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ON THE CONCEPT OF Π1
1-COMPLETENESS
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Abstract. It is shown that two natural notions of completeness for co-analytic
sets in Polish spaces, one in terms of continuous reductions and the other in
terms of Borel reductions, coincide. The proof uses methods of effective de-
scriptive set theory.

The concept of completeness of sets in various classes in the projective and other
hierarchies plays a central role in descriptive set theory. A complete set in a given
class is a universal object that encapsulates the complexity of the class. The concept
of completeness depends a priori on the choice of a collection of “reducing” maps
and the main purpose of this paper is to show that, in certain standard cases, it is
actually independent of such a choice and therefore has an intrinsic character. We
explain below the precise results.

Consider sets in Polish (separable completely metrizable topological) spaces.
Let F be a class of functions between such spaces, like, for example, continuous,
Borel, etc. A set A ⊆ X , X a Polish space, is called FΠ1

1-hard if for every zero-
dimensional (i.e., having a basis consisting of clopen sets) Polish space Y and every
Π1

1-set B ⊆ Y there is a function f : Y → X , f ∈ F , with B = f−1[A]. (Such
an f is said to reduce B to A.) If A is also Π1

1, we call A FΠ1
1-complete. For

the importance of these notions in descriptive set theory we refer to [2]. There are
two natural extremes for a choice of F in this context, namely F0 = continuous
and F1 = Borel. In the first case we simply use the terms Π1

1-hard, Π1
1-complete

and in the second the terms Borel Π1
1-hard and Borel Π1

1-complete. Clearly any
set which is Π1

1-hard (complete) is also Borel Π1
1-hard (complete). The question

of whether the converse also holds is a natural question that often comes up. It
was brought to our attention by R. Dougherty. We show here, using the method
of Harrington-Kechris [1], that this is indeed the case, and therefore the notion of
Π1

1-completeness has an intrinsic character independent of the choice of the class
of reducing functions. It is perhaps worth pointing out that the method of [1]
makes use of effective descriptive set theory, while the result proved deals purely
with classical notions. We do not know a proof of this result using only classical
methods.

Theorem. Let X be a Polish space and A ⊆ X. Then A is Π1
1-hard (resp.,

complete) iff A is Borel Π1
1-hard (resp., complete).
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Proof. First we argue that it is enough to prove the result for X = NN = the Baire
space. Indeed, assume the result has been proved in this case. Let X be any Polish
space and A ⊆ X a Borel Π1

1-hard set. Since X is Polish, fix a closed set F ⊆ NN

and a continuous bijection π : F → X . Let ρ be the inverse of X . Then ρ is Borel.
Let σ be a continuous retraction from NN to F , and let A′ = (π ◦ σ)−1[A] ⊆ NN.

Since A is Borel Π1
1-hard, then (using ρ) A′ is Borel Π1

1-hard, so by our as-
sumption A′ is Π1

1-hard, so (using π ◦ σ) A is Π1
1-hard. (We thank the referee for

suggesting this argument.)
So assume A ⊆ NN is Borel Π1

1-hard. Let B ⊆ NN be a Π1
1-set. We will find

a continuous f : NN → NN with f−1[A] = B. Since every zero-dimensional Polish
space is a closed subspace of NN (see [2, 7.8]) this shows that A is Π1

1-hard.

We first review some concepts and facts from [1].
A coding system for perfect binary trees is a set P ⊆ 2N and a surjection P : P →

{T : T is a perfect binary tree}. For a ∈ P , let P(a) ≡ Pa (= the tree coded by a).
For c ∈ Pa let a∗(c) = the element of 2N corresponding to c under the canonical
homeomorphism a∗ : [Pa] → 2N (here [T ] is the set of infinite branches through T ).
Call 〈a, c〉 good if a ∈ P&c ∈ [Pa]. We call a coding system 〈P,P〉 nice if:

(i) For any H : 2N × 2N → N Borel, there is a ∈ P and n ∈ N such that

∀c ∈ [Pa](H(a, c) = n).

(ii) P is Π1
1 and for a ∈ P the relation

P(s, a) ⇔ s ∈ Pa
is ∆1

1, i.e., there are relations Π,Σ in Π1
1,Σ

1
1 resp., such that for a ∈ P :

P(s, a) ⇔ Π(s, a) ⇔ Σ(s, a).

Lemma ([1, 1.4.2]). There exists a nice coding system.

Proof. Apply 1.4.2 of [1] with W = N, ∼ the equality relation on N.

Fix such a system (P,P) from now on.
Let 〈·, ·, ·〉, 〈·, ·〉 be recursive homeomorphisms of 2N × 2N × 2N, 2N × 2N with 2N.

For any given 〈a0, c0〉 inductively define 〈mi, a
i+1, ci+1〉 (i ≥ 0) as follows: If 〈ai, ci〉

is given and is good, let 〈xi, ai+1, ci+1〉 = (ai)∗(ci). Put mi = the location of the
first 0 in xi, if such exists; else mi = 0. If 〈ai, ci〉 is not good, put 〈mi, a

i+1, ci+1〉 =
〈0, 0, 0〉, where 0 = (0, 0, . . . ).

