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Recently Ryder and Shockley have found experimentally that the electrical conduction in a pure 
germanium crystal shows the marked deviation from Ohm's law in the strong electric field. In order 
to clarify the mentioned phenomena along the usual theory of electrical conduction, we have calculated 
the distribution function of conducting electrons in non·polar semiconductor by solving the well-known 
Bloch's integral equation to the second order approximation, taking account of the interaction of electrons 
with both the acoustical and optical modes of lattice vibrations. As a result we have found that our 
theory may well interpret the general behaviour of this phenomenon qualitatively. Furthermore, we 
have discussed the effect of impurity ions upon the critical field strengrh. 

§ 1. Introduction 

In the theory of the electrical conductivity the so-called Bloch's integral equation is 

well-known to be the fundamental one, which unfortunately has not been solved rigorously 
so far. For the case of weak electric field, however, we are allowed approximately to use 
the first order solution of the Bloch's integral-equation, which correctly lead to the Ohm's 

law of the electrical conductivity. On the other hand, for the case of very strong electric 

field, the appreciable non-ohmic current has been observed experimentally to appear even 
in insulating crystals, which finally breaks down rather abruptly at certain critical strength 
of the applied field. The phenomenon of the so-called electrical breakdown' mentioned 

above has been investigated by many theoretical physicists. In order to determine the 
breakdown strength by the energy balance condition, they have calculated only the rate at 
which a conduction electron would lose its energy to the lattice, while the distribution 
function of the conduction electrons in the strong electric field has never been taken into 
consideration in detail so far. Owing to the lack of the knowledge of the mentioned 
distribution function, however, the phenomenon of non-ohmic current or the pre-breakdown 

current in the very strong field, closely connected with the electrical breakdown, could not 
be accounted for satisfactorily. 

Recently Ryder and Shockleyl) have found experimentally that the electrical conduction 
in a pure germanium crystal shows the marked deviation from the Ohm's law in the 
strong' electric field. Futhermore Shockley2) has discussed theoretically this very interesting 

phenomenon by a rather intuitive method and explained the essence of the phenomenon 
elegantly. Independent of him, we3) also have worked theoretically the same phenomenon 
by the rather orthodox method of solving to the second order approximation the Bloch's 
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444 J. Yamashita and M. Watanabe 

integral equation in non-polar semiconductor, allowing for the action of the strong electric 

field. We also assume that the conduction electrons in germanium crystals obey the 

Maxwell-Boltzmann statistics approximately. Our calculations have shown to give the same 

results as Shockley's in many respects and we are sure that his rather intuitive standpoint 

has been actually confirmed by our calculation. Since Shockley's second paper shows that 

the effect of the optical mode of vibrations seems to be q~ite appreciale for the electron

scattering for some crystals, we shall here calculate the electrical conductivity of the non

polar crystals in .the strong electrostatic field by taking account the interactions of electrons 

with both the acoustical and optical modes of vibrations. 

§ 2. The effect of the acoustical mode 

In the experiment of Ryder and Shockley the electric field is not yet strong enough 

to excite the appreciable number of electrons of the full band into the conduction band. 

In this case the conduction electrons are mainly scattered by the interaction with the lattice 

vibrations (both acoustical and optical) and by colliding with the impurity ions. As the 

interaction between electrons and acoustical modes of vibrations may have the most impor

tant effect in non-polar crystals, we at first take into account only this modes of vibrations. 

Let fck) be the distribution function of the conduction electrons having the wave number 
--> 

vector k, then the stationary condition in electronic current is given, as usual, by 

[af/at]fiez,t + [af/at]OOlli81on= 0, (1) 

where the first term means the rate of change of f (1:) caused by drift in the external 

field and the second term by the above-mentioned collisions. We find after some process 

of computation along the conventional way,4) 

(z) 

where 

Vo : crystal volume, 

C~ : an energy parameter describing the coupling between electron and lattice, 

M: reduced mass of two ions, 

?to : sound velocity, 

ko: Boltzmann constant, 

q : wave number of lattice vibration, 

)'=tz~/Z1n*, 

m* : effective mass of conduction electron, 

Wq : circular frequency of the longitudinal mode associated with q, which is assumed 

to be wq = ttoq, 

xq= nwg/ koT, 
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On the Conductivity oj Non-polar Crystals ill the Strollg Electric Field, j 44.5 

T: temperature, 
K: wave number of electron, 
E="A.Ic-/m*: energy of conduction electron. 

