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ON THE CONE OF DIVISORS OF CALABI-YAU FIBER SPACES

YUllrRO KAWAMATA

INTRODUCTION

Let f : X — S be a projective surjective morphism of normal varieties with
geometrically connected fibers. We call it a Calabi-Yau fiber space if X has only
QQ-factonal terminal singularities and the canonical divisor K'x is relatively numer-
ically trivial over S. This concept is a natural generalization of that of Calabi-Yau
manifolds. Such fiber spaces appear as the output of the minimal model program
(MMP). We shall investigate divisors on them by using the log miniinal model pro-
gram (log MMP). We refer the reader to [KMM] for the generalities of the minimal
model theory.

We shall consider the following generalizations of conjectures of D. Morrison
([M1, M2]) concerning the finiteness properties of the cones which are generated by
nef divisors or movable divisors (cf. Definition 1.1):

Now we consider a generalization of the Morrison conjecture:

Conjecture. {cf. [M1, M2]). Let f : X — S be a Calabi-Yau fiber space. Then
the following hold:

(1) The number of the Aut(X/S)-equivalence classes of faces of the effective nef
cone A%(X/S) corresponding to birational contractions or fiber space structures
is finite. Moreover, there exists a finite rational polyhedral cone 11 which is a
fundamental domain for the action of Aut(X/S) on A°(X/S) in the sense that

(a) A4(X/S) = Useauwx/s) 0+1L,

(L) Int TN O, Int IT = B unless 8, = id.

(2) The number of the Bir{ X/S)-equivalence classes of chambers A*(X'/S, ) in
the effective movable cone M*(X/S) for the marked minimal models f' : X' — §
of f: X — S with markings a : X'~ — X is finite. In other words, the number of
isomorphism classes of the minimal models of f : X — S is finite. Moreover, there
exists a finite rational polyhedral cone I1' which is a fundamental domain for the

action of Bir(X/S) on M¢(X/S). U

A marked minimal modelis a pair consisting of a minimal model and a marking
birational map to a fixed model (Definition 1.4).

The nef cone A(X/S) is known to be locally rational polyhedral inside the big
cone B(X/S) ([K2], Theorem 1.9). In the case dim X = 3, we shall prove a similar
statement for the movable cone M(X/S): the decomposition of the movable cone
into nef cones is locally finite inside the big cone (Theorem 2.6), and the pseudo-
effective cone B(X/S) itself is locally rational polyhedral away from M(X/S) (The-
oremn 2.9).
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2 YUJIRO KAWAMATA

It is already known that the above conjectures are true if dim X = dim § = 3
({KM], Theorem 2.5). The main result of this paper is the proof of the first parts
of the conjectures (1) and (2) in the case where 0 < dim § < dim X = 3 (Main
Theorem in §3). In particular, the number of minimal models in a fixed birational
class of 3-folds is finite up to isomorphisms if the Kodaira dimension is positive
(Corollary).

In the course of the proof, we shall use the R-divisors in an essential way. In fact,
R-divisors are more suitable for the analysis of the infinity than the Q-divisors.

It is necessary to consider the birational version {2) of the conjecture in order to
carry out our proof for the biregular version (1) (¢f. Lemmas 1.15 and 1.16).

The relative setting over the base space S is also essential in our inductive argu-
ment on dim S with fixed dim X. This relative setting seems to correspond to the
geometric situation where the size of the metric of the base space S goes to infinity.

