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ON THE CONCURRENT VECTOR FIELDS
OF IMMERSED MANIFOLDS

By KeENTARO YANO AND BANG-YEN CHEN

Let R™ be an m-dimensional Riemannian manifold® with covariant derivative
D and let x: M*»—R™ be an immersion of an #n-dimensional manifold M™ into R™.
A vector field X in R™ over M™ is called a concurrvent vector field® if we have
dz+DX=0, where dz denotes the differential of the immersion x. In particular,
if X is a normal vector field of M™ in R™, then the vector field X is called a
concurrent normal vector field.

The main purpose of this paper is to study the behavior of the concurrent
vector fields of immersed manifolds and also find a characterization of the con-
current vector fields with constant length.

§1. Preliminaries.

Let R™ be an m-dimensional Riemannian manifold with covariant derivative D.
By a frame ey, -, en, we mean an ordered set of m orthonormal vectors
e, -, en in the tangent space at a point of R™ The frame ey, -+, e, defines
uniquely a dual coframe @,, -+, @, in the cotangent space and vice versa. The
fundamental theorem of local Riemannian geometry says that in a neighborhood
U of a point p there exists uniquely a set of linear differential forms @,z satisfy-
ing the conditions:

(1) @ap+@p4=0,
and
(2) Awa= Y, 0p/\@pa4,

where here and in the sequel the indices A, B, :-- run over the range {1, ---, m}.
The linear differential forms @4p are called the connection forms and the covariant
derivative DX of a vector field X=73] X ey, is given by
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1) Manifolds, mappings, tensor fields and other geometric objects are assumed to be
differentiable and of class C*.

2) In [3], a vector field X is called a concurrent vector field if there exists a function
f such that dx+D(fX)=0, but in this paper, we adopt the above definition.
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(3) DX=3DXsR®eu,
where
(4) DXA=dXA+ZXBEBA.

The vector field X is said to be parallel if DX=0. For the vectors ey
themselves equation (3) gives

( 5 ) DeA = ZCUAB®GB.

The structure equations of R™ are given by (2) and
_ — — 5 5 1 5 o
(6) AW 3=, @ac \@cp+ 248, Qap=3] 7RABCD(UC/\CUD.
The tensor field Rapep is called the Riemann-Christoffel tensor. From Rspep the
Ricci tensor and the scalar curvature are defined respectively by
(7) Rap=Rps= X Rouazc,
(8) S=%Rus

Let 2: M™—R™ be an immersion of an x-dimensional manifold M" into R™,
and let B be the set of all elements b=(p, ey, -+, €n, €n+1, ***, ) such that pe M, e,,
..., e, are tangent vectors, ésii, --:, en are normal vectors to x(M™) at z(p) and
(2(p), €1, -, em) is a frame in R™, where we have identified dx(e;) with e; i=1,
.., n. Let w4, wap be the forms previously denoted by @y, @4p relative to this
particular frame field. Then we have

9) w,=0, 7, Sy by o=n+1, -, m.
Taking the exterior derivative and using (2), we get

(10) Do Nwiy=0, §,7,k =1, 0.
By Cartan’s lemma we have

11 0ir=LAnjw;  Arg=Ar.

The mean curvature vector H is defined by
1
12) H= n 2 Ariier.

M? is called a minimal submanifold of R™ if H=0. If e=J} cosf,e, is a unit
normal vector field, then the second fundamental form at e is given by

13) Ale)=2] cos 0y Arjwiw,.
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The second fundamental form at a normal vector N0 is defined as the second
fundamental form at the unit direction of N. If the second fundamental form
A(N) at a normal vector N does not vanish and proportional to the first funda-
mental form /=Y w;w;, then we say that M™ is wumbilical with respect to N. In
particular, if M™ is umbilical with respect to the mean curvature vector H at
every point of M?®, then M™ is called a pseudo-umbilical submanifold of R™.

For an immersion x: M"—R™ if there does not exist a nowhere vanishing
normal vector field N such that DN=0, then x is called a substantial immersion.
If R™ is a euclidean m-space E™, then x is substantial if and only if there does
not exist an (m—1)-dimensional linear subspace of E™ containing x(M™).

For a normal vector field X in R™ over M7, the covariant derivative DX
can be decomposed into two parts:

14) DX=(DX)'+D*X,

where (DX)' is tangent to M™ and D*X is normal to M™ If the normal part
D*X vanishes, then X is called a parallel vector field in the novmal bundle.