Here" we expand the distribution function /(i) in the series of Legendre polynomials 

/(k) =/0 (E) +k..g(E) + .,. (3) 

Inserting eq. (3) into eq. (2), it becomes: 

+ {/o(E-nwq) -/o(E)e"''l}] 

+_ d~ ma", ":l q [(k.,+q",)g (E+nwq)e"'q-k.g(E) 1 J2" Jg do d. 
2n 0 q ... 'n e"''l-l 

+ (k",+q,,)g(E-nwg) -k..g(E)e"'q}] , (4) 

Now we expand the functions /o(E+ "A.w), /o(E-"A.w) or exp (x) with respect to "A.w 
or ~, neglecting the higher order terms than the second order one. 

e"'=1+z+1/2.r, 

Io(E+ "A.w) =/0 (E) +/0' (E) "A.w+ 1/2:!o" (E) ("A.cO)2, 

/0 (E-"A.w) -=/0 (E) -/0' (E) "A.w+ 1/2 '/0" (E) (nw)2, 

g(E+"A.w). ·g(E-nw). "geE). 

This approximate procedure may be allowed except for the very low temperature. Further 
we must be cautious in determining the upper limit of integration qma",' On integrating 

{fo(E+"A.w)e"'-/o(E)} and l/(E-1iw) -/0 (E) e"'} with respect to q, the correspond

ing upper limit qmaJJ is to be taken as 

qm==2K ±2m*uoln 

respectively owing to the usual considerations. On the other hand we shall be allowed to 

take the lower limit as 0, unless K is very small (K <muo/"A.). The behaviour of such 
a slow electron, however, is unimportant in our case except for the very low temperature. 
Then, after some calculations, eq. (4) becomes: 

(5) 
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After carrying out the integration the final expression for (a//at) Coil has been obtained 

as follows: 

[ at J = V;,C~ _1 [16m*~ li'koT{EIo" (E) + (_ E + 2)10' (E) 
at Coli 87rM)'K 1£ koT 

+ 2/koT'/fJ (E)} - (koT/nu0
2) (8mhl"P) k.c g(E) J. (6) 

On the other hand, (a/ jat) Field is written as usual, 

[a//atJField=eF;'~ (g(E) +2/3 . Edg/dE + n2/m* ·k" d/o/dE+ ... ) (7) 

where -e is the electronic charge. Inserting (7) and (6) into (1) we obtain the 

following set of differential equations for /0 (E) and g (E) : 

g(E) =, __ 7!M1J.02!~=~c~ ~_ eF 410. 
VoC2m*2v2m* v E n dE 

Let us here introduce the mean free path 1 in the weak field 

1= 7rMtI02h4/ VoC2m*2koT, 

then the above equations are written as 

(9) 

(10) 

E,I"II (E/"7' )J, /',T/o- 1 eF 1 ( ,2 E dg ) ( ) 
:10 + {'o +2:10 +2 ('o • 0- - 2 V2;,;*;~2- -i:-:;;E~ g+3' dh~' 11 

g=nlj v2m*.el?/ V E·t(fo/dE. (12) 

Eliminating g (E) from the above equations we obtain the final differential equation for 

/0 (h) 

(13) 

where 

(14) 

In the case of weak field we may neglect the second order quantities with respect to F, 
so eq. (13) reduces to 

E/o"+ (2 + E/koT>fo'+2fo/koT-jo=0. (15) 

whose solution is readily.found as /0 (E) =A exp (-Ej koT>. According to the usual 

procedure we also find that the conductivity 0"0 is given by: 

We see that in this case our equations lead to the Boltzmann distribution and the Ohmic 

conductivity. 

On the contrary, if we assume PkoT'? E and P> 1 (the case of very strong field), 
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On the Conductivity of Non-polar Crystals ill the Strollg Electric Field, I 441 

we obtain the following equation, 

(17) 

a solution of which is 

(IS) 

By the normalization condition 

~1o(E)dkx dky dk.=l 

we find 

(19) 

Now the current density is, as usual, given by 

j/n= ~ (-e)v", k",g(E)dk.c dky dk •. (20) 

Using eqs. (12), (IS) and (19) the current density in strong field may be written as 

follows: 

(21) 

Thus the observed field dependence of the electric current has been found to be correctly 

given, and the temperature dependence of it is also in qualitative accord with the observa

tion. The ratio of 0" in strong field and 0"0 in weak field is easily computed as: 

