considered as strong evi

dence for the nonexistence of a polynomial time algorithm.) Therefore it is 

unreasonable to expect that T(A) of any branch-and-bound algorithm can be made 

to grow less than exponentially by means of a lower bounding function g which 

is easily calculated (say, in time bounded by a polynomial of size n). The 

above result, however, is stronger in that T(A) grows exponentially even for 

those problems much easier than NP-complete, and in that the expected value of 

T(A) grows exponentially with n as opposed to the worst case result considered 

in the discussion of NP-eompleteness. This may suggest that branch-and-bound 

with only the lower bound test is not powerful enough to exploit all aspects 

of the problem structure useful to improve the computational efficiency. 

It is then shown in the latter half of this paper that a possible way to 

overcome this difficulty is to use an appropriate dominance test. Under cer

tain assumptions, a dominance relation D can restrict the set of partial prob

lems, which are possibly decomposed, from J) (the set of all possible partial 

problems) to J)D always satisfying J) D c;D, where Jl D is determined independ

ently of lower bounding function g. Thus D has an effect of reducing the 

size of the set of partial problems which undergo the lower bound test. In 

particular, if the size of ,p D grows less than exponentially, so does the 

T(A) of the resulting algorithm. 

As such examples, the well known Dijkstra algorithm [5] for the shortest 

path problem and the Johnson algorithm l18] for the two-machine flow-shop 

scheduling problem are analyzed and shown that T(n)~n-l, while T(A) grows 

exponentially without the dominance test (under certain assumptions). It may 

also be interesting to see the fact itself that the Dijkstra algorithm and the 

Johnson algorithm can be viewed as braneh-and-bound algorithms. This may 

exhibit another aspect of the power of the dominance test; it helps US unify 

a wide variety of algorithms under the name of branch-and-bound. Thus it is 

the second purpose of this paper to show theoretically (and at the same time 

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.



Branch·and·Bound Algorithms 19 

tutorially) that the dominance test is a quite natural and powerful tool which 

improves the computational efficiency for most of the existing branch-and

bound algorithms. 

2. Branch-and-Bound Algorithm 

This section gives a formal description of a branch-and-bound algorithm 

to solve a minimization problem PO' The TIlotivation for various concepts in

troduced in this section and the validity of the resulting algorithm may be 

found in papers such as [1, 10, 11, 14, 15, 21, 23, 25, 27]. 

The way in which the original problem Po and generated partial problems 

are decomposed into smaller partial problE,ms is represented by a finite root

ed tree J') =( Jl, e;), where Jl is a set of nodes and e; is a set of arcs. The 

root of J') is denoted by Po and corresponds to the given problem PO' (P., P.) 
'Z- J 

Ee;, Le., P. is a son of P., if P. is generated from P,; by decomposition. 
J 'Z- J ~ 

The set of bottom (leaf) nodes J represents the partial problems which can be 

trivially solved. The depth of a node Pi is the length of the path from Po to 

P .• 
'/, 

The height of J') is the maximum depth of nodes in p, and is identified 

with the size of problem PO' 

Let O(P
i

) and f(P
i

) be the set of optimal solutions of Pi and the opti.mal 

value, respectively. 0 and f satisfy 

f(P.) =min{f(P. ) l.j=l, 2, ... , k} 
'/, '/,. 

J (2.1) 
O(P.)=u{O(P.) If(P.)=f(P.), j=l, 2, ... , k}, 

'/, '/,. 'Z- '/,. 
J J 

if P. has sons p. , P. , ..• , P" (2.1) implies f(P.)$f(P.) for a son P. of 
'/, -"I '/,2 '/,k '/, J J 

Pi' (J'), 0, f) is called the branching st'l'ucture of PO' Our objective is to 

obtain O(P 0) and f(P 0)' without really generating all PiE Jl . 

Note that f(P
i

) is usually not known but a lower bound g(P
i

) of f(P
i

) is 

actually calculated for each generated node Pi; g satisfies the following con-

ditions. 

(a) g(Pi)$f(P
i

) for PiE Jl , 

(b) g(Pi)=f(P
i

) for PiE J , 

(c) g(Pi)$iJ(P
j

) if Pj is a son of Pi' 

9 denotes the set of nodes Pi for which j'(P
i

) is obtained or O(Pi)nO(PO)=~ is 

concluded in the computing process of g. Then it satisfies 

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.



20 T. Ibaraki 

(A)t g(P·)=f(P.) for P.E C;, 
1.- 1.- 1.-

(B) C; :J J , 

(C) PiE c; implies P.E c;, if P. is a 
J J 

At each stage of computation, a node in 

son of 

p is 

P .. 
1.-

called active if it has 

already been generated but neither decomposed nor terminated (i.e., solved or 

concluded not to yield an optimal solution of PO) by test. Given a set of 

active nodes A , a search function s selects a node s (A) from A. S is a 

breadth-first search funetion if s CA) has the minimum depth among the nodes in 

A. It is a depth-first search function if s (A) has the maximum depth. s is 

called a heuristic search function based on h: fl ~E (reals) and is denoted by 

sh' if sh(A) is the node in A with the smallest h value (e.g., [11,14,27, 

28]). To preclude the case of tie, it is assumed that 

(2.2) h(P .)"ih(P.) for P ."iP.E P . 
1.- J 1.- J 

If h is set equal to g, a is called a best-bound search function. 
g 

Now we present a formal description of a branch-and-bound algorithm A, 

which uses only the lower bound test; algorithm using the dominance test will 

be discussed in Section 5. It obtains all optimal solutions, i.e., O(Po) , 
upon termination. When only a single optimal solution is sought, it can be 

slightly modified to improve the computational efficiency (e.g., [14J). All 

the results in this paper, however, can be extended with minor modification. 