§2. Some results on concurrent normal vector fields.

Suppose that N is a concurrent normal vector field, i.e., N is a normal vector
field and

15) dxz+DN=0.
Thus, if we put N=he, h=(N-N)V?, then we have
16) dz+(Dh)e+hDe=0.

Since dz is tangent to x(M™) and De is perpendicular to e, we get DiA=0. Thus
N has constant length. Furthermore, by taking the scalar product of dx with (15),
we get

a7 dz-dx+dz- DN=0.

Thus, if we put e=J3] cosf,e,, then, by (5), (11) and (17), we get
(18) Dwsw;—hY, cos 0. A jww,=0.
Moreover, by (14) and (15), we have

19) D*N=0.

Therefore we have

ProposiTION 1. Let z: M™—R™ be an immersion of M" into R™ If Nis a
concurrent normal vectov field of M™ in R™, then N has constant length, N is
parallel in the normal bundle and M™ is umbilical in the divection of N.
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ReMArRk 1. Conversely, if N is a nowhere vanishing normal vector field
parallel in the normal bundle and M™ is umbilical in the direction of N, then there
exists a concurrent vector field parallel to the normal vector field N.

In the following, we denote the length of the mean curvature vector 4 by a,
and we call it the mean curvature of M™ in R™.
From proposition 1, we have

PrROPOSITION 2. Let z: M"—R™ be an immersion of M™ into R™ Then x is
pseudo-umbilical and the mean cuvvatuve vector H is pavallel in the normal bundle
if and only if Hla® is concurrent.

By a result of the authors [4] and proposition 2, we have

THEOREM 3. Let x: M"—E™ be an immersion of M"™ into a euclidean space
E™ of dimension m. Then the vector field Hla® is concurvent if and only if M™
is a minimal submanifold of @ hypersphere of E™.

If N and N’ are two concurrent normal vector fields, then, by (15), we get
D(N-N")=0. Hence the normal vector fields N and N’ make a constant angle.
Therefore N—N’ is a nowhere zero normal vector field with D(N—N’)=0. Thus
we have

ProposITION 4. Let x: M"—R™ be a substantial immersion of M™ into R™.
Then therve exists at most one concurrent normal vector field.

ReMARK 2. In [2], Schouten and one of the authors proved that every in-
variant submanifold of an almost Kihler manifold is minimal. Therefore every
invariant submanifold of an almost K&hler manifold does not admit a concurrent
normal vector field.

THEOREM 5. Let x: M™—R™ be an immersion of M™ into a Riemannian mani-
fold R™ of constant sectional curvature K. If N is a comcurrent novmal vector
field, then the scalar curvature S of M", the mean curvature a and the length |N|
of N satisfy the following inequality.

(20) S=n*a®+ K)—n(K+|N|-?).

If the dimension of M™ is >2, then the equality sign holds when and only
when M™ is a pseudo-umbilical submanifold of R™ with constant sectional curvature
K+t

Proof. Since R™ has constant sectional curvature K, we have, by (6),
(¢4)) dwij— X wik Ao, = L og Awrj— Ko ANo;.
Thus, by putting dw;;— X Aor;=2:;= 1 (1/2)Ryjmer Nwn, We have
(21) Rijen=—K(0ix0jn—0indjx) — L (ArinArjn— ArinAr)-
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Therefore, we get
(23) Riuy=n—1)Kojr— 2 ArixArji+ 2 AriiArjie

Now, suppose that N is a concurrent normal vector field, and choose e,.; in the
direction of N, then, by proposition 1, we can verify that

24) An+1u=(IN|)—15iJ'
Substituting (24) into (23), we get

0 m m
(25) Rp=(n—1)EKop— 5o + DAridrsi— 3 (3 AsirAss).
$=n+2 1=1

Hence we have

(26) S=n(n—1)K—n(N-N)+n’a®— f} (i ALy
s=n+2 1=1
Therefore, by (26), we get the inequality (20).
If the equality of (20) holds, then, by (26), we get

Asij=0; S=n+2’ LR /(% i;j=17 ey N

Hence the mean curvature vector H is parallel to N and the mean curvature
a=|N|t. Therefore, by the fact that R™ has constant sectional curvature, we
know that M™ has sectional curvature K+a? If the dimension of M™ is greater
than 2, then, by a well-known theorem of Shur, we know that K+a?is a constant.
Therefore M™ is a pseudo-umbilical submanifold and has constant sectional curvature
provided #>2. The converse of this is trivial. This completes the proof of the
theorem.

