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Abstract 
We examine the power of constant depth circuits 

with sigmoid (i.e. smooth) threshold gates for com- 
puting boolean functions. It is shown that, for depth 
2, constant size circuits of this type are strictly more 
powerful than constant size boolean threshold circuits 
(i.e. circuits with boolean threshold gates). On the 
other hand it turns out that, for any constant depth d ,  
polynomial size sigmoid threshold circuits with poly- 
nomially bounded weights compute exactly the same 
boolean functions as the corresponding circuits with 
boolean threshold gates. 

1 Introduction 
Research on neural networks has led to the inves- 

tigation of massively parallel computational models 
that consist of analog computational elements. Usu- 
ally these analog computational elements are assumed 
to be smooth threshold gates, i.e.7-gates for some non- 
decreasing differentiable function y : R -+ R .  A 
7-gate with weights w1,. . . , wm E R and threshold 
t E R is defined to be a $e that computes the func- 
tion (11,. . . , zm) w y( i=l w,zi - t) from Rm into 

that consists of y-gates. The most frequently con- 
sidered special case of a smooth threshold circuit is 
the sigmoid threshold circuit, which is a u-circuit for 

u : R -+ R defined by .(I) = 
Smooth threshold circuits (7-circuits for “smooth” 

functions y) have become the standard model for the 
investigation of learnin on multi-layer artificial neural 
nets ([K],[HKP],[RM]fSSl],[SS2] ,[WK]). In fact, the 
most common learning algorithm for multi-layer neu- 
ral nets, the Backwards-Propagation algorithm, can 
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R. A y-circuit is define $ as a directed acyclic circuit 
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only be implemented on y-circuits for differentiable 
functions y. 

Another motivation for the investigation of smooth 
threshold circuits is the desire to explore simple mod- 
els for the (very complicated) information processing 
mechanisms in neural systems of living organisms. In 
a first approximation one may view the current firing 
rate of a neuron as its current output (IS], [RM], [K]). 
The firing rates of neurons are known to change be- 
tween a few and several hundred firings per second. 
Hence a smooth threshold gate provides a somewhat 
better computational model for a neuron than a digi- 
tal element that has just two different output signals. 

In this paper we examine the power of smooth 
threshold circuits for computing Boolean functions. 
In particular, we compare their power with that of 
boolean threshold circuits (i.e. s-circuits for the step 
function s, with .(I) = 1 if I 2 0 and .(I) = 0 if 
I < 0). The most surprising result is the existence 
of a boolean function Fn, that can be computed by 
a large class of y-circuits (containing u-circuits) with 
small weights in depth 2 and size 5 (Theorem 2.2.), 
but which cannot be computed with any weight size 
by constant size boolean threshold circuits of depth 2 
(Theorem 3.1). A witness for this difference in com- 
putational power is the boolean function Fn with 

Fn(Z, y3 := Mujori ty(Z)  @ Mujority(y’), 

where 2 and y’ are n-bit vectors. 
The proof of this lower bound result for boolean 

threshold circuits (Theorem 3.1) is of independent in- 
terest. First, this proof demonstrates that the restric- 
tion method is not only useful in order to prove lower 
bounds for ACo-circuits, but also for threshold cir- 
cuits. Secondly, this proof exploits some previously 
unused potential in a standard tool for the analysis 
of threshold circuits: the <-Discriminator Lemma of 
[HMPST].  It is essential for our proof that the E- 
Discriminator Lemma holds not just for the uniform 
distribution over the input space (as it is stated in 
[HMPST]), but for any distribution. Hence we have 
the freedom to construct such a distribution in a mali- 
cious manner, where we exploit specific “weak points’’ 
of the considered threshold circuit. This extra power 
of the (generalized) &-Discriminator Lemma is crucial: 
in Remark 3.10 we show that its conventional version 
is insufficient for the proof of Theorem 3.1. 
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In order to compute a boolean function on an ana- 
log computational device one has to adopt a suitable 
output convention (similar to the conventions that 
are used to carry out digital computations on red- 
world computers, which consists of non-digital com- 
putational elements such as transistors). 

Definition 1.1 A y-circuit C computes a boolean 
function F : ( 0 , l ) ”  + ( 0 , l )  with separation E ifthere 
is some tc E R such that for  any input (ZI, . . . , T,,) 
(0 , l )”  the output gate o j C  outputs a value which 1s 
at least tc + E ,  i f F ( x 1 , .  . . ,z,) = 1 and a2 most t c  - E  
otherwise. 

