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Abstract. We discuss three equivalent formulations of  a theorem of Seymour on 
nonnegative sums of  circuits of a graph, and present a different (but not shorter) 
proof of  Seymour's result. 

1. Introduction 

Let G be  a connec ted  br idge less  graph.  I f  X ~ V ( G ) ,  O(X) is the set o f  all  edges  
e wi th  exac t ly  one  end  in X. I f  eeO(X), the  vec tor  h(X, e),  with coord ina te s  
indexed  by  E(G), is 

1 iff~d(X)\{e}, 
h(X,e)f= - 1  if  f = e ,  

0 otherwise.  

A vector  x conforms to  a vec tor  y if, for  every j ,  x~ > 0 impl ies  y~ > 0 a n d  xj < 0 
impl ies  y j < 0 .  Deno te  b y  M the (0, 1)-matr ix  with rows c o r r e spond ing  to al l  
circuits  o f  (3, co lumns  to  all  edges  o f  G, wi th  

otherwise.  
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Let K ( M ) = { z :  Mz>-O}. Thus K ( M )  is the set of  all edge flows (assignments 
of  weights to edges) for which the total flow of  every circuit is nonnegative. 
Note that h ( X , e ) ~ K ( M )  for all X and e. For an edge flow z, set 
N(z)  = { C :  (Mz)c =0}, the set of  circuits whose total flow is zero with respect 
to z. Such circuits will be called 0-circuits. 

This paper  originated from an attempt to find a short proof  of  a remarkable 
theorem of  Seymour [2] (Theorem 1 below), which is the undirected analog of 
Hoffman's  circulation theorem for directed networks [1]. We wanted to establish 
Theorem 1 by proving an equivalent result (Theorem 2) about generators of 
K(M) .  But that program seemed to require a third result (Theorem 3) which, 
although an easy consequence of Theorem 1, is not so easy without it. Our 
discussion: Theorem 2 ~ T h e o r e m  1 ~ T h e o r e m  3 ~ T h e o r e m  2, together with a 
separate proof  of  a stronger result (Theorem 4) of  which Theorem 3 is a corollary, 
yields a different proof  of  Theorem 1, but not a shorter one. 

Theorem 1. For any c, d ~ R E(a), the system of inequalities 

y>-O, c'<-y'M<-d ' (1.1) 

is consistent if and only if 

and 

d -> 0, (1.2a) 

d >- c, (1.2b) 

for every X c_ V(G), and every e e a ( X ) ,  c ~ -  < Y d I. (1.2c) 
f~o(X)\{e} 

Note that y above is a vector of  flows on circuits (an assignment of  weights 
to circuits). This is the analog to flow conservation in directed networks. Then 
(I.1) corresponds to lower and upper  bounds on the cumulative arc flows. 

Theorem 2. Every z ~ K ( M) is a nonnegative sum of nonnegative vectors conform- 
ing to z and vectors h(X, e) conforming to z. 

Theorem 3. I f  ze  K ( M )  and E(G) =(.Jc~Ntz) E(C),  then if vl, v2e V(G), there 
is a path P joining v~ and v2 such that z(P)=~e~p ze <-0. 

2, Theorem 2 ==~ Theorem I 

The necessity of  (1.2a)-(1.2c) is obvious. To show they are sufficient, rewrite 
(1.1) as 

y'[M; -M]--- [d'; -c '] ,  y---0. (2.1) 
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By Farkas' theorem, (2.1) is consistent if and only if 

s>-O, t>-O, M(s-t)>-O implies d's-c't>_O. (2.2) 
+ 

For any vector z c R e(G), let ze ÷ = z, if z~ --> 0, otherwise ze = 0; z~- = - z ,  if z, - 0, 
otherwise z~=0.  Now consider (s; t) satisfying s>_O, t>_O, M(s-t)>-O. Then 
(s; t ) = ( q ;  q )+(z+;  z-) ,  where qe =min(s~, t,) for each e, z = s - t ,  and Mz>_O. 

By (1.2b), d-c>-O. But s - 0 ,  t->0 imply q - 0 ,  so d'q-c'q>-O. By 
Theorem 2, 

(z÷; z-)  = ( p ;  0 ) + ~  kx(h+(X, e); h-(X, e)), 

where p - 0 ,  all kx>-O. By (1.2a) d'p-c'O>-O, and by (1.2c) d'h+(X,e)= 
Y,y~a(x)\~e) dy >- c~ = c'h-(X, e). This yields d'h+(X, e) - c'h-(X, e) >- O. So the 
implication (2.2) holds, and Theorem 1 is proved. [] 

3. Theorem 1 ::~ Theorem 3 

Suppose vl and v2 are ends of an edge e e E(G). By the hypothesis of Theorem 
3, there is a 0-circuit containing e. If ze-< 0, the desired path is e. If ze > 0, the 
other edges of the 0-circuit constitute the desired path. 