1. AMPLE CONE AND MOVABLE CONE

Definition 1.1. In this paper, f : X — § will always be a projective surjective
morphism of normal varieties defined over C with geometrically connected fibers
unless stated otherwise. A Cartier divisor D on X is said to be f-nef (resp. f-
movable, f-effective, f-big) if (D - C) > 0 holds for any curve C on X which is
mapped to a point on S (resp. if dim Supp Coker(f*f.Ox(D) — Ox(D)) = 2,
if f,Ox(D) # 0, if xK(X,,D,) = dim X — dim S for the generic point € S). A
linear combination of Cartier divisors with coefficients in R is called an R-Cartier
divisor. The real vector space

N'(X/S) = {Cartier divisor on X }/(numerical equivalence over S) ®z R

= {R-Carticr divisor on X }/(munerical equivalence over S)

is finite dimensional. We set p(X/S) = dim N'(X/S). The class of an R-Cartier
divisor D in N'(X/S) is denoted by [D].

The f-nef cone A(X/S) (resp. the closed f-movable cone M(X/S), the f-
pseudo-effective cone B(X/S)) is the closed convex cone in N'(X/S) generated
by the numerical classes of f-nef divisors (resp. f-movable divisors, f-effective
divisors). We have the following inclusions:

A(X/S) C M(X/S) C B(X/S)C N (X/S)
The interior A(X/S) C A(X/S) (vesp. B(X/S) C B(X/S)) is the open convex cone

generated by the numerical classes of f-ample divisors {f-big divisors) and called
an f-ample cone (resp. f-big cone). We do not know such a characterization for the
interior of M(X/S). We denote by B¢(X/S) the f-effective cone, the convex cone
generated by f-effective Cartier divisors. We call A%(X/S) = A(X/S) N B¢(X/S)
and M4(X/S) = M(X/S)N B(X/S) the f-effective f-nef cone and f-effective
f-movable cone, respectively. By definition, we have B(X/S) C B¢(X/S).
Remark 1.2. (1) The base space S can be a complex analytic space if we make
a suitable modification. In this case, one needs an additional assumption which
guarantees the finiteness of p(X/S). For example, we consider 5 as a germ of a
neighborhood of a compact subset K C S as in [K2].
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CONE OF DIVISORS OF CALABI-YAU FIBER SPACES 3

(2) If the log abundance theorem for R-divisors holds, e.g., if dim X = 3 ([KeMM]
and [Sho]), then A¢(X/5) and M¢(X/S) are generated by the classes of Q-divisors
as convex cones for a Calabi-Yau fiber space f : X — § (Proposition 2.4). But
there may exist rational points in M(X/S) which do not belong to M*(X/S). (cf.
Example 3.8 (2}).

(3) Even if [D] and [D'] are f-effective and non-zero, we might have [D+D'] = 0.
Unlike the case of A(X/S), M(X/S) may contain a linear subspace of N'(X/S).

Example 1.3. (1) If f : X — § is a birational morphism, then B(X/S) =
NY(X/S).

(2) If a generic fiber X, of f: X — S is a curve, then the degree of a divisor D
is defined by deg D = deg D, = (D - F') for a general fiber F', and

B(X/S) = {z € NY(X/S);deg z > 0}.

Definition 1.4. A minimal model of f : X — S5 (or of X over S) is a projective
morphism f': X' — S which satisfies the following conditions (cf. [KMM]):

{1) There exists a birational map o : X'— — X such that /' = foa.

{2) X’ has only Q-factorial terminal singularities.

(3) Kx: is f'-nef. '

The pair (X', o) 1s called a marked minimal model with a marking . If f: X — §
is also minimal, then « is an isomorphism in codimension 1, and we obtain an
isomorphism a, : N1(X'/S) — N'(X/S) such that a,(M(X'/S)) = M(X/S) and
0. (B(X'/S)) = B(X/S). We denote a.(A(X'/S)) = A(X'/S, ). We sometimes
write A(X'/S) instead of A(X'/S,«) if there is no danger of confusion. Two
marked minimal models (X;, a;) (i = 1, 2) are said to be isomorphic if there exists
an isomorphism 3 : X; — X, such that a; = as 0 3.

