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Abstract

In recent years, there has been an increasing interest in the mathematical and computational modeling of the

human immune system (HIS). Computational models of HIS dynamics may contribute to a better understanding of

the relationship between complex phenomena and immune response; in addition, computational models will

support the development of new drugs and therapies for different diseases. However, modeling the HIS is an

extremely difficult task that demands a huge amount of work to be performed by multidisciplinary teams. In this

study, our objective is to model the spatio-temporal dynamics of representative cells and molecules of the HIS

during an immune response after the injection of lipopolysaccharide (LPS) into a section of tissue. LPS constitutes

the cellular wall of Gram-negative bacteria, and it is a highly immunogenic molecule, which means that it has a

remarkable capacity to elicit strong immune responses. We present a descriptive, mechanistic and deterministic

model that is based on partial differential equations (PDE). Therefore, this model enables the understanding of how

the different complex phenomena interact with structures and elements during an immune response. In addition,

the model’s parameters reflect physiological features of the system, which makes the model appropriate for

general use.

Introduction

The human immune system (HIS) consists of a wide

and complex network of cells, tissues and organs. The

HIS plays a crucial role in defending the body against

disease. To achieve this goal, the HIS identifies and kills

a wide range of external pathogens such as viruses and

bacteria as well as the body’s own abnormally behaving

cells. The HIS is also responsible for removing dead

cells and regenerating some of the body’s structures [1].

A complete understanding of the HIS is therefore

essential. However, its complexity and the intense inter-

actions among several components on various different

levels make this task extremely complex [2,3]. However,

we may better understand some properties of the HIS

by applying a computational model, which allows

researchers to test a large number of hypotheses in a

short period of time [2,3]. In the future, we can envision

a computer program that will simulate the entire HIS,

allowing scientists to develop and test new drugs against

various diseases virtually, thus reducing the number of

animals used in experiments.

In this study, our work aims to implement and simu-

late a mathematical model of the HIS. Due to the com-

plexity of this task, our focus is to reproduce the spatio-

temporal dynamics of an immune response to the injec-

tion of lipopolysaccharides (LPS) into a small section of

tissue. To reproduce these dynamics, we introduce a

mathematical model composed of a system of partial

differential equations (PDEs) that extends our previous

model [2] and defines the dynamics of representative

cells and molecules of the HIS during the immune

response to LPS. The model presented is descriptive,

mechanistic and deterministic; therefore, it enables the

understanding of how different complex phenomena,

structures and elements interact during an immune

response. In addition, the model’s parameters reflect the
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physiological features of the system, making the model

appropriate for general use.

The remainder of the paper is organized as follows.

First, the necessary biological background is presented.

Next, related works are briefly discussed. This exposi-

tion is followed by a description of both the mathemati-

cal model proposed in this work and its computational

implementation. Then simulation results obtained from

the proposed model are discussed, and finally, our con-

clusions and plans for future work are presented.

Biological background

“Human body surfaces are protected by epithelia, which

provide a physical barrier between internal and external

environments. Epithelia make up the skin and lining of

the tubular structures of the body (i.e., the gastrointest-

inal, respiratory and genitourinary tracts), and they form

an effective barrier against the external environment. At

the same time, epithelia can be crossed or settled by

pathogens, causing infections. After crossing the epithe-

lium, the pathogens encounter cells and molecules of

the innate immune system, which immediately develop

a response” [4].

The body’s initial response to an acute biological

stress, such as a bacterial infection, is an acute inflam-

matory response [4]. The strategy of the HIS is to keep

some resident macrophages on guard in tissues to look

for any signal of infection. When they find such a signal,

the macrophages alert neutrophils (also known as poly-

morphonuclear neutrophils (PMNs)) that their help is

required. Because of this communication, the coopera-

tion between macrophages and neutrophils is essential

to mount an effective defense against disease. Without

macrophages to herd neutrophils toward the location of

infection, the latter would circulate indefinitely in the

blood vessels, impairing the control of systemic infec-

tions [1].

The inflammation of an infectious tissue has many ben-

efits for the control of the infection. In addition to

recruiting cells and molecules of innate immunity from

blood vessels to the location of the infected tissue,

inflammation increases the lymph flux, which contains

microorganisms and cells that carry antigens to neigh-

boring lymphoid tissues; there, these cells will present

the antigens to the lymphocytes and initiate the adaptive

response. Once the adaptive response has been activated,

the inflammation also shuttles the effector cells of the

adaptive immune system to the location of infection [4].

A component of the cellular wall of Gram-negative bac-

teria, such as LPS, can trigger an inflammatory response

through the interaction with receptors on the surface of

some cells [1]. For example, the macrophages that reside

in tissue recognize a bacterium through the binding of

TLR4 (Toll-like receptor 4) with LPS. When receptors on

the surface of macrophages bind to LPS, the macrophage

starts to phagocytose, internally weakening the bacterium

and secreting proteins known as cytokines and chemo-

kines, as well as other molecules.

In many inflammatory conditions, neutrophils domi-

nate the initial influx of leukocytes into the inflamed tis-

sue. The first wave of extravasated neutrophils is soon

replaced by a second wave of monocytes [1]. A study

presented initial proofs of the existence of this sequence

of events [5]. In that study, neutrophils dominated the

leukocyte extravasation three hours after the beginning

of the inflammation, and some time later, the extrava-

sated cells were predominantly monocytes [5].