Suppose v~ and v2 are not adjacent in G. Construct a graph G* by creating 
a new edge f joining v~ and v2. We now describe vectors c and d for G. Let 
cI= 1, d I = co. For all other edges e ~ E(G*), let ce = de = the number of  circuits 
C ~ N(z) containing e. It is easy to see that (1.2a)-(1.2c) are satisfied. By the 
definition of  c and d, it follows from Theorem 1 applied to G* that in G there 
exist paths P ~ , . . . ,  Pn joining v~ and 02 and positive numbers a ~ , . . . ,  an, together 
with a (possibly empty) set of circuits CI , . . . ,  Cm and associated positive numbers 
/3~, . . . ,  fl,~ such that, designating the Cth row of  M by Mc, 

~OtkPk+~fljC3---C= ~, Me. (3.1) 
C~N(z) 

Note that in (3.1), as well as elsewhere in this paper, we may choose to abuse 
notation and identify paths, circuits or subgraphs with their incidence vectors. 
The above paths Pk correspond to circuits in G* containing f. Because c¢ = 1 ~ve 
know n - 1. 

Take the inner product of  z with both the left- and right-hand sides of (3.1). 
Since ( Cj, z) -> 0 for all j and ( Mc, z) = 0 for all C ~ N (z), it follows that ( Pk, z) -< 0 
for at least one k; 

4. Theorem 3 :::> Theorem 2 

For any graph G and any vector z~R  e(~) with Mz>-O, define G~ as follows: 
V(Gz) = V(G), and vl, v2 are adjacent in Gz if and only if at least one of the 
following holds: 

z(v~.~) -< 0 (4.1) 
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o r  

there is a 0-circuit containing v~ and v2. (4.2) 

It is easy to see that (4.1) and (4.2), using Theorem 3, imply: 

if v~ and v2 are connected in G~, there is a nonpositive 
path in G joining v~ and v2. 

(4.3) 

For, let G ~ be obtained from G by removing all edges that are in no 0-circuit of 
z. Then Theorem 3 applies to each component of G ~. The components of G~ are 
obtained from the components of G ~ by (possibly) connecting some of the latter 
by negative edges. Hence (4.3) holds. 

Recall that z satisfies Mz >- O. If  z -> 0, we are done, so assume E (z) = { e: z, < 0} 
is not empty. We shall show there exist X c V(G) , f~  E(z)c~ 0(X), t > 0 so that: 

h(X, f )  conforms to z; (4.4) 

z*= z - t h ( X , f )  conforms to z, and satisfies Mz*>-0; (4.5) 

supp z* c supp z; (4.6) 

N(z) ~ N(z*); (4.7) 

with at least one of the inclusions in (4.6) and (4.7) proper. Clearly, these 
stipulations on z* will suffice to prove Theorem 2. 

For each e =  (v~, v~)e E(z),  consider the graph (G-e)~ defined above, and 
let K~z be the set of  vertices of the component containing v~ in that graph. By (4.3), 

K,~ ~ K~;  (4.8) 

otherwise we would have a nonpositive path joining vj and vj which, together 
with e, would produce a negative circuit. Of  all possible KT~ which could be so 
constructed, choose one with the fewest number of vertices, say K~ .  We first show 

if e=(v, ,v j)~E(O) and v~,vj~K{~, then z~->0. (4.9) 

Assume otherwise. Let P be the (el, v,)-path in ( G - f ) z  ~ G~ whose existence 
is guaranteed by vte K(~. Suppose vl ~ K ~. Let vk be any vertex of K ~ and Q be 
a (v~, Vk)-path in ( G -  e)~ _c G~. If  Q ~t ( G - f ) ~  then Q contains f or some edge 
derived via (4.2) from a 0-circuit containing f In this case we can see that v~ can 
also be reached from v~ in ( G - e ) z ,  contradicting v~ ~ K~. Hence Q ~ ( G - f ) z .  
But then we can get from vl to Vk in ( G - f ) ~  by first following P and then 
following Q. Thus vk e K ~  and KTz is properly contained in Kf~, contradicting 
the minimality of K ~ .  Therefore vl e K~. The same reasoning shows that v~ e K~. 
But this means KTz = K~, violating (4.8). So (4.9) is true. 
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Next, let X = K~z. The vector h(X,f)  satisfies (4.4), by (4.1). We now claim 

N(z) ~ N(h(X,f)).  (4.10) 

Since N(z*) differs from N(z) only on circuits crossing X, (4.10) would imply 
that (4.7) is true. 

