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On the concept of temperature for a small isolated system
J. U. Andersen, E. Bonderup, and K. Hansen
Institute of Physics and Astronomy, University of Aarhus, DK 8000 Aarhus C, Denmark

~Received 24 July 2000; accepted 31 January 2001!

The microcanonical temperature is shown to be a useful concept in calculations of the decay of a
small isolated system with well defined energy. A simpler and more transparent description is
obtained than in Klots’ formulation of finite-heat-bath theory, where the system is represented by a
canonical ensemble. As a further illustration of the utility of the microcanonical temperature
concept, we discuss a formula derived by Dunbar for the probabilities for excitation of a single
oscillator in a collection of harmonic oscillators with well defined total energy. This formula
expresses the excitation probabilities in terms of the temperature for a canonical ensemble with
mean energy equal to the energy of the system. However, a much improved accuracy is obtained if
the canonical temperature and heat capacity are replaced by their microcanonical values. We justify
this replacement through a modified derivation, in which the microcanonical temperature appears as
the canonical temperature of a fictitious system with level densityr8(E), the derivative of the level
densityr(E) of the collection of oscillators. ©2001 American Institute of Physics.
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I. INTRODUCTION

For an isolated system the energy is conserved and
statistical equilibrium, where all microstates with the sa
energy are equally probable, the state of the system ma
identified with a microcanonical ensemble. However, in
calculation of the properties of the system it may be adv
tageous to approximate the state by a canonical ense
because of the mathematical simplicity of this ensemble~see
the introduction to Ref. 1!. In this method, which was pio
neered by Gibbs,2 the energy of the system is identified wi
the average energy in the canonical ensemble. In an alte
tive description developed by Fowler,3 the statistical weights
were expressed as complex integrals, which were evalua
in particular, in the steepest-descent approximation. In
case the temperature is defined by a relation determining
saddle point of the absolute value of the integrand, and,
turns out, the microcanonical system is then in effect a
here represented by a canonical distribution.

We consider systems which are large enough to war
a statistical treatment but still have rather few degrees
freedom so that the relative width of the canonical ene
distribution is significant. For such systems there is a latitu
in the definition of temperature which may be seen as a c
sequence of a complementarity between the concepts o
ergy and temperature.4 An alternative to the ‘‘canonical tem
perature’’ discussed above is the microcanonical te
perature, defined in terms of the derivative of the logarit
of the level density. We argue that this temperature is us
in calculations of the statistical decay of excited molecules
clusters, and that one obtains a conceptually much sim
description by avoiding the standard canonical approxim
tion scheme.

In this connection, we discuss a paper by Dunba5

which has been cited as giving a justification for the rep
sentation of an isolated system by a canonical ensemble.
6510021-9606/2001/114(15)/6518/8/$18.00
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paper deals with the probabilityPj (n) for occupation of the
nth level of the j th oscillator in a collection of harmonic
oscillators in statistical equilibrium at fixed total energy. T
evaluation of this probability is closely related to the pro
lem of calculating the decay rate for an excited molecule
cluster since this rate depends on the probability for conc
tration of a large amount of energy on a single degree
freedom, the reaction coordinate, or on a few degrees
freedom. Applying Fowler’s method, Dunbar derived an an
lytical formula expressingPj (n) in terms of the canonica
temperature and heat capacity of the collection of oscillato
and, on the basis of comparisons with exact calculations
a few model systems, he claimed the formula to be supe
to the approximation by a Boltzmann factor. However, t
comparisons were flawed by numerical errors. We find D
bar’s formula to give a rather poor representation of the ex
Pj (n) values, hardly an improvement over the simple Bol
mann distribution.

We have analyzed the approximation made in the d
vation of Dunbar’s formula. We use a different but equiv
lent method, expressing the level density as an inve
Laplace transform of the partition function.6,7 Dunbar’s deri-
vation is a perturbation calculation in which the integrati
path for a steepest descent evaluation of the level densit
the total system is also used in the evaluation of the le
density of a subsystem with one oscillator excluded. We fi
this procedure to be much more accurate when the level d
sity is expressed in terms of the inverse Laplace transform
the partition function corresponding to the derivative of t
level density, and this leads to Dunbar’s formula with t
microcanonical temperature and heat capacity.