The resolution of the inflammatory response is a com-

plex process that includes the production of anti-inflam-

matory mediators and the apoptosis (or programmed

death) of effector cells of the HIS, such as neutrophils

[6]. Anti-inflammatory cytokines form a set of immu-

noregulatory molecules that control the inflammatory

response. These cytokines work together with specific

inhibitors and cytokines’ soluble receptors to regulate

the immune response [6]. A previous work [6] demon-

strated the participation of cytokines in inflammatory

states. Primary anti-inflammatory cytokines include the

antagonist receptor of IL-1 (Interleukin 1) in addition to

IL-4, IL-6, IL-10, IL-11 and IL-13 [6]. Specifically, IL-10

is a strong inhibitor of many pro-inflammatory cyto-

kines [7], including IL-8 and TNF-a (tumor necrosis

factor a), which are produced both by monocytes [8]

and by neutrophils [9,10].

Apoptotic cells maintain membrane integrity for a

small period of time and therefore need to be quickly

removed to prevent a secondary necrosis and the conse-

quent release of cytotoxic molecules, which cause

inflammation and tissue damage [11]. As a consequence

of the phagocytosis of apoptotic cells by macrophages or

dendritic cells, these phagocytic cells produce anti-

inflammatory cytokines. For example, macrophages

secrete TGF-b (transforming growth factor b), which

prevents the release of pro-inflammatory cytokines

induced by LPS [12]. Additionally, the binding of apop-

totic cells to macrophage receptor CD36 (cluster of

differentiation 36) inhibits the production of pro-inflam-

matory cytokines such as TNF-a, IL-1b and IL-12; this

binding also increases the secretion of TGF-b and IL-10

[13].

Related work

This section presents and discusses other models found in

the literature to model the innate HIS. Essentially, two dis-

tinct approaches are used: ordinary differential equations

(ODEs) and partial differential equations (PDEs).
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Models based on ODEs

The authors of [14] presented a model of inflammation

that is based on ODEs and considers three types of

cells/molecules: the pathogen and two inflammatory

mediators. This model was able to reproduce some

experimental results depending on the values used for

initial conditions and parameters. The authors described

the results of the sensitivity analysis, which suggests

some therapeutic strategies. Their work was then

extended [15] to investigate the influence of time on an

anti-inflammatory response. The mathematical model

presented in [15] consists of a system of ODEs with

four equations that model: a) the pathogen; b) the active

phagocytes; c) tissue damage; and d) anti-inflammatory

mediators. The source term of the phagocytes, in other

words, a term that models the entry of new phagocytes

into the infected tissue, is a function that depends on a)

the concentration of phagocytes; b) the concentration of

pathogens; and c) tissue damage. This term models the

different interactions that phagocytes can undergo dur-

ing an immune response, whether the interactions are

direct or mediated by cytokines. In the interaction

mediated by cytokines, they consider only the implicit

presence of cytokines. For example, in an immune

response, the interaction of phagocytes with tissue is

mediated by pro-inflammatory cytokines produced by

infected epithelial tissue cells, and this relationship is

modeled directly in the source term of the phagocytes.

This representation contrasts with the model proposed

in the current work, where cytokines and all their inter-

actions are explicitly represented.

A new adaptation of the first model [14] was proposed

to simulate many scenarios involving repeated doses of

endotoxin [16]. This work applied results obtained

through experiments using mice to guide in silico

experiments seeking to reproduce these results qualita-

tively. The mathematical model represents the key

aspects of an acute inflammatory response, specifically

when repeated doses of endotoxin are administered.

This model replaces the pathogen equation proposed in

the authors’ previous work [15] with an equation incor-

porating the endotoxin. In their simulations, they

observed that the timing and magnitude of endotoxin

doses, as well as the dynamics between pro- and anti-

inflammatory mediators, are key to distinguishing

between potentiation and tolerance phenomena [16].

The authors also argued that their model, although sim-

plified, nevertheless incorporates sufficiently complex

dynamics to qualitatively reproduce a set of experimen-

tal results associated with different endotoxin adminis-

trations in mice.
One final work [17] developed a more complete sys-

tem of ODEs that models acute inflammation. This

model includes macrophages, neutrophils, dendritic

cells, TH1 cells, blood pressure, tissue trauma, effector

elements such as iNOS, NO−
2 and NO−

3 , pro-inflamma-

tory and anti-inflammatory cytokines, and coagulation

factors. In this model, as well as our own (described in

detail in the next section), neutrophils and macrophages

are directly activated by LPS. Moreover, activation also

occurs indirectly by way of various stimuli consistently

elicited after a trauma or hemorrhage. However, the

model proposed by [17] does not explicitly include

initial events of inflammation such as mast cell degranu-

lation and complement activation, although these factors

were incorporated implicitly into cytokine and endo-

toxin dynamics. The model also includes anti-inflamma-

tory cytokines such as IL-10 and TGF b, in addition to

soluble receptors for pro-inflammatory cytokines. The

authors argued that their model proved useful in simu-

lating the inflammatory response induced in mice by

endotoxin, trauma and surgery or surgical bleeding, as it

can predict levels of TNF, IL-10, IL-6 and reactive pro-

ducts of NO (NO−
2 and NO−

3 ) to some extent.

Models based on PDEs
The model proposed by Su et al [18] uses a system of

PDEs to represent the spatial dynamics of the innate

and adaptive immune systems. It considers the simplest

form of antigens, the molecular constituents of pathogen

patterns, taking into account all the basic factors of an

immune response: antigens, cells of the immune system,

cytokines and chemokines. This model captures the fol-

lowing stages of immune response: recognition, initia-

tion, effector response and resolution of infection or

change to a new steady state. Accordingly, it can repro-

duce important phenomena such as a) the temporal

order of cell arrival at the site of infection; b) antigen

presentation by dendritic cells, macrophages and the

involvement of regulatory T cells (Treg) in the resolu-

tion of the immune response; c) the production of pro-

inflammatory and anti-inflammatory cytokines; and d)

chemotaxis. This model has formed the basis for the

development of our work.

