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ON THE CONCURRENT VECTOR FIELDS

OF IMMERSED MANIFOLDS

BY KENTARO YANO AND BANG-YEN CHEN

Let Rm be an m-dimensional Riemannian manifold1:> with covariant derivative
D and let x: Mn-*Rm be an immersion of an ^-dimensional manifold Mn into Rm.
A vector field X in Rm over Mn is called a concurrent vector field^ if we have
dx+DX=Q, where dx denotes the differential of the immersion x. In particular,
if X is a normal vector field of Mn in Rm, then the vector field X is called a
concurrent normal vector field.

The main purpose of this paper is to study the behavior of the concurrent
vector fields of immersed manifolds and also find a characterization of the con-
current vector fields with constant length.

§ 1. Preliminaries.

Let Rm be an m-dimensional Riemannian manifold with covariant derivative D.
By a frame eι, ~,em, we mean an ordered set of m orthonormal vectors
eι, ,em in the tangent space at a point of Rm. The frame e^ •••, em defines
uniquely a dual coframe ω1} •••, ωm in the cotangent space and vice versa. The
fundamental theorem of local Riemannian geometry says that in a neighborhood
U of a point p there exists uniquely a set of linear differential forms ωAB satisfy-
ing the conditions:

( 1 )

and

(2)

where here and in the sequel the indices A, B, ••• run over the range {1, •••, m}.
The linear differential forms WAB are called the connection forms and the covariant
derivative DX of a vector field -X"=Σ-X^> is given by
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1) Manifolds, mappings, tensor fields and other geometric objects are assumed to be

differentiate and of class C°°.
2) In [3], a vector field X is called a concurrent vector field if there exists a function

/ such that dx+D(fX)=Q, but in this paper, we adopt the above definition.
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(3)

where

( 4 )

The vector field X is said to be parallel if DX=Q. For the vectors eA

themselves equation (3) gives

(5) DeA = ΣωAB®en.

The structure equations of Rm are given by (2) and

( 6 ) daJAB= Σ<ϊ>AC/\ωcB + ΩAB, ΩAB = Σ -9-

The tensor field RABCD is called the Riemann-Christoffel tensor. From RABCD the
Ricci tensor and the scalar curvature are defined respectively by

( 7 ) RAB — RBA — Σ RCABC,

(8) S

Let x: Mn-*Rm be an immersion of an ^-dimensional manifold Mn into Rm

t

and let B be the set of all elements b=(p, elt •••, en, en+ι, •••, 0m) such that^€MΛ, 0ι,
— ,en are tangent vectors, en+ι,—,em are normal vectors to x(Mn) at ar(ί) and
(x(p\ ei, — , ̂ w) is a frame in J?m, where we have identified dx(βi) with ^ f=l,
— , «. Let ft>^, WAB be the forms previously denoted by ωA, ωAB relative to this
particular frame field. Then we have

(9) ωr=0, r, s, t, - • = »+!, ••-, m.

Taking the exterior derivative and using (2), we get

(10) Σω<Λω<r=0, i,j, k, — =1, — , ».

By Cartan's lemma we have

(11) ωίr=ΣAnjωj, Anj = Arjί.

The mean curvature vector H is defined by

(12) H= — ΣAruβr.
n

Mn is called a minimal submanifold of 7?™ if //— 0. If 0— Σ cosθrer is a unit
normal vector field, then the second fundamental form at e is given by

(13) A(e) = Σ cos OrAri
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The second fundamental form at a normal vector Λ/^0 is defined as the second
fundamental form at the unit direction of N. If the second fundamental form
A(N) at a normal vector N does not vanish and proportional to the first funda-
mental form /— Sow*, then we say that Mn is umbilical with respect to N. In
particular, if Mn is umbilical with respect to the mean curvature vector H at
every point of Mn, then Mn is called a pseudo-umbilical submanifold of Rm.

For an immersion x: Mn-*Rm if there does not exist a nowhere vanishing
normal vector field N such that DN=Q, then x is called a substantial immersion.
If Rm is a euclidean m-space Em

t then # is substantial if and only if there does
not exist an (m—l)-dimensional linear subspace of Em containing x(Mn).

For a normal vector field X in Rm over Mn, the covariant derivative DX
can be decomposed into two parts:

(14) DX=(DX?+D*X,

where (DXY is tangent to Mn and D*X is normal to Mn. If the normal part
D*X vanishes, then X is called a parallel vector field in the normal bundle.