In the following we first introduce the basic concep
the canonical and microcanonical temperatures, and giv
derivation of the relation between the corresponding h
capacities. We shall later consider a model system of h
monic oscillators and therefore quote some useful exp
8 © 2001 American Institute of Physics

t to AIP copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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sions for such a system. In Sec. III we discuss the applica
of the microcanonical temperature in a statistical descrip
of the decay of an isolated system, and as an example
consider particle emission from a cluster. The formalism
closely related to Klots’ finite-heat-bath theory8,9 but we ar-
gue that a conceptual simplification is obtained when re
ence to a fictitious canonical ensemble is avoided.

As a variation on this theme, we then discuss Dunba
result, and in Sec. IV we give a derivation of his formula.
Sec. V we analyze the accuracy of Dunbar’s calculation
show that one may eliminate the main error by the modifi
approximation procedure, which leads to Dunbar’s form
with the microcanonical parameters. Finally, we apply t
procedure to derive an expression for the rate of decay
small isolated system. To lowest order in the finite-heat-b
correction, the result is equivalent to that given in Sec.
but the derivation there based on a Taylor expansion is ea
to extend to higher order and higher accuracy.

II. MICROCANONICAL AND CANONICAL
TEMPERATURE

A system in statistical equilibrium and with well define
energy is represented by a microcanonical ensemble.
consider a quantum system with excitation energyE. The
system is characterized by a density of states,r(E),
smoothed over an energy interval larger than the spacin
the energy levels, and the microcanonical temperatureTm is
defined through the relation

1

kBTm
5

d

dE
ln r~E!, ~1!

where kB is Boltzmann’s constant. To calculate explicit
this relation betweenE and Tm for a system with density
r(E) it is useful to consider the canonical energy distrib
tion, P(e), representing the system in equilibrium with
heat bath at temperatureTm ,

P~e!}r~e!e2e/kBTm. ~2!

From differentiation of this distribution, the most probab
value,ep , is seen to be equal to the energyE of the system.
However, as we shall illustrate below by an example@Eq.
~14!#, the average energy of a canonical ensemble is usu
easier to calculate, and the quantity of interest, the m
probable value, is then obtained when a small correction
the skewness of the energy distribution is included. From
second-order Taylor expansion of lnP(e) aroundep we ob-
tain a Gaussian approximation to the distribution,

P0~e!5
1

A2ps2
exp~2~e2ep!2/2s2!. ~3!

The widths is found from differentiation of Eq.~1!,

s.AkBCmTm , ~4!

whereCm is the derivative ofE with respect toTm , i.e.,Cm

is the microcanonical heat capacity. Sinceep is of order
CmTm , it is a condition for application of the Gaussian a
proximation that the heat capacity be large in units ofkB .
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To include the skewness of the energy distribution,
carry out the Taylor expansion of lnP to third order. This
results in an energy distribution equal toP0(e) multiplied by
a skewness factorS(e) given by

S~e!.expS 1

6
~e2ep!3

d

dE S 21

s2 D D
.11

1

6
~e2ep!3

d

dE S 21

s2 D . ~5!

For the corresponding average energy we find

ē~Tm!.E
0

`

deeP0~e!S~e!

.E1kBTmS 11
Tm

2Cm

d

dTm
Cm~Tm! D . ~6!

The second term inside the parentheses is often small,
neglecting this term we have the desired relation on a sim
form, which may also be expressed as a relation between
canonical and microcanonical heat capacities,Cc andCm ,

Cm.Cc2kB . ~7!

When the average energy of a system in contact with a h
bath is known, we can apply Eq.~7! to obtain the relation
between the energy and the microcanonical temperature
the isolated system.

We now present an alternative derivation of the relat
between peak energy and average energy for a cano
distribution. The skewness of the distribution is included in
less direct manner but along the way we obtain a re
which we shall need in Sec. IV. If we introduce the symb
bm51/kBTm , we may write the average energy for a cano
cal distribution with temperatureTm as a logarithmic deriva-
tive of the partition functionQ(bm),

ē~Tm!52
d

dbm
lnS E

0

`

der~e!e2bmeD
52

d

dbm
ln Q~bm!. ~8!

To evaluate the integral, we approximate the integrand b
Gaussian as in Eq.~3!, and withep5E the partition function
becomes

Q~bm!.r~E!e2bmEA2ps2. ~9!