Let f: X — S be a minimal model. We denote by Aut(X/S) (resp. Bir(X/5))
the group of biregular (resp. birational) automorphisms of X over S. Any 8 €
Bir(X/5) doen not contract any divisor on X, since Kx is f-nef and X has only
terminal singularities. Thus there is a linear representation

o : Bir(X/S) — GL(N'(X/S),2Z)

given by o()((D]) = 6.((D}).
Lemma 1.5. Let (X, ;) (i = 1,2) be marked minimal models of a minimal
f:Xo — S. Then the following conditions are equivalent:

(1) (X1,01) and (X3, ay) are isomorphic.

(2) A(X1/S,a1) = A(X3/S,az) in N}(X/5).

(3) A(X,/S,a1)NA(X2/S, az) # 0 in NY(X/S). O

Corollary 1.6. There is a 1-1 correspondence between the orbit space
BJI‘(X()/S)/Aut(X()/S)

and the set of isomorphism classes of the marked minimal models (X, &) of X over
S such that X is isomorphic to X, over S. O
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4 YUJIRO KAWAMATA

Definition 1.7. f : X — § is said to be a Calubi-Yau fiber space if X has only
Q-factorial terminal singularities and [Kx] = 0 in N*(X/S). This concept is more
general than the usual Calabi-Yau manifold in the following points: (1) there is no
assumption on the fundamental group nor the irregularity of the generic fiber, (2)
X may be mildly singular, (3) we consider relatively over the base space S. For
example, if dim X = dim S (resp. = dim S + 1), then f is a crepant resolution of
singularities (resp. an elliptic fibration). We note that hl((’)xﬂ) may be non-zero
even if h'(Ox) = 0. Any minimal model which satisfles the abundance theorem
yields a Calabi-Yau fiber space (cf. [KMM]). The point is that we can treat these
cases in a unified way.

Definition 1.8. Let f : X — $ be a Calabi-Yau fiber space, and X 5 T N
S a factorization such that ¢ is also a Calabi-Yau fiber space and h is not an
isomorphism. Then ¢* : NY(T/S) — N'(X/S) is injective, and ¢* A(T/S) =
*NYT/S)N A(X/S) is a face of A(X/S). There are 2 cases:

(1) ¢ is a birational morphism. In this case, it is called a birational contraction.
We have p(X/T) + o(T/S)y = p(X/S) ([KMM]). If p(X/T) = 1, then it is called
elementary or primitive.

(2) dim X > dim T. In this case, g is called a fiber space structure (cf. [O]).

Let D be an f-effective but not f-nef R-divisor. If € is a sufficiently small positive
number, then the pair (X, eD) is log terminal, and there exists an extremal ray R
for this pair {{KMM]). Let ¢ : X — Y be a contraction morphism over § associated
to R. Since Kx is f-nef, ¢ is a primitive birational contraction morphism. It is
called a divisorial contraction or a small contrection if the exceptional locus of ¢ is
a prime divisor or not, respectively. In the latter case, the log flip of ¢ is called a
D-flop.

In this paper, a prime divisor E on X is said to be f-ezceptional if there exists
a minimal model f': X' — S of f and a divisorial contraction ¢ : X' — Y over §
whose exceptional divisor is the strict transform of E.

As a consequence of the cone theorem ([KMM]), we obtain

Theorem 1.9. ([K2, Theorem 5.7]) Let f : X — S be a Calabi-Yau fiber space.
Then the cone

A(X/S)NB(X/S) = A(X/S) N B(X/S)

is locally rational polyhedral inside the open cone B(X/S). Moreover, any face F' of
this cone corresponds to a birational contraction ¢ : X — Y over S by the equality

F = ¢*(A(Y/S) 1 B(Y/S)). 0

The following is an easy generalization of the characterization of nef and big
divisors in [K1, Lemma 3] to R-divisors:

Proposition 1.10. Let f : X — S be a proper morphism of normal varieties.
Then .
AX/SYNB(X/S)={z € A(X/S); 2y > 0}

where n is the dimension of the generic fiber X, of f. ]

The following is in [W] for the case of Calabi-Yau 3-folds:
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Corollary 1.11. Let f : X — S be a Calabi-Yau fiber space, and let W = {z €
NY(X/S);z} > 0}. Then the cone A(X/S)NW is locally rational polyhedral inside
the cone W. ]

Remark 1.13. (1) Conjecture 1.12 were inspired by the mirror symmetry conjec-
ture of Calabi-Yau threefolds. Some positive evidences are given in [B], [GM] and
[OP] for (1) and [Nm1] for (2).

