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Circuits composed of threshold gates (McCulloch-Pitts neurons, or per-
ceptrons) are simplified models of neural circuits with the advantage that
they are theoretically more tractable than their biological counterparts.
However, when such threshold circuits are designed to perform a specific
computational task, they usually differ in one important respect from
computations in the brain: they require very high activity. On average ev-
ery second threshold gate fires (sets a 1 as output) during a computation.
By contrast, the activity of neurons in the brain is much sparser, with
only about 1% of neurons firing. This mismatch between threshold and
neuronal circuits is due to the particular complexity measures (circuit size
and circuit depth) that have been minimized in previous threshold circuit
constructions. In this letter, we investigate a new complexity measure for
threshold circuits, energy complexity, whose minimization yields compu-
tations with sparse activity. We prove that all computations by threshold
circuits of polynomial size with entropy O(log n) can be restructured so
that their energy complexity is reduced to a level near the entropy of
circuit states. This entropy of circuit states is a novel circuit complexity
measure, which is of interest not only in the context of threshold circuits
but for circuit complexity in general. As an example of how this measure
can be applied, we show that any polynomial size threshold circuit with
entropy O(log n) can be simulated by a polynomial size threshold circuit
of depth 3.

Our results demonstrate that the structure of circuits that result from
a minimization of their energy complexity is quite different from the
structure that results from a minimization of previously considered
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complexity measures, and potentially closer to the structure of neural
circuits in the nervous system. In particular, different pathways are acti-
vated in these circuits for different classes of inputs. This letter shows that
such circuits with sparse activity have a surprisingly large computational
power.

1 Introduction

The active outputs of neurons are stereotypical electrical pulses (action po-
tentials, or spikes). The stereotypical form of these spikes suggests that the
output of neurons is analogous to the 1 of a threshold gate. In fact, histori-
cally and even currently, threshold circuits are commonly viewed as abstract
computational models for circuits of biological neurons. Nevertheless, it has
long been recognized by neuroscientists that neurons are generally silent
and that information processing in the brain is usually achieved with a
sparse distribution of neural firing.1 One reason for this sparse activation
may be metabolic cost. For example, a recent biological study on the energy
cost of cortical computation (Lennie, 2003) concludes that “the cost of a sin-
gle spike is high, and this limits, possibly to fewer than 1%, the number of
neurons that can be substantially active concurrently.” The metabolic cost
of the active (1) state of a neuron is very asymmetrical. The production of a
spike consumes a substantial amount of energy (about 2.4 × 109 molecules
of ATP according to Lennie (2003)), whereas the energy cost of the no-spike
rest state is substantially less. In contrast to neuronal circuits, computations
in feedforward threshold circuits (and many other circuit models for dig-
ital computation) have the property that a large portion, usually around
50%, of gates in the circuit output a 1 during any computation. Common
abstract measures for the energy consumption of electronic circuits treat
the cost of the two output states 0 and 1 of a gate symmetrically and focus
instead on the required number of switchings between these two states
(see Kissin, 1991, as well as Reif, & Tyagi, 1990). Exceptions are Weinzweig
(1961), Kasim-Zade (1992), Cheremisin (2003), which provide Shannon-type
results for the number of gates that output a 1 in Boolean circuits consisting
of gates with bounded fan-in. Circuits of threshold gates (= linear threshold
gates = McCulloch-Pitts neurons) are an important class of circuits that are
frequently used as simplified models for computations in neural circuits
(Minsky & Papert, 1988; Roychowdhury, Siu, & Orlitsky, 1994; Parberry,
1994; Siu, Roychowdhury, & Kailath, 1995). Their output is binary, like
that of a biological neuron (which outputs a spike or no spike), but they
work in discrete time. In this letter, we consider how investigations of such

1 According to recent data (Margrie, Brecht, & Sakmann, 2002) from whole cell record-
ings in awake animals, the spontaneous firing rates are on average below 1 Hz.
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abstract threshold circuits can be reconciled with actual activity character-
istics of biological neural networks.