Branch-and-Bound Algorithm A=«...a, 0, f), (C;, g), s). 

Remark. 0 denotes the set of the best feasible solutions of Po current

ly available, and is called the incumbent. z denotes its value. It is as

sumed that O(P
i

) is obtained as a by-product of computation of g(P
i

) if PiE~. 

t 

AI (Initialize)tt A -<-{PO}' Z+<x>, 0 -<-<I>(empty). 

A2 (Search): If A =<1>, go to A7; otherwise let P .-<-8 (A) and go to A3. 
1.-

A3 (Test): If P.E .9 go to AS; otherwise go to A6 if g(P.»z, and go to 
1.- 1.-

When P. E .(; holds because 0 (P.) nO (PO) =<1> is concluded, g (P.) =f(P.) may not 
" . 1.- • 1.- 1.-

be satisfied or g(P
i

) may not be computed. Even in this case, we assume 

for simplicity that condition (A) holds, since the value g(P
i

) is not 

relevant to the computation process. 

tt -<- denotes the assignment operation equivalent to := in Algol. 

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.



Branch-and-Bound Algorithms 21 

A4 (Decompose): Generate sons P. , E'. , ••• , p. of p". Return to A2 
1-1 1-2 1-k v 

after letting A -<-AU{P. ,P. , ••• , P- }-{P.}. 
1-1 ~2 1-k 1-

A5 (Improve): Go to A6 after letting 

o if z<f(P
i

) (=g(P
i

)) 

o uO(Pi ) if z=f(Pi ) 

O(P
i

) if z>f(P
i

) 

z -<- min[z, f(P
i

)]. 

A6 (Terminate P.): Return to A2 after letting A-<-A-{P.}. 
1- 1-

A7 (Halt): Halt. O(P
O

)= 0 and f(PO)=z; Po is infeasible (and O(PO)=~) 

if z=oo. 

Note that only a small portion of ~ is actually generated in most 

branch-and-bound algorithms. As was noted in Section 1, the computational 

efficiency of A is closely related to the number of nodes actually generated, 

which is measured by 

T(A): the total number of nodes which are decomposed in A4 until the 

computation halts in A7. 

3. A Lower Bound for T(A) 

The next theorem gives a lower bound of T(A) which is valid for any 

branch-and-bound algorithm A. 

Theorem 3.1. Let A=( (A, 0, f), (C;, g), s) be a branch-and-bound algo

rithm. Then T(A)~I:7 -C:I, where :7={P.E ~ I g(P.)Oof(PO)} and 1·1 denotes 
1- 1.-

the cardina1ity of the set therein. 

Proof: Whenever a node P. E :7 - C; is tested in A3, it goes to A4 and P. 
1.- 1.-

is decomposed since P ./.(" and g (P.) 'Sf(PO) OoZ always holds. Furthermore each 
1.- 1.-

ancestor P
k 

of Pi satisfies P
k

/. C,." (by condition (C) of 9') and g(Pk)Oog(P
i

) 

(by condition (c) of g)'Sz, and P
k 

is also decomposed. Thus Pi is eventually 

generated and tested; it is then decomposed in A4. 0 

4. Exponential Growth of T(A) 

In this section, we ana1yze a probabi1istic behavior of a branch-and

bound algorithm and show evidence for the exponential growth of T(A) with 

the size of given problem PO' 

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.



22 T. Ibaraki 

Consider a class of problems which contains a number of (possibly infi

nite) problems with size n for each positive integer n. It is assumed that 

all problems with size n has the same tree ~ en) representing their decompo

sition processes. (If nE~cessary, preclude the problems with different ~ (n).) 

For example, the size of an integer programming problems with n 0-1 variables 

is n, and an infinite number of problems with size n can be generated by spec

ifying coefficients in the objective function and constraints. ~ en) in this 

case is a {2, n)-tree, i.e., each node in depths 0, 1, 2, ... , n-l has two sons 

and all nodes in depth n are bottom nodes. (This assumes a common decompo

sition schemet such that a partial problem is decomposed into two by fixing 

one variable to 0 and 1.) 

It is also assumed that each ~ en) has an independent set tt of nodes 

{Pi I iEI{n)}c,~- .7 , where r(n)=II(n) I satisfies r{n»clk
l
n 

for some cl,kl>O. 

This condition is satisfied in most cases encountered in practical application. 

In the above (2, n)-tree of the integer programmi~ problem, r{n)=(~)2n holds 

for the set of all nodes in depth n-l, and r{n)=2 laJ holds for the set of all 

nodes in depth L~J, where a>O is a constant. 