§2. Some results on concurrent normal vector fields.

Suppose that N is a concurrent normal vector field, i.e., TV is a normal vector
field and

(15) dx+DN=Q.

Thus, if we put N=he, h=(N N)1/2, then we have

(16) dx+(Dh)e+hDe=0.

Since dx is tangent to x(Mn) and De is perpendicular to e, we get Dh=Q. Thus
N has constant length. Furthermore, by taking the scalar product of dx with (15),
we get

(17) dx'dx+dx-DN=Q.

Thus, if we put e=Σ co§θrer, then, by (5), (11) and (17), we get

(18) Σo)iCύt—hΣ co$erAmjWia)j=Q.

Moreover, by (14) and (15), we have

(19) D*N=0.

Therefore we have

PROPOSITION 1. Let x: Mn-^Rm be an immersion of Mn into Rm. If N is a
concurrent normal vector field of Mn in Rm, then N has constant length, N is
parallel in the normal bundle and Mn is umbilical in the direction of N.
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REMARK 1. Conversely, if N is a nowhere vanishing normal vector field
parallel in the normal bundle and Mn is umbilical in the direction of N, then there
exists a concurrent vector field parallel to the normal vector field N.

In the following, we denote the length of the mean curvature vector H by α,
and we call it the mean curvature of Mn in Rm.

From proposition 1, we have

PROPOSITION 2. Let x : Mn-*Rm be an immersion of Mn into Rm. Then x is
pseudo-umbilical and the mean curvature vector H is parallel in the normal bundle
if and only if Pi/a2 is concurrent.

By a result of the authors [4] and proposition 2, we have

THEOREM 3. Let x: Mn-*Em be an immersion of Mn into a euclidean space
Em of dimension m. Then the vector field HI a2 is concurrent if and only if Mn

is a minimal submanifold of a hypersphere of Em.

If N and N' are two concurrent normal vector fields, then, by (15), we get
D(N N')=Q. Hence the normal vector fields N and N' make a constant angle.
Therefore N—N' is a nowhere zero normal vector field with D(N—N')=Q. Thus
we have

PROPOSITION 4. Let x: Mn-*Rm be a substantial immersion of Mn into Rm.
Then there exists at most one concurrent normal vector field.

REMARK 2. In [2], Schouten and one of the authors proved that every in-
variant submanifold of an almost Kahler manifold is minimal. Therefore every
invariant submanifold of an almost Kahler manifold does not admit a concurrent
normal vector field.

THEOREM 5. Let x : Mn-*Rm be an immersion of Mn into a Riemannian mani-
fold Rm of constant sectional curvature K. If N is a concurrent normal vector
field, then the scalar curvature S of Mn, the mean curvature a and the length \N\
of N satisfy the following inequality.

(20) S^n\a2+K)-n(K+ \N\~2).

If the dimension of Mn is >2, then the equality sign holds when and only
when Mn is a pseudo-umbilical submanifold of Rm with constant sectional curvature

Proof. Since Rm has constant sectional curvature K, we have, by (6),

(21) dωij—Σωίk/\ωicj=Σωir/\ωrj—Kωi/\ωj.

Thus, by putting ώϋίy--Σ<wαΛα>A;j=^ = Σ(l/2)^ty*Λ<w*ΛΛ>Λ, we have

(21) RijJch = ~ K(δikδjh — δihδjk) — Σ (ArίJcΛrjh ~ ArίhArjk)



CONCURRENT VECTOR FIELDS 347

Therefore, we get

(23) Rj*=(n

Now, suppose that AT" is a concurrent normal vector field, and choose en+ι in the
direction of JV, then, by proposition 1, we can verify that

(24) An

Substituting (24) into (23), we get

J?

(25) Rjk=(n

Hence we have

(26) S=
m m

Therefore, by (26), we get the inequality (20).
If the equality of (20) holds, then, by (26), we get

Asij—Qy s=n+2, •••, m; i,j=l, •••, n.

Hence the mean curvature vector H is parallel to N and the mean curvature
a=\N\~1. Therefore, by the fact that Rm has constant sectional curvature, we
know that Mn has sectional curvature K+a2. If the dimension of Mn is greater
than 2, then, by a well-known theorem of Shur, we know that K+a2 is a constant.
Therefore Mn is a pseudo-umbilical submanifold and has constant sectional curvature
provided n>2. The converse of this is trivial. This completes the proof of the
theorem.