To show (4.10) it is sufficient to show that C ~ N(z) implies that C either 
misses O(X) or intersects O(X) i n f  and exactly one (positive) edge. If  C intersects 
a(X), but does not contain f, then we have a contradiction of (4.2). Further, by 
(4.1), every edge in o(X)\{f} is positive. Suppose C contains more than one 
(positi,~e) edge of  O(x). From (4.3) and (4.9), any two vertices of  C in X can be 
connected by a path of 0-edges. It follows that, if C contains more than one 
positive edge of  O(X), there is a path of  0-edges, all vertices of  which are in X, 
say P = (ul,  u2), (u2, u3) . . . .  , (un-l,  u,), where ul and un are in C, all others are 
not, and C is the mod 2 sum of circuits P + PI and P + P2 (PI and P2 being paths 
whose union is C), and P +  P~, P +  P2 both contain edges of O(X). (See Fig. 1.) 
But ~e~P+el ze ->0 and ~e~e+e: z¢ >-0" Since P is a 0-path, and C is a 0-circuit, 
it follows that P + P~ and P +/'2 are both 0-circuits. But only one can contain f, 
so the other violates (4.2). 

Let t be the largest positive number such that z* satisfies (4.5). By (4.4) and 
(4.10), such a positive number exists, and at least one of  (4.6) and (4.7) is proper 
inclusion. 

5. Proof of  Theorem 3 

Theorem 3 follows as a corollary of  the following stronger result: 

Theorem 4. I f  z ~ K(M) and E( G)=l,.JC~N~=) E( C), then if vl, v ~  V( G) there 
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is a pair P~, P2 of (vl,  v2)-paths and a (possibly empty) set of circuits S such that 
(as incidence vectors) 

P~+P2+ ~ C =  E Mc. (5.1) 
C~ S  C ~ N ( z )  

Once we have established Theorem 4, we can take the inner product of  z with 
both sides of  (5.1). Then, just as in Section 3, since (C, z)_>0 for all C e  S and 
(Mc, z)=0 for all C ~ N(z),  it follows that at least one of  the two paths is 
nonpositive. Hence Theorem 3 holds. 

Proof. Consider all subsets T c  N(z) for which v~ and v2 are connected in the 
subgraph (~ with edge set E((7) = [.] c~ r E (C).  Determine the minimum of  [E (G)l 
over all such subsets T. Now, of those subsets T which achieve this minimum, 
select one containing the fewest number of  circuits, say { C ~ , . . . ,  Cn}. 

I f  n = 1 then v~ and v2 are contained in a common 0-circuit. In this case we 
choose P~ and /)2 to be the two (v~, v2)-paths determined by this circuit and S 
to be all o f  the other 0-circuits of  G. Then (5.1) holds, and we are done. So 
assume that n > 1. 

From the minimality of  n we may assume (after appropriate relabeling if 
necessary) that 

v,e v ( c o \  v(c~), o2~ v(c . ) \  v(c._,), (5.2) 

and 

V(C~) n V(Cj)~ 0 if and only if [ i - j [  = 0 or 1 (and hence no 
vertex of (~ is in more than two of  the C~). 

(5.3) 

Suppose there is a vertex v of  G of  degree larger than three. Then v mUst be 
t 

common to Ci and Ci+l for some i, and by (5.2) must in fact be of  degree four. 
Reduce the degree of  v by splitting it, introducing a new edge with weight zero 
common to both C~ and C~+~. This splitting operation cannot create any negative 
circuit. For suppose C is a circuit in the new graph. I f  the new edge is shrunk, 
C will become either one or two nonnegative circuits whose total weight equals 
that of  C. This argument shows also that if C is a 0-circuit in the new graph, the 
resulting circuits must be 0-circuits in the shrunken graph. 