Introducing the widths from Eq.~4! we may write Eq.~9! as
an expression for the level density, and this is the formula
be applied later,

r~E!.eE/kBTm~2pkBCmTm
2 !21/2Q~1/kBTm!. ~10!

A combination of Eqs.~4!, ~8!, and~9! gives for the average
energy of the canonical ensemble

ē~Tm!.2
d

dbm
~ ln r~E!2bmE2 ln bm11/2 lnCm!.

~11!
t to AIP copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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We ignore the last term, which gives the same correction
the temperature dependence ofCm as in Eq.~6!, and we then
obtain

ē~Tm!.2
dE

dbm
F d

dE
ln r~E!2bmG1E1bm

215E1kBTm ,

~12!

since the quantity in square brackets vanishes accordin
the definition in Eq.~1!. Thus we retrieve the relations i
Eqs.~6! and ~7!.

As an example, we consider a model system to be
cussed in Secs. IV and V. ForJ harmonic oscillators with
level spacingse j the partition function becomes

Q~bm!5)
j 51

J

@12e2bme j #21, ~13!

and, according to Eq.~8!, the average excitation energy
then given by

ē~Tm!5(
j 51

J
e j

ee j /kBTm21
. ~14!

From a second-order expansion ine j /kBTm one finds that in
the high temperature limitē approaches the classical resu
JkBTm2E0 , whereE0 is the zero point energy of the osci
lators, and Eq.~12! then leads to the relationE5(J
21)kBTm2E0 . The classical level density at excitation e
ergy E is proportional to (E1E0)J21,1 and therefore one
obtains the same relation betweenE andTm directly from the
definition in Eq.~1!. The relation in Eq.~12! is also exact in
the classical description ofN free particles, with a level den
sity proportional toE3/2N21.

III. MICROCANONICAL DECAY AND FINITE-HEAT-
BATH THEORY

In standard treatments of statistical mechanics, the r
tion in Eq. ~1! is used to define the temperature of a ve
large system. One then proceeds to derive the fundame
result that a small subsystem of a large microcanonical
tem has a canonical energy distribution. We shall use
microcanonical temperature of a small system for the an
gous purpose, to calculate the probability for concentrat
of a sufficient amount of energy in motion along a react
coordinate to allow the system to overcome an energy
rier. The system then plays the role of a heat bath for
single degree of freedom~or for the few degrees of freedom
of an emitted particle!.

We consider emission of an electron or a small fragm
from an atomic cluster. From the detailed-balance relat
between emission and attachment, one obtains the follow
expression for the probability per unit time and unit ener
for emission of a particle with energye,10

k~E,e!5A~e!
rd~E2Eb2e!

rp~E!
, ~15!

whereE is the initial excitation energy of the cluster andEb

is the binding energy of the particle, whilerp andrd are the
level densities of the parent and daughter clusters. The f
factor A(e) is proportional to the cross section for the r
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verse process, and for emission of a particle without inter
degrees of freedom and with a constant cross sectionA(e) is
proportional toe.10 If we approximate the logarithm of the
daughter level density by a first-order Taylor expansion ine,
the decay rate,k(E,e), becomes proportional to a Boltzman
factor exp(2e/kB Td), whereTd is the microcanonical daugh
ter temperature,

1

kBTd
5

d

dE
ln rd~E2Eb!. ~16!

Thus it may be possible to determine the daughter temp
ture from a measurement of the distribution in released
netic energy.11 The total decay rate is obtained by integrati
of k(E,e) over e,

k~E!5v~Td!
rd~E2Eb!

rp~E!
. ~17!

We assume that there is no barrier for attachment and
mally v(Td) then varies much more slowly than the la
factor. As an example, we obtainv}Td

2 for A}e.
When the transition from parent to daughter involv

only a small change in the number of degrees of freedom,
may replace the level densities in Eq.~17! by a single func-
tion r and include the slowly varying correction factor in th
frequencyv. It then follows from the mean value theore
applied to lnr(E) that with a temperatureTe , defined as in
Eq. ~1! for some energy betweenE2Eb andE, we may write
the decay rate in Arrhenius form,

k~E!5v expS 2Eb

kBTe
D . ~18!