3. Concurrent vector fields with constant length.

PROPOSITION 6. Let x\ Mn-*Em be an immersion of Mn into a euclidean space
Em of dimension m. Then there exists a concurrent normal vector field if and only
if x(Mn) is contained in a hyper sphere of Em.

Proof. Suppose that there exists a concurrent normal vector field N. Then,
by proposition 1, N has constant length. On the other hand, by (15), we get

x(p) + N= c = constant.

Hence we have (x—c) (x—c)=N N= constant. Thus x(Mn) is contained in a
hypersphere of Em centered at c. Conversely, if x(Mn) is contained in a hypers-
phere of Em centered at c, then the vector field c—x(p) is a concurrent normal
vector field, This completes the proof of the proposition,
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From proposition 1, we know that every concurrent normal vector field has
constant length. In the following, we want to find a necessary and sufficient
condition that an arbitrary concurrent vector field has constant length.

Let X be a vector field in Rm over Mn. We define an (n— l)-form 8χ by

(27) θz=Σ(-l)t"1(-SΓ ^)ωιΛ

where ώi denotes that the term <y< is omitted. The form Θx is a well-defined
(n— l)-form on Mn.

The main purpose of this section is to prove the following theorems:

THEOREM 7. Let x : Mn-^Rm be an immersion of an oriented closed manifold
Mn into Rm. Then a concurrent vector field X in Rm over Mn has constant length
if and only if the (n—V)-form Θx is closed.

Proof. If X is a concurrent vector field with constant length, then we have

d(X-X)=2X DX=0.

Hence, by the definition of the concurrent vector fields and the above equation
we have

(28) Σ(X eύωi=Q.

Thus, by taking the Hodge star operator on both sides of (28), we get Θχ=Q. In
particular, Θx is closed.

Conversely, suppose that the (n— l)-form Θx is closed. By a direct computation
of the exterior derivative of (27) we get

(29) -X H=l,

where H denotes the mean curvature vector of Mn in Rm. On the other hand, the
Laplacian Δ(X X) of X-X is given by

(30) Δ(X X)=2n(l+X IΓ).

Hence we get d(X X)=Q. Therefore the concurrent vector field X has constant
length. This completes the proof of the theorem.

If Rm is euclidean, then by theorem 7 we have

COROLLARY [1], Let x: Mn—*Em be an immersion of an oriented closed mani-
fold Mn into Em

y and X be the position vector field of Mn in Em with respect to
the origin of Em. Then x(Mn) is contained in a hypersphere of Em centered at
the origin of Em if and only if the form Θχ=0.

THEOREM 8. Let x : Mn^Rm be an immersion of Mn into Rm with a concur-
rent normal vector field X, and let the first normal vector en+ί be in the direction



CONCURRENT VECTOR FIELDS 349

of the mean curvature vector H, that is, H=aen+ι. Then the immersion x is pseudo-
umbilical if and only if

(31) Σ CX *>n=0, ί=l, ",*.
s=w+2

Proof. Since X is a concurrent normal vector field, the length of X is con-
stant. Thus, by (30), we have

(32) a(X en+J = l.

Put X=fen+1+Σf=n+2(X'es)es. Then, by taking covariant derivative, we have

m

DX=(df)en+ι+Σfωn+iiei+Σfωn+irer + Σ (d(X-es))esS=«+2

m m

+ Σ (X'es)ωsίei+ Σ (X ejωsrβr
S = W+2 S=W + 2

Comparing the tangential parts of the above equation we get

m

(33) Q)i+fωn+ii= Σ (X e8)ωi8, i=l, ,n.
s=n+2

Suppose that the immersion x is pseudo-umbilical. Then we have

(34) ωn+ii:=—(xωi=—f~1a)i, i=l, ~,n.

Thus, by (33) and (34), we get (31). Conversely, if (31) holds, then, by (33), we
get

a)i=—fωn+u> ί=l, •••, n.

Hence the immersion x is pseudo-umbilical. This completes the proof of the theorem.

REMARK. Let X be a concurrent normal vector field and let en+ι be in the direc-
tion of the mean curvature vector H as in theorem 8. Let e be the unit normal
vector field in the direction of X— (X en+ι)en+ι, i.e.,

Then the condition (31) means

(32) (X g)A(δ)=Q,

where A(e) denotes the second fundamental form at e.
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