In section 2 we give a precise definition of threshold circuits and also
define their energy complexity, whose minimization yields threshold cir-
cuits that carry out computations with sparse activity: on average, few gates
output a 1 during a computation. In section 2 we introduce another novel
complexity measure: the entropy of a computation. This measure is inter-
esting for many types of circuits beyond the threshold circuits discussed in
this letter. It measures the total number of different patterns of gate states
that arise during computations on different circuits inputs. We show in sec-
tion 3 that the entropy of circuit states defines a coarse lower bound for
its energy complexity. This result is relevant for any attempt to simulate a
given threshold circuit by another threshold circuit with lower energy com-
plexity, since the entropy of a circuit is directly linked to the algorithm that
it implements. Therefore, it is unlikely that there exists a general method
permitting any given circuit to be simulated by one with smaller entropy. In
this sense, the entropy of a circuit defines a hard lower bound for any gen-
eral method that aims to simulate any given threshold circuit using a circuit
with lower energy complexity. However, we will prove in section 3 that
there exists a general method that reduces—if this entropy is O(log n)—the
energy complexity of a circuit to a level near the entropy of the circuit. Since
the entropy of a circuit is a complexity measure that is interesting in its own
right, we also offer in section 4 a first result on the computational power
of threshold circuits with low entropy. Some open problems related to the
new concepts introduced in this letter are listed in section 5.

2 Definitions

A threshold gate g (with weights w1, . . . , wn ∈ R and threshold t ∈ R) gives
as output for any input X = (x1, . . . , xn) ∈ R

n

g(X) = sign

(
n∑

i=1

wi xi − t

)
=


 1, if

n∑
i=1

wi xi ≥ t

0, otherwise,

where we set sign(z) = 1 if z ≥ 0 and sign(z) = 0 if z < 0.
For a threshold gate gi within a feedforward circuit C that receives X =

(x1, . . . , xn) as circuit input, we write gi (X) for the output that the gate gi

gives for this circuit input X (although the actual input to gate gi during
this computation will in general consist of just some variables xi from X,
and in addition, or even exclusively, of outputs of other gates in the circuit
C).

We define the energy complexity of a circuit C consisting of threshold
gates g1, . . . , gm as the expected number of 1’s that occur in a computation
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for some given distribution Q of circuit inputs X, that is,

ECQ(C) := E

[
m∑

i=1

gi (X)

]
,

where the expectation is evaluated with regard to the distribution Q over
X ∈ R

n (or X ∈ {0, 1}n). Thus, for the case where Q is the uniform distribu-
tion over {0, 1}n, we have, for example,

ECuniform := 1
2n

∑
X∈{0,1}n

m∑
i=1

gi (X).

In some cases it is also of interest to consider the maximal energy consump-
tion of a circuit for any input X, defined by

ECmax(C) := max

(
m∑

i=1

gi (X) : X ∈ R
n

)
.

We define the entropy of a (feedforward) circuit C by

HQ(C) := −
∑

A∈{0,1}m

PC (A) · log PC (A),

where PC (A) is the probability that the internal gates g1, . . . , gm of the circuit
C assume the state A ∈ {0, 1}m during a computation of circuit C (for some
given distribution Q of circuit inputs X ∈ R

n). We often write Hmax(C) for the
largest possible value that HQ(C) can assume for any distribution on a given
set of circuit states A. If MAX(C) is defined as the total number of different
circuit states that circuit C assumes for different inputs X ∈ {0, 1}n, then one
has HQ(C) = Hmax(C) if Q is such that these MAX(C) circuit states all occur
with the same probability and Hmax(C) is then equal to log2 MAX(C).

We write size(C) for the number m of gates in a circuit C and depth(C)
for the length of the longest path in C from an input to its output node
(which is always assumed to be the node gm).

3 Construction of Threshold Circuits with Sparse Activity

It is obvious that the number of 1’s in a computation limits the number of
states that the circuit can assume:

HQ(C) ≤ log(MAX(C)) ≤ log
ECmax(C)∑

j=0

(
size(C)

j

)

≤ log(size(C)ECmax(C)) = ECmax(C) · log size(C) (3.1)
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(for sufficiently large values of ECmax(C) and size(C); log always stands for
log2 in this letter; the first inequality follows from the previously discussed
equality Hmax(C) = log2(MAX(C))). Hence,

ECmax(C) ≥ HQ(C)/ log size(C). (3.2)

In fact, this argument shows that

ECmax(C) ≥ Hmax(C)/ log size(C). (3.3)

Every Boolean function f : {0, 1}n → {0, 1} can be computed by a thresh-
old circuit C of depth 2 that represents its disjunctive normal form in such
a way that for every circuit input X, at most a single gate on level 1 out-
puts a 1. This circuit C has the property that ECmax(C) = 2. Furthermore,
it is an easy exercise to construct a distribution Q such that this circuit
has HQ(C) = log(size(C) − 1). Hence it is in some cases possible to achieve
ECmax(C) < HQ(C), and the factor log size(C) in equations 3.2 and 3.3 can-
not be eliminated or significantly reduced.