A computation without separation at the output 
gate appears to be less interesting, since then an in- 
finitesimal change in the output of any y-gate in the 
circuit may invert the output bit. Hence we consider 
in this paper computatioiis on y-circuits C,, with sep- 

aration at least - for some polynomial p (where n 

is the number of input bits of C,,). One nice feature 
of this convention is that, for Lipschitz bounded gate 
functions y and polynomial size y-circuits Cn of con- 
stant depth and with polynomially bounded weights, 
it allows a tolerance of 1 for all y-gates in C,,. 

PolY(n) 
We will give in Theorem 4.1 a “separation boost- 

ing” result, which says that for any constant depth d 
one may demand for polynomial size y-circuits with 
polynomially bounded weights just as well a separa- 
tion of size Q( 1) without changing the class of boolean 
functions that can be computed. 

1 

P b )  

2 Sigmoid Threshold Circuits for the 
XOR of Majorities 

We write (NL) for the following property of a func- 
tion y : R + R, 

(NL) There is some rational number s so that: 

1. y is differentiable on some open interval 

2 .  y”(s) exists and is nonzero 
containing s, and 

Obviously the function U satisfies (NL). 
Observe that property (NL) is basically the require- 

ment that the function be nonlinear; for instance, if y“ 
happens to be everywhere defined, then (NL)  is pre- 
cisely equivalent to y not being a linear function. The 
nonlinearity of y is obviously a necessary assumption 
for Theorem 2.2, since otherwise a y-circuit can only 
compute linear functions. 

Without loss of generality, we will assume that 

for some point s as in the definition. If this value 
where to be negative, we simply replace y by -y in 
what follows. 

Lemma 2.1 Assume that 7 satisfies (NL). Define the 
function 

8(Z) := y(x + s)  + y(-2 + s) . 
Then, the function 19 is even, and there exists some 
E > 0 so that the following property holds: 

8(a + h) - 8(a) 2 ch2 for all a, h E [0, E ]  . 
Proof. Note that O(-x )  = O(z) directly from the 

definition, so 8 is even. Moreover, 8 is differentiable 
on some open interval containing x = 0 ,  because y 
is differentiable in a neighborhood of s, and evenness 
implies that O’(0) = 0. Observe also that fP(0) exists, 
and in fact 

elyo) = 2 y q s )  = gC > o . 
By definition of O“(0) (just write f Y ( l )  = O’(0) + 
V ( O ) l +  r(1) with lim - = 0), there is some E > 0 

so that 

r ( l )  

= 4cI (1) q i )  2 - 

1-0 I 

8“( 0 )  1 
2 

for all each 1 E 0 2.5 . Because O’(1) >_ 4cl > 0 for 

We are only left to prove that this E is so that the last 
property holds. 

Pick any a ,  h E [0,  E ] .  Assume that h # 0, as oth- 
erwise there is nothing to  prove. As a and a + h are 
both in the interval [ O , ~ E ] ,  and 8 is strictly increasing 
there, it follows that 

1 > 0, it follows t L, at Q is strictly increasing on [O, 2 ~ 1 .  

h 
2 

8(u + h) - 8(a) > 8(a + h)  - O(u + -) 
and by the Mean Value Theorem this last expression 
equals 0’(1)$ for some 1 E (U + +, a + h)  . 

Since 1 < a + h 5 2 ~ ,  we may apply inequality (1) 
to obtain 

The result now follows from the fact that 1 > a + $ >_ 
4. I 

O(U + h )  - O ( U )  > 2 ~ 1 h .  

Theorem 2.2 Assume that y : R + Rsatisfies (NL). 
Then there exists for every n E N 
a y-circuit Cn of depth 2 with 5 gates (and rational 
weights and thresholds of size O( 1)) that computes F,, 
with separation R(l/n2).  

Proof. With 8 and E as in Lemma 2.1 one has 
@(a) > B(b) * la1 > Ibl for any Q, b E [ - E ,  +E] .  Hence 
any two nonzero reals U, v E [ - - ~ / 2 ,  + ~ / 2 ]  have differ- 
ent sign if and only if 8(u - v )  - 8(u + v )  > 0. Let 
$1, . . . , z n ,  yi ,  . . . , yn E ( 0 , l )  be arbitrary and set 

E 4(x1 -i- . . . + xn) - 2 n  + 1 
2 4n 

6 4(yl + . . . + Yn) - 2n + 1 
2 4 n  

U := -( ), 

1. v := -( 
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Then we obtain C, (see Lemma 3.4). In section 3.2 we show that 
the resulting regularized gates behave predictably for 
certain distributions (see Lemma 3.7). The argument 
concludes in section 3.3 with a non-standard applica- 
tion of the c-Discriminator Lemma. 

6 ' ( ~  - U) - 6 ' ( ~  + V) > 0 e> Fn(Zly3 = 1. 

Furthermore Lemma 2.1 implies that 

(8(u - v) - B(u + v)I 2 4 c .  min{u', v'} = Q(l/n2). 