Table I. 

p I a/aD 

-,:T~:: 
50 I 0.41 

100 I 0.36 
300 0.26 

500 i 0.23 

10001 0.19 

(P>l) 

which value is tabulated in Table I for several values of p. 
From the distribution f~nction obtained above the number density and 

the energy· density of the electron in strong field are easily seen to 

reach their maximum at the energy values of 

(22) 

and 

(23) 

respectively, together with the average energy of 

The energy value determined from the energy balance condition, presupposed usually in 

the breakdown theory, 

(25) 

has been found to coincide with our E""'a.c exactly, which fact seems to justify the validity 

of the mentioned condition for computing the current density in the strong field. Shockley 

has already derived our .eq. (22) on the basis of the above mentioned energy balance 
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448 j . Yamashita and M. Watanabe 

condition. He, however, has not derived the distribution function in strong field, but 

supposed for the distribution function to be expressed as fo(E) =A exp (-E/ koTF) , 
where T F is the apparent temperature, proportional to the electric field. Such high energy 

electrons are called by him "Hot Electrons". 
Now in order to get the estimate of the critical field strength, where the deviation 

from the Ohm's law begins to appear, we have to find the exact solution of eq. (13). 
Fortunately eq. (13) has an analytical solution of the following form. 

'(26) 

When p becomes much larger than E/ kT, eq. (26) is easily shown to reduce to eq. (18). 
From (26) we have found the more accurate values of Em and Em"", compared with 

those of eqs. (22) and (23): 

(27) 

and 

(28) 

For the weak field strength, the above expressions are reduced approximately to the usual 

Table II. 

-p-~-
1 

2 

4 

6 

0.80 

0.73 

0.63 

0.60 

ones, while for the strong field they are seen to coincide with eqs. 

(22) and (23). 

Using the distribution function (26) we have found the conduc

tivity (j for several values of p, as tabulated in Table II. Now, in order 

to discuss the detailed behaviors in the real crystal, the numerical rela

tion between the p-value and the field-one is essentially required, but 

unfortunately the reliable informations about it can hardly be obtained 

at present, since the values of mobility and sound velocity involved in (14) are rather at 

variance with each other according to the different measurements. We, therefore, have 

adopted tentatively 3600 (Ge) , 900 (Diamond) and 1000 (Si) cm2/volt/sec. for the 

mobilities at room temperature, while for sound velocity, 0.5.106 (Ge) , 1.75.106 (Diamolld) 
and 0.9,106 (Si) em/sec. re~pectively, which values lead to 200 (Ge) , 3000 (Diamond) 
and 1000 (Si) volts/em for the field values of p=l at room temperature respectively. 

Using the mentioned field value we have computed actually the absolute value of the 

electrical conductivity for Ge in the strong field region, whose comparison with the experi

ment reveals that the observed deviations from Ohm's law do not occur at field as low as 

predicted by our computation, namely, the Ohm's law still holds even at several times higher 

field than that expected by our theory. The reason for such discrepancy seems to be rather 

complicated one. In this connection it should be poi!lted out that the value of the in

teraction parameter C in the strong field has not worked out theoretically, but the observ

ed value of the mobility in weak field has been used in our estimates. The conventional 

procedure mentioned above may be considered to introduce much ambiguity in our theory. 

In order to explain the above discrepancy Shockley has suggested that the energy surface 

D
ow

nloaded from
 https://academ

ic.oup.com
/ptp/article/12/4/443/1841652 by U

.S. D
epartm

ent of Justice user on 17 August 2022



On the C01zductivity 0/ Non-polar Crystals in the Strong Electric Field, 1 449 

in the Brillouin zone of Ge crystals is not of a spherical one, which is presupposed in 

our theory, but instead a complex .surface of two or three sheets. Although his sugges

tion is very interesting, it seems to be difficult at present to derive a quantitative conclus

ion from his ideas, since the detailed knowledge of the band structure of Ge has not been 

obtained. 