Threshold circuits that represent a Boolean function f in its disjunctive
normal form allow us to compute any Boolean function with a circuit C
that achieves ECmax(C) = 2. However, these circuits C in general have ex-
ponential size in n. Therefore, the key question is whether one can also
construct polynomial size circuits C with small ECQ or ECmax. Because of
the a priori bounds of equations 3.2 and 3.3, this is possible only for those
functions f that can be computed with a low entropy of circuit states. The
following results show that the existence of a circuit C that computes f
with Hmax(C) = O(log n) is sufficient to guarantee the existence of a circuit
that computes f with low energy complexity.

Theorem 1. Assume that a Boolean function f : {0, 1}n → {0, 1} can be com-
puted by some polynomial size threshold circuit C with Hmax(C) = O(log n). Then
f can also be computed by some polynomial size threshold circuit C ′ with

ECmax(C ′) ≤ Hmax(C) + 1 = O(log n). (3.4)

Furthermore, if Q is any distribution of inputs X ∈ {0, 1}n, then one can con-
struct a polynomial size threshold circuit C ′′ with

ECQ(C ′′) ≤ HQ(C)
2

+ 2 = O(log n). (3.5)

Remark 1. The subsequent proof shows that in fact the following more
general statements hold for any function f and any distribution Q:
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If f can be computed by some arbitrary (feedforward) threshold
circuit C , then f can also be computed by a threshold circuit C ′

with size(C ′) ≤ 2Hmax(C), depth(C ′) ≤ size(C) + 1, Hmax(C ′) ≤ Hmax(C), and
ECmax(C ′) ≤ Hmax(C) + 1. Furthermore, f can also be computed by a thresh-
old circuit C ′′ with size(C ′′) ≤ 2Hmax(C)+1, depth(C ′′) ≤ size(C) + 1, HQ(C ′′) ≤
HQ(C), and ECQ(C ′′) ≤ HQ(C)

2 + 2.

Remark 2. The assumption Hmax(C) = O(log n) is satisfied by stan-
dard constructions of threshold circuits for many commonly considered
functions f . Examples are all symmetrical functions (hence, in particular,
PARITY of n bits), COMPARISON of binary numbers, and BINARY AD-
DRESSING (routing) where the first k input bits represent an address for one
of the 2k subsequent input bits (thus, n = k + 2k). In fact, to the best of our
knowledge, there is no function known that can be computed by polynomial
size circuits but not by polynomial size circuits C with Hmax(C) = O(log n).

Proof of Theorem 1. The proof is split up into a number of lemmas (see
lemmas 1 to 6). The idea is to first simulate in lemma 1 the given circuit C
by a threshold decision tree (i.e., by a decision tree T with threshold gates
at the nodes; see definition 1), which has at most 2Hmax(C) leaves. Then this
threshold decision tree is restructured in lemma 3 in such a manner that
every path in the tree from the root to a leaf takes the right branch at an
internal node at most log(# of leaves) times. Hence, the path can take the
right branch at most Hmax(C) times. Obviously such an asymmetrical cost
measure is of interest when one wants to minimize an asymmetrical com-
plexity measure such as EC , which assigns different costs to gate outputs
0 and 1. Finally we show in lemma 5 that the computations of the resulting
threshold decision tree can be simulated by a threshold circuit where some
gate outputs a 1 whenever the simulated path in the decision tree moves
into the right subtree at an internal node of the tree. The proof of lemma 5
has to take into account that the control structures of decision trees and cir-
cuits are quite different: a gate in a decision tree is activated only when the
computation path happens to arrive at the corresponding node of the deci-
sion tree, but a gate in a threshold circuit is activated in any computation of
that circuit. Hence, a threshold decision tree with few threshold gates that
output 1 does not automatically yield a threshold circuit with low energy
complexity. However, we show that all gates in the simulating threshold
circuit that do not correspond to a node in the decision tree where the
right branch is chosen receive an additional input with a strongly negative
weight (see lemma 4), so that they output a 0 when they get activated.