To obtain an estimate of the ‘‘emission temperature’’Te we
expand the logarithm of the ratio of level densities in a Ta
lor series, and we choose the midpoint of the energy inte
as the center of expansion to make the even-order terms
ish. When the heat capacityCm can be considered consta
in the differentiations we obtain to fourth order,

lnS r~E2Eb!

r~E! D.2Eb

d

dE
ln r~E2Eb/2!

2
1

24
Eb

3 d3

dE3 ln r~E2Eb/2!

5
2Eb

kB~Tm2Eb/2Cm!

3S 11
Eb

2

12Cm
2 ~Tm2Eb/2Cm!2D , ~19!

whereTm is the microcanonical temperature before emissi
The emission temperatureTe is then given to first order in
Eb/2Cm by

Te.Tm2Eb/2Cm . ~20!

The second term is usually called the finite-heat-bath cor
tion to the temperature. It has many analogs, for exampl
the application of semiclassical estimates to quantum p
cesses, where there is a finite difference between the in
and final states.
t to AIP copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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Formulas very similar to Eqs.~18!–~20! are an essentia
element of the finite-heat-bath theory developed by Klots8,9

The emission temperatureTe corresponds in this formalism
to an ‘‘isokinetic temperature’’ at which the decay rate in
canonical ensemble is equal tok(E). In our opinion, the
description becomes conceptually simpler and the appr
mations more transparent with the introduction of the mic
canonical temperature. Klots’ formalism is complicated
the introduction of a fictitious system in thermal equilibriu
and of auxiliary quantities which are unnecessary in
simple derivation above.

In Ref. 12 we have applied the description above in
detailed analysis of experiments on electron emission fr
clusters. For the very large fullerene molecules, the meas
lifetimes of anions13,14 are in good accord with prediction
based on Eqs.~18! and ~20!, with parameters determine
from independent measurements. For small clusters,
necessary to apply the higher-order expansion in Eq.~19!
and, as an example, we have analyzed experiments on s
Nb clusters.15 Over a limited range in energy, the expressi
in Eq. ~19! is linear in 1/Tm , and the value ofEb may there-
fore be obtained from a fit of Eq.~19! to the slope of the data
in an Arrhenius plot of lnk against 1/Tm .

In the following we discuss the Dunbar problem, whi
is closely related to the evaluation of decay rates given
Eq. ~17!. Somewhat surprisingly, we find that also in th
context the microcanonical temperature emerges as the
useful temperature concept. We give in Sec. IV a derivat
of Dunbar’s formula with the level density represented by
inverse Laplace transform of the partition function. This
followed in Sec. V by a detailed discussion of the accura
of Dunbar’s perturbation calculation and by a derivation
the microcanonical Dunbar formula.

IV. DUNBAR’S FORMULA

We shall here derive Dunbar’s formula for the excitati
probability for a single oscillator in a collection of harmon
oscillators with well defined total excitation energyE.5 Dun-
bar applied Fowler’s method of complex integration but it
equivalent to the Laplace transform used below.7 The parti-
tion function in Eq.~8! is the Laplace transform of the leve
density, Q(b)5L(r(E)), and the level density is henc
given by the inverse Laplace transform ofQ(b),

r~E!5
1

2p i Eg2 i`

g1 i`

Q~b!ebEdb, ~21!

whereg is an arbitrary positive real number. We shall eva
ate this integral by the steepest-descent method. With
integrand written as exp(f(b)), the first step is to determin
the saddle point of the real part off (b), where the derivative
of f vanishes,

] f

]b
5

]

]b
~ ln Q~b!1bE!50. ~22!

According to Eq.~8!, this equation is fulfilled for a real value
bc corresponding to a canonical ensemble with average
ergy E. The integration path is chosen through the sad
point, and the complex variable may then be written asb
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5bc1ib8. We expandf (b) to second order inb8 and per-
form the integral over the resulting Gaussian. The sec
derivative of the logarithm of the partition function equa
minus the first derivative of the average energy, and
width s* of the Gaussian is given by

s* 5AkB /Ccbc . ~23!

The Gaussian integration therefore gives the following f
mula for the level density,7

r~E!.~2p!21/2bc~kB /Cc!
1/2ebcEQ~bc!. ~24!