Now define B∗ ⊆ 2N as follows:

〈a0, c0〉 ∈ B∗ ⇔ ∀i(〈ai, ci〉 is good)&(mi) ∈ B.

Clearly B∗ is Π1
1. So there is G : 2N → NN Borel such that

〈a0, c0〉 ∈ B∗ ⇔ G(〈a0, c0〉) ∈ A.

Next we will find F : N<N → (2N × N)<N such that
(i) t ⊆ t′ ⇒ F (t) ⊆ F (t′);
(ii) length(F (t)) = length(t) + 1;
(iii) if F (∅) = (a0, k0), then a0 ∈ P and for every c0 ∈ [Pa0 ], G(〈a0, c0〉)(0) = k0;

if F (m0, . . . ,mn) = (a0, k0, a
1, k1, . . . , a

n+1, kn+1), then

(a) ∀i ≤ n+ 1(ai ∈ P );
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(b) for any cn+1 ∈ [Pan+1 ], if c0, c1, . . . , cn are the uniquely determined members
of [Pa0 ], . . . , [Pan ] such that

(ai)∗(ci) = 〈mi, a
i+1, ci+1〉, i ≤ n,

where mi = 11 . . .1011 . . . , with 0 at the mith place, then G(〈a0, c0〉)(i) = ki,
∀i ≤ n+ 1.

Assuming such F can be found, put f((mi)) = (ki), so that f is continuous
(actually Lipschitz). We claim that

(mi) ∈ B ⇔ f((mi)) ∈ A,(∗)
which completes the proof.

To prove (∗), let (a0, a1, . . . ) be produced by F applied to (m0,m1, . . . ). For each
n, define perfect sets Cn

0 , C
n
1 , . . . , C

n
n ⊆ 2N with Cn

i ⊆ Pai , for i ≤ n, as follows:

Cn
n = {cn ∈ [Pan ] : (an)∗(cn) = 〈mn, a

n+1, x〉, for some x},
Cn
n−1 = {cn−1 ∈ [Pan−1 ] : (an−1)∗(cn−1) = 〈mn−1, a

n, x〉, for some x ∈ Cn
n},

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
Cn

0 = {c0 ∈ [Pa0 ] : (a0)∗(c0) = 〈m0, a
1, x〉 for some x ∈ Cn

1 }.
Then we have:
(iv) c0 ∈ Cn

0 ⇒ 〈ai, ci〉 is good for i ≤ n, where c1, . . . , cn are computed according
to the formula in (iii)(b).

(v) n′ ≥ n⇒ Cn′
i ⊆ Cn

i for i ≤ n.
So [Pa0 ] ⊇ C0

0 ⊇ C1
0 ⊇ C2

0 ⊆ . . . . Thus
⋂
n C

n
0 6= ∅. Pick c0 ∈ Cn

0 , for all n.
Then all 〈ai, ci〉 are good, and (ai)∗(ci) = 〈mi, a

i+1, ci+1〉 for all i, so by (iii)(b)
above G(〈a0, c0〉)(i) = ki for all i. Since

〈a0, c0〉 ∈ B∗ ⇔ G(〈a0, c0〉) ∈ A,

this means that

∀i(〈ai, ci〉 is good)&(mi) ∈ B ⇔ (ki) ∈ A,

or, as ∀i(〈ai, ci〉 is good),

(mi) ∈ B ⇔ f((mi)) = (ki) ∈ A.

It remains to construct F (m0, . . . ,mn), and this is done by induction on n. To
define F (∅) = (a0, k0), let H0(a, c) = G(〈a, c〉)(0). H0 is Borel, so by the niceness
of the coding system, we can find a0 ∈ P and k0 ∈ N with G(〈a, c0〉)(0) = k0 for all
c0 ∈ [Pa0 ]. Now assume n > 0 and F (m0, . . . ,mn−1) = (a0, k0, a

1, k1, . . . , a
n, kn) is

given. Define Hn+1 : 2N×2N → N as follows: Given (a, c) ∈ 2N×2N, let c0, . . . , cn be
the unique elements of [Pa0 ], . . . , [Pan ] resp., such that (ai)∗(ci) = 〈mi, a

i+1, ci+1〉
for i < n and (an)∗(cn) = 〈mn, a, c〉. Put Hn+1(a, c) = G(〈a0, c0〉)(n + 1). Clearly
Hn+1 is Borel and so, by the niceness of the coding system, we can find an+1, kn+1

such that for all cn+1 ∈ [Pan+1], Hn+1(a
n+1, cn+1) = kn+1. Put

F (m0, . . . ,mn) = F (m0, . . . ,mn−1) ˆ (an+1, kn+1).

Remarks. (i) By taking complements, it immediately follows (with the obvious
definitions) that a subset of a Polish space is Σ1

1-hard (resp., complete) iff it is
Borel Σ1

1-hard (resp., complete).
(ii) Denote the class of ∆1

2n+1 functions by D1
2n+1. Then the preceding proof

generalizes in a straightforward fashion to show that, assuming ∆1
2n-determinacy,
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a subset of a Polish space is Π1
2n+1-hard (resp., complete) iff it is D1

2n+1Π
1
2n+1-hard

(resp., complete). Similarly for Σ1
2n+1.
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