Finally, we show in lemma 6 that the threshold decision tree can be
restructured alternatively, so that the average number of times when a
computation path takes the right subtree at a node remains small (instead
of the maximal number of taking the right subtree). This maneuver yields
the proof of the second part of the claim of theorem 1.
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Definition 1. A threshold decision tree T (called a linear decision tree in Gröger
and Turán (1991)) is a binary tree in which each internal node has two children, a
left and a right one, and is labeled by a threshold gate that is applied to the input
X ∈ {0, 1}n for the tree. All the leaves of threshold decision trees are labeled by 0 or
1. To compute the output of a threshold decision tree T on an input X, we apply the
following procedure from the root until reaching a leaf: we go left if the gate at a
node outputs 0; otherwise, we go right. If we reach a leaf labeled by l ∈ {0, 1}, then
l is the output of T for input X.

Note that the threshold gates in a threshold decision tree are applied only
to input variables from the external input X ∈ {0, 1}n, not to outputs of pre-
ceding threshold gates. Hence, it is obvious that computations in threshold
decision trees have a quite different structure from computations in thresh-
old circuits, although both models use the same type of computational
operation at each node.

The depth of a threshold decision tree is the maximum number of nodes
from the root to a leaf. We assign binary strings to nodes of T in the usual
manner:

� ĝε denotes the root of the tree (where ε is the empty string).
� For a binary string s, let ĝs0 and ĝs1 be the left and right child of the

node with label ĝs .

For example, the ancestors of a node ĝ1011 are ĝε , ĝ1, ĝ10, and ĝ101. Let ST be
the set of all binary strings s that occur as indices of nodes ĝs in a threshold
decision tree T . Then all the descendants of node ĝs in T can be represented
as ĝs∗ for s∗ ∈ ST .

The given threshold circuit C can be simulated in the following way by
a threshold decision tree:

Lemma 1. Let C be a threshold circuit computing a function f : {0, 1}n → {0, 1}
with m gates. Then one can construct a threshold decision tree T with at most
2Hmax(C) leaves and depth(T) ≤ m, which computes the same function f .

Proof. Assume that C consists of m gates. We number the gates g1, . . . , gm

of C in topological order. Since gi receives the circuit input X and the outputs
of g j only for j < i as its inputs, we can express the output gi (X) of gi for
circuit input X = 〈x1, . . . , xn〉 as

gi (X) = sign


 n∑

j=1

wi
j x j +

i−1∑
j=1

wi
g j

g j (X) + ti


 ,

where wi
g j

is the weight that gi applies to the output of g j in circuit C .
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Let S be the set of all binary strings of length up to m − 1. We define
threshold gates ĝs : X → {0, 1} for s ∈ S by

ĝs(X) = sign


 n∑

j=1

w
|s|+1
j x j + ts


 with

ts =
|s|∑
j=1

w|s|+1
g j

s j + t|s|+1,

where s j is the j th bit of string s and |s| is the length of s. Obviously these
gates ĝs are variations of gate gi with different built-in assumptions s about
the outputs of preceding gates.

Let T be the threshold decision tree consisting of gates ĝs for s ∈ S. That
is, gate ĝε = g1 is placed at the root of T . We let the left child of ĝs be
ĝs0 and the right child of ĝs be ĝs1. We let each ĝs with |s| = m − 1 have
a leaf labeled by 0 as left child and a leaf labeled 1 as right child. Since
ĝs computes the same function as g|s|+1 if the preceding gates gi output si

for 1 ≤ i ≤ |s|, T computes the same function f as C . We then remove all
leaves from T for which the associated paths correspond to circuit states
A ∈ {0, 1}m that do not occur in C for any circuit input X ∈ {0, 1}n. This
reduces the number of leaves in T to 2Hmax(C). Finally, we iteratively re-
move all nodes without children, and replace all nodes below which there
exists just a single leaf by a leaf. In this way, we arrive again at a binary
tree.