For simplicity, we use the convention 

f.=f{P.) and g.=g{P.) for iEI{n). 
~ ~ ~ ~ 

By definition of f and g, 

(4.l) 

t 

tt 

Generally speaking, partial problems which are generated from different 
integer programming problems Po but correspond to the same node in the 

branching structure J>{n) may fix different variables to 0 and 1. Thus 
the partial problems corresponding to the same node are not the same in 

the sense that sets of fixed variables are different for different integer 
programming pr.oblems PO' Even in this case, however, we can say that all 
problems Po with n variables have the same branching structure J} en) which 

is the {2, n)-tree, and the following discussion can include this general 
decomposition scheme as will be easily confirmed. For some branching 

structures such as those discussed in Examples 4.1 and 4.2, this consider

ation is unnecessary since all partial problems corresponding to the same 
node have exactly the same set of fixed variables. 

Pi' Pj'c fl are independent if neither is a proper descendant of the other. 

A set is independent if any two nodes therein are independent. 

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.



Branch-and-Bound A igori thms 23 

hold_ No restriction is however a priori assumed on the relative values of fi 

and fj (or gi and gj) for i,jEI(n), since Pi and Pj are independent (cf. (Z.l) 

and condition (c) of g). 

When we want to investigate the behavior of a branch-and-bound algorithm 

for a class of problems, as a whole, it would be natural to regard fi and gi 

as random variables satisfying condition' (4.1)/ and having a probability densi

ty function p(fa , fl' f Z'···' fp(n)' gl' :1
2

\, ... , gp(n» which is specific to 

the given class of problems. To keep the ~odel as general as possible, we 

accept any probability density function provided that the marginal density 

functiont 

(4.Z) 

exists for each iEI(n) , and furthermore 

(4.3) 

holds for some constant £>a (independent of n) and for all iEI'(n), where 

I'(n)cI(n) and p' (n)=II'(n) I satisfies 

(4.4) T"(n»ck
n 

-- Z Z 

for some cZ' kZ>a. 

Assumption (4.3) would need a justification. It says that gi has a posi

tive probability £ of being not greater than fa(=f(P
a

» when all problems 

with size n are taken into account, for 1: in a nontrivial subset I' (n) of I(n). 

In other words, the magnitude of underestimation by lower bounding function g, 

i.e., fi-g i , can be greater than the deviation of fi from fa' i.e., fi-f
a

, 

with a positive probability £. This may be quite natural since the class of 

problems under consideration would include those problems for which a partial 

problem Po, iEI'(n), is difficult and the underestimation by g becomes rela-
1.-

tively large. (See also the discussion in Examples 4.1 and 4.Z.) 

Now let T(n) denote the mean of T(A) when a branch-and-bound algorithm A 

is applied to all problems with size n in the given class. By the above as

sumptions, T(n) satisfies 

t fi' gi are assumed continuous. If fi' gi are discrete, the following 

conditions should be modified in an obvious manner. 

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.



24 T. Ibaraki 

~ I- I'( )E=r'(n)E 
'l-E. n 

proving the next theorem. 

(by Theorem 3.1) 

(by (4.3)) 

(by (4.4)) 

Theorem 4.1. The mean number T(n) of partial problems which are decom

posed in a branch-and-bound algorithm A applied to a class of problems B, 

where A and B satisfy all the assumptions mentioned above, grows at least as 

fast as exponentially with the problem size n. 

This theorem says that the exponential growth of T(n) is inevitable un

less either the class of problems under consideration has a very narrow ~ (n) 

such that all independent sets of nodes have the cardinality less than ex

ponential, or an exceptionally good lower bounding function g is available for 

which (4.3) and (4.4) do not hold. Thus we should anticipate the exponential 

growth of T(n) for almost all branch-and-bound algorithms using the lower 

bound test only, as far as a class of problems having a nontrivial complexity 

is concerned. 

At this point, it should be noted that the implication of Theorem 4.1 is 

primarily theoretical since P(gi) of (4.2) is usually not known for a given 

particular class of problems. In some cases, however, the assumptions in 

Theorem 4.1 can be actually checked, as in the following examples. 

Finally, we should be careful enough not to conclude from the above dis

cussion that branch-and-bound algorithms are always useless. Even if T(n) 

grows exponentially, it may be possible to slow down its growth rate to a de

gree with which problems of meaningful sizes may be solved in practical com

putation time. Some examples of such practical branch-and-bound algorithms 

may be those currently used for the integer programming problem (e.g., [8, 9]) 

and the traveling salesman problem (e.g., [2, 13]), which are known to be NP

complete and hence believed to require exponential computation time by any 

algorithm whatever. 

Example 4.1. Let N be a complete graph with n nodes 1, 2, ... , n and dis

tance matrix [c .. ], where c . • >0 (possibly (0) is the length of arc (i, j), for 
'l-J 'l-J 

lsi, jsn. The shortest path problem asks to find all paths from node 1 to 

node n having the minimum length. 

Now let E={l, 2, ... , n} be the set of decisions, where i is the decision 

to make node i the next node to visit. Thus a sequence of dicisions (called 

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.