Repeating the splitting procedure with other vertices, if necessary, we may 
assume 

every vertex of (~ is of  degree two or three. (5.4) 

As one consequence of  the above assumptions, Ci and C~+~ share at least one 
edge, 1 < i <- n - 1. 
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Define the graphs 

J 
Gj=UCi ,  j = l  . . . .  ,n,  

i=1 

{ Cjm C~+,, j = l , . . . , n - 1 ,  
F j=  {v=}, j=n,  

Dj={O~ j=0, 
F~, j = l , . . . , n .  

i=l 

Let G~ e) be the graph obtained from G~ by duplicating the edges of G~ that are 
in Di_~,j = 1, . . . ,  n; let G~ a) be the subgraph of Gj with edge set E(Gj)\E(Dj_O, 
j =  1 . . . .  , n; and let By be the component of G) a) that contains v~, j =  1 , . . . ,  n. 
Note that G) e) is Eulerian and that G) a) is a vertex-disjoint union of  circuits. 
Observe also that z(G) ~)) =Y-~=1 z(C~)=0. 

Now let Xo = v~ and x~ be the last vertex of F~ encountered while traversing 
C1 from v~ to v~. Define R~ to be the (Xo, x0-path whose edges are contained 
in E(B~)\E(C2) = E(C~)\E(C2), and H1 to be the other (Xo, x0-path contained 
in C~. Then the following three conditions hold for i = 1: 

x~ is a vertex of F~ of degree three in G, (5.5) 

R~ is an (Xo, x~)-path whose edges are contained in (5.6) 
E(B,)\E(C,+O, 

and 

H~ is a vertex-disjoint union of an (Xo, xi)-path and 
(possibly) some circuits, such that Di c H~ c_ G~. 

(5.7) 

Assume (5.5)-(5.7) hold for i= k, for some 1-< k - n -  1. Note that R k -  Bk+l. 
Define Qk+a to be the (x0,xk)-path with edge set E(Bk+i)\E(Rk). Now Qk+~ 
contains at least one edge f in E(Ck+O\E(Ck), one of the three edges incident 
to xk. Observe that (5.3) implies that f cannot be in Ck+2. 

There are two cases to consider (see Figs. 2 and 3): 

or 

Fk+1 ~ Qk+1, (5.8) 

Fk+~ c_ Qk+~. (5.9) 

Case (5.8). Consider G~+~, the mod 2 sum of  Hk and Qk+~, a subgraph of Gk+l. 
From (5.8) we have Fk+l ¢ G~,+1. Note that G~+I contains f, since Q~+, does and 
Hk~ Gk so Hk contains no edge in E(Ck+O\E(Ck). Let G~+1 be the subgraph 

(e) t of G~+)I with edge set E(Gk+I)\E(Gk+t), regarding G~,+I as a subgraph of G~+)t. 
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Fig. 2. Case (5.8). 

For every duplicated edge in ~(e) C~k+l, • -'k+l, one edge of  the pair is in ' while the 
• p 

other is in G~÷1. This is true because Dk c Gk+l, since Dk c Hk and no edge of  
Dk is in Bk+l. Also, every vertex of G~÷~ is of  even degree, as is every vertex of  
GT,+~. Thus, both G~÷~ and G~+~ are vertex-disjoint unions of  circuits of  ~(e) U k + l ,  

and in fact of  circuits of  Gk+~. 
- z(Gk+l) = 0  force Then z(G'k+l)>_O, z ( G ~ + l ) > 0  and z(G'k+l)+z(G~+l)- (~) 

z,(G~+~) =0 ,  and in fact we have G~+~ written as a vertex-disjoint union of  
0-circuits. By (5.8) there is a circuit Ck*+~ of  G~+~ that contains a vertex of  Fk+~. 

E ( C k + d  - Now C*+~ also contains at least one edge of  Ck, otherwise (5.3) forces * c 
E(Ck+~)\E(Ck), which is impossible. However, we know also that C*+~ # Ck+l, 
because C*+1 cannot contain f.  

Consider the graph H = C~ u -  • • u Ck u C*+~ u Ck+2 u -  • • u C~, a proper  sub- 
graph of  (~ since it does not contain f. The vertices v~ and v2 are connected in 
this graph. Start with (~, take all of  the edges that were introduced by splitting 
vertices near  the beginning o f  the proof,  and shrink them. Do the same thing 
with H. Note that f is contained in only one o f  the C~ and hence is not one of  
those edges to be shrunk. The resulting shrunken H will then be a proper subgraph 
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of the shrunken ¢~. Every edge of H is contained in a 0-circuit of H and vl, vz 
are connected in H. Yet IE(H)I <1E(¢5)1, contradicting our initial assumption 
about the minimality of IE(~5)I. Therefore case (5.8) cannot occur. 