We now introduce a cost measure cost(T) for trees T that, like the energy
complexity for circuits, measures for threshold decision trees how often a
threshold gate outputs a 1 during a computation:

Definition 2. We denote by cost(T) the maximum number of times where a
path from the root to a leaf in a binary tree T goes to the right. If T is a leaf, then
cost(T) = 0.

We will show in lemma 5 that one can simulate any threshold decision
tree T ′ by a threshold circuit CT ′ with ECmax(CT ′ ) ≤ cost(T ′) + 1. Hence,
it suffices for the proof of theorem 1 to simulate the threshold decision
tree T resulting from lemma 1 by another threshold decision tree T ′ for
which cost(T ′) is small. This is done in lemma 4, where we will con-
struct a tree T ′ that reduces cost(T ′) down to another cost measure rank(T).
This measure rank(T) always has a value ≤ log(# of leaves of T) accord-
ing to lemma 2; hence, rank(T) ≤ Hmax(C) for the tree T constructed in
lemma 1.
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Definition 3. The rank of a binary tree T is defined inductively as follows:

� If T is a leaf, then rank(T) = 0.
� If T has subtrees Tl and Tr , then

rank(T) =



rank(Tl ), if rank(Tl ) > rank(Tr )
rank(Tr ) + 1, if rank(Tl ) = rank(Tr )
rank(Tr ), if rank(Tl ) < rank(Tr ).

Lemma 2. Let T be any binary tree. Then rank(T) ≤ log(# of leaves of T).

Proof. We proceed by induction on the depth of T . If depth(T) = 0, then
T consists of a single node; hence,

rank(T) = 0 = log 1 = log(# of leaves of T).

Assume now that depth(T) > 0, and let Tl and Tr be the left and right
subtree of the root of T .

Case 1: rank(Tl ) 
= rank(Tr ). Then the claim follows immediately from the
induction hypothesis, since rank(T) = rank(Tl ) or rank(T) = rank(Tr ).

Case 2: rank(Tl ) = rank(Tr ). Assume without loss of generality that (#
of leaves of Tl ) ≤ (# of leaves of Tr ). Then the induction hypothesis
implies that rank(T) = rank(Tl ) + 1 ≤ log(# o f leaves o f Tl ) + 1 = log(2 ·
(# o f leaves o f Tl )) ≤ log(# o f leaves o f T).

Lemma 3. Let T be a threshold decision tree computing a function f :
{0, 1}n → {0, 1}. Then f can also be computed by a threshold decision tree T ′

that has the same depth and the same number of leaves as T and satisfies
cost(T ′) = rank(T).

Proof. Let T consist of gates gs for s ∈ ST . We define Ts as the subtree of
T whose root is gs . Let Ts

l (respectively, Ts
r ) denote the left(right) subtree

below the root of Ts . We modify T inductively by the following procedure,
starting at the nodes gs of largest depth. If cost(Ts

l ) < cost(Ts
r ), we replace

gs by its complement and swap the left subtree and the right subtree. The
complement of gs is another threshold gate g that outputs 1 if and only if gs

outputs 0. Such a gate g exists since
∑n

i=1 wi xi < t ⇔ ∑n
i=1(−wi )xi > −t ⇔∑n

i=1(−wi )xi ≥ T ′ for another threshold T ′ (which always exists if the xi

assume only finitely many values). Let T̂ s be the threshold decision tree
produced from Ts by this procedure. By construction, it has the following
properties:

� If the children of gs both are leaves, then we have cost(T̂ s) = 1.
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� Otherwise,

cost(T̂ s) =



cost(T̂ s
l ), if cost(T̂ s

l ) > cost(T̂ s
r )

cost(T̂ s
r ) + 1, if cost(T̂ s

l ) = cost(T̂ s
r )

cost(T̂ s
r ), if cost(T̂ s

l ) < cost(T̂ s
r ),

where T̂ s has subtrees T̂ s
l and T̂ s

r .
Since this definition coincides with the definition of the rank, we have

constructed a tree T ′ with cost(T ′) = rank(T). This procedure preserves the
function that is computed, the depth of the tree, and the number of leaves.

We now show that the threshold decision tree that was constructed in
lemma 3 can be simulated by a threshold circuit with low energy complex-
ity. As preparation, we first observe in lemma 4 that one can “veto” any
threshold gate g through some extra input. This will be used in lemma 5 in
order to avoid the event that gates in the simulating circuit that correspond
to gates in an inactive path of the simulated threshold decision tree increase
the energy complexity of the resulting circuit.