Branch-and-Bound A 19ori thms 25 

a policy) x=i
1
i

2
- __ i

k 
represents path 1->-i

1
-+i

2
-+ ... -+i

k
• E* denotes the set 

of policies generated by L. In particular EEL* denotes the null policy. For 

each XEL'o" let P(x) be the partial problem to find the set of shortest paths 

O(P(x)) to node n with its initial portion restricted to be x; 

notes their length. P(E)(=P
O

) stands for the original problem. 

be decomposed into n partial problems P(;rl), P(x2), ... , P(xn). 

f(P(x)) de

Each P(x) may 

Thus J3 (n) is 

a rooted tree in which each node except for a bottom node has n sons (see Fig. 

1). Bottom nodes J correspond to the partial problems such that either 1T (x)= 

n, where 1T(X) denotes the last decision in x (1T(X)=E if X=E), or x represents 

a nonelementary path (Le., x visits a node in N more than once). In the 

first case, x represents a path from node 1 to node n; hence P(x) is trivially 

solved. In the latter case, P(x) does not give an optimal solution by assump

tion c __ >0 (f(P(x)) is set to 00). 
1-J 

Fig. 1 Rooted tree J3 of the shortest path problem 

in Examples 4_1 and 5.1. (n=4) (Double 

circles denote bottom nodes.) 

For this branching structure (J3 (n), 0, 1), (5: , g) may be defined as 

follows. 

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.



26 T. Ibaraki 

(4.5) 
g(P(x) )= 

100 if P(X)E Jand x represents a nonelementary path, 

l cl' +C. . + ... +c. . for x=ili? ... i k , otherwise. 
~l ~1~2 ~k-l~k -

It is not difficult to see that these::; , g satisfy all the conditions given 

in Section 2. Thus these give rise to a branch-and-bound algorithm A=«~(n), 

0, n, (9, g), s) for the shortest path problem. 

To analyze the behavior of A, consider a special graph structure: N is 

the n'-stage graph with the start node in stage 0, m nodes in each of the 

stages 1, 2, ... , n'-l, and the terminal node in stage n~ N has n=mn~m+2 nodes. 

An arc exists from each node in stage i to any node in stage i+l, for i=O, 1, 

... , n'-l. The length of each arc is determined as a random number taken in

dependently from the same probability density function q(x) defined over [1,00). 

q(x) can be arbitrary as far as the useal assumptions to guarantee the central 

limit theorem are satisfied. In particular, its mean exists and is denoted a 

(~l). Since each arc has length not smaller than 1, the length of the short

est path in this graph is at least n'. 

It is now easy to see that each partial problem, which is not a bottom 

node, has exactly m sons with finite g-values (of course, only nodes with fi-

n 'J nite g-values can lead to a shortest path). Thus exactly mla partial prob-
. n' 

lems with finite g-values exist in depth L a ~ of the branching structure. Let 

I(n)=I'(n) denote the set of their indices. Then g(P
i

) of Pi' iEI(n), is the 

length of a path consisting of ~' arcs (i.e., the sum of lengths of l~'J 

arcs). By the central limit theorem, therefore, g(P.) is normally distrib-, ~ 

uted around its mean al~ 1 (sn') if n' is sufficiently large. Thus the proba
La 

bility that g(P
i

) is not greater than the length of the shortest path (?n') is 

at least E=1/2 (>0). 

Consequently the above model satisfies all the assumptions of Theorem 4.1 

and hence T(n) grows at least as fast as exponentially with n' (i.e., n). 

Thus a branch-and-bound approach with lower bounding function (4.5) only is 

not competitive with other existing algorithms (e.g., [6]) which can obtain 

the shortest paths in polynomial time. By incorporating a dominance relation, 

however, the above branch-and-bound algorithm can be improved to a polynimial 

time algorithm, as shown in the subsequent sections. 

Example 4.2. Consider the flow-shop scheduling problem with n jobs and m 

machines [3]. Each job j (lsjsn) is processed on machines 1, 2, ... , m in this 

order. The processing time of job j on machine i is Pji (?O). \fuen only per-

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.



Branch-and-Bound Algorithms 27 

mutation schedules are permitted (i.e., all machines process jobs in the same 

order), find an optimal schedule (Le., an order of n jobs on machines) which 

minimizes the maximum completion time (makespan) on machine m. 

An obvious branching scheme for this problem is to decompose a partial 

problem in depth k (~n), given a subschedule for initial k jobs, into (n-k) 

partial problems by fixing the (k+l)st jab from the remaining (n-k) jobs. In 

this scheme, a partial problem in depth k is decomposed into n-k sons. The 

resulting branching structure is similar to Fig. I (except that no job appears 

more than once in a subschedule defining a partial problem). All partial 

problems in depth n-l belong to J" since the n-th job is then automatically 

determined. Fc;>r partial problem P, let J(P) denote the set of fixed jobs, 

and t .(P) denote the completion time of job j (EJ(P» on machine m when jobs 
J 

in J(P) are processed in the order specified by P. It is then obvious that 

(4.6) 

satisfies all the conditions of a lower bounding function given in Section 2. 

The resulting branch-and-bound algorithnl A, however, satisfies all the assump

tions of Theorem 4.1 in certain cases as given below, and its T(~) must have 

an exponential growth. 