Hence, we can achieve separation Q(l/n2) by using 
a y-gate on level two of circuit C, that checks whether 
B(u - v) - 6'(u + v) > 0. Such a y-gate exists: Since 
y"(s) # 0, there is some t with y'(t) # 0. Now trans- 
form O(u - v) - 8(u + v )  into a suitable neighborhood 
o f t  and choose a suitable rational approximation of 
8(t) as threshold. I 

Corollary 2.3 Assume that 7 : R --i R satisfies (NL 

a ycircuit C, of depth 2 and size 5 (with rational 
weights and thresholds of size polynomial in n) that 
computes F,, with separation Q(1). 

Proof. Multiply the weights of the y-gate on level 
two of the circuit C, with n2 and transform the thresh- 
old accordingly. In this way we can ensure that the 
wei hted sum computed at the top gate has distance 
Q(17 from its threshold. I 

and 7 is monotone. Then there exists for every n E d 

3.1 The Restriction Method 
Our goal will be to fix certain inputs such that all 

bottom gates of C, will have a normal form as de- 
scribed in the following definition. 
Definition 3.2. Let G be a boolean threshold gate 
(with inputs 21,. . . , x,, y1,. . . , ym) that outputs 1 if 

and only if wixi + uiyi 2 t. Assume that the 

numbering is such that 

m m 

i d  i=l 

lW1l 5 .. . s  IwmI and lull 5 .. . s  lu,l. 

We say that G is 1-regular if and only if all wi have 
the same sign (negative, zero, or positive) and all ui 
have the same sign. Additionally, one of the following 
conditions has to hold , 

a. G is constant. 

b. V i  (Iwil >_ m'/'Iuil) and [tum[ 5 601~11. 

Remark 2.4. For computations with real (rather 
than Boolean) inputs, there has been some work deal- 
ing with the differences in capabilities between sig- 
moidal and threshold devices; in particular [So] stud- 
ies questions of interpolation and classification related 
to learnability (VC dimension). 

c. V i  (Iuil 2 m1l61wil) and luml 5 601ul(. 

d. lwml 5 30(1 +l)IwI and luml I 3 0 ( 1 +  1)1u11. 
First we will transform a single threshold gate to a 

Let G be an arbitrary threshold gate 
regular gate. 
Lemma 3.3 
that outputs 1 if and only if 

3 Boolean threshold gates are less 
powerful 

n n 

i= l  i = l  

Theorem 3.1 No family (C, I n E N) of constant 
size boolean threshold circuits of depth 2 (with un- 
restricted weights and thresholds) can compute the 
function Fn. 

Then there are sets M, 5 { 1, . . . , n} and My s 
{ 1, . . . , n} of size 2 each and an assignment d : {xi : 
i @ M,} U {yi : i @ My} --i {0,1} such that 

Proof. Assume, by way of contradiction, that there 
exist such circuits C,, each with at most k' gates on 
level one. We can demand that all weights are integers 
and that the level 2 gate has weights of absolute value 
at most 2 ° ( k ' 1 0 g k ' )  ([M],[MT]). Thus we can assume, 
after appropriate duplication of level one gates, that 
the gate on level 2 has only weights from 
k be an upper bound on the resulting num er of gates. 

In the next section we use the restriction method to 
eliminate those gates on level one of C, whose weights 
for the zi (y,) have drastically different sizes. It turns 
out that we cannot achieve this goal for all gates. For 
example, if all the weights wi (for the 2;) are much 
larger than the weights ui (for the yi), then we can 
only limit the variance of the weights wi (see condi- 
tion b. in Definition 3.2). Nevertheless, the restriction 
method allows us to "regularize" all bottom gates of 

L-l, l}. Let 

a. when values are assigned according to d, Fnpo 
will be obtained as the corresponding subfunc- 
tion of F,, and 

b. G ,  when restricted to the remaining free vari- 
ables, is nlla-regular. 

Proof. First we determine a set M; E { 1, . . . , n} 
of size n/3 such that all wj (with i E M i )  are ei- 
ther all positive, all negative or all zero. A set 
M i  C { 1, . . . , n} of size n/3 is chosen analogously to 
enforce the same property for the coefficients ui (with 

Set m = n/3. After possibly renumbering the in- 
dices, we can assume that M; = M i  = ( 1 , .  . . , m}. 
We can also assume that \tu11 5 . . . 5 Iw,I as well as 
1.11 5 . . . <  Iuml. We define 

i E Mi) .  
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m m 3m R := (1 ,..., q},S:= {4 + 1 , . . . ,  -}, 
4 

By assigning 1’s to  the xi’s with i E R and 0’s to 
the xi’s with i E I or vice versa, and by assigning 1’s 
to the yi’s with i E R and 0’s to the yi’s with i E I 
or vice versa, we obtain four partial assignments. 