Lemma 4. Let g(x1, . . . , xn) = sign(
∑n

i=1 wi xi − t) be a threshold gate. Then
one can construct a threshold gate g′ using an additional input xn+1 with the
following property:

g′(x1,...,xn,xn+1
) =

{
0, if xn+1 = 1
g(x1, . . . , xn), if xn+1 = 0.

Proof. We set wn+1 := −(
∑n

i=1 |wi | + |t| + 1). Apart from that g′ uses the
same weights and threshold as g, it is obvious that the resulting gate g′ has
the desired property.

Lemma 5. Let T be a threshold decision tree that consists of k internal nodes
and computes a function f . Then one can construct a threshold circuit CT with
ECmax(CT ) ≤ cost(T) + 1 that computes the same function f . In addition, CT

satisfies depth(CT ) ≤ depth(T) + 1 and size(CT ) ≤ k + 1.

Proof. We can assume without loss of generality that every leaf with
label 1 in T is the right child of its parent (if this is not the case, swap this
leaf with the right subtree of the parent, and replace the threshold gate at
the parent node as in the proof of lemma 3 by another threshold gate that
always outputs the negation of the former gate; this procedure does not
increase the cost of the tree or its depth or number of internal nodes). Now
let

gs(X) = sign


 n∑

j=1

ws
j x j − ts



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be the threshold gate in T at the node with label s ∈ ST . Let ws
n+1 be the

weight constructed in lemma 4 for an additional input that can force gate
gs to output 0. Set W := max{|ws

n+1| : s ∈ ST }.
The threshold circuit CT that simulates T has a gate g′

s for every gate gs in
T and, in addition, an OR-gate that receives inputs from all gates g′

s so that
gs has a leaf with label 1. (Because of our assumption, this leaf is reached
whenever the gate gs at node s ∈ ST gets activated and gs outputs a 1.) We
make sure that any gate g′

s in CT outputs 1 for a circuit input X if and only if
the gate gs in T gets activated for this input X and outputs 1. Therefore, a gate
g′

s in CT can output 1 only if it corresponds to a gate gs in T with output 1 that
lies on the single path of T that the circuit input X activates. Hence, this
construction automatically ensures that ECmax(CT) ≤ cost(T) + 1 (where
the +1 arises from the additional OR-gate in CT ).

In order to achieve this objective, g′
s gets additional inputs from all gates

g′
s̃ in CT such that s̃ is a proper prefix of s. The weight for the additional

input from g′
s̃ is −W if s̃0 is a prefix of s, and W otherwise. In addition, the

threshold of g′
s is increased by ls · W, where ls is the number of 1′s in the

binary string s. In this way, g′
s can output 1 if and only if gs outputs 1 for

the present circuit input X, and all gates gs̃ of T for which gs lies in the right
subtree below gs̃ output 1, and all gates ĝs̃ of T for which gs lies in the left
subtree below gs̃ output 0. Thus, g′

s outputs 1 if and only if the path leading
to gate gs gets activated in T and gs outputs 1.

The proof of the first claim of theorem 1 follows now immediately from
lemmas 1 to 5. Note that the number k of internal nodes in a binary tree is
equal to (# of leaves)−1; hence, k ≤ 2Hmax(C) − 1 in the case of the decision
tree T resulting from applications of lemmas 1 and 3. This yields size(CT ) ≤
2Hmax(C) for the circuit CT that is constructed in lemma 5 for this tree T .

The proof of the second claim of theorem 1 follows by applying the
subsequent lemma 6 instead of lemma 3 to the threshold decision tree T
resulting from lemma 1. In addition, a minor modification is needed in the
proof of lemma 5. The threshold decision tree T ′ that results from lemma 6
is constructed to have the property that each gate in T ′ outputs 1 with
probability ≤ 1/2. This may require that the left child of a node is a leaf
with label 1, causing in lemma 5 a potential doubling of the circuit size and
an additive increase by 1 of the energy complexity.

Lemma 6. Let T be a threshold decision tree computing f : {0, 1}n → {0, 1}.
Then for any given distribution Q of circuit inputs, there exists a threshold decision
tree T ′ computing f such that the expected number of 1’s with regard to Q is at
most HQ(C)/2.