Now assume that processing times Poi are independently determined from a 
u 

probability density function q(x) which is defined over [0, 00) and has mean a 

(~O). The minimum of the maximum completion time on machine m, t
m

, obviously 

satisfies 

By the central limit theorem, again, t is normally distributed around its mean 

a(n-IJ(P) I) if n is sufficiently large. Next, for partial problems P with 
n 

depth m+l (its index set is denoted I(n)=I'(n», it is obvious that 

m 

U(P)~ L L p--(=t') 
i=l jEJ(P) J1.-

n 
holds, and t' is also normally distributed around its mean maIJ(P) I=ma by 

m+l 
the central limit theorem. Since (1) 

mean(t)=a(n-IJ(P) I)=a(n- n )~amn ~ma ~ =mean(t') 
"1+1 m+l m+l 

holds for IJ(p) 1= m~l ' and (2) t and t' are independent random variables, the 

probability of g(P)S~ is at least E=1/2. Consequently, in this case, all the 

assumptions of Theorem 4.1 are satisfied. 

Thus a branch-and-bound algorithm with only a simple lower bounding func-

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.



28 T. Ibaraki 

tion (4.6) would not be efficient enough to solve large problems. When m is 

restricted to 2, however, a powerful method is known to improve its efficiency. 

It will be discussed as Example 6.2. 

5. Dominance Test 

As mentioned in Section 1, the dominance test, which may be regarded as a 

generalization of the lower bound test, is sometimes incorporated in A3 (Test) 

of a branch-and-bound algorithm. It is based on a dominance relationt D which 

is a partial ordering on ~D satisfying 

(i) PjDPk AP
j 

f P
k imply f(Pj > < f(P

k
) , 

(ii) PjDP
k 

APj fPk imply that for each descendant P
k

, of P
k

, there ex

ists a descendant P., of P. such that P.,DP
k
,. 

J J J 
By condition (i), we conclude that P

k 
does not provide an optimal solution of 

Po if Pj satisfying PjDP
k 

has already been generated. As a result, A3 may be 

modified as follows. 

Modified A3 (Test)tt: Go to AS if P
i
E9, and go to A6 if g(Pi»z holds 

or P .DP. holds for some P. (fp.) E JV. Otherwise go to A4. (JV denotes the set 
J '& ~ J 

of nodes currently generated, i.e., those which are active, terminated or de-

composed.) 

A branch-and-bound algorithm with this modified A3 is denoted A=«~, 0, 

f), (9, g), D, s). 

A primal motivation of introducing a dominance relation is to improve the 

computational efficiency by terminating a larger number of partial problems. 

This point will be further discussed in the next section. It is also inter

esting, however, to see that almost all algorithms of combinatorial optimiza

tion problems based on dynamic programming can be viewed as branch-and-bound 

using a dominance relation. (This point was first noticed by Kohler [20] and 

t This definition is for the case in which all optimal solutions of Po is 

sought. For the case of seeking a single optimal solution, it should be 

slightly modified [15] but the following argument also holds true without 
any essential change. 

tt P. is said terminated in A3 if one of the conditions P.E 9, g(P.) >z and 
'& '& '& 

P.DP. holds. 
J '& 

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.



Branch-and-Bound Algorithms 29 

the dynamic programming approach to the traveling salesman problem [12] was 

formulated as a branch-and-bound algorithm using a dominance relation. Morin 

and Marsten [26], on the other hand, attempt to improve the dynamic programm

ing computation by using a method based on the lower bound test of branch-and

bound algorithms.) A dominance relation thus adds another dimension of flex

ibility both in designing efficient braneh-and-bound algorithms and in unify

ing a wide variety of algorithms under the name of branch-and-bound. 

As such. an example, we consider here the well known Dijkstra algorithm 

for the shortest path problem which apparently has never been considered as 

branch-and-bound. (For the description of the Dijkstra algorithm, see [5,6].) 

Example 5!1. Consider the branch-and-bound algorithm A discussed in 

Example 4.1 to obtain the shortest paths in a given complete graph with posi

tive arc lengths. In addition to the 10IVer bounding function g of (4.5), 

introduce a dominance relation D defined by 

(5.1) P (x) DP (y) ~ [ 71 (x) =71 (y) and g (P (x) ) <g (P (y) ) ] . 

* This D satisfies condition (i) since g (P(x)) <g (P(x)) ~ (\i' WE l: ) (g (P(m)) <g (P 

(yw))) '9f(x)<f(y). Condition (ii) is also satisfied since P(x)DP(y) ~(\i'WE 

* l: )(p(m)DP(yw)), as is easily proved. 

From these, we can now construct a branch-and-bound algorithm A=«~(n), 

0, f), Cc;:· , g), D, Sg)' where Sg is the best-bound search function mentioned 

in Section 2. A begins with decomposing peEl into P(l), P(2), ... , Pen). Dur

ing computation, only a partial problem P(x) satisfying 

(5.2) g(P(x))'Sg(P(y)) for a11 P(Y)E JJ satisfying 7I(y)=7I(x) 

can be decomposed, and the sequence of the decomposed partial problems P(;c
l
), 

P(x2),···, P(x
r

) satisfies 

by virtue of D and best-bound search. As a characteristic of best-bound 

search, the first partial problem P(x) tested in A3 satisfying P(x)e ~ and 

7I(x)=n gives an optimal solution, and z is immediately set to f(P(x)) (=the 

length of the shortest path) from ro After then, no partial problem is de-

composed in A4 (since z'Sg(P(x')) for all the remaining partial problems P(x')), 

and A7 (Halt) is eventually reached_ 

It is now easy to see that A is essentially the same as the Dijkstra 

algorithm. (Although the Dijkstra algor:lthm is usually given in the form of 

obtaining a single optimal solution, the above algorithm obtai'ls all optimal 

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.