Mathematical model

The complete modeling of the HIS demands that a huge

amount of work be performed by a large multidisciplin-

ary team. In this work, we focus on a specific task: the

development of a mathematical model of the innate

immune response to the injection of LPS in a section of

tissue, as well as such a model’s computational imple-

mentation. One motivation for developing a model of

the innate immune system is the fact that few such

models are available in the literature; the majority of

available models solely focus on the adaptive immune

system. Another reason in favor of modeling the innate

immune system is that many diseases result from the
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malfunction of the innate immune system; for these dis-

eases, our proposed model could contribute to the defi-

nition of therapeutic strategies. In addition, a better

comprehension of the inner workings of the separate

parts composing the innate immune system is funda-

mental to a better understanding of immune response

as a whole, as the innate immune system is responsible

for both initiating the immune response and triggering

the adaptive immune system.

Our objective is to develop a parameterized mathemati-

cal model of the human innate immune system that

simulates the immune response occurring in a generic

tissue. To achieve this goal, we first build a model of the

immune response to LPS. We have chosen to use LPS

because it is the major component of the outer mem-

brane of Gram-negative bacteria, acting as an endotoxin

substance that elicits strong immune responses; thus, it

represents a vast number of inflammatory diseases. How-

ever, our proposed model is generic in the sense that it

can be easily adapted to specific pathogens and distinct

types of tissue through the adjustment of its parameters.

The mathematical model simulates the temporal and

spatial behavior of lipopolysaccharide (LPS), macro-

phages, neutrophils (N), apoptotic neutrophils (ND), pro-

inflammatory cytokines (CH), anti-inflammatory cytokine

(AC) and protein granules (G). Macrophages are present

in two states of readiness: resting (RM) and hyperacti-

vated (AM). The different subsets of protein granules

[19] released by neutrophils during their extravasation

from blood vessels to the tissues are represented by a

unique variable. Additionally, we must stress that the

equations modeling pro- and anti-inflammatory cyto-

kines are generic in the sense that they model the role of

distinct cytokines taking part in the inflammatory pro-

cess. Equation parameters can be adjusted to model the

role of a specific pro- or anti-inflammatory cytokine.

Our model extends the model proposed by Su et al [18]

by considering a macroscopic or homogenized view of a

tissue. In [18], the exchange between the vascular system

(arterioles and vessels) and tissue was assumed to occur

only at the boundaries of the domain, via Dirichlet

boundary conditions. Our model allows each point of the

tissue to be irrigated by arterioles and vessels, so that

cells in the blood stream can enter into the tissue at any

point. This is equivalent to a two-domain model, in

which one domain represents the concentration of

immune cells in the vascular system (in our case, neutro-

phils, N max(x, t), and macrophages, Mmax(x, t)) and the

other domain represents the different cells and molecules

present in the tissue (our model considers lipopolysac-

charide (LPS), neutrophils (N), apoptotic neutrophils

(ND), pro-inflammatory cytokines (CH), anti-inflamma-

tory cytokines (AC), protein granules (G), resting (RM)

and hyperactivated (AM) macrophages). Communication

between the two different domains is possible and is

modeled by permeabilities that vary in space and time

and may depend on the concentration of different cells

and molecules (in our model, the endothelium perme-

ability of neutrophils depends on the concentration of

CH, whereas the permeability to macrophages depends

on the concentration of both CH and G). Figure 1 pre-

sents our two-domain macroscopic model.

The main characteristics of the proposed model are:

• Macrophages and neutrophils cooperate to mount

a more effective and intense response against the

LPS;

• The endothelium’s permeability may vary with

time and space and also depends on the local con-

centration of pro-inflammatory cytokine and protein

granules, as depicted by Figure 1;

• Active macrophages regulate immune responses

through the production of anti-inflammatory cyto-

kines and the phagocytosis of apoptotic neutrophils;

• Anti-inflammatory cytokines perform a key role in

the control of the inflammatory response, avoiding a

state of persistent inflammation after the complete

elimination of LPS.

Figure 2 depicts the relationships among all of the mod-

el’s components. Neutrophils, resting macrophages and

active macrophages phagocytose the LPS. The neutrophils

then undergo apoptosis, which may or may not be induced

by the phagocytosis process. In this different state, apopto-

tic neutrophils cannot perform phagocytosis or produce

pro-inflammatory cytokines; as a result, apoptotic neutro-

phils are eliminated from the body after being phagocy-

tosed by active macrophages. The number of apoptotic

neutrophils in the serum is an indirect indication of the

probability that the immune response will cause tissue

damage, because apoptotic neutrophils will die after a per-

iod of time, releasing cytotoxic granules and degradation

enzymes in the medium that can cause tissue damage.

Neutrophils produce pro-inflammatory cytokines, such as

TNF-a and IL-8, as well as protein granules, which allow

the direct activation and adhesion of monocytes in the

endothelium of blood vessels, facilitating monocytes’ extra-

vasation into the tissue. The resting macrophages become

active when they recognize the LPS. The pro-inflammatory

cytokines produced by neutrophils and active macrophages

increase the permeability of the blood vessels; conse-

quently, more neutrophils and monocytes are recruited to

the tissue. In addition, the pro-inflammatory cytokines act

as a chemoattractant substance to the resting macro-

phages, active macrophages and neutrophils. The produc-

tion of the pro-inflammatory cytokine is blocked when an

active macrophage or neutrophil comes in contact with an

anti-inflammatory cytokine. Macrophage activation is also
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blocked by the action of an anti-inflammatory cytokine,

which is produced by active macrophages and by resting

macrophages that are in contact with apoptotic

neutrophils.