Let us now interpret G as a threshold gate of the 
remaining variables xi (i E S) and yi (i E S ) .  By 
choosing one of the four assignments, we can “move” 
the threshold of the resulting gate over a distance d 
with 

If for none of these four partial assignments the thresh- 
old gate G gives constant output, we have 

This implies that 

Set a = (Iwil + 1ui1)/(3m/4) and 
i E R U S  

b = cic7 ( I W I  + I ~ ~ I M ~ / ~ ) .  
Then (2) implies for these “averages” of ~ w ~ ~ + ~ u ~ ~  over 
R U S  respectively 7 that b 5 3a. 

We subdivide the set S by introducing the sets 

3m 2m 3m m 

3m m 3m 
4 10 4 

Since IwiJ + [ U * (  is a non-decreasing function of i 
we have for all i E R U S (and in particular for all 

+ l , . . . , -  - p = {--- 

Q = {---+1, ...,-}. 

4 lo)’ 

i E P U & )  

(wil+ 1ui( _< b 5 3 ~ .  

Iwi( + luil 1 a/10, 

(3) 

(4) 

Furthermore, we have for all i E P 

since otherwise Iwil+ Iuil < a/10 for all i E (RuS) -  
( P  U Q), and we would get c (I.lil+ 14) = 

3 2  a 2m 
( z - l o ) m . z + 3 a . - =  10 

3 1  2 1 3 m . a  
4 10 10 10 4 ’  

which is a contradiction to the definition 
m - Q ( - . - + - ( 3 - - ) ) < -  

(3) and (4) jointly imply that 
of a. 

Case 1: V i  E ~ ( l w i l  2 ml/’lui( v Iuil 2 ml/’lwil). 
We can find a subset P’ E P of size m/20 such that 

Set M ,  = My = P‘ and fix the remaining variables 
such that exactly half of the xi’s and half of the yi’s 
are 0. 

Analogously, in the latter case we obtain max 1ui( 5 
60min Iuil. M, and My are obtained as above. 

I E P ’  

i E P r  

Case 2: Otherwise. 
Then 30 E P (Iw;,l < m1/‘lu;,1A Iuio( < m’/’l~,~l). 
We have for all i E Q: 

Thus we have maxiEQ lwil _< 30(1+ ml/’) minieg lwil 
and maxiEe luil _< 30(1+ m1/8)minice Iuil. 
Choose M, to be an arbitrary subsets of Q of size $,, 

M, and fix the remaining variables in the 
:zkr!zion as before. I 

If we perform the “regularization process” for all 
bottom gates of C,, then we obtain 

Lemma 3.4 There are sets M,, My 
size m = +. and there is an assignment A : {xi : i 
M,} U {yi : z 

{ 1, . . . , n} of 

My} + ( 0 , l )  such that 

a. 

b. 

when values are assigned according to A, F,,, will 
be obtained as the corresponding subfunction of 
F n ,  and 

all level one gates of C,, when restricted to the 
free variables, are n1Id-regular. 



Proof. Apply Lemma 3.3 successively to each of 
the k level one gates of C,. Let M, be the set of 
indices of those variables xi which did not receive a 
value during the processing of all gates by Lemma 3.3. 
My is defined analogously. 

A is the union of all partial assignments that have 
been made in this process. I 

We write Dn for the circuit that results from C n  
by the restriction of Lemma 3.4. Observe that D, 
computes the function Fm (for m = s). 

3.2 The Likely Behavior of a Threshold 
Gate 

In this section we will exploit the result of our reg- 
ularization process. In particular, in Lemma 3.7, we 
will show that, for the input distribution defined be- 
low, a weighted sum with small variance in weight sizes 
"almost" behaves as if all the weights were identical. 

For the integer s, 1 5 s 5 m, set U ( s )  = {.' E 

: c z i  = s } .  X ( s )  is the random variable 
m 

( 0 ,  

which assigns to each ac' E U ( s )  the value 

all elements of U ( s )  are equally likely. 

m 
i=l 

wixi; 

Obviously 
i=l 

m 

E ( X ( s ) )  = s wj. 
i = l  

In the following, we will assume that the wi's are 
either all positive or all negative. 

Proposition 3.5 Set W = 

g = m u x { M  W J  : 1 5 i , j  5 m}. Then 

m 

w? and 
i=l 

w 5 q g 2  . E(X(s ) )2 .  