Proof. Let costQ(s) be the expected number of times where one goes to
the right in a subtree of T ′ whose root is the node labeled by s. Let P(s) be
the probability (with regard to Q) that gate gs outputs 1. We construct T ′
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by modifying T inductively (starting at the nodes of the largest depth m in
T) through the following procedure: if P(s) > 1/2, replace gs by a threshold
gate that computes its negation and swap the left and right subtree below
this node.

By construction, we have P(s) ≤ 1/2 for every gate gs in T ′. Furthermore,
we have:

� If |s| = m − 1, then costQ(s) = P(s).
� If 0 ≤ |s| < m − 1, then P(s) ≤ 1/2 and costQ(s) = P(s) +

P(s)costQ(s1) + (1 − P(s))costQ(s0).

One can prove by induction on |s| that costQ(s) ≤ HQ(s)/2 for all s ∈ ST ′ ,
where HQ(s) is the entropy of states of the ensemble of gates of T ′ in the
subtree below gate gs .

For the induction step, one uses the convexity of the log func-
tion (which implies that P(s) = −P(s) · (−1) = −P(s) · log P(s)+(1−P(s))

2 ≤
−P(s)( log(P(s))+log(1−P(s))

2 )) and the fact that P(s) ≤ 1 − P(s) to show that

costQ(s) ≤ P(s) + P(s) · HQ(s1)
2

+ (1 − P(s)) · HQ(s0)
2

≤ −P(s) ·
(

log P(s) + log(1 − P(s))
2

)

+ P(s)
HQ(s1)

2
+ (1 − P(s)) · HQ(s0)

2

≤ − P(s)
2

log P(s) − (1 − P(s))
2

log(1 − P(s)) + P(s)
HQ(s1)

2

+ (1 − P(s))
HQ(s0)

2
≤ HQ(s)

2
.

Remark 3. The results of this section can also be applied to circuits that
compute arbitrary functions f : D→{0, 1} for some arbitrary finite set D ⊆
R

n (instead of {0, 1}n). For domains D ⊆ R
n of infinite size, a different proof

would be needed, since then one can no longer replace any given threshold
gate by another threshold gate that computes its negation (as used in the
proofs of lemmas 3, 5, and 6).

4 On the Computational Power of Circuits with Low Entropy

The concepts discussed in this letter raise the question which functions
f : {0, 1}n → {0, 1} can be computed by polynomial size threshold circuits
C with Hmax(C) = O(log n). There is currently no function f in P (or even
in NP) known for which this is provably false. But the following result
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shows that if all functions that can be computed by layered2 polynomial
size threshold circuits of bounded depth can be computed by a circuit C of
the same type that satisfies in addition Hmax(C) = O(log n), then this implies
a collapse of the depth hierarchy for polynomial-size threshold circuits:

Theorem 2. Assume that a function f : {0, 1}n→{0, 1} (or f : R
n→{0, 1})

can be computed by a threshold circuit C with polynomially in n many gates and
Hmax(C) = O(log n). Then one can compute f with a polynomial size threshold
circuit C ′ of depth 3.

Proof. According to lemma 1, there exists a threshold decision tree T
with polynomially in n many leaves and depth(T) ≤ size(C). Design (as in
Gröger & Turán, 1991) for each path p from the root to a leaf with output
1 in T a threshold gate gp on layer 2 of C ′ that outputs 1 if and only if this
path p becomes active in T . The output gate on layer 3 of C ′ is simply an
OR of all these gates gp.

5 Discussion

In this letter, we have introduced an energy complexity measure for thresh-
old circuits that reflects the biological fact that the firing of a neuron con-
sumes more energy than its nonfiring. We also have provided methods for
restructuring a given threshold circuit with high energy consumption by a
threshold circuit that computes the same function but has brain-like sparse
activity. Theorem 1 in combination with remark 2 implies that the computa-
tional power of such circuits is quite large. The resulting circuits with sparse
activity may help us to elucidate the way in which circuits of neurons are
designed in biological systems. In fact, the structure of computations in the
threshold circuits with sparse activity that were constructed in the proof of
theorem 1 is reminiscent of biological results on the structure of computa-
tions in cortical circuits of neurons, where there is concern for the selection
of different pathways (dynamic routing) in dependence of the stimulus
(Olshausen, Anderson, & Essen, 1995). In addition, our constructions pro-
vide first steps toward the design of algorithms for future extremely dense
VLSI implementations of neurally inspired circuits, where energy consump-
tion and heat dissipation become critical factors.