§ 3. The effect of the optical mode 

The treatment presented above is based entirely upon interaction with the longitudinal 

acoustical mode of the lattice vibrations of the crystal. The diamond structure lattice, 

however, is expected to have also the optical mode. The effect of the optical mode for 

the electron scattering has been thoroughly discussed by Seitz5l but the observed variation 

of the mobility with temperature did not reveal this effect. Recently Shockley showed 

that the observation of Ryder was well interpreted by taking into account the effects of 

the optical modes. In view of the above situation, therefore, we shall here also discuss 

the influence of optical modes upon the electron scattering. We assume for simplicity that 

the frequency of the optical modes has a constant value lIJo and the temperature is so low 

that the conduction electron is able to emit a phonon but can not absorb a phonon at all. 
Then, according to Seitz, we may easily write down the expression of (a/lat) Colt as follows: 

[a/jatJcoll=[eq. (6)] 
and 

-Jqllma" d. I"(E)-k. (E) Jqmax d. ('L- nlIJo )] 
o q q /0 xg q q ZK2 erE> * 

o 1:, ,ror = reWo• 
(Z9) 

where D is the interaction parameter for the optical mode, analogous to C in the acous

tical one and p the first non-vanishing reciprocal vector of the lattice. When the electron 

energy E is nearly equal to nlIJo' we are not allowed to expand the function fo(E ±nlIJo) ' 
in which case Bloch's integral equation is not easily reduced to the usual differential equa· 

tion. On the other hand, if E is much larger than nwo. it may be expanded as follows: 

[ afJ ~[eq.(6)J+ Vo(pDr {(fo(E) +fo'nwo+ljZfo"(E) (nwor) 
at (Joll 8n:M)'Kwo 

J2X+XIiWOIE S2X-KliWOIE . S2X (l nlIJ )} x q dq-fo(E) q dq-k,,%(E) q dq -.-~ 
o 0 0 zK- z1:., 
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450 J. Yamashita and M. Watanabe 

Here we shall denote the relative ratio of the interaction constants of two modes by R: 

R=D2/2C2'2mu02/koT. (~2p2/2m) l~wo~D2/C2. (31) 

Then eq. (30) becomes 

[ of] 4VaC2m3koT[vE{EI'"0"+(~+2)j:o'+_2_.po}+ nwo. R at ColI 1CMn4V2m J! koT jv koT j( muo· v E 

x {(Ela" +Io')nwo+ 2 (Elo' +Io)} - v E. k~(E) - R Vl!:(1- nCELI~ )kzg(E)J. 
2muo• 2muo• 2 

(32) 

Using eqs. (32), (7) and (1), we obtain the following differential equations, which are 

easily seen to be the generalized equations of eqs. (11) and (12). 

{(E%" +EJo') +( t~fo' + ~~ fo)} + !::2 R {(EIo" +10') nwo+ 2 (EIo' +Io)} 

_ I.../][ eF( +~E de- ), (33) 
2v2m·u02 ~ g 3 dE 

g (E) = fll eF 1 dlo. 
v 2m 1 + R (l-fiwo/ E) v E dE 

(34) 

Eliminating g (E) from these equations, we obtain 

(E%" + 2EIo') + ( !~fo + ::r fo) + ~~; { (Efa" + fo') nwo + 2 (EIo' + fo) } 

+ PkoT{ E 10" + 1 10' -
1 +R(1-ncLlo/2E) 1 +R(1-ncLlo/2E) 

(35) 

which is rewritten as 

It follows, after a simple integration, 

When E is much larger than nCLlo• the term nCLlo/2E may be neglected approximately com
pared with unity. In that case the integration is easily performed as follows: 

10 (E) =N'exp (-E/ koT) {E/ koT + p/ (1 + R) + R (ncLlo) 2/mu02koT} 1'/(1 +R)+RCliwo)"'",urfllroT 

. (38) 
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When {p/(l+R) +R(nwor/mu02kol} is much larger than E/koT, (38) may be reduced 
approximately to 

10 (E) =N" exp [-l!?/2P'(koT)2J, 

p'=p/ (1 + R) +R(n(uor/mu02koT. 

(39) 

(40) 

When p becomes very large, the average energy of the electron is much larger than nwo' 

in which case we may be allowed to assume the distribution function is approximately 

given by eq. (39). Then the electric current is given by 

J!n= (1/(1+R» (p/p') 1/4 J~coW!, ( 41) 

where 1~,,0u' is the current intensity in eq. (21). We see that In the case of very strong 

field the interaction with the optical modes of vibrations reduces the value of the electric 

current by about 1/(1 + R) 3/4, but the field dependence of the current is still expressed 

by V F. When the field is not so strong, the above mentioned approximation is no 

more valid and some other method of approximation has to be deviced. As we have 

already obtained the distribution function valid in both regions of E <nwo and j;:;:y nwo' 

so we shall conventionally adopt the interpolation method of connecting both distributions 

at an intermediate energy E in order to obtain the approximate distribution function In 

all range of the electron energy. Thus it follows, 

10 (E) =N exp (-x 2/2p) , for x::;:;: Xo 

and 

where x=E/koT, xo=EoIkoT and N is the normalization constant, which is given by 

the following condition: 