Proof. Set M I N  = min{ lwil : 1 5 i 5 m}. We get 

(6) 
1 
m 

w 5 - (m2.  9 2 .  M I N ~ ) .  

m 

Also, E ( X ( S ) ) ~  = (2 . C W ; ) ~  2 ( s m  m . M I N ) 2 .  
m 

i= l  
Thus 

m2 . M I N ~  5 (2)' . ~ ( x ( s ) ) 2 .  (7) 

If we replace m2 . M I N 2  in (6) according to (7), we 
get 

S 
Proposition 3.6 Var(X(s)) 5 --W. 
Proof. We have Var(X(s)) = E(X(S)~) - E ( X ( S ) ) ~ ,  
Also, E ( X ( S ) ~ )  = 

m 

m 

C C W i X i ) 2  = 
1 

mzEu(a)  i=l 

Summarizing, we obtain 

Proof. By Chebyshev's inequality, we get for any t 
( t  > 0 )  

Thus, for t = I E ( x ( s ) ) l  ) , we obtain 
m1/4 

Vur(X(s)) .m1/2 

E(X(S))2  . 
Proposition 3.6 implies 

var(x(s)) - ml/z 

E(X(S))2  
s . w m1/2 

- m . E(X(S))2 ' c 

and with Proposition 3.5 

m 
S 2  

w 5 - . g 2 .  E(X(S))2 .  I 
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3.3 A Non-standard Application of the 
Discriminator Lemma 

Let G be some boolean threshold gate with weights 
w l , .  . ., w,, u1,. . . , U ,  and threshold t .  Set 

With G we can thus associate the two-dimensional 
threshold function az + by 2 t .  Similarly, with 
F, we associate the two-dimensional function F : 
( 0 , .  . ., m)z + (0, l } ,  where F ( x ,  y) = 1 if and only if 

m m m m 
2 2 2 

(2 2 - A Y  < - ) V ( Z  < - A Y  2 T ) .  
Let L be the line ax + by = t in R2 (where t is the 
threshold of G ) .  Let x‘ (y’) be the x-coordinate (y- 
coordinate) of the intersection of L and y = T (x = 
y ) .  Set x’ = CO (y’ = m) if the line L is horizontal 
(vertical). We define 

m m 
2 

D ( G )  := min{ 11’ - - 1, Iy’ - I). 
Proposition 3.8 Let r be an integer with 0 5 r 5 
and let U,. be the uniform distribution over v, = { E -  r , . . . , ? + ~ } .  Then 

p r ~ r , x ~ , [ ( ~ ,  Y) E v,“ I + by 2 t A F ( z ,  Y) = 1) 

1 D(G)+1 

Proof. Let X be the area enclosed by the two lines 
ax + by = t and ax + by = ( a  + b) . -. (The latter 

is the line through (- -).) Intersect X with the set 
V,” and call the intersection X, . 

Let us assume that D(G)  = 11’ - TI. Then X,. 
will contain at most D(G + 1 points per row of v,“. 
Thus IX,.l 5 (273 + 1 ) .  (&G) + 1). 

On the other hand, t e halfspace az + by 2 (a+ b) . 
m 
- contains exactly one half of all the elements of the 
2 

set {(z, y) E yz I F ( x ,  y) = 1) .  I 

‘ 2 +  2r+1 . 

m 
2 m m  

2 ’ 2  

Let us consider the case that all weights wi are 
identical and all weights ui are identical. If D ( G )  is 
“small”, then G will not show any significant advan- 
tage in predicting F for a subcollection of the 7 + 1 
distributions U,. mentioned in Proposition 3.8. If on 
the other hand D(G) is large (say proportional to m), 
then we can trivialize G by choosing a distribution 
with a small value for r .  

Our goal is to carry out a similar argument for arbi- 
trary gates G .  Consequently we introduce a collection 
Q, of distributions over (0, l), with 

0, if lxLl xi - 71 > r 

Note that the probability of a string only depends on 
its number of ones. The appropriate value for the 
parameter T will be determined later. 

Finally we define for the considered threshold gate 
G with input variables tl,. . . , z,, y1,. . . , y,, 
ADV,(G) := P T Q ~ X Q ~ [ G ( S ,  y3 = l IFm(Z,  y3 = 13- 
~ + Q ~ X Q ~ [ G ( Z ,  y3 = 1IFm(Z’, 9 = 01- 

Lemma 3.9. Set m = $. Assume that 
the boolean threshold gate G with input variables 
21,. . . , z,, y1,. . .ym is nlls-regular, and that n is suf- 
ficiently large. Furthermore assume that the natural 
number r E [m31/32, T] satisfies 

D ( G )  5 rl(64k) or D ( G )  2 4r 

Then 

Proof. 

Case 1: D ( G )  5 -&. 
We know that G is nils-regular. We proceed by ex- 

amining the three different cases (see Definition 3.2.). 