The Gaussian approximation in Eq.~3! to the energy distri-
bution in Eq.~2! led to the same formula for the level densi
in Eq. ~10! but with the microcanonical valueTm in Eq. ~1!
for the temperature and with the microcanonical heat cap
ity Cm . The two formulas become identical for large sy
tems, i.e., forkB /Cc→0, and we have found them also t
give nearly the same result for the small model system
cussed below, with relative deviations from the exact res
which are an order of magnitude smaller thankB /Cc .

For a system of harmonic oscillators, Dunbar took t
analysis one step further and considered the excitation p
ability for the individual oscillators, i.e., the probabilit
Pj (n) for finding the j th oscillator in thenth excited state.
The exact value is given by the ratio between the numbe
states available for the remainingJ21 oscillators with exci-
tation energyE2ne j and the number of states of the tot
system with excitation energyE. An approximate value may
be obtained from the ratio between the level densitiesr j (E
2ne j ) of the J21 oscillators andr(E) of the total system,
estimated in the steepest-descent approximation. We a
Eq. ~21! to calculate both level densities. Denoting the p
tition function for the total system byQ(b) and applying the
expression in Eq.~13!, we obtain

r j~E2ne j !5
1

2p i Eg2 i`

g1 i`

Q~b!~12e2be j !eb~E2ne j !db.

~25!

Written in this way, the integrand is a difference betwe
two terms which are identical apart from a replacement on
by n11. Following Ref. 5, we estimate each of these ter
by a perturbation calculation: We use the same integra
path as forr(E). When the Gaussian approximation fo
Q(b)exp(bE) is introduced, the integrals are easily eval
ated through completion of the square in the exponent,
we obtain Dunbar’s formula,

Pj~n!.e2ne j /kBTc expS 2
kB

2Cc
S ne j

kBTc
D 2D

3F12e2e j /kBTc expS 2
~2n11!kB

2Cc
S e j

kBTc
D 2D G ,

~26!

whereTc denotes the canonical temperature of the total s
tem. This formula has several nice features: The first facto
the usual Boltzmann factor, and forkB /Cc→0 the expres-
sion approaches a normalized exponential distribution.
first order inkB /Cc , the second exponent corresponds to
finite-heat-bath correction of the first exponent, as given
t to AIP copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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Eq. ~20!. The expression in Eq.~26! is normalized also for a
finite value ofkB /Cc : As noted above, the two terms wit
opposite sign are identical apart from the replacement on
by n11. In the sum overn to infinity the terms therefore
cancel in pairs, except for the term withn50 which is equal
to unity. Although the sum includes small unphysical ter
with ne j.E, this is in most cases a satisfactory normaliz
tion.

On the basis of numerical calculations for a few mod
systems, Dunbar claimed Eq.~26! to be more accurate than
simple Boltzmann distribution. However, we find his com
parisons to be flawed by numerical errors in the evaluation
the expression in Eq.~26!. The error is most easily seen fo
n50 where it is clear that the value of this expression
larger than the corresponding term in a normalized Bo
mann distribution, and this relation is reversed in Fig. 3
Ref. 5. We have recalculated the probabilities for the mo
system illustrated in this figure, and Dunbar’s formula is
fact a rather poor approximation, as shown in Fig. 1. On
other hand, if we instead use the microcanonical tempera
and the corresponding heat capacity, the agreement of
formula with the exact counting is excellent!

V. MICROCANONICAL DUNBAR FORMULA

In order to find an explanation for this observation, w
analyze the derivation of Dunbar’s formula in some detail
is based on a second-order expansion of the logarithm o
two terms in the integrand in Eq.~25!, but at the saddle poin
for the integrand in Eq.~21! rather than at the individua
saddle points for the two terms. To estimate the error as
ciated with this shift of the expansion points, we consider
value I (g) obtained for the integral in Eq.~21! when the
logarithm of the integrand is expanded to second or

FIG. 1. Excitation probabilities for a single oscillator with level spacing 5
cm21 ~D! and 1500 cm21 ~s! in a collection of six harmonic oscillators
23~500 cm21, 1000 cm21, and 1500 cm21!, with total excitation energy
4000 cm21. The total number of states is 110. The dashed curves indi
Dunbar’s formula in Eq.~26! (Tc51552 K), the full-drawn curves the sam
formula with microcanonical parameters (Tm51889 K), and the dotted–
dashed curves Boltzmann distributions atTc .
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aroundg5g01Dg, whereg0 is the saddle point. For the
ratio I (g)/I (g0) we obtain to second order inDg/g0 ,

I ~g!/I ~g0!.S 11
Cc~g0!