Below, we provide the equations derived from the

model. Equation 1 provides the LPS differential equation.

⎧

⎪

⎨

⎪

⎩

RMactivation =
φRM|LPS.RM.LPS

(1+θAC.AC)
∂LPS
∂ t

= −μLPSLPS − RMactivation − (λN|LPSN + λAM|LPSAM).LPS + DLPS�LPS

LPS(x, 0) = LPS0,
∂LPS(.,t)

∂n
|∂� = 0

(1)

In this equation, μLPSLPS denotes the decay of LPS,

where μLPS is the rate of decay, RMactivation denotes the

activation of resting macrophages, where jRM|LPS is the

rate of activation. This activation occurs when resting

macrophages recognize the LPS, after which macro-

phages phagocytose the LPS. lN|LPS.N denotes the pha-

gocytosis of LPS by neutrophils, where lN|LPS is the rate

of this phagocytosis. lAM|LPS.AM denotes the phagocyto-

sis of LPS by active macrophages, where lAM|LPS is the

rate of this phagocytosis. DLPS∆LPS denotes LPS diffu-

sion, whereas DLPS represents the diffusion coefficient.

Figure 3 presents a schematic representation of the dif-

fusion process implemented by the diffusion operator,

DLPS∆LPS, and illustrates the diffusion of cells through

the tissue. Diffusion is defined as the spread of particles

from regions of higher concentration to regions of lower

concentration.

The differential equation corresponding to the resting

macrophage (RM) is given in Equation 2.

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

RMP = (Pmax
RM − Pmin

RM ). CH
(CH+keqch)

+ Pmin
RM

RMQ = (Qmax
RM − Qmin

RM). G
(G+keq g)

+ Qmin
RM

sourceRM = (RMP + RMQ).(Mmax − (RM + AM))

∂RM
∂ t

= −μRMRM − RMactivation + DRM�RM + sourceRM − ∇.(χRMRM∇CH)

RM(x, 0) = RM0,
∂RM(.,t)

∂n |∂� = 0

(2)

RMP and RMQ denote the increase in endothelium

permeability and its effects on monocyte extravasation.

The permeability of blood vessel endothelium is mod-

eled by a Hill equation [20], which also has been used

to model drug dose-response relationships [21]. The

idea is to model the increase in the permeability of the

endothelium in accordance with the number of pro-

inflammatory cytokines deposited on the endothelium.

Figure 4 illustrates the effect of increasing blood vessel

permeability. We can see that the space between two

neighboring endothelial cells increases, allowing more

cells to extravasate to the tissue. The dynamic perme-

ability depends on the cytokine concentration.

Figure 1 Two-domain model. Schematic representation of the two-domain model. The extravasation of neutrophils (or macrophages) from

blood to tissue depends on local permeability, P(x, t), and on the difference between local concentrations of neutrophils in the two domains,

Nmax(x, t) - N(x, t). The permeability of the endothelium, which separates the two domains, varies with regard to time and space and depends on

the local presence of pro-inflammatory cytokines and protein granules.
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The calculation of RMP involves the following para-

meters: a) Pmax
RM , the maximum endothelium permeability

induced by the pro-inflammatory cytokine; b) Pmin
RM, the

minimum endothelium permeability induced by the pro-

inflammatory cytokine; and c) keqch, the number of

pro-inflammatory cytokines that exert 50% of the maxi-

mum effect on permeability.

RMQ denotes the increase in endothelium permeability

induced by protein granules, and its calculation is simi-

lar to that of RMP, except for the parameters involved:

Qmin
RM, Qmin

RM and keq_g. sourceRM denotes the source term

of macrophages, which is related to the number of

monocytes that will enter into the tissue from the blood

vessels. This number depends on the endothelium per-

meability RMP + RMQ and on the number of monocytes

appearing in the blood (Mmax).

μRM RM denotes resting macrophage apoptosis, where

μRM is the apoptosis rate. RMactivation, as explained

above, models the activation of resting macrophages and

denotes the number of resting macrophages that are

becoming active. The term DRM∆RM denotes the resting

macrophage diffusion, where DRM is the diffusion coeffi-

cient. ∇.(cRMRM∇CH) denotes the resting macrophage

chemotaxis, where cRM is the chemotaxis rate.

Figure 5 provides a schematic representation of the

chemotaxis process implemented by the chemotaxis

operator, ∇.(cRMRM∇CH). Chemotaxis is the phenom-

enon by which cells direct their own movements

according to certain chemicals present in their

environment.

The differential equation corresponding to the active

macrophage (AM) is given in Equation 3.

{

∂AM
∂ t

= −μAMAM + RMactivation + DAM�AM − ∇.(χAMAM∇CH)

AM(x, 0) = AM0,
∂AM(.,t)

∂n
|∂� = 0

(3)

Above, μAMAM, DAM∆AM, and ∇.(cAMAM∇CH)

denote the active macrophage apoptosis, diffusion, and

chemotaxis, respectively, whereas μAM, DAM, and cAM
are the apoptosis rate, diffusion coefficient, and chemo-

taxis rate, respectively.

The differential equation for the pro-inflammatory

cytokine (CH) is given in Equation 4.

⎧

⎪

⎪

⎨

⎪

⎪

⎩

∂CH
∂ t

= −μCHCH + ((βCH|N.N.LPS + βCH|AM.AM.LPS).(1 − CH
chInf

))/(1 + θAC.AC)+

+DCH�CH

CH(x, 0) = CH0,
∂CH(.,t)

∂n |∂� = 0

(4)

In this equation, μCHCH denotes the pro-inflammatory

cytokine decay, where μCH is the decay rate. bCH|N.N

Figure 2 Model’s relations. Relations among the components of the model.
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Figure 3 Diffusion process. Schematic representation of the diffusion process.