Case 1.1: V i  (Iwil 2 m1l81luil) and lwml 5 601wll. 

is very “steep”. We have in this case, 
This implies that Jal 2 mil8 . Ibl. Hence the line L 

min{x E [o, m] : 3y E [o, m] ((2, y) E L ) }  5 m7/8. 

Thus,theset {x E [O,m] : 3x’,y’ E [O,m] (1x-z‘1 5 
m3l4A(z’, y‘) E L }  is contained in an intervalof length 
m718 + 2m314 + 1 5 3 . m718. This implies that 

I{(x, Y) E { y  - r , .  . . > 3 + .IZ : P ( x ,  Y))l 
5 3m7J8 , m = 3m15J8, (8) 

where P ( x ,  y) is equivalent to 

(ax + by < t )  A 

3(x’,y’) E [0,mlZ( (ax’+by’ 2 t)A(1x-x’1 5 m3l4)) .  

As a first step towards estimating ADV, (G)  we con- 
sider the set 

S =  {(Z,$ E U : G(Z,$ = 1 A Fm(Z,$ = 1) 

where U := 
m m  

One shows that S is contained in the following two 
sets, 
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s1 = {(Zly3 E U : 

i=l  i=l i=l i=l i=l 

E U : Fm(.',$) = 1 A Q(Z,C',}, 

m m 

i=l i= l  

Intuitively, the set S1 consists of all those inputs 
(that are relevant for Qr) on which our approximation 
of G by ax + by  2 t fails. We will show later that 
this set has small probability. S, on the other hand 
is the collection of all relevant inputs on which the 
approximation (in a quite liberal sense) succeeds. 

Let us verify the inclusion S s S1 U S2. Fix any 

(Z, f) E S - SI .  We then have wixi  + ui yi 2 t and 
m 

i = l  

m m m 

I wixi  - a xi1 5 xi . lal)/m1I4 
i= l  i=l  i=l 

5 m3l4 - lal. (9) 

We need to find vectors a?, 2 according to the def- 

xi = xi + 
m 

inition of set S2. 

If a 2 0, we pick some a? such that 
m 

i= l  i= l  
3m/4 

m3I4. This is possible, since U E U (0, l}i. We 
i=m/4 

m m 

then have with (9) a .  xi  2 w i x i .  
i=l i=l 

m m 

If a < 0, we pick some a? such that Ex: = Cxj - 

m3I4. We then have a . xi - a * m3I4 = 

i= l  i=l 
m m 

xi  = a ' 
i = l  i= l  

m m 

i = l  
m 

i=l  

Furthermore, we pick some vector 2 with b . C  2 
i= l  

m 

C u i y i  according to the following procedure: if all 

components of ui are positive or all components are 
zero, then set y; = (1 , .  . . , 1). Otherwise all compo- 
nents are negative and we set 

i=l 

= (0,. . . ,O). 

This concludes our proof of inclusion, since prop- 
erty Q(Z, y3 holds for the pair [;, f). 

It is obvious that PrQrxQ,  si Fm(.',$ = 11 5 
2 . PTQ,xgr[S1]. If we apply Lemma 3.7 for s E 
[y - r,? + r] [T, TI, we obtain PrQrxQr[S1] = 

In order to give an upper bound on Prg,xg,[S~] 
0 ( ~ - 1 / 4 ) .  

we observe that S2 S3 U S4, where 

s3 = {(sj y3 : ( F m ( s , g  = 1) A 

m m 

R(Z, f) is equivalent to 
m m 

i=l i= l  

1 D ( G ) + l  6ml5Ia 5 o ( ~ - ~ / ~ )  + - + +- 
2 2r+ 1 (2r+  1 ) 2  

< - 1 1  + - + O(m-l/16). 
- 2 64k 

We will obtain the same upper bound for the proba- 
bility of 

S ' = { ( Z , $ E U : G ( Z l y 3 = 0  A Fm(Z,$=l}.  

Thus, since 

we get 
PrQ,xQ,[s  I Fm = 11 + P ~ Q , x Q , [ ~ '  I F m  = 11 = 1 ,  

1 1  I Fm(Z, 9 = 11 - - 1  2 < - - 64k + O(m-l/16). 

One shows analo ously for T = {(Z,$ E U : 
G(Z, y3 = 1 A FmfZl y3 = 0) that 
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Case 1.2: Vi (Iuil 2 m'/*Iwil) and luml 5 Solull. 
The argument is analogous to  Case 1.1. 

Case 1.3: /wml 5 30(1+n1l8))lw1l and luml 5 30(1+ 
n118) 1111 I. 