Case (5.9). Let xk+l be the first vertex of  Fk+~ encountered while traveling from 
x0 to xk in Qk+t- Define Rk+~ to be the portion of  the above path from Xo to xk+t, 
Pk+~ to be the portion of the above path from xk+~ to xk, and Hk+l to be the rood 
2 sum of/ark and Pk+~, a subgraph of Gk+t. By (5.9), Fk+~-_- Pk+l, implying that 
D~+~ ~ Hk+l, so (5.5)-(5.7) hold for i = k +  1. 

Since case (5.8) is never encountered, we will eventually construct H,.  First 
note that x, = v2. Let G '  = H, ,  and G" be the subgraph of G~ e) with edge set 
E(G(,e))\E(G'), regarding G'  as a subgraph of  G~ ). For every duplicated edge 
in G<, ~), one edge of the pair is in G', while the other is in G", because D,  c H~. 
Also, every vertex of G'  is of even degree, except Xo = vt and x, = v2, which are 
of degree one, and the same is true of  G". Thus G'  and G" each consists of  a 
(v~, v2)-path, P '  and P", respectively, and a vertex-disjoint union of  circuits of  
G(, *), and in fact of circuits of  G, = ¢~. 
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! tt J l -  n We now have (as incidence vectors) P +P +Y.c~s, C ~c~s,, C=Y.i=~ Ci. 
Shrink those edges that were used to split vertices near the beginning of the 
proof. The result will be two (v,,  v2)-paths P~, P2 and a set T of circuits such 
that P~+P2+~,c~ r C = Y ~  C~ in this shrunken t~. (Note that each path will 
shrink into a path, together with (possibly) some circuits.) Finally, we arrive at 
the desired set S of  0-circuits by adding to T all 0-circuits not in { C ~ , . . . ,  C,}. 
Then (5.1) holds. [] 

5.1. Examples 

In Fig. 2 we have three circuits C~, C2, and C3. Tracing Ct clockwise from Xo = v~ 
to vl the last vertex of  C2 we encounter is x~. The path R~ is the (Xo, x~)-path 
lying only in C1; H~ ;s the other (Xo, x0-path .  We now construct Q2 by leaving 
Xo in the opposite direction of  R~, staying on edges lying in exactly one of C1 
or C2, until we arrive at xl.  Observe that F2, the intersection of C2 and (73 is 
not contained in 02 (in fact, it is missed entirely). Thus we are in case (5.8). We 
let G~ be the mod 2 sum of  H~ and Q2, and choose G~ to be the graph having 
all edges that are in C~ n C2 as well as those edges of C~ and (72 that are missed 
by G;. Pick a circuit C2" of G~ that meets F2 (either will do). Then H = C1 u C2" u 
(73 is a union of  0-circuits in which v~ and v2 are connected, and H has fewer 
edges than G = C~ u C2 u C3. 

If, however, we keep C, and (?2 as in Fig. 2 but alter (73 and v2 to get Fig. 3, 
we will construct the same R~, H1, and Q2 as before. But now F2 is completely 
contained in Q2 so we proceed as in case (5.9). Following Q2 from Xo to x~, the 
first vertex of (?3 we encounter is x2. The part of Q2 between Xo and x2 is R2; 
the rest of  Q2 is -°2. We set/-/2 to be the mod 2 sum of H~ and P~. Construct 03 
by leaving Xo in the opposite direction of  R2, staying on edges lying in exactly 
one of C1, C2 or Ca, until we reach x2. Note that F3, the point v2 itself which 
we now call x3, is contained in 03- So again we are in case (5.9). The part of  
Q3 between x0 and x3 is R3; the rest of  Q3 is P3. The mod 2 sum of/-/2 and Pa 
is Ha, which is also G'. We get G" by choosing all edges of  C~ u C2 w C3 that 
lie in exactly two of these three circuits, together with all other edges missed by 
G'. Each of  G '  and G" has a (v~, v2)-path, and at least one of  these must be 
nonpositive. 

6. Remarks 

One of  the referees kindly provided the following information: A. Seb8 (Budapest) 
independently arrived at Theorem 3 through his work on t-joins, which are closely 
related to sums of circuits. Among the results he obtained is that under the 
conditions of  Theorem 3 (or the slightly weaker condition that every positive 
edge is in a 0-circuit and all circuits are nonnegative) the distance d(x, y) between 
any two vertices x, y is nonpositive, the relation x ~ y  if and only if d(x, y )=  0 
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is an equivalence relation, and  that properties of  the equivalence classes can be 
used to ob ta in  a Kotzig-type theorem for t-joins. 
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