(2) With respect to our relative formulation over the base space 9, the variety X
can be an arbitrary minimal model which satisfies the abundance theorem ([KMM)),
if we take S to be the canonical model Proj(€p,._, H*(X,mKx)).

(3) If we replace the ample cone A(X) by the Kihler cone X(X), then the
conjecture is clearly false.

(4) The finiteness questions such as the finite generation of the canonical ring,
the termination of flips, the finiteness of the cones, the boundedness of the moduli
space and the Zariski decomposition, seemn to be mutually related (cf. [A], [G]).

Example 1.14. (1) Let X be an abelian variety. Then we have
A(X) = B(X) = {z € N*(X);2" = 0)°

where © denotes an irreducible component of the cone, since X does not contain a
rational curve, and there is no divisorial contraction nor flop of X.

Although the shape of this cone is quite different from a finite rational polyhedral
cone, the conjecture seems to be true in this case, too. One checks it by an explicit
calculation in the case where X & E x --- x E for an elliptic curve E without
complex multiplications (Corollary 2.11). A related result is in [NN].

(2) Let X be a K3 surface with an ample class h, and ¥ the set of all the
(—2)-curves on X. Then

AX)={z€ N (X);2>0,2-h>0,2-C>0 VC eI}

and B(X) is the closed convex cone generated by the cone {z € N!(X);2% >
0,z -h >0} and the C € . This duality between A and B will be generalized in
Theorem 2.9. In this case, the conjecture is verified in [St] (see Theorem 2.1). See
also [Kov].

Our strategy is to analyse the birational automorphism group first and try to
prove Conjecture (2), and then consider the biregular automorphism group toward
Conjecture (1).

Lemma 1.15. Let f : X — S be a Calabi-Yau fiber space. Assume that the
number of faces of A*(X/S) which correspond to primitive birational contractions
is finite up to the action of Bir(X/S). Then it is also finite up to the action of
Aut(X/S). O

Lemma 1.16. Let f : X — S be a Calabi-Yau fiber space. Assume that the
number of faces of A*(X/S) which correspond to fiber space structues is finite up
to the action of Bir(X/S). In addition, assume that the first part of Conjecture
1.12 (2) is true for any Calabi-Yau fiber space which factors f non-trivially. Then
it is also finite up to the action of Aut(X/S). a
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6 YUJIRO KAWAMATA

2. GENERAL RESULTS FOR DIMENSION 2 OR 3.

Theorem 2.1. Let f : X — S be a Calabi-Yau fiber space such that dim X = 2.
Then Conjecture 1.12 is true. O

Remark 2.2. (1) The global Torelli theorem proved in [PSS] guarantees the exis-
tence of sufficiently large automorphism group, and is the key point in the proof.
{2) The above theorem is also valid over any field k of characteristic 0.

Theorem 2.3. (cf. [K2, p.120]). Let fy : Xo — S be a Calabi-Yau fiber space
with dim Xo = 3, and D an R-divisor such that [D] € M*(Xy/S). Then there
exists a sequence of D-flops such that the strict transform of D becomes relatively
nef over S. Therefore,

Me(Xo/8) = | A(X/S, )
(X,a)

where the union on the right hand side is taken for all the marked minimal models
(X,a) of Xy over S. 0

Proposition 2.4. Let f : X — S be a Calabi-Yau fiber space such that dim X = 3.
Then the cones A*(X/S) and M®(X/S) are generated by the numerical classes of
Q-Cartier divisors as convex cones. 0