We first observe that the set S is contained in the 
union of the sets Si and SI,  where 
Si = {(Z, y3 E U : Pl(2, y3f, and P'(2, y3 is equivalent 
to 

S; = {(s,y3 E U : Fm(.",y3 = 1 A Q'(Z,y3}, and 
Q'(S, y3 is equivalent to 

32, Y; E (0, 1lm ( 1  
m m 

- til L m3l4 A 
i=l i = l  

m m m 

i = l  i=l i=l i = I  

Lemma 3.7 implies that PrQrxQr[S', IFm(l, y3 = 13 5 

With an argument analogous to Case 1.1 we get Si 2 
S3 Si where 

2 ' PrQrxQv[Si] = O(m-1/4). 

si = {(s, $ : (Fm(z, 9 = 1) A 

m m 
(a*Czi+b.C?/i < t )  A R ' ( z , ~ } .  

i=l i=l 

RI( 5, y3 is equivalent to 

m m 

We have already shown that 

Furthermore, it is obvious that 

The remaining argument is now analogous to Case 1.1. 

Case 2: D 2 4r. 
The analysis is now far simpler. The probability of 

the set SI (resp. Si) is computed as before. As for S3 
we now get 

PrQ,xQr[S3 I Fm(2,  = 11 E {0,1). 

For S4 we obtain 

PrQrxQr[S4 I Fm(2,  9 = 11 = 0. 

The same applies to Si. This follows, since the set U 
will be entire9 contained in one of the halfspaces of 
{ ( . i y 3 : ~ . C i = 1 x i + b . C ~ i ~ i = t } .  I 

In order to prove Theorem 3.1 we observe that for 
sufficiently large n we can find r such that for each of 
the at most k gates G on level one of D,: 

A value for r can be found whenever k is bounded I rom above by the number of possible "r-intervals". 
This is the case, provided k 5 c.logk(m) for a suitably 
small constant c. This in turn is satisfied for k 5 
d . e for a suitably small constant d . )  

The €-Discriminator Lemma of [HMPST] can be 
generalized to hold for any distribution over the input 
space. We apply it here to the distribution Qr x Qr 
over the input space (0, l}zm of the circuit D, (which 
computes the function Fm). 

Since the weights of the gate on level two of D, are 
from {-1, l } ,  we get IADV,(G)J 2 for some gate G 
on level one of D,. But this contradicts Lemma 3.5. 
I 

Thus we get a lower bound of a(*) for the 
size of depth 2 threshold circuits (with weights from 
{-1, l )  for the top gate) computing F,. For unre- 
stricted lo lo threshold n circuits our lower bound will be 
a( log P,g P,g n ) ([Ml,[MTI). 

Remark 3.10 It is not possible to prove Theorem 
3.1 with the customary version of the &-Discriminator 
Lemma, where one considers the uniform distribution 
over the input space. Consider for example the thresh- 
old gate G defined by 

n n 

For appropriate c one has A D V ( G )  = n(l) (where 
A D V ( G )  is defined like ADV,(G),  but with regard 
to the uniform distribution over {0,1}2"). This hap- 
pens, because a "large discrepancy" in 2-sum and y- 
sum is more likely if we assume Cyz1 zj 2 3 and 
Cy=lyj  5 than if we assume (say) Cy=l~i _> 5 
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and Cy=i yi 2 4 .  This phenomenon has been inde- 
pendently observed by Bultman [B]. 

Corollary 3.7 The class of boolean functions com- 
putable by constant size boolean threshold circuits of 
depth 2 with integer weights of polynomial size is prop- 
erly contained in the class of boolean functions com- 
putable by constant size a-circuits of depth 2 with 
polynomial size rational weights (even with common 
polynomial size denominator) and separation 1. Poly 

The same statement holds if one considers arbitrary 
real weights for both types of circuits (still with sepa- 
ration A). 
Proof. It is quite easy to simulate boolean thresh- 
old circuits of size s and constant depth d by sigmoid 
threshold circuits of the s a m e  size and depth. The 
containment is proper as a consequence of Theorems 
3.1 and 2.2. I 

4 Simulation Results and Separation 

TCj(7) is the class of those families ( g ,  I n E N )  of 
boolean functions that are computable, with separa- 
tion a(--), by polynomial size, depth d y-circuits 
whose weights are reds of absolute value at most 
poly(n). TCo ([HMPST]) is the corresponding class 
of families otboolean functions computable by poly- 
nomial size, depth d boolean threshold circuits whose 
weights are polynomial size integers. 

Boosting 

PolY(n) 

Theorem 4.1 Let 7 : R -+ [0,1] be a nondecreasing 
function that is Lipschitz-bounded and converges fast 
to 0 (resp. 1) in the following sense: 

V k E N  31EN V n E N t  

Then the following holds. 