30 T. lbaraki 

solutions. It can be easily modified to an algorithm for obtaining a single 

optimal solution.) 

6. Upper Bound for T(A) 

An upper bound for T(A) derivable from a dominance relation D is given in 

this section. This bound is sometimes useful to find a class of problems for 

which a branch-and-bound is particularly efficient, e.g., the shortest path 

problem of Example 5.1. 

Let A=«....a, 0, f), (~;', g), D, sh) be a branch-and-bound algorithm with 

a heuristic search function (see Section 2). Heuristic search is adopted here 

since it includes most of the known search strategies, such as breadth-first 

search, depth-first search and best-bound search, as special cases [14). D is 

said consistent with h if P.DP. implies h(Pk)<h(P.) for any proper ancestor P
k 1- J J 

of P.. By definition of heuristic search, this implies that no proper ances-
1-

tor of Pi is active when F'j is selected (Le., Pi has already been generated 

or a proper ancestor of Pi has been terminated). Next, D is consistent with g 

if P.DP. implies g(P.)<g(P.). (This notion was first introduced in [21).) 
1- J 1- J 

The above two types of consistency assumptions are in fact satisfied by 

many dominance relations proposed in the literature. For example, the domi

nance relation used in [16, 22) for the two-machine flow-shop scheduling prob

lem to minimize mean flow time (instead of makespan), and the one used in [29] 

for the one-machine scheduling problem with deadlines are consistent with g 

and h, where heuristic search function sh in these algorithms represents 

breadth-first search. 

Lemma 6.1. D is consistent with a heuristic function h in each of the 

following cases. 

(a)t h(Pk)<h(P n ) if Pn is a son of Pk,and P.DP.I\P.I-P. implies h(P.)<h(P.). 
iC iC 1-J1-J 1- J 

(b) h=g (i.e., best-bound search) and D is consistent with g. 

(c) sh is a breadth-first search function, and D satisfies that P.DP. 
1- J 

can hold only if P. and p. are in the same depth. 
1- J 

Now recall that D is a partial ordering on p P.E J> is minimal with 
J 

respect to D if no P.I-P.E ~D satisfies P.DP.. The set of minimal nodes is de-
1-J 1-,7 

noted byp D' 

t The first portion of this assumption does not lose generality [14). 

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.



Branch-and-Boumi Algorithms 31 

Lemma 6.2. For a branch-and-bound a.lgorithm A= «...E, 0, f), (9. g), D, 

sh)' assume that D is consistent with both g and h. Then any PjE JD decomposed 

in A is minimal with respect to D. 

Proof: Assume that P.DP. and P.jP.. Since D is consistent with h, 1). 
'l.-J 'l.-J 'I.-

has already been generated (Le., PiE JI') or ancestor P
k 

of Pi has been termi-

nated when Pj is selected. In the first case, P
j 

is terminated in A3 by the 

dominance test. Thus consider the second case; three cases are possible. 

(a) Pk has been terminated in A3 by PkE 9. Then z(Pj )$z(Pk )$f(P
k

)5f(Pi ) 

since P. is selected after Pk ' where z(P,.) is the incumbent value when P. is 
J d J 

selected. Furthermore note that f(Pi)=g(Pi ) (since PiE 9 by condition CC) of 

9)<g(Pj ) (sinse D is consistent with g) holds. Thus Pj is terminated in A3 

by g(Pj»z(Pj ). 

(b) Pk has been terminated in A3 by g(Pk»z(Pk ). Then g(P
k

)5g(P
i

) (by 

condition (c) of g)<g(P.) (since D is consistent with g), and z(Pk)~z(P.) 
J J 

since P. is selected after P
k

• Thus g(P .)'>z(P.) and P. is also terminated. 
J ~. J J 

(c) Pk has been terminated in A3 by PaDPk for some PaE JI'. Then some 

descendant Pa' of P
a 

satisfies Pa,DPi by condition (ii) of a dominance rela

tion, and P ,TJP.AP.DP. implies P ,DP. since D is a partial ordering (hence 
a'l.-'l.-J a J 

transitive). Now assume that P , is eventually generated in A. It is then 
a 

generated before P
j 

by the consistency assumption with respect to h. Thus P
j 

is also terminated in A3. Finally consider the case in which a proper ances

tor P
b 

of P , has been terminated (and F , was not generated). We may then 
a a 

apply the same argument as above to P
b 

instead of Pa'. This process, however, 

cannot continue indefinitely since ~~ is finite. Consequently, it is proved 

that P. is also terminated. 0 
J 

Theorem 6.3. Let A=«...E, 0, f), (:;:, g), D, Sh) be a branch-and-bound 

algorithm with D consistent with both g and h. Then T(A) 51p - :;: I. 
D 

Proof: Immediate from Lemma 6.2. 0 

The lower bound of T(A) obtained in Theorem 3.1 for a branch-and-bound 

algorithm without using the dominance test can also be generalized to the case 

using it. 