21C (2m) 2/3 .[Jxa , koT3/2 n:! N 0 exp (-x2/2P) V x dx 

+exp[ __ X;2 (~ __ ;, )Jr~xp (-x2/2P') VX dxJ=O. (42) 

Finally, the electric current is given by 

+_l_r~xp[_ X02 (_1 ___ 1_)JX2 exp (-x2/p')dx. 
p'La 2 p p' 

(43) 

It may be easily seen that this current expression contains eqs. (21) and (41) as the ex

treme cases. Only when p is equal to p' the above expression reduces easily to 

i/ n = 1/(1 + R) ·J~coW!. (44) 

In other cases of p-value we have to calculate the current numerically from eqs. (42) 
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452 J. Yamashita and M. Watanabe 

and (43). For example, we have worked numerically the case of 

nmo/koT=5, nOJo/muo2=40, Eo=Znmo and R=l, 

the result of which is represented in Fig. 1. 

Cumnl 

10' 

.. 10'· F volts/em 

We see that our result is in 

good qualitative agreement 
with the observation.2)7) Ac

cording to eq. (41) we see 

.that the interaction ratio R 
may be determined by the 

comparison with the observ

ed current j in the very 

strong field and the extra

polated value of J~C0U8' It 

should be stressed that Sho

ckley also has obtained the 

same result as ours by the 

rather intuitive method. 

§ 4. The effect of the impurity scattering 

For the case of the impure crystals, we have to take account of the impurity-scatter

ing beside the lattice-one in the electronic conduction. As the scattering due to the im

purity ion in non-polar crystals has been discussed by Conwell and Weisskopf,s) we shall 

adopt here "their method of procedures. For simplicity we shall again omit the optical 

modes of vibrations. As is well-known, the lattice scattering is of inelastic nature, while the 

impurity scattering is considered approximately to be elastic one, so that the terms contain

ing fo (E) in (ai/at) Colt remain unchanged by adding the impurity scattering term. Ac

cordingly eq. (11) is still valid for the present case, while eq. (12) is altered by allow

ing for the impurity scattering as follows: 

VoCJ _1_ koT .vE (E)+ 7rNo e4 bzG K(E)=-~ eF dfo (45) 
47rMuo ).3/2 nuo g 4/C2 (2m) 1./2E 3/ 2 Zm n dE 

where No is the number of ionized impurity centers, zd the average distance between 

nearest neighbour impurity ions, /C the dielectric constant and G is expressed as 

(46) 

If we put/o(E)=A exp(-lX/koJ) in eq. (45), we obtain the mean free path due to 

the impurity-scattering alone 

I. (E)-===-loP=4KE2/7rNe4 In G, (47) 

which of course coincides with Conwell- Weisskopf's result. ~sing 1.(E) , I and the resul

tant mean free path It, which is defined as 
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we may write down the differential equations as follows: 

and 
t 

{E+l!~"'k T} ff/+{2+ E+~ PkoT(l+ 2It )} f'+_~_J=O (48) 
If' 0 J 0 ko TIE 1..1 0 kT:t 0 , 

geE) = film/ v2m'eF/ VE·tlfo!dE. (49) 

When the field is very strong, eqs. (48) and (49) are reduced to be practically equivalent 

to eqs. (11 ) and (12) on account of 10 E~;y I and I;,? It; which shows that the im

purity effect is not very appreciable in such high field region. On the other hand, when 

the field is not so strong or the impurity content is so large that the conditions of loE2 
.:{{ I and It--I, are valid, the critical field is diminished by the factor (t./ I), which leads 

to the conclusion that the critical field is sensitive to the impurity content.7)S) 

Finally we wish to express our sincere thanks to Prof. T. Muto for his continued 

interest and advice during the course of this work. 
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Note added in proof: Recently many informations about the band structure of germanium crystals have 
been obtained. Therefore, it is very interesting to compute the current in strong field on the basis of that 
band structure in order to resolve the quantitative discrepancies of Shockley's and our theory. Unfortunately 

we have not yet succeeded in solving this problem owing to the mathematical difficulties. 
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