2kB
S Dg

g0
D 2D

3S 12
Cc~g0!2

2kBCc~g! S Dg

g0
D 2D S g

g0
S Cc~g0!

Cc~g! D 1/2D .

~27!

The first of the three factors is the ratio between the value
the integrand atb5g and atb5g0 . The second factor ac
counts for the fact that the first derivative of the integra
differs from zero at the expansion pointb5g. As a function
of the imaginary part,b8, the logarithm of the integrand the
contains an imaginary first-order term. By completion of t
square as in the evaluation of Eq.~25! one finds that this
leads to a reduction of the Gaussian integral by an expon
tial factor, which in Eq.~27! has been approximated to se
ond order inDg/g0 . The last factor in Eq.~27! stems from
theg dependence of the width of the Gaussian, derived a
Eq. ~23! from the second derivative of the logarithm of th
integrand. If the temperature dependence of the heat cap
can be neglected, the first two factors in Eq.~27! cancel to
second order inDg/g0 , and to this accuracyI (g) is there-
fore proportional tog.

The observation that apparently the microcanonical te
perature should be used in Dunbar’s formula inspired us
try to remedy the error in the evaluation of Eq.~25! by con-
sideringr8(E), the derivative of the level density. Accord
ing to the definition of the microcanonical temperature in E
~1!, we have the exact relationr(E)5r8(E)/bm and we may
therefore as well consider approximate expressions forr8.
From partial integration one obtainsL(r8)5bL(r), and in
the inverse transform analogous to Eq.~21! the integrand
therefore contains an additional factorb. We apply again the
steepest-descent approximation. The condition analogou
Eq. ~22!, determining the saddle point, now corresponds
the relation in Eq.~12!, i.e., the saddle point is to a goo
approximation atg5bm if the heat capacity is nearly con
stant@Eq. ~6!#. The second derivative of ln(bQ(b)) gives the
width of the Gaussian, and one obtains the formula in
~23! with bc replaced bybm and with Cc replaced byCc

2kB . When only weakly dependent on temperature, t
quantity equals the microcanonical heat capacityCm accord-
ing to Eq.~7!. We then obtain the formula

r~E!.~2p!21/2bm~kB /Cm!1/2ebmEQ~bm!. ~28!

This formula is identical to Eq.~10! and hence found to be a
accurate as the formula in Eq.~24!. We may therefore choos
freely between the two estimates of the level density ba
on an evaluation of eitherr(E) or r8(E) by the steepest-
descent approximation to the inverse Laplace transform.

We now apply these considerations to the evaluation
the level densityr j and show that with the alternative pro
cedure based on a formula for the derivative of the le
density, the error following from the linear dependence ong
can be avoided. To this end, we define a functionF(g) by
the expression,

te
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F~g!5
1

g

1

2p i

3S E
g2 i`

g1 i`

bQ~b!~12e2be j !eb~E2ne j !db D
Gauss

,

~29!

where the integral is evaluated by a second-order expan
of the logarithm of the integrand. The product of the fi
three factors in the integrand is the partition function for t
derivative of the level density for theJ21 oscillators. We
assume that the heat capacities can be considered con
At the saddle pointg0 , which then is the microcanonica
value of b for this subsystem at excitation energyE2ne j ,
the integral divided by 2p i gives an accurate approximatio
to the derivative of the level density for the subsystem. A
cording to the definition in Eq.~1!, the valueF(g0) is then
also an accurate approximation tor j (E2ne j ). For neighbor-
ing values ofg, the factorg21 in front cancels the linea
dependence of the integral and the expression is indepen
of g to second order. To obtain a simple formula for t
probabilitiesPj (n)5r j (E2ne j )/r(E) we therefore use the
valueg5bm corresponding to the saddle point for the ana
gous expression forr(E), and we obtain

Pj~n!.e2ne j /kBTm~12e2e j /kBTm!