Theorem 6.4. Let A=«...E, 0, f), U;, g), D, s) be a branch-and-bound 

algorithm (s may be any search function and D may be any dominance relation). 

Then T(A)~I(J - C; )npDI. 

Proof: It was shown in the proof oE Theorem 3.1 that no PiE J - c,,' can 

be terminated in A3 by PiE S. or g(Pi ) >zU)i). In addition, no PiEJ) D can be 

terminated by P .DP. for some P.E cif since Po. is minimal with respect to D. 0 
J 1.. J v 

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.



32 T. Ibaraki 

Example 6.1. Consider the shortest path problem of Examples 4.1 and 5.1. 

By definition of D (see (5.1», it is obvious that D is consistent with g. D 

is also consistent with h by Lemma 6.1 (b), since the algorithm of Example 5.1 

uses best-bound search. From (4.5) and (5.1), it is also obvious that P(x) is 

minimal with respec t to D if and only if g (P (x» <:g (P (y» for any y wi th TT (y) = 

TT(X). Therefore, under assumption (2.2) (i.e., no two partial paths have the 

same length), there is exactly one minimal partial problem for each node i in 

the given network N. Thus 1'))D1=n, and the P(x) in P
D 

with TT (x)=n satisfies 

P(X)EC;. This shows that I fl
D

- C, I=n-l and T(A)~n-l by Theorem 6.3. (If some 

partial paths have the same length, this number increases correspondingly, 

since all shortest paths are to be sought.) 

Example 6.2. Consider the flow-shop scheduling problem introduced in 

Example 4.2. For this problem, no powerful dominance relation is known at 

present. Moreover, it is known that the flow-shop scheduling problem with m?3 

is NP-complete [7, 24], thereby suggesting that there exists no dominance re

lation D such that it can be tested in polynomial time whether P.DP. holds for 
& J 

a given pair p. and P., and T(A) of the resulting branch-and-bound algorithm A 
1. ,7 

is bounded by a polynomial (since otherwise A is an algorithm to solve an NP-

complete problem in polynomial time, that is most unlikely). 

For the flow-shop scheduling problem with m=2, however, there is a clas

sical polynomial time algorithm due to Johnson [18] (see also [3]). We do not 

give a detailed description of the Johnson algorithm, but point out that it 

can be viewed as a branch-and-bound algorithm with the following dominance re

lation D. 

(6.1) PkDP£ =(a) IJ(P
k

) 1=IJ(P£)i (Le., P
k 

and P£ are in the same 

depth), (b) there exists exactly on et pair of jobs jl 

and j2 such that jl is forced to be processed before j2 

in PI< but j2 is forced to be processed before jl in P£, 

and (c) min[P
J
" I' P

J
' 2]<min[P. I' p. 2]' 

1 2 J 2 J l 

Note that jl is forced to be processed before j2 in P if either (1) jl' j2E 

J(P) and jl is fixed to be processed before j2' or (2) jlEJ(P) and j2'J(P). 

The proof that D of (6.1) is in fact a dominance relation is omitted since it 

is essentially the same as Johnson's proof [18]. 

Now it is not difficult to show that exactly one partial problem in each 

t The restiction is necessary to make the resulting D a partial ordering. 

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.



Hranch·and·Bound A 19ori thm.~ 33 

depth of the branching structure belongs to J)D if min [P. l' P. 2 J=min [P. l' 
J l J 2 J 2 

To apply Theorem 6.3, consider a P. 21 does not hold for any pair J
l 

and J
2

. 
J l 

branch-and-bound algorithm with breadth-first search function (then Lemma 6.1 

(c) holds). The resulting algorithm satisfies T(n)<;IJ!D- C;1=n-L Finally it 

is straightforward to show that this braneh-and-bound algorithm is equivalent 

to Johnson's original algorithm in the sense that the same sequence of partial 

problems are tested in both algorithms. 

Acknowledgements 

The author wishes to thank Professors H. Mine and T. Hasegawa of Kyoto 

University for their support and comments. He is also indebted to Miss 

T. Kanazawa for her excellent typing. 

References 

L Agin, N.: Optimum Seeking with Branch and Bound. Managenent Science, 

Vol. 13 (1966), pp. B176-B185. 

2. Bellmore, B. and Nemhauser, G.L.: The Traveling Salesman Problem: A Survey. 

Operations ReseaY'ch, VoL 16 (1968), pp. 538-558. 

3. Conway, R.W.: Maxwell, W.L., and Miller, L.W.: Theory of Scheduling, 

Addison-Wesley, Reading Mass., 1967. 

4. Cook, S.A.: The Complexity of Theorem Proving Procedures. Proc. 3Y'd ACM 

Conference on Theory of Computing, (191'0), pp. l5l-lSH. 

5. Dijkstra, E.W.: A Note on two Problems in Connexion with Graphs. Numerische 

Mathematik, vol. 1 (1959), pp. 269-271. 