3. Concurrent vector fields with constant length.

ProrosiTiON 6. Let z: M"—E™ be an immersion of M™ into a euclidean space
E™ of dimension m. Then there exists a concurrvent normal vector field if and only
if x(M™) is contained in a hypersphere of E™.

Proof. Suppose that there exists a concurrent normal vector field N. Then,
by proposition 1, N has constant length. On the other hand, by (15), we get

z(p)+ N=c=constant.

Hence we have (x—c¢)-(x—c)=N-N=constant. Thus x(M") is contained in a
hypersphere of E™ centered at ¢. Conversely, if x(M™) is contained in a hypers-
phere of E™ centered at ¢, then the vector field c—x(p) is a concurrent normal
vector field, This completes the proof of the proposition,



348 KENTARO YANO AND BANG-YEN CHEN

From proposition 1, we know that every concurrent normal vector field has
constant length. In the following, we want to find a necessary and sufficient
condition that an arbitrary concurrent vector field has constant length.

Let X be a vector field in R™ over M”*. We define an (n—1)-form @x by
@20 Ox=2(—1)" (X e)oi N+ NGi N\ A\ n,

where @; denotes that the term ; is omitted. The form Oy is a well-defined
(n—1)-form on M™.
The main purpose of this section is to prove the following theorems:

THEOREM 7. Let x: M™>R™ be an immersion of an oriented closed manifold
M™ into R™ Then a concurrent vector field X in R™ over M™ has constant length
if and only if the (m—1)-form Ox is closed.

Proof. If X is a concurrent vector field with constant length, then we have
d(X-X)=2X-DX=0.

Hence, by the definition of the concurrent vector fields and the above equation
we have

(28) 2(X-e)wi=0.

Thus, by taking the Hodge star operator on both sides of (28), we get Ox=0. In
particular, @x is closed.

Conversely, suppose that the (z—1)-form Oy is closed. By a direct computation
of the exterior derivative of (27) we get

(29) —X-H=1,

where H denotes the mean curvature vector of M” in R™ On the other hand, the
Laplacian 4(X-X) of X.-X is given by

(30) A(X-X)=2n(1+X-H).

Hence we get 4(X-X)=0. Therefore the concurrent vector field X has constant
length. This completes the proof of the theorem.

If R™ is euclidean, then by theorem 7 we have

COROLLARY [1]. Let z: M™—E™ be an immersion of an oriented closed mani-
fold M™ into E™, and X be the position vector field of M™ in E™ with respect to
the origin of E™. Then x(M™) is contained in a hypersphere of E™ centered at
the origin of E™ if and only if the form Ox=0.

THEOREM 8. Let z: M™—R™ be an immersion of M™ into R™ with a concur-
rent normal vector field X, and let the first normal vector e,y, be in the direction
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of the mean curvature vector H, that is, H=aen1. Then the immersion z is pseudo-
umbilical if and only if
31) > (X-e)ws=0, i=1, -, n.

$=n+2

Proof. Since X is a concurrent normal vector field, the length of X is con-
stant. Thus, by (30), we have

(32) a(X-enH):l.

Put X=fe,1+ 3™ 0(X-es5)es. Then, by taking covariant derivative, we have
DX=(df)eni1+ 5 f oniriit N onrver+ Y, (d(X-e5))es
s=n+2
+ 2 (Xee)wsiei+ 3, (X-e)wsrer.
2

s=n+ s=n+2

Comparing the tangential parts of the above equation we get

(33) wi+f(0n+11;= Z (X‘es)a)is, i:l’ ceey M.

s=n+2
Suppose that the immersion z is pseudo-umbilical. Then we have
(39) Ons1i=—aw;=—f "y, i=1, -, n.

Thus, by (33) and (34), we get (31). Conversely, if (31) holds, then, by (33), we
get

wi=_fwn+liy Z=1’ ey N
Hence the immersion «x is pseudo-umbilical. This completes the proof of the theorem.

ReMARK. Let X be a concurrent normal vector field and let e,; be in the direc-
tion of the mean curvature vector H as in theorem 8. Let € be the unit normal
vector field in the direction of X—(X-eni1)en:1, ie.,

X= (X' €n+1)eni1+ (X ee.
Then the condition (31) means
(32) (X-8)A(e)=0,

where A(e) denotes the second fundamental form at 2.
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