Figure 4 Permeability. Representation of the differences between fixed and dynamic permeabilities.
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denotes the pro-inflammatory cytokine production by

the neutrophils, where bCH|N is the production rate.

bCH|AM.AM denotes the pro-inflammatory cytokine pro-

duction by active macrophages, where bCH|AM is the

production rate. The saturation of cytokine production

by active macrophages is calculated by the equation
(1 − CH

chInf
), where chInf is an estimate of the maximum

quantity of pro-inflammatory cytokine supported by the

tissue. The production of pro-inflammatory cytokine

decreases when anti-inflammatory cytokine acts on the

producing cells. This influence of anti-inflammatory

cytokine is denoted by the expression 1/(1 + θAC.AC).

DCH∆CH models pro-inflammatory cytokine diffusion,

where DCH is the diffusion coefficient.

The neutrophil differential equation (N) is given in

Equation 5.

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

PN = (Pmax
N − Pmin

N ). CH
CH+Keqch

+ Pmin
N

sourceN = PN.(Nmax − N)

∂N
∂ t

= −μNN − λLPS|NLPS.N + DN�N + sourceN − ∇.(χNN∇CH)

N(x, 0) = N0, ∂N(.,t)
∂n

|∂� = 0

(5)

In this equation, PN denotes the increase in endothe-

lium permeability and its effects on neutrophil extrava-

sation. In the top equation, Pmax
N is the maximum

endothelium permeability induced by pro-inflammatory

cytokines, Pmin
N is the minimum endothelium perme-

ability induced by pro-inflammatory cytokines and

keqch is the number of pro-inflammatory cytokines

that exert 50% of the maximum effect on endothelium

permeability.

Here, μNN denotes neutrophil apoptosis, where μN is

the rate of apoptosis. lLPS|N LPS.N denotes the neutro-

phil apoptosis induced by phagocytosis, where lLPS|N
represents the rate of this induced apoptosis. The term

DN∆N denotes neutrophil diffusion, where DN is the dif-

fusion coefficient. sourceN represents the source term of

neutrophil, i.e., the number of neutrophils entering the

tissue from the blood vessels. This number depends on

the endothelium permeability (PN) and on the number

of neutrophils in the blood (Nmax). The term ∇.

(cNN∇CH) denotes the chemotaxis process of the neu-

trophils, where cN represents the chemotaxis rate.

Figure 5 Chemotaxis process. Schematic representation of chemotaxis.
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The differential equation corresponding to the apopto-

tic neutrophil (ND) is given in Equation 6.

{

∂ND
∂ t

= μNN + λLPS|NLPS.N − λND|AMND.AM + DND�ND

ND(x, 0) = ND0,
∂ND(.,t)

∂n
|∂� = 0

(6)

Here, note that μNN and lLPS|NLPS.N were defined

previously, whereas lND|AMND.AM denotes the phago-

cytosis of the apoptotic neutrophil carried out by active

macrophages, and lND|AM is the rate of this phagocyto-

sis. DND∆ND models the apoptotic neutrophil diffusion,

where DND is the diffusion coefficient.

The differential equation for protein granules (G) is

given in Equation 7.

{

∂G
∂ t

= −μGG + αG|N.sourceN.(1 − G
gInf

) + DG�G

G(x, 0) = G0,
∂G(.,t)

∂n |∂� = 0
(7)

μGG models the decay of the granules, where μG is the

decay rate. aG|N.sourceN denotes the production of pro-

tein granules by neutrophils extravasating from the

blood into inflamed tissue, where aG|N is a dimension-

less constant. The saturation of protein granule produc-

tion is calculated by the expression (1 − G
gInf

), where

gInf is the maximum number of protein granules.

DG∆G models protein granule diffusion, where DG is

the diffusion coefficient.

The differential equation for the anti-inflammatory

cytokine (AC) is given in Equation 8.

{

∂AC
∂ t

= −μACAC + (βRM|ND.RM.ND + αAC|AM.AM).(1 − AC
acInf

) + DAC�AC

AC(x, 0) = AC0,
∂AC(.,t)

∂n |∂� = 0
(8)

In this equation, μACAC denotes the anti-inflammatory

cytokine decay, where μAC represents the decay rate.

bRM|ND.RM.ND denotes the anti-inflammatory cytokine

production by the resting macrophages in the presence

of apoptotic neutrophils, where bRM|ND is the rate of

this production. aAC|AM.AM denotes the anti-inflamma-

tory cytokine production by active macrophages, where

this production has rate aAC|AM and saturation
(1 − AC

acInf
), where acInf is the maximum number of

anti-inflammatory cytokines in the tissue. DAC∆AC

models the anti-inflammatory cytokine diffusion, where

DAC is the diffusion coefficient.

Implementation

The numerical method that we have applied to our math-

ematical model is presented in our previous work [2].

We executed some convergence tests to test the imple-

mentation of our numerical method. In short, we assumed

that the correct solution derived from the results of a very

refined mesh, where the refinement was in terms of time

(dt = 10-6day) and space (deltaX = 0.1mm). To show con-

vergence with respect to time, we selected two new values

for dt, dt1 = 4.0 × 10-6day and dt2 = 8.0 × 10-6day. We

applied the L2-norm to compute the errors when using

dt1 and dt2 for our refined mesh. We observed that the

error when using dt2 was 2.3 times greater than the error

obtained with dt1. Therefore, as theoretically predicted,

our numerical scheme is first-order accurate with respect

to time. We then conducted the same analysis for conver-

gence with respect to space, choosing two new values of

deltaX, dx1 = 0.4mm and dx2 = 0.8mm. The L2-norm

error when using dx2 was 2.03 times greater than the

error obtained with dx1. Once again, the values obtained

were as expected, as we were using a first-order discretiza-

tion (upwind) in space. These results gave us confidence

that our numerical solver had been correctly implemented.