6. Dreyfus, S.E.: An Appraisal of Some Shortest Path Algorithms. Operations 

ReseaY'ch, vol. 17 (1969), pp. 394-411. 

7. Garey, M.R., Johnson D.S., and Sethi, R.: The Complexity of Flowshop and 

Jobshop Scheduling. Technical Report No. 168, The Pennsylvania State Uni

versity, Computer Science Department, 1975. 

8. Geoffrion. A.H .• and Harsten, R.E.: Integer Programming Algorithms: 

A Framework and State-of-the-Art Survey. Managpment SC1:ence, voL 18 (1972). 

pp. 469-49L 

9. Girfinkel, R.S., and Nemhauser, G.L.: Tntegep Programming, John Wiley and 

sons, New York, (1972). 

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.



34 T. Ibaraki 

10. Golomb, S.W., and Baumert, L.D.: Backtrack Programming. JouY'rIal of the 

A CM, vol. 12 (1965), pp. 516-524. 

11. Hart, P.E., Nilsson, N.J., and Raphael, B.: A Formal Basis for the heuris

tic Determination of Minimal Cost Paths. IEEE TY'ansact1:ons on System sci

ence and CybeY'netics_, Vol. SSC-4 (1968), pp. 100-107. 

12. Held, M., and Karp, R.M.: A Dynamic Programming Approach to Sequencing 

Problems. JouY'nal of SIAM, vol. 10 (1962), pp. 196-210. 

13. Held, M., and Karp, R.M.: The Traveling Salesman Problem and Minimum Span

ning Trees: Part 2. Mathematieal PY'ogY'amming, vol. 1 (1971), pp. 6-25. 

14. Ibaraki, T.: Theoretical Comparisons of Search Strategies in Branch-and

Bound Algorithms. Inter>national Jour>nal of ComputeY' and Infor>mation sci

ences, Vol. 5 (1976), pp. 315-344. 

15. Ibaraki, T.: The Power of Dominance Relations in Branch-and-Bound Algo

rithms. Working Paper, Dept. of Applied Mathematics and Physics, Kyoto 

University, 1975; to appear in JOUY'nal of the ACM. 

16. Ignall, E., and Schrage, L.E.: Application of the Branch and Bound Tech

nique to Some Flow-Shop Sequencing Problems. OpeY'ations ReseaY'ch, Vol. 13 

(1965), pp. 400-412. 

17. Jeroslow, R.G.: Trivial Integer Programs Unsolvable by Branch-and-Bound. 

Mathematical PY'ogY'amming, Vol. 6 (1974), pp. 105-109. 

18. Johnson, S.M.: Optimal Two- and Three-stage Production Schedules with 

Setup Times Included. Naval ReseaY'ch Logistics QuaY'teY'ly, Vol. 1 (1954). 

19. Karp, R.M.: Reducibility among Combinatorial Problems. In Complexity of 

ComputeY' Computation."!, Miller, R.E., and Thatcher, J.W. (eds.), Plenum 

Press, New York, 1972, pp. 85-103. 

20. Kohler, W.H.: Exact and Approximate Algorithms for Permutation Problems. 

Ph. D. Disseration, Princeton University, 1972. 

21. Kohler, W.H., and Steiglitz, K.: Characterization and Theoretical Compari

son of Branch-and-Bound Algorithms for Permutation Problems. Jour>nal of 

the ACM, Vol. 21 (1974), 140-156. 

22. Kohler, W.H., and Steiglitz, K.: Exact, Approximate, and Guaranteed Accu

racy Algorithms for the Flow-Shop Problem n/2/F/F. JouY'nal of the ACM, 

Vol. 22 (1975), pp. 106-114. 

23. Lawler, E.L., and Wood, D.E.: Branch-and-Bound Method: A Survey. 0pcY'

ations ReseaY'ch, Vol. 14 (1966), pp. 699-719. 

24. Lenstra, J.K., Rinooy Kan, A.H.G., and Brucker, P.: Complexity of Machine 

Scheduling Problems. Ann. DiscY'ete Mathematics, Vol. 1, to appear. 

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.



Branch·and·Bound A igorithms 35 

25. Mitten, L.G.: Branch-and-Bound Method: General Formulation and Properties. 

Operations Research, Vol. 18 (1970), pp. 24-34. 

26. Morin, T.L., and Marsten, R.E.: Branch-and-bound Strategies for Dynamie 

Programming. Operations Research~ Vo1 .. 24 (1976), pp. 611-627. 

27. Ni1sson, N.J.: Problem-Solving Methods in Artificial Intelligence, McGraw

Hill, New York, 1971. 

28. Poh1, I.: First Results on the Effect of Error in Heuristic Search. In 

Machine Intelligence 5, Me1tzer, B., and Michie, D. (eds.), Edinburgh 

University Press, 1969. 

29. Sahni, S.K.: Algorithms for Scheduling Independent Tasks. Journal of the 

A CM, Vol. 23 (1976), pp. 116-127. 

Toshihide IBARAKl: Department of Applied 

Mathematics and Physics, Faculty of 

Engineering, Kyoto University, Kyoto 

606, Japan. 

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.