3expS 2
e j

2

2kBCm, jTm
2 S 1

ee j /kBTm21
2nD 2D S Cm

Cm, j
D 1/2

,

~30!

where we have introduced the symbolCm, j for the microca-
nonical heat capacity of the subsystem excluding thej th os-
cillator. To avoid this additional parameter, we may as in
evaluation of Eq.~25! replace the expression in Eq.~29! for
g5bm by a difference between two terms, which are eva
ated individually in the Gaussian approximation. We th
obtain a formula identical to Dunbar’s result in Eq.~26! but
with the microcanonical values of the temperature and
heat capacity. The deviations from Eq.~30! are small,
amounting to less than 6% for all the model calculations
Figs. 1 and 2.

The exact probabilities for the model illustrated in t
figures were calculated from a recursion formula. If the
cillators are enumerated from 1 toJ, the following relation
holds for the number of statesN(E,K) of a system with
excitation energyE and containing the firstK oscillators,

N~E,K !5(
n

N~E2neK ,K21!, for K<J, ~31!

where the sum overn is restricted to non-negative values
E2neK . As shown in Fig. 1, the ‘‘microcanonical Dunba
formula’’ gives much better agreement with these ex
probabilities than the original Dunbar formula, which giv
too low probabilities for largen. In the light of our discus-
sion, this discrepancy can be explained in the main by
linear dependence ong of the expression in Eq.~27!. For
large n values, most of the energy is concentrated on
single oscillator andg0 is therefore much larger than th
Downloaded 17 Apr 2001 to 130.234.97.72. Redistribution subjec
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value g5bc at which the integral in Eq.~25! is evaluated.
Figure 2 shows the excitation probabilities for the same s
oscillator model as in Fig. 1 but for a total excitation ener
which is twice as large. The total number of states is then
order of magnitude larger and the excitation probabilities c
be followed over a larger range. It is seen that then also
microcanonical Dunbar formula becomes inaccurate for
largestn values.

VI. FINITE-HEAT-BATH THEORY

For the derivation of the analytical formula in Eq.~26!,
the simple mathematical form of the partition function f
the harmonic oscillator is essential. However, as we s
now show, the most important feature of this formula, t
Boltzmann factor with a finite-heat-bath correction, is mo
general. We apply the perturbation procedure based o
Laplace transform ofr8 to evaluate the ratio of level dens
ties in Eq.~19!. Assuming again the temperature depende
of the heat capacities to be weak, we may express the l
densities in the form

r~E2dE!.
1

bm

1

2p i S Ebm2 i`

bm1 i`

bQ~b!eb~E2dE!db D
Gauss

,

~32!

wherebm is the microcanonical value at excitation energyE,
and dE equalsEb or zero. The Gaussians representing t
two integrands have the same width and the ratio of the p
values equals exp(2bmEb). The first derivative of the loga-
rithm of the integrand differs from zero fordE5Eb , and
taking this into account as before by completion of t
square we obtain

FIG. 2. Excitation probabilities for the same oscillators as in Fig. 1, but a
total excitation energy of 8000 cm21 where the number of states is 113
Dunbar’s formula with microcanonical parameters is now illustrated by
dashed curves, while the dotted–dashed curves result from an expans
second order of the logarithm of the expression in Eq.~34!, in analogy to
Eqs.~18! and ~20!. The more accurate, full-drawn curves correspond to
expansion to fourth order, in analogy to Eq.~19!. For the total system the
microcanonical temperature is 3088 K, and for a system with the s
energy but with one oscillator removed, 3790 K~500 cm21! and 3630 K
~1500 cm21!.
t to AIP copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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r~E2Eb!

r~E!
.expF2bmEbK 11

kB

2Cm
bmEbL G . ~33!

This expression corresponds to a Boltzmann factor wit
modification that to first order is the same as the finite-he
bath correction in Eq.~20!. Hence the perturbation calcula
tion can be considered an alternative derivation of this c
rection. However, the Taylor expansion is mo
straightforward and a variation with temperature of the h
capacity can easily be included.12 Furthermore, it has the
important advantage that it can be improved by inclusion
higher-order terms, as in Eq.~19!.

This may be illustrated by an application of the Tayl
expansion to estimate the excitation probabilities for a sin
oscillator in our model system. The otherJ21 oscillators
constitute a finite heat bath, and the relative excitation pr
abilities are given by

Pj~n!}
r j~E2ne j !

r j~E!
. ~34!