(a) For every d E N, TC: = TC;(y). 

(b)  The class TC:(y) does not change if we demand 

Observe, that the above class of functions also in- 

separation Q(1). 

cludes the standard sigmoid a .  

Proof Sketch. Assume that ( g n l n  E N )  is a fam- 
ily of boolean functions in TCj(y). Thus ( g n l n  E N )  
ca.n be computed with separation by some family 
(Cnln E N) of y-circuits of depth d with the num- 
ber of gates and the size of weights bounded by q(n) 
(for some polynomials p and q).  Since 7 is Lipschitz- 
bounded, and since the depth d of C, is a constant, 
there exists a polynomial r(n)  with the following prop- 
erty: 

If the gate function of each gate G in C, is 
replaced by some arbitrary function 7% : 
R + R where the functions may be 
different I or different gates G) such that 

then for each input 21,. . . , x,, of C,, the 
value of the output gate of the new circuit 
differs from the value of the output gate of 
C, by at most &. 

In order to construct a boolean threshold circuit CA 
that computes g,, one replaces in C, each inter- 
nal 7-gate that outputs y(Cj”,l ajyj - e)  for inputs 
y1,. . . , y? E 0,1] (with reals al,. . .,am, 0 of polyno- 
mial size in n\ by a weighted sum 

I .  

of 1 := 2 r ( n )  boolean threshold gates H I , .  . . , H I  
P h i c h  use the same weights 0 1 ,  . . . , om as G). The 
unction S is chosen to be a step function which ap- 

proximates y such that for all y1,.  . . , ym E [O,1], 

m 

In a second step, one replaces each of the boolean 
threshold gates Hk by a boolean threshold gate HL 
whose weights and thresholds are integers of polyno- 
mial size. We set 

I  

k = l  

The threshold gates H i  are chosen such that 

Let CA be the circuit that results from C, by re- 
placing in the described manner each internal y-gate 
in C, by an array of boolean threshold gates H‘. For 
every input, the value of the output gates of & and 
CA differ by at most &. Hence we can replace the 
output gate of CA by a boolean threshold gate with 
integer weights and threshold of polynomial size such 
that the resulting boolean threshold circuit Ci com- 
putes g,. This shows that g n l n  E N )  E TC;. 

( g n l n  E N )  E TC: is computed by a family (&In E 
N) of boolean threshold circuits of depth d ,  where Bn 
has at most p n) gates and its weights and thresholds 

polynomials p and q).  

In order to prove the ot 6 er inclusion assume that 

are integers o I absolute value at most q(n) (for some 
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Fixsome constant IC E N such that 4p(n).q(n) 5 nk 
for all n with n 2 2. According to our assumption 
about y, there exists some 1 E N such that 

Let BA be a boolean threshold circuit that results from 
B, by multiplying first all weights and thresholds of 
gates in B, by 4n‘, and by lowering then each thresh- 
old by 2n’. It is obvious that BA also computes the 
boolean function g,. In addition, for each circuit in- 
put the weighted sum at each gate in BA has distance 
at least 272’ from its threshold. 

Let C,, be the y-circuit that results if we replace 
each boolean threshold gate in BA by a y-gate with 
the same weights and threshold. Then one shows by 
induction on the depth of a gate G in C, that 

for every boolean circuit input, the output 
of G differs by at most 6, from the out- 
put of the corresponding gate in BA ) where 
6, := max(1 - y(n’),y(-n’)) .  

In the induction step one exploits that by the choice 
of L,l E N one has 

4.p(n).q(n).n‘.bn _<nk.n’.6, 5 1. 

This observation, together with the fact that the abso- 
lute value of each weight of a gate G in C, is bounded 
by q(n) . 4n’, implies that a change of at most 6, in 
each of the at most p(n) inputs of G causes a change 
of at most one in the value of the weighted sum that 
reaches G. Hence for any boolean circuit input the 
weighted sum of G has distance at least 2n’ - 1 from 
its threshold. Therefore the output value of the y-gate 
G differs by at most maz(l-y(2n’-l),y(-2n’+l)) 5 
max(1 - y(n’),y(-nl))  = 6 ,  from the output of the 
corresponding boolean threshold gate in BA. 

The preceding argument implies that for any n 2 2 
the y-circuit C, with outer threshold 4 computes the 
boolean function gn with separation i. I 
Remark 4.2 One can also simulate polynomial size 6- 
circuits with weights of absolute value at most 2poly(n) 
by polynomial size boolean threshold circuits with 0- 
1 weights; however in this case the circuit depth in- 
creases by a constant factor. This simulation can be 
extended to the case of real-valued inputs, where we 
assume that polynomially many bits of each real input 
are given as inputs to the simulating boolean threshold 
circuit. 
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