Numerical experiments

The model’s initial conditions and parameters are given

in Tables 1 and 2, respectively. In our simulations, we

assumed a one-dimensional domain of 5 mm length and

a simulation time of 5 days. In fact, this one-dimensional

model is a simplification of a 3D block model in that we

have assumed that the lengths associated with y and z are

much smaller than the length associated with x.

In this paper, we obtained parameter values for humans

whenever they were available. We chose values for the

initial concentrations of LPS according to the work of the

authors in [22]. In their experiments, E. coli cells were

inoculated intradermally (108) into normal and neutrope-

nic rabbits. They reported that all bacteria and inflamma-

tory cells were contained in this 1.5 cm diameter biopsy

and restricted to its 0.2 cm thick layer of dermal collagen.

Thus, the volume of dermis in which the E. coli cells were

contained was approximately 0.35 cm3 [23]. This finding

suggested us a value of LPS0 = 100.0 × 104 cells/mm3 .

In Table 2, parameters marked with * were adjusted to

qualitatively reproduce the results obtained in several

studies of the immune response to LPS. In the case of

LPS, we adjust the equation parameters to obtain an

exponential decrease, as shown in [24]. The results of the

concentration of pro-inflammatory cytokines over time

are qualitatively similar to those obtained in some

Table 1 Initial Conditions

Parameter Value Unit

LPS0 100: 0<x < 1 104cells/mm3

LPS0 0: 1 ≤ x < 5 104cells/mm3

RM0 1: 0 <x < 5 104cells/mm3

AM0 0: 0 <x < 5 104cells/mm3

CH0 0: 0 <x < 5 104cells/mm3

N0 0: 0 <x < 5 104cells/mm3

ND0 0: 0 <x < 5 104cells/mm3

G0 0: 0 <x < 5 104cells/mm3

AC0 0: 0 <x < 5 104cells/mm3
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experimental works [25-27]. The time course for the

anti-inflammatory cytokine is qualitatively similar to the

results in [25]. An important feature present in our

model is the inhibition of the production of pro-inflam-

matory cytokines by neutrophils through the action of

anti-inflammatory cytokines [10]. The protein granule

model behavior is based on existing work [28]. The

parameters marked with ** were based on the values

given in the references but were adjusted due to the use

of distinct units (for example, from L to mm3) or to fit in

a 5 mm tissue.

In Figure 6, we initially inject LPS only into a small

part of the tissue. As time progresses, we can see two

important phenomena occurring: the diffusion of LPS

through the tissue and the decrease of LPS mainly due

to the action of neutrophils and macrophages.

In the case of neutrophils (Figure 7), we can witness

an increase in neutrophil population mainly in regions

of tissue having higher levels of LPS. This increase hap-

pens because of an increase in endothelium permeability

in addition to the chemotaxis process attracting neutro-

phils to regions possessing more pro-inflammatory cyto-

kines. When the amount of LPS is low, the neutrophil

population stops growing and starts to decrease because

fewer neutrophils are entering into the tissue.

In Figure 8, we observe an increase of pro-inflamma-

tory cytokines until 6 hours, when a large number of

neutrophils are present in the tissue. Afterwards, the

number of pro-inflammatory cytokines decreases, mainly

due to the presence of a large number of active macro-

phages. Consequently, the anti-inflammatory cytokine

population increases. The decrease of CH has many

important consequences: fewer neutrophils and mono-

cytes are migrating to the inflamed tissue, and fewer

macrophages are becoming active, as can be observed in

Figure 9. This figure shows that the active macrophage

population grows until 12 hours and then starts to

decrease because, as explained before, anti-inflammatory

cytokines inhibit the activation of resting macrophages.

Comparison of different scenarios

To show the importance of some cells, molecules and pro-

cesses in the dynamics of the innate immune response, we

performed a set of simulations under different scenarios.

Each simulation begins with a simple scenario in which we

assume that only macrophages participate in the immune

response to LPS (Case 1). We then consider progressively

more complex scenarios. In each subsequent scenario, a

new set of equations and terms are added to the previous

one until the complete scenario is obtained (Case 5).

A description of each case is given below:

• Case 1: only macrophages participate in the

immune response. Resting tissue-resident macro-

phages are responsible for the initial response to LPS.

• Case 2: considers a) the production of pro-inflam-

matory cytokines by active macrophages; and b) all

effects of pro-inflammatory cytokines, such as the

increase in permeability and chemotaxis.

• Case 3: incorporates neutrophils into the model,

which participate in the immune response as a

Table 2 Parameters

Parameter Value Unit Reference

jRM|LPS 0.1 1/(cells/mm3).day [18]**

θAC 1 1/(cells/mm3) estimated*

μLPS 0.005 1/day [18]

lN|LPS 0.55 1/(cells/mm3).day [18]

lAM|LPS 0.8 1/(cells/mm3).day [18]

DLPS 2000 μm2/day estimated*

Pmax
RM 0.1 1/day estimated*

Pmin
RM

0.01 1/day estimated*

Qmax
RM 0.5 1/day estimated*

Qmin
RM

0 1/day estimated*

keqch 1 cells/mm3 estimated*

keq_g 1 cells/mm3 estimated*

Mmax 6 cells/mm3 estimated*

μRM 0.033 1/day [18]

DRM 4320 μm2/day [29,30]

μRM 3600 μm2/day [31-33]

μAM 0.07 1/day [18]