The following gives a positive answer to Conjecture 1.12 in a special case, where
we note that Bir(X/S) = {id}:

Theorem 2.5. ([KM]). Let S be a normal 3-fold, and f : X — S a minimal
resolution. Then A(X/S) is a finite polyhedral cone, and there exists only finitely
many marked minimal models of f. In other words, Conjecture 1.12 is true if

dim X =dim § = 3. 0
The following is a generalization of the above theorem:

Theorem 2.6. Let f3 : Xo — S be a Calabi-Yau fiber space such that dim Xy = 3.
Then the decomposition

M Xo/S)NB(Xe/S) = | A(X/S,@)nB(Xy/S)
(X,a)

is locally finite inside the open cone B(X,/S) in the following sense: if 3 is a closed
convex cone contained in B(X,/S)U {0}, then there exist only a finite number of
cones A°(X/S,a) N B(Xy/S) which intersect 2. O

The accumulation occurrs only toward the boundary 8B(X/S):

Corollary 2.7. Let f: X - S be a Calabi-Yau fiber space such that dim X = 3.
Then the cone M(X/S)NB(X/S) is locally rational polyhedral inside the open cone
B(X/S). Moreover, the faces of this cone correspond to divisorial contractions of
some marked minimal models. |

Remark 2.8. One f-exceptional divisor may correspond to several faces of

M(X/S).
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Theorem 2.9. Let f: X — S be a Calabi-Yau fiber space such that dim X = 3.
Then the cone B(X/S) is locally rational polyhedral inside the open cone

NUX/S)\ (M(X/S) N OB(X/S)).

Moreover, it is generated by M(X/S) and the numerical classes of the f-exceptional
divisors. t

We have the following positive evidence for Conjecture 1.12 in the case where
X is a direct product of an elliptic curve without complex multiplications. By the
mirror symmetry, its complexified Kahler cone Rzn(n+1) V—1A(X) should be
1somorphic to the moduli space of marked principally polarized abelian varieties
under the mirror map, as is proved in the following proposition. An abelian variety
which is isogenous to X may correspond to a non-principal polarization.

Proposition 2.10. Let X = E x --- x E (n-times) for an elliptic curve E without
complex multiplications. Then Aut(X) = Bir(X), p(X) = in(n + 1), and

Im(o : Aut(X) — GL(N'(X),2)) = GL(n,Z).

Moreover, there is a linear isomorphism 7 : N'(X) — S(n,R) to the real vector
space of symmetric (n,n)-matrices which sends A(X) to the cone of positive definite
matrices and which is compatible with the natural GL{n,Z)-actions. 0

Corollary 2.11. Conjecture 1.12 is true for X = E x -+ x E for an elliptic curve
E without complex multiplications. C

We make a remark on the behaviour of the cones of divisors under deformations
extending [W] and [Nm2]. This result is not used in the rest of this paper.

Proposition 2.12. Let X be a Calabi-Yau fiber space over a point such that
dim X = 3 an h?(Ox) = 0. Let 7 : X — B be a flat family of deformations of
X = X, over a germ (B,0). Then there exist at most countably many proper
closed analytic subsets Cy of B, which may contain 0, such that A(X,), M(X,)
and B(X,) are constant in N'(X) = NY(X,) fort € B\ |J, C>x. i

3. MAIN RESULTS

Main Theorem. Let f : X — S be a Calabi-Yau fiber space such that dim X =3
and dim S = 2 or = 1. Then there exist only finitely many chambers for the marked
minimal models of f and finitely many faces of them up to the action of Bir( X/5),
hence the first parts of Conjecture (1) and (2) are true. 0

Corollary. Let X be an algebraic variety of dimension 3 whose Kodaira dimension
#(X) is positive. Then there exist only finitely many minimal models of X up to
isomorphisms. ]
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