It is well known (see, e.g., Hajnal, Maass, Pudlak, Szegedy, & Turán,
1993) that threshold circuits can be made robust against random failure of
gates with a moderate increase in circuit size. Such methods can also be

2 A feedforward circuit is said to be layered if its gates can be partitioned into layers
so that edges go from only one layer to the next. We actually need to assume here only
that edges from circuit inputs go only to gates on layer 1.
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applied to the sparsely active threshold circuits that were constructed in
this letter, maintaining their sparse activity feature. For example, one can
replace each threshold gate by an odd number k of identical copies of this
gate and take their majority vote with the help of another threshold gate.
This increases the circuit size by a factor of only k + 1, but preserves their
sparse activity. Furthermore, the resulting circuit computes correctly as long
as the majority of gates in each group of k gates computes without a fault.
Additional noise suppression could exploit that all legitimate activation
patterns of gates in the circuit CT that was constructed in lemma 5 have a
quite specific structure, since they simulate an activation path in a tree T .

The new concepts and results of this letter suggest a number of interest-
ing open problems in computational complexity theory. At the beginning
of section 3, we showed that the energy complexity of a threshold circuit
that computes some function f cannot be less than the a priori bound given
by the minimal required circuit entropy for computing such a function.
This result suggests that the entropy of circuit states required for various
practically relevant functions should be investigated. Another interesting
open problem is the trade-off between energy complexity and computation
speed in threshold circuits, both in general and for concrete computational
problems. Finally, we consider that both the energy complexity and the
entropy of threshold circuits are concepts of interest in their own right.
They give rise to interesting complexity classes that have not been consid-
ered previously in computational complexity theory. In particular, it may
be possible to develop new lower-bound methods for circuits with low en-
tropy, thereby enlarging the reservoir of lower-bound techniques in circuit
complexity theory.
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Gröger, H. D., & Turán, G. (1991). On linear decision trees computing Boolean func-
tions. Lecture Notes in Computer Science, 510, 707–718.

Hajnal, A., Maass, W., Pudlak, P., Szegedy, M., & Turán, G. (1993). Threshold circuits
of bounded depth. J. Comput. System Sci., 46, 129–154.



3008 K. Uchizawa, R. Douglas, and W. Maass

Kasim-Zade, M. (1992). On a measure of the activeness of circuits made of functional
elements. Mathematical Problems in Cybernetics, 4, 218–228. (in Russian)

Kissin, G. (1991). Upper and lower bounds on switching energy in VLSI. J. Assoc.
Comp. Mach., 38, 222–254.

Lennie, P. (2003). The cost of cortical computation. Current Biology, 13, 493–497.
Margrie, T. W., Brecht, M., & Sakmann, B. (2002). In vivo, low-resistance, whole-

cell recordings from neurons in the anaesthetized and awake mammalian brain.
Pflugers Arch., 444(4):491–498.

Minsky, M., & Papert, S. (1988). Perceptrons: An introduction to computational geometry.
Cambridge, MA: MIT Press.

Olshausen, B. A., Anderson, C. H., & Essen, D. C. V. (1995). A multiscale dynamic
routing circuit for forming size- and position-invariant object representations. J.
Comput. Neurosci., 2(1):45–62.

Parberry, I. (1994). Circuit complexity and neural networks. Cambridge, MA: MIT Press.
Reif, J. H., & Tyagi, A. (1990). Energy complexity of optical computations. In Pro-

ceedings of the Second IEEE Symposium on Parallel and Distributed Processing (pp.
14–21). Piscataway. NJ: IEEE.

Roychowdhury, V. P., Siu, K. Y., & Orlitsky, A. (1994). Theoretical advances in neural
computation and learning. Boston: Kluwer Academic.

Siu, K.-Y., Roychowdhury, V., & Kailath, T. (1995). Discrete neural computation; A
theoretical foundation. Upper Saddle River, NJ: Prentice Hall.

Weinzweig, M. N. (1961). On the power of networks of functional elements. Dokl.
Akad. Nauk SSSR, 139, 320–323.

Received September 14, 2005; accepted May 5, 2006.