DAM 3000 μm2/day [29,30]

μAM 4320 μm2/day [31-33]

μCH 7 1/day [18]**

bCH|N 1 1/(cells/mm3).day [34]

bCH|AM 0.8 1/(cells/mm3).day [34]

chInf 3.6 cells/mm3 [8]**

DCH 9216 μm2/day [18,29]

Pmax
N 11.4 1/day [35]**

Pmin
N

0.0001 1/day estimated*

keqch 1 cells/mm3 estimated*

Nmax 8 cells/mm3 estimated*

μN 3.43 1/day [36]

lLPS|N 0.55 1/(cells/mm3).day [18]

DN 12096 μm2/day [37]

μN 14400 μm2/day [38]

lND|AM 2.6 1/(cells/mm3).day [18]

DND 0.144 μm2/day [18]**

μG 5 1/day estimated*

aG|N 0.6 dimensionless estimated*

gInf 3.1 cells/mm3 estimated*

DG 9216 μm2/day estimated*

μAC 4 1/day estimated*

bRM|ND 1.5 1/(cells/mm3).day estimated*

aAC|AM 1.5 dimensionless estimated*

acInf 3.6 cells/mm3 [8]**

DAC 9216 μm2/day [29]
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Figure 6 LPS concentration in space. Temporal evolution of the spatial distribution of LPS.

Figure 7 Neutrophil concentration in space. Temporal evolution of the spatial distribution of neutrophil.
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Figure 8 Pro-inflammatory cytokine concentration in space. Temporal evolution of the spatial distribution of pro-inflammatory cytokine.

Figure 9 Active macrophage concentration in space. Temporal evolution of the spatial distribution of active macrophage.
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major phagocytic leukocyte. They are also responsi-

ble for producing pro-inflammatory cytokines.

• Case 4: incorporates protein granules into the

model, which are produced by neutrophils and con-

tribute to an increase in the endothelium’s perme-

ability, allowing more monocytes to enter into the

tissues and differentiate in resting macrophages.

• Case 5: incorporates anti-inflammatory cytokines

into the model. In this case, anti-inflammatory cyto-

kines block the production of pro-inflammatory

cytokines by the neutrophils and active macro-

phages. In addition, anti-inflammatory cytokines

block the activation of resting macrophages.

Figure 10 depicts the temporal evolution of the total

amount of LPS in the tissue. Observe that the introduc-

tion of pro-inflammatory cytokines in Case 2 causes a

small decrease in the amount of LPS when compared to

Case 1. This decrease has occurred because our model

considers the pro-inflammatory cytokine influence on

monocyte migration to be almost negligible.

In Case 3, the decrease in LPS has been accelerated

due to the presence of neutrophils migrating into the

tissue in huge quantities. The number of neutrophils in

the tissue is enough to control the infection.

In Case 4, observe that the extravasation of a second

wave of monocytes (a consequence of the presence of

protein granules produced by the neutrophils) has no

impact on the potentiation of the immune response

because the LPS has been almost completely eliminated.

Note that the LPS decrease is smaller in case 5 than in

cases 3 and 4. This fact is a consequence of the pre-

sence of anti-inflammatory cytokines in the model,

which causes a decrease in the number of neutrophils

and monocytes extravasating to the tissue.

Figure 11 depicts the temporal evolution of the popu-

lation of resting macrophages and demonstrates that the

introduction of pro-inflammatory cytokines, neutrophils

and protein granules (Cases 2, 3 and 4) contributes to

an increase in endothelium permeability, which in turn

allows the entry of more monocytes. As a consequence,

the number of resting macrophages increases, an

increase compounded between Cases 4 and 5 because

anti-inflammatory cytokines are blocking the activation

of resting macrophages.

Figure 12 presents the temporal evolution of the active

macrophage population. Observe that an increase in this

population occurs from Case 1 to Case 2, which is due

to the production of pro-inflammatory cytokines by

active macrophages, which have also increased perme-

ability and chemotaxis. In Case 3, the introduction of

neutrophils contributes to a faster elimination of LPS,

and as a result, less LPS is available to activate resting

macrophages. When protein granules are included in

the model (Case 4), we can observe an increase in the

quantity of active macrophages. This population increase

Figure 10 Temporal evolution LPS. Temporal evolution of the total quantity of LPS.

Pigozzo et al. BMC Bioinformatics 2013, 14(Suppl 6):S7

http://www.biomedcentral.com/1471-2105/14/S6/S7

Page 13 of 20



Figure 11 Temporal evolution resting macrophage. Temporal evolution of the resting macrophage population.

Figure 12 Temporal evolution active macrophage. Temporal evolution of the active macrophage population.
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has occurred because protein granules allow the direct

activation and adhesion of monocytes in the endothe-

lium of blood vessels, thus facilitating the monocytes’

extravasation to the tissues. Finally, a significant reduc-

tion in the total amount of active macrophages occurs

in Case 5 due to the action of anti-inflammatory cyto-

kines, which block the activation of resting macro-

phages. In addition, anti-inflammatory cytokines block

the production of pro-inflammatory cytokines, causing a

decrease in endothelium permeability and consequently

in the number of monocytes extravasating to the tissue.

Observe the significant increase in the number of pro-

inflammatory cytokines in Figure 13 between Cases 2

and 3. This increase is a direct consequence of the

incorporation of neutrophils into the model, as neutro-

phils produce a huge amount of pro-inflammatory cyto-

kines. No change occurs between Cases 3 and 4 because

the entry of more monocytes into the tissue occurs dur-

ing termination of the immune response, when the LPS

available to activate the monocytes is small. In Case 5,

the reduction in production of pro-inflammatory cyto-

kines due to the action of anti-inflammatory cytokines is

responsible for the decrease in the total quantity of pro-

inflammatory cytokines.