For the examples illustrated in Figs. 1 and 2, a second-o
expansion of the logarithm of this ratio, analogous to E
~18! and ~20!, leads to predictions which are close to t
microcanonical Dunbar formula. For each oscillatorj, the
values of the temperatureTm and heat capacityCm for the
subsystem withJ21 oscillators were obtained from Eqs.~7!,
~12!, and~14!, and the common constant on the ratio in E
~34! was determined from a normalization of the sum oven
to unity. With the fourth-order expansion in Eq.~19! the
exact statistical weights are reproduced quite well even
the highest excitations in Fig. 2.

We have seen that it can be convenient to consider
derivative ofr(E) rather than the level density itself. Som
times it can also be useful to introduce the integrated le
density,w(E).7,8 Since the relation betweenw(E) andr(E)
is the same as betweenr andr8, we have from the definition
in Eq. ~1!,

w~E!5kBTm,wr~E!, ~35!

whereTm,w is the microcanonical temperature for a syste
with level densityw. As before we may identify it with the
canonical temperatureTc for the system with level densityr
if the heat capacity is nearly constant. The lowest-order c
rection for variation of the heat capacity may be obtain
from Eq. ~6!, applied to the system with level densityw.
According to Eq. ~8!, the left-hand side equalsē(Tm,w)
1kBTm,w , where the functionē refers to the system with
level densityr, and on the right-hand side we replaceE by
ē(Tc). By expansion of the functionē to first order we then
obtain the relation,

Tm,w2Tc.
kB

2Cc

Tc

Cc

d

dTc
Cc~Tc!, ~36!

where we have replacedTm,w by Tc andCm,w by Cc on the
right-hand side.

The formula in Eq.~35! with Tm,w5Tc was derived in
Ref. 7 but with little attention to accuracy. In Ref. 8 a
attempt was made to improve the argument because th
lation played an important role in the discussion of fini
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heat-bath theory, but a relative uncertainty of orderkB /Cc

remained. Here we have established the relation to first o
in kB /Cc . Temperature corrections like the one in Eq.~36!
would also appear in the microcanonical Dunbar formula
the variation with temperature of the heat capacity were
cluded. However, the corrections are usually quite small
order 1% or smaller in the model examples illustrated
Figs. 1 and 2.

VII. CONCLUDING REMARKS

We have discussed the concept of temperature for
isolated finite system with well defined energy. As an a
proximation, the system may be represented by a canon
energy distribution with mean value equal to the energy
the system, and the corresponding temperature is denote
‘‘canonical temperature.’’ An alternative is the microcanon
cal temperature, defined in terms of the derivative of
logarithm of the level density, and for small systems there
a significant difference between the two temperatures.
have argued that the microcanonical temperature is the m
useful concept when decay by particle emission from a c
ter is considered. An Arrhenius formula may be derived fro
the statistical expression for the decay rate by a Taylor
pansion of the logarithm of the level density, and the res
ing effective decay temperature equals the initial micro
nonical temperature with a correction depending on the s
of the system. In our opinion, this is a simpler concept
framework for a finite-heat-bath theory than the one appl
by Klots, where the system is represented by a canon
ensemble.8,9

The level density of a system may be expressed as
inverse Laplace transform of the partition function, and t
canonical temperature appears as the characteristic tem
ture when this transform is evaluated by the saddle po
method. In this connection, we have discussed an analy
formula, derived by Dunbar,5 for the excitation probabilities
of one oscillator in a collection of harmonic oscillators wi
well defined and statistically distributed total excitation e
ergy. A much improved accuracy of this formula is obtain
when the canonical temperature and heat capacity of the
tem are replaced by the microcanonical values, and we h
found a justification for this replacement in a modification
the derivation. The modified procedure is not limited to h
monic oscillators and it has also been applied to part
emission from a cluster. This gives an alternative derivat
of an Arrhenius formula with an effective decay temperatu
equal to the microcanonical temperature with a finite-he
bath correction.

However, the description based on a Taylor expansion
the logarithm of the level density is simpler and has t
advantage that it can be extended to higher order. Thi
important for small molecules or clusters, where also
distinction between the microcanonical and the canon
temperature is significant. For larger systems, consisting
tens of atoms or more, only the first-order term in the Tay
expansion need be retained, but the corresponding fin
heat-bath correction remains important even for quite la
systems like the buckminsterfullerene moleculeC60.12
t to AIP copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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