Figure 14 depicts the temporal evolution of the neutro-

phil population, whose increase is similar in Cases 3 and

4 due to the fact previously stated: the entry of more

monocytes into the tissue occurs during termination of

the immune response. In Case 5, the number of neutro-

phils into the infected tissue is smaller than in Case 4

because fewer pro-inflammatory cytokines are present in

the tissue, which results in a reduction in the number of

neutrophils migrating into the infected tissue.

Figure 15 illustrates a small decrease in the number of

apoptotic neutrophils between Cases 3 and 4. This

reduction is a consequence of the presence of more

active macrophages in Case 4 than in Case 3. In Case 5,

the presence of fewer active macrophages in the tissue

leads to a reduction in the number of apoptotic neutro-

phils that are phagocytosed.

Figure 16 shows an increase in the number of protein

granules between Case 4 and Case 5. In Case 4, the

number of neutrophils migrating to the infected tissue is

larger, causing an increase in protein granule production

as well.

Finally, Figure 17 depicts the temporal evolution of the

anti-inflammatory cytokine population. Observe that the

number of anti-inflammatory cytokines increases after

the termination of the infection (as shown in Figure 10).

Conclusions and future works

In this work, we have presented a computational model

for the dynamics of representative types of cells and

molecules of the HIS during an innate response to the

injection of LPS into a small section of tissue. To achieve

this objective, we have proposed a mathematical model

Figure 13 Temporal evolution pro-inflammatory cytokine. Temporal evolution of the pro-inflammatory cytokine population.
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that incorporates the main interactions occurring

between LPS and some cells and molecules of the innate

immune system. The model proposes a macroscopic or

homogenized view of tissue composed of two different

domains: one domain represents the concentration of

immune cells in the vascular system (in our case, neutro-

phils, Nmax(x, t), and macrophages, Mmax(x, t)), whereas the

other domain represents the different cells and molecules

Figure 14 Temporal evolution neutrophil. Temporal evolution of the neutrophil population.

Figure 15 Temporal evolution apoptotic neutrophil. Temporal evolution of the apoptotic neutrophil population.
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Figure 16 Temporal evolution protein granule. Temporal evolution of the protein granule population.

Figure 17 Temporal evolution anti-inflammatory cytokine. Temporal evolution of the anti-inflammatory cytokine population.
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present in the tissue (our model considers lipopolysac-

charide (LPS), neutrophils (N), apoptotic neutrophils

(ND), pro-inflammatory cytokines (CH), anti-inflamma-

tory cytokines (AC), proteins granules (G), resting (RM)

and hyperactivated (AM) macrophages). Communication

between the two different domains is possible and is

modeled by an endothelium permeability that varies in

space and time and may depend also on the concentra-

tion of different cells and molecules (in our model, the

endothelium’s permeability to neutrophils depends on

the concentration of CH, whereas its permeability to

macrophages depends on CH and G).

The model proposed in this work has been able to

reproduce several features present in immune responses,

such as:

• the order of arrival of cells at the site of infection,

as shown in [39];

• the coordination of macrophages and neutrophils

to mount a more effective and intense response to

LPS;

• the endothelium’s dynamic permeability, which

may depend on local concentrations of pro-inflam-

matory cytokines and protein granules;

• the important role of protein granules throughout

the process of monocyte extravasation;

• the regulation of immune response by macro-

phages through the production of anti-inflammatory

cytokines and the phagocytosis of apoptotic

neutrophils;

• the crucial role of anti-inflammatory cytokines in

the control of the inflammatory response, thus

avoiding a state of persistent inflammation after the

complete elimination of LPS.

In future work, we plan to implement a more complete

mathematical model that includes new cells (such as nat-

ural killer and dendritic cells), molecules and other pro-

cesses involved in the immune response. The model could

be extended by any of the following methods: a) including

the interaction between endothelial cells, LPS and some

cytokines such as IL-1b and TNF-a [40]; b) incorporating

the fact that high amounts of LPS also induce an increase

in endothelium permeability [40]; c) considering the pro-

cess of macrophage desensitization, in which high levels of

LPS inhibit the production of TNF-a by macrophages

[41]; d) taking into account that the TNF-a produced by

macrophages induces the production of even more TNF-a

[1]; and e) considering that the TNF-a has proapoptotic

and antiapoptotic effects on macrophages and neutrophils.

In low concentrations, TNF-a delays the apoptosis of

macrophages and neutrophils and induces the production

of pro-inflammatory cytokines, whereas in high concentra-

tions, it induces apoptosis [41].

An important final step is the validation of our proposed

model using experimental data. Of particular interest is

the spatio-temporal modeling of microabscess formation,

a very important research topic. For instance, [42-45] pre-

sents animal studies detailing the formation of liver

abscess and microabscess by different types of infections.

Epidermal microabscess formation by neutrophils was also

evaluated in [46-48] and [22]. Infection of the heart by

bacteria (bacterial myocarditis [49]) or by viruses (viral

myocarditis [50]) is also correlated with microabscess for-

mation by neutrophils. The interaction between tumor

cells and inflammatory cells plays an important role in

cancer initiation and progression and was investigated in

[51] for the case of tumor-infiltrating neutrophils in pan-

creatic neoplasia, where the pattern of microabscess for-

mation by neutrophils was reported once again. We

acknowledge that this distinct pattern of formation can

only be numerically reproduced and studied by models

that capture the spatio-temporal dynamics of the HIS.

Therefore, in the near future, we plan to extend our PDE

model and adjust its parameters in the hopes of reprodu-

cing some of these